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Continuum description of avalanches in granular media
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We develop a continuum description of partially fluidized granular flows. Our theory is based on the
hydrodynamic equation for the flow coupled with the order parameter equation, which describes the transition
between flowing and static components of the granular system. This theory captures important phenomenology
recently observed in experiments with granular flows on rough inclined planes@A. Daerr and S. Douady,
Nature ~London! 399, 241 ~1999!#: layer bistability, and transition from triangular avalanches propagating
downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

DOI: 10.1103/PhysRevE.64.020301 PACS number~s!: 45.70.Ht, 45.70.Qj, 83.80.Fg
ula

ns
u
n

ul
nu
an

b
ile
d

ee
on

th
te

in
th
T
n

si
i

lk
e
lf

n
in

o
in
rts
th

e

in
th
h

th

is
lar

in
m.

by

ill
ape

is

-
the

lly
tic
ith

w

en-
he

e re-

he

the
Fundamental understanding of the dynamics of gran
media still poses a challenge for physicists@1–3# and engi-
neers@4#. The intrinsic dissipative nature of the interactio
between the constituent macroscopic particles sets gran
matter apart from conventional gases, liquids, or solids. O
of the most interesting phenomena pertinent to the gran
systems is the transition from a static equilibrium to a gra
lar flow. The most spectacular manifestation of such a tr
sition occurs during an avalanche. There has been a num
of experimental studies of avalanche flows in large sandp
@5,6#, as well as in thin layers of grains on rough incline
surfaces@7–9#.

On the theoretical side, a significant progress had b
achieved by large-scale molecular dynamics simulati
@10,11# and by continuum theory@12–15#. The current con-
tinuum approach to the description of avalanche flows in
physics community, was pioneered by Bouchaud, Ca
Ravi Prakash, and Edwards~BCRE! @13#, and subsequently
developed by de Gennes, Boutreux, and Raphae¨l @12,14,15#.
In their model the granular system is spatially separated
two phases, static and rolling. The interaction between
phases is implemented through certain conversion rates.
model described certain features of thin near-surface gra
lar flows, including avalanches. However, due to its intrin
assumptions, it only works when the granular material
well separated in a thin surface flow and an immobile bu
In many practically important situations, this distinction b
tween ‘‘liquid’’ and ‘‘solid’’ phases is more subtle and itse
is controlled by the dynamics.

In this Rapid Communication we propose a new co
tinuum model for multiphase granular matter. The underly
idea of our approach is borrowed from the Landau theory
phase transitions@16#. We assume that the shear stresses
partially fluidized granular matter are composed of two pa
the dynamic part proportional to the shear strain, and
strain-independent~or ‘‘static’’ ! part. The relative magnitude
of the static shear stress is controlled by the order param
~OP!, which varies from 0 in the ‘‘liquid’’ phase to 1 in the
‘‘solid’’ phase. Unlike ordinary matter, the phase transition
granular matter is controlled not by the temperature, but
dynamics stresses themselves. In particular, the Mo
Coloumb yield failure condition@4# is equivalent to a critical
melting temperature of a solid. The OP can be related to
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local entropy@17# of the granular material. OP dynamics
then coupled to the hydrodynamic equation for the granu
flow. We apply this model to study the transition to flow
thin granular layer on inclined planes with rough botto
Our model captures important phenomenology observed
Pouliquen@9# and Daerr and Douady@7#, including the struc-
ture of the stability diagram, the triangular shape of downh
avalanches at small inclination angles, and the balloon sh
of uphill avalanches for larger angles.

Model. The continuum description of the granular flow
based on the Navier-Stokes equation

r0Dv i /Dt5
]s i j

]xj
1r0gi , j 51,2,3, ~1!

where v i are the components of velocity,r05const is the
density of material~we setr051), g is the acceleration of
gravity, andD/Dt5] t1v i]xi

denotes the material deriva
tive. Since the relative density fluctuations are small,
velocity obeys the incompressibility condition“3v50.

