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Multiple nonequilibrium steady states for one-dimensional heat flow
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A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have
multiple steady states for any fixed heat field strenigtlianging from zero to a certain positive value. We
demonstrate that, depending on the initial conditions, there are at least two possibilities for the system'’s
evolution: (i) formation of a stable traveling waveoliton), and (ii) chaotic motion throughout the entire
simulation. The percentage of the soliton-generating trajectories is zero for small field stfgndibt in-
creases sharply to unity over a critical region of the paranfeter
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In recent years, the study of nonequilibrium statistical me-steady states should not be ignored in future computer simu-
chanics systems has attracted increasing attention. In particlations and theoretical studies of nonequilibrium systems.
lar, nonequilibrium molecular dynamicdEMD) simula- We consider the NEMD equations of motion for heat flow
tions of many-body systems have flourishgt-8]. In a  in 1D lattices[1,6-8§]:

NEMD system, an extern&driving) force is coupled to the :

particle system and a thermostat then used to keep the sys- gi=p;/m,

tem’s temperature or total internal energy constant. The ex- .

ternal force and the thermostat are usually modeled as deter-  Pi=U"(di+1—d)—U'(qi—gi-1)+fDi—ap;. (1)
ministic modifications of the equations of motion; the _ _ L _
thermostat removegon averagk excessive heat from the Heremis theith particle’s massy; the displacement, arpl
system. As a result, the NEMD system is typically determin-the corresponding momentum; the functidrepresents the
istic, time reversible, and dissipative. In such a system th&€arest-neighbor interparticle interaction potential; ki,

sum of all the Lyapunov exponents is negative, signifyinga”d ap; terms model a heat field and a constant-energy ther-
the collapse of the comoving phase-space volume onto eith&R0stat, respectively, where

a strange chaotic attractor or a limit cycle. In the long time 1

limit, the NEMD system dynamics usually reaches a steady Di=—=[U'(q+1—0)+U'(q—0i_1)]

state and its trajectory eventually settles onto a fractal object 2

in its associated phase space. In computer simulations and

theoretical analysi§l—8] of NEMD systems it is very im- +
portant to knowwhether the NEMD steady state is unique

(especially for small fieldsin the sense that all trajectories,

no matter what the initial conditions are, settle onto the sam&nd

attractor, be it chaotic or otherwise. N

In this paper, we demonstrate that the steady state of a a= k D
NEMD system can baonuniqueeven for vanishingly small 2K =1
fields. This is in sharp contrast to all previous numerical
observations and theoretical assumptions. Using the Evanshote that the system’s internal energy
NEMD heat flow algorithn 1,6] for the computation of the N
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heat conductivity for a one-dimensiondD) lattice of inter- =
acting particleg7,8], as an example, we show that for each i
applied field strengtl, ranging from 0 tof -, (see following

discussionsthe system dynamics may either converge to as constant along a trajectory because from E({3$—(3)
solitary wave(or loosely speaking, a solitprwvithin a finite  dH/dt=0. This is in comparison with the constant-
time, or dwell on a low-dimensional chaotic attractor duringtemperature thermostat used in previous stugiie. With-

the entire(long time simulation. The final state depends on out the thermostat, the system’s internal energy would in-
the initial conditions that are chosen randomly from thecrease graduallyfor f.#0) and eventually cause numerical
phase space. The probability of observing a soliton-state varoverflow in the computer simulations.

ishes for smalif,, but exhibits a sharp transition from zero  Like many other NEMD systems, systdi) is determin-

to unity over a critical parameter region fif. We show that istic and time reversible The time reversibility is inherited
the soliton corresponds to an exact solution for a travelingrom the original Newtonian dynamics: at any point of a
wave of the lattice, and that its shape, velocity, and amplitrajectory, if the signs of the velocities of all the particles are
tude can be determined from a differential-difference equaehanged while their coordinates remain the same, then the
tion. These findings suggest that multiple nonequilibriumparticles, which move according to the dynamical system

1,
) ﬁpﬁ‘U(Qiﬂ—Qi) (4)
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(1), will trace back their positions exactly. For a mathemati- B 1 2 N—2 N-—11
cal definition of time reversibility, see Rdfl], p. 183, Eq. 1 N N N N
(7.50.