The central conjecture of our theory is that in partia
fluidized flows, some of the grains are involved in plas
motion, while others maintain prolonged static contacts w
their neighbors. Accordingly, we write the stress tensors i j as
a sum of the hydrodynamic part proportional to the flo
strain rateei j , and the strain-independent part,s i j

s , i.e., s i j

5ei j 1s i j
s . We assume that the diagonal elements of the t

sor s i i
s coincide with the corresponding components of t

‘‘true’’ static stress tensors i i
0 for the immobile grain configu-

ration in the same geometry, and the shear stresses ar
duced by the value of the order parameterr, characterizing
the ‘‘phase state’’ of granular matter. Thus, we write t
stress tensor in the form

s i j 5hS ]v i

]xj
1

]v j

]xi
D1s i j

0 @r1~12r!d i j #. ~2!

Here, h is the viscosity coefficient. In a static state,r51,
s i j 5s i j

0 , and v i50, whereas in a fully fluidized state,r
50 and the shear stresses are simply proportional to
strain rates as in ordinary fluids.
©2001 The American Physical Society01-1
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To close the system we need a set of constitutive relat
between static shear and normal stresses, as well as an
tion for the order parameterr. The issue of constitutive re
lations in granular materials is complex and not complet
understood@4,18#. It appears that in many cases, the con
tutive relations are determined by the construction hist
@19#. Recent studies indicated a fundamental role of the n
work of the force chains, which carry forces longitudina
@20#. We will assume that for any given problem, the cor
sponding static constitutive relations have been specified

For the order parameterr, we apply pure dissipative dy
namics, which can be derived from the ‘‘free-energy’’ typ
functionalF, i.e.,tṙ52dF/dr. We adopt the standard Lan
dau form forF;*dr @ l 2u“ru21 f (r,f)#, which includes a
‘‘local potential energy’’ and the diffusive spatial coupling
Here, l ,t are characteristic length and time respective
From dimension arguments, one expects thatl is of the order
of average grain size andt of the order of collision time,t
;Al /g. The potential energyf (r,f) should have extrema a
r50 andr51, corresponding to uniform solid and liqui
phases. According to the Mohr-Coulomb yield criterion f
noncohesive grains@4# or its generalization@20#, the static
equilibrium failure and transition to flow is controlled by th
value of the nondimensional ratiof5maxusmn

0 /snn
0 u, where

the maximum is sought over all possible orthogonal dir
tionsn andm, in the bulk of the granular material. We simp
use this ratio as a parameter in the potential energy for
OPr. Without loss of generality, we write the equation forr,

tṙ5 l 2¹2r2r~12r!F~r,f!. ~3!

Further, according to observations, we assume that the s
equilibrium is unstable iff<f1, wherew15tan21f1 is the
internal friction angle for a particular granular material. A
ditionally, we assume that iff,f0, the ‘‘dynamic’’ phase
r50 is unstable. Values off0 and f1 do not coincide in
general. Typically there is a range in which both static a
dynamics phases coexist~this is related to the so-called Bag
nold hysteresis@5#!. The simplest form ofF(r,f), which
satisfies these constraints, isF(r,f)52r1d, where d
5(f2f0)/(f12f0). Rescalingx→x/ l ,t→t/t, we arrive
at

ṙ5¹2r1r~12r!~r2d!. ~4!

For f0,f,f1, both static (r51) and dynamic (r50)
phases are linearly stable, and Eq.~4! possesses a movin
front solution that ‘‘connects’’ these phases. The speed of
front, in the direction ofr50, is given byV5(122d)/A2.
At d51/2 both phases coexist.

Chute flow.Let us now apply this formulation to a specifi
problem of the chute flow. We consider a layer of dry coh
sionless grains on an inclined rough surface~see Fig. 1!. In
the static equilibrium, one has,

szz,z
0 1sxz,x

0 52g cosw,
~5!

sxz,z
0 1sxx,x

0 5g sinw,
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where the subscripts after commas mean partial derivati
The solution to Eqs.~5!, in the absence of lateral stress
syy

0 5syx
0 5syz

0 50, is given by

szz
0 52g coswz,

~6!
sxz

0 5g sinwz, sxx,x
0 50.