The idea of the NEMD simulation is to calculate the ther- N—-1 1 E N-3 N-2
mal conductivity coefficient of the lattice by using the fol- N N N N
lowing formula: N—=2 N-1 N—4 N-3

- - -1 ... - -
B= N N N N . (8
o ()
A= lim lim , (5)
fe0tom Tle 2 3 4 -
N N N N
. . 1 2 3 N—-1

whereT is system’s temperaturd,(t) is the heat flux, N N N N 1

! Substituting this into Eq(3) we obtain
p. ’ !
I(0==5 2 5V @r1=a) + U’ (A= ai-0)], 1 awmp
6) a=a(Q,Q)=—§fem, (€)

) ) o o _ WhereD is a column vector withU’(Qj 1) +U'(Q;)] be-
and the quantityJ,(t)) in Eq. (5) is, in principle, a nonequi- ing ts jth element (kj<N).
librium ense_mble averageis _point_ed ogt _in the Iiteratl_Jre Equations(7) and (9) form a closed set of lattice dynam-
(e.g.,[1]), this heat flow algorithm is valid in the weak field jcs equations fofQ;(t),1<i=<N}. Furthermore, we can seek

regime, i.e.,f.—0. In the strong field regime there is no solutions of the formQ;(t)=Q(i —Vt)=Q(z) for traveling
known physical meaning or interpretation for the quantity,waves. Substituting this ansatz into E@) we obtain a non-

lim (I (D) M (TH1e). linear differential-difference equation,

In many previous simulationgl,2,4—§ the nonequilib- )
rium steady state was assumed to be unitjiee, indepen- VQ"(2)=U'[Q(z+1)]-2U'[Q(2)]+U'[Q(z—1)]
dent of the initial conditions thus the ensemble average of 1
J,(t) was replaced by a long time average. Moreover, in the —=fJU{Q(z+1)}-U"{Q(z—1)}]
fluctuation theorems of Evans and Seafisand the chaotic 2
hypothesis of Gallavotti and Cohéb], it is also assumed +a(2VQ'(2), (10)

that the nonequilibrium steady state is generally unique and

chaotic. However, in the following we will show that the for all ze[0,N]. Periodic boundary conditions require that

present NEMD system can support at least two differenb(o)zQ(N), and the conditior2! ,Q;(t)=0, implies that
types of steady states, the soliton and strange chaotic attrajsqu(Z) dz=0.

tor, even for arbitrarily small external fiel. If fe=0, the system simplifies to a 1D Hamiltonian lat-

tice, and its corresponding differential-difference equation
(10) may be solved analytically, at least for some nearest-
neighbor interaction potentials, such as the Toda potential
[9]. However, in the casé.#0 and a(z)#0, it does not
seem possible to find an exact analytical solution for Eq.
(10). Here we use a numerical approach. We discretize Eq.
(10) by a finite difference method, and solve the resulting
nonlinear equations by Newton’s iteration method starting
with an approximate solitary wave solution for the corre-
sponding Hamiltonian systef®,10]. In this paper we focus
on the well-known Fermi, Pasta, and Ulaé model that
. represents a 1D nonlinear lattice of widespread intgfelst
—U'(Qj-1)]—aQ;. (7)  13]. The interparticle interaction potential I9(Q)=3Q?
+18Q% B=1. The soliton’s configuration and its velocity-
amplitude relationship for various values ff are obtained
Taking into account the cyclic boundary conditions usedfrom Eq. (10).

Soliton solutions

In order to show that Eq(l) admits traveling wave or
soliton solutions for anyf.=0, we introduce a variabl®);
=(Q;—Qi—, and we setm=1 without loss of generality.
From Eq.(1) we can readily obtain

1
Qi=U"(Qi+1)—2U"(Q)+U"(Qi-1) — 5 FLU"(Qi+1)

for Egs. (1), we find that the transformatioq—q;_1=Q;, In order to check that the solitons are indeed solutions of
i=1,2,...N, has an inverseq(t)=B-Q(t), where q(t) Eq. (1), direct numerical simulations of Eql) are carried
=(91,42, - - . ,0n) T @ndQ(t) =(Q1,Q,, ...,.Qn)" are col-  out with the solitons configuration being the initial condi-
umn vectors, and is anN XN matrix, tions for (p;,q;). We find that the solitons are very stable
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Lattice site i FIG. 2. The evolution ofQ;(t)=q;1(t) —q;(t) showing two

) ) types of steady state for systefh) with different random initial
FIG. 1. The evolution ofQ;(t)=d;1(t) —qi(t) showing the  conditions:(a) spontaneous and irreversible formation of a soliton
propagation of a soliton with a constant velocity~1.8 in system  yjth a constant velocity/s~2.9, and(b) chaos throughout the
(1) when the initial conditions are taken as the traveling wave So<jmulation. Heref .= 0.0045, ancEpz 1.0. Due to the symmetry of

lution of the differential-difference equatiaf10). The snapshot is  {he equations of motion a soliton’s maximum amplitudeQincan
taken everyAt= 1000 time units, during which the soliton has trav- pe either positive or negative.

eled about 1800 lattice sitego the righy, or 36 rounds in the
periodic lattice. Here the field strength is=0.003. All units are

dimensionless for the quantities plotted in this and other figures. the system for the entire length of the simulation run. This

means that the transition from a chaotic to a soliton state is
an irreversible process despite the equations of mdtion

being time reversible. We have verified that, unlike the situ-
ation for chaotic dynamics, the largest Lyapunov exponent

for the soliton states is zero within statistical uncertainties.

than one soliton in thg initial _condltlons, we observe th.at theI'herefore, the solitons are dynamically stable periodic orbits
system supports multiple solitons of equal velocity their of this nonequilibrium system

velocities are different, the faster solitons will catch up to the For a given field strength, there is a certain set of trajec-

s!ower ones anq consume them during mte_ract}oﬂihus tories from which a soliton can emerge spontaneously. The
single and multiple solitons of equal velocity are steady - L . . ;
states of this svstem probability of finding a soliton trajectory, denoted Rg, is
y ' plotted in Fig. 3 as a function of the field strength. Here each
data point is calculated from 20 sample trajectories that
Simulation results started from different random initial conditions. We observe
that whenf, is smaller than a certain critical valui;
tions what kind of steady state will it eventually reach? To__ 0.0040, there is no quntaneoug formatlon of solitons start-
answer this question, we have carried out extensive numeri"Y fror_n_ the _random |n|t|a! (_:(_)ndlthns, thus the observed
cal simulations. Equationd) are integrated using a fourth- Probability Ps is zero by definition(This does not mean that
order operator-splitting integratdi4] with a time-step size the soliton is not a solution of the system. 'I.n fact, a ;ohton
5t=0.002. Periodic boundary conditions, i..,=0y, can be observed if started from the right initial conditions—

Pn+1=P1, are used. Unless indicated otherwise, the initial

and travel in the system with @eserved shape and velocity
for any field strength &f,=<0.01. An example of such a
soliton is shown in Fig. 1. Furthermore, by initializing more

However, if the system starts frommndominitial condi-

conditions forg; andp; are always prepared in the following 10F MOS8 6/ @65 @0 &
way: initial values forg; andp; are randomly assigned and Pk

then rescaled to fix the system’s energy to its given initial 08 | ™ 50000
value, with the total momentum and the center of mass of the S 4 40000
system being zerthus they can remain so in the subsequent 06 | Aﬁ

simulation. Then, a 18 time-step equilibrium simulation o’ © "] 200
(Hamiltonian casef,=0) is made to reach a phase point 04 | ) 1 20000
[15], from which the nonequilibrium simulation of Eql) —
for a nonzero external field strength is generated for a further o2 | *

5x 10’ steps(i.e., 1¢ time units. Aéo

One of the most striking features to note is that for a given 0.0 B—BR @
particle numberN, and internal energy per particld, =
="H/IN, the system dynamics behavior depends both on the

initial conditions and the field strengthy, and can be clas- FIG. 3. The probabilityPs and the average transient timi&s)
sified into two distinct types: spontaneous formation of afor soliton formation, as a function of the applied field strenfyh
stable soliton, or chaotic dynamics throughout the simulatiorrhe circles, stars, and triangles are for systems of 50, 100, and 200
(see Fig. 2 Moreover, we have observed that in every caseparticles, respectively. This figure shows qualitatively that there are
once a soliton is generated it never disappears but travels inultiple steady states in the system.