In a static equilibrium there is a simple relation betwe
shear and normal stresses,sxz

0 52tanwszz
0 . According to

our conjecture, this relation between the static component
the stress is maintained in the flowing regime as well. For
chute flow geometry, the value of parameterf in Eq. ~4! can
also be easily specified. In this case, the most ‘‘unstab
yield direction is parallel to the inclined plane, so we c
simply write f5usxz

0 /szz
0 u.

Stationary solutionsof Eq. ~4!, for the confined chute ge
ometry in Fig. 1, are subject to the following boundary co
ditions ~BC!: no-flux conditionrz50 at the free surfacez
50, andr51 at the bottom of the chute,z52h ~a granular
medium is assumed to be in a solid phase near the ro
surface!. There always exists a stationary solution to Eq.~4!
r51, corresponding to a static equilibrium. Ford.1, it is
stable at smallh, but loses stability at a certain thresho
hs.1. The most ‘‘dangerous’’ mode of instability satisfyin
the above boundary conditions, isa cos(pz/2h). The eigen-
value of this mode isl(h)5d212p2/4h2, thus the neutral
curve l50, for the linear stability of the solutionr51, is
given by

hs5
p

2Ad21
. ~7!

For h.hs(d), grains spontaneously start to roll, and a gran
lar flow ensues. In addition to the trivial stater51, for h
.hc(d), there exists a unique nontrivial stationary soluti
satisfying the above BC. The value ofhc can be found as a
minimum of the following integral, as a function ofr0, the
value ofr at the surfacez50:

hc5minE
r0

1 dr

Ar4

2
2

2~d11!r3

3
1dr22c~r0!

, ~8!

where c(r0)5r0
4/222(d11)r0

3/31dr0
2. This integral can

be calculated analytically ford→` andd→1/2. It is easy to
show that for larged, the critical solution of Eq.~4! has a

FIG. 1. Schematic representation of a chute geometry.
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form r511a cos(kz), with a!1 and k5(d21)1/2, and
therefore,hc(d)→hs(d). For d→1/2, the critical phase tra
jectory comes close to two saddle points,r50 and r51,
and an asymptotic evaluation of Eq.~8! gives hc5
2A2 log(d21/2)1const. This expression agrees with t
empirical formula f2f0;exp@2hc /h0# proposed in Ref.
@7#.

The neutral stability curve,hs(d), and the critical line,
hc(d), limiting the region of existence of nontrivial granula
flow solutions, are shown in Fig. 2. They divide the para
eter plane (d,h) into three regions. Ath,hc(d), the trivial
static equilibriumr51 is the only stationary solution of Eq
~4! for chosen BC. Forhc(d),h,hs(d), there is a bistable
regime, the static equilibrium state coexists with the stati
ary flow. Forh.hs(d), the static regime is linearly unstabl
and the only stable regime corresponds to the granular fl
This qualitative picture completely agrees with the rec
experimental findings@7,9#. Moreover, if we rescale the ex
perimental phase diagram obtained by Daerr and Douady@7#
using the limiting valuesf0,1 @22#, and choose the characte
istic length scalel to be equal to the particle size, we obta
excellent agreement with our theoretical phase diagram~see
Fig. 2!.

The velocity profile corresponding to a stationary profi
of r(z), can be easily found from Eq.~2!,

h
]vx

]z
5g sinwz2rsxz

0 5g sinw~12r!z. ~9!

The flux of grains in the stationary flowJ is given by

J5E
2h

0

vy~z!dz5
g sinw

h E
2h

0 E
2h

z

@12r~z8!#z8dz8dz.

~10!

For a deep chute (h@1), the stationary solution of Eq.~4!
can be found analytically~cf. Ref. @21#!. However, in this

FIG. 2. Stability diagram. Dashed line shows the neutral cu
@Eq. ~7!#, solid line shows the existence limit of fluidized state@Eq.
~8!#, dotted line shows the transition from triangular to up-hill av
lanches forb53.15 anda50.025. Symbols show experiment
data from Ref.@7#.
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case the slope of the free surface may not be equal to
slope of the inclined plane, but is itself determined by t
amount of sand which is poured on the surface up stre
Thus, the closure of the problem will be provided by t
constraintJ5const.

Avalanches in shallow chute. In the vicinity of the neutral
curve @Eq. ~7!# Eqs. ~1! and ~3! can be simplified. We look
for the solution in the form

r512A cosS p

2h
zD1~higher-order terms!, ~11!

whereA!1 is a slowly varying function oft, x, andy. Sub-
stituting ansatz@Eq. ~11!# into Eq. ~3! and applying orthogo-
nality conditions, we obtain

At5l~h!A1¹'
2 A1

8~22d!

3p
A22

3

4
A3, ~12!

where ¹'
2 5]x

21]y
2 , l(h)5d212p2/4h2. Deriving this

equation, we assumed that (22d)A2 andA3 are of the same
order, i.e.,d'2, however, a qualitatively similar equation
with a different nonlinearity, can be obtained for anyd andh.
Equation ~12! must be coupled to the mass conservat
equations, which reads as~here we neglect contribution from
the flux along they axis Jy;]yh!J),

]h

]t
52

]J

]x
52a

]h3A

]x
, ~13!

where J was calculated from Eq.~10! and a52(p2

28)g sinw/hp3. Taking into account that variations inh also
change local surface slope, we adoptd5d02bhx with b
51/(f12f0).

We studied Eqs.~12! and ~13! numerically. The simula-
tions were performed in fairly large systems, 400 dimensi
less units in thex direction~downhill!, and 200 units in they
direction, with the number of grid points 12003600, respec-
tively. As initial conditions, we used uniform static layer:h
5h0 ,A50. We triggered avalanches by a localized pert
bation introduced near the point (y,z)5(Ly/4,Lz/2). Close to
the solid line in Fig. 2, we indeed observed avalanch
propagating only downhill, with the shape very similar to t
experimental one. The avalanche~see Fig. 3! leaves a trian-
gular trace, with the opening anglec, in which the layer
thicknessh is decreased with respect to original valueh0. At
the front of the avalanche, the layer depth is increased w
respect toh.

For larger values ofd or h we observed avalanches of th
second type~see Fig. 4!. The avalanche propagates also u
hill, and contrary to the previous case, the whole avalan
zone is in motion, as new rolling particles constantly arri
from the upper boundary of the avalanche zone. Sometim
we observed small secondary avalanches in the wake
large primary avalanche@see Fig. 4~c!#.

The transition from triangular to up-hill avalanches occu
at the dotted line in Fig. 2. At largeh, this line approaches
the solid line hc(d), limiting the region of existence o
granular flow. Thus, in deep layers, there are only up-

e
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avalanches. The transition line in Fig. 2 is plotted fora
50.025. At this value ofa, this line agrees well with experi
mental data by Daerr and Douady@7#.

In conclusion, we developed a continuum description
partially fluidized granular flows. Our order-parameter mo
captures important aspects of the phenomenology of c
flows observed in recent experiments@7–9#. The parameters

FIG. 3. Gray-coded images demonstrating evolution of trian
lar avalanche fort550 ~a!, t5200 ~b!, and 250~c!. White shade
corresponds to maximum height of the layer, and black to minim
height. Parameters of Eqs.~12! and ~13! are,a50.15, b50.25, d
51.2, andh053.
i-

l.
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of our model are established from comparison with expe
ment.
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- FIG. 4. Images of an up-hill avalanche fort540 ~a!, t5100 ~b!,
and 180~c!. Parameters of Eqs.~12! and ~13! are, a50.05, b
50.25, d51.07, andh055.5. A small secondary avalanche is se
on the image~c!.
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