10°f,
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see previous discussionWhen f, is greater than another sponding Hamiltonian system, will be attracted onto the soli-
critical value f-,~0.0047 theP5 becomes unity. A sharp ton solution of the dissipative system. The basin of attraction
transition is seen ifPg over the critical regionfic;,fc,) of  for the soliton grows a$, increases, and eventually occupies
the field strength. We find that while this behavior is quali-the whole phase space whéncrosses over a critical value.

tatively the same for different system sid¢ the chaos-  The present multiple steady state phenomenon is different
soliton transition becomes sharper as the system size is ifirom the chaos-soliton transition phenomenon observed pre-
creased. viously for NEMD 2D fluid particle systems and for 1D

Note that the values foPgs are estimated based on 20 |attices of heat conduction with constant-temperature ther-
sample trajectories and forgivenvery long but finite simu-  osta(6,8]. The latter systems were shown to be chaotic for
lation time of 18 (these limits are imposed by finite com- small f, and solitonic for largef,, but their steady state

uter resourcgs We believe that increasing the time length : - .
gnd the numger of sample trajectories W?” not changegth appeared fo pe unique fofiaedheat field streng_th no matter
hat the initial conditions are. Furthermore, in the present

results of F'g.' 3 qqalltatlvely.. The values féts would be paper, the multiple steady states exist for a fixed arbitrarily
increased a little bit foeveryfield strengthf, smaller than ' . .

: X . small field parameter, where both linear and nonlinear re-
fc2~0.0047, and the kinked curve fdts will be slightly sponses can be observed. This behavior is in contrast to the
shifted towards the left if the simulation time is increased. 'pt bility induced multi I. teady states in hvdrod .

The transient time to generate a soliton from the randon?ns’tr‘?l III %f{ induce thmu lpte stea yts a (?,[s'm Iy ro ynanglcs.f
initial conditions, denoted a$g, depends strongly on both n t'el ater casbe, tEOS)(/)?)gm n:uls contain a gr_ge num_ ero
initial conditions and the field strength. But the ensemblePdtc es(‘?-g-’ abou particles were used in RES)); .

and the field parameters must exceed certain large critical

average(Ts) is nearly constant for large fields and yet it values where the system responses become entirely nonlin-
increases sharply when the field strength approaches e y P : y
ear. See Ref.16] and references therein.

critical valuef -, from the large field regiofisee Fig.3. This : .
: - . : In conclusion, we have demonstrated that for a given heat
behavior suggests that it is very computer time-consuming t(ﬂeld strengthf < f ., (no matter how smalf, is) the non-

determine accurately the critical field strengfi;, below equilibrium heat flow system can reach either a solitonlike
which the probability of soliton generation is zero. Fqrin q y . L
steady state or a chaotic attractdgpending on the initial

the critical region (0.004 f.<0.0047) the transient times i . D .
for soliton formation vary widely between 0 to %,@jiving an conditions.Further investigations are necessary in order to
y y 9 understand a number of related issues, including how the

average valugTs) much smaller than the upper limit (30 multiple steady state phenomenon is related to the diver-

as %Pllgv(\;n rllgr::gsmos%etth?sf Elgsteam can be summarized as folgence of heat conductivities in 1D latticg,17-24, how
Y y the nonequilibrium fluctuation theori¢4,5] should be modi-

lsovgtse'n':?sr ;f;gr’ g(;?c Légf:;ﬁzg i?;@p}fg&iﬁ%‘:njﬁ:ﬁtﬂ;ﬁ ranf_ied to take into account the possibilities of multiple steady
ystem | 9 o : state, and finally, how solitons may affect the heat conduc-
dom initial conditions, but periodi¢solitong for certain spe-

IR - tion of quasi-one-dimensional needlelike crystals such as
cial initial conditions that form a set afero measurdsee q Y

also Refs[11-13). For f.>0 the system is dissipative and carbon nanotubes. See Reff81,23 for experimental mea-

) . A ) ) surement of the heat conductivity of some needlelike crys-
its comoving phase space shrinks dimension as time als

goes on. In particular, some phase points collapse onto a
low-dimension strange chaotic attractor, but others, which  This work was supported by ARC Large Grant No.
are sufficiently close to the soliton solution of the corre-A69800064.
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