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Continuum description of avalanches in granular media
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We develop a continuum description of partially fluidized granular flows. Our theory is based on the
hydrodynamic equation for the flow coupled with the order parameter equation, which describes the transition
between flowing and static components of the granular system. This theory captures important phenomenology
recently observed in experiments with granular flows on rough inclined plegheBaerr and S. Douady,

Nature (London 399 241 (1999]: layer bistability, and transition from triangular avalanches propagating
downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.
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Fundamental understanding of the dynamics of granulalocal entropy[17] of the granular material. OP dynamics is
media still poses a challenge for physicifts-3] and engi- then coupled to the hydrodynamic equation for the granular
neers[4]. The intrinsic dissipative nature of the interactions flow. We apply this model to study the transition to flow in
between the constituent macroscopic particles sets granul#tin granular layer on inclined planes with rough bottom.
matter apart from conventional gases, liquids, or solids. On&ur model captures important phenomenology observed by
of the most interesting phenomena pertinent to the granuldfouliquer[9] and Daerr and Douady], including the struc-
systems is the transition from a static equilibrium to a granuiure of the stability diagram, the triangular shape of downhill
lar flow. The most spectacular manifestation of such a tran@valanches at small inclination angles, and the balloon shape
sition occurs during an avalanche. There has been a numb@f uphill avalanches for larger angles.
of experimental studies of avalanche flows in large sandpiles Model The continuum description of the granular flow is
[5,6], as well as in thin layers of grains on rough inclined Pased on the Navier-Stokes equation
surface§ 7-9].

On the theoretical side, a significant progress had been
achieved by large-scale molecular dynamics simulations
[10,11 and by continuum theorj12—15. The current con-
tinuum approach to the description of avalanche flows in the Lo .

. . : wherev; are the components of velocityy=const is the
physics community, was pioneered by Bouchaud, Catesd ity of material o1 is th lerati f
Ravi Prakash, and EdwardBCRE) [13], and subsequently ensity of ma ena_we setpp=1), g is the acce eration o
developed by de Gennes, Boutreux, and RapHe& 14,15, g.rawty,- and D/Dt—ﬁﬁvi&xi qenotes thg material deriva-
In their model the granular system is spatially separated int§Ve. Since the relative density fluctuations are small, the
two phases, static and rolling. The interaction between th¥€locity obeys the incompressibility conditidhxv=0.
phases is implemented through certain conversion rates. This The central conjecture of our theory is that in partially
model described certain features of thin near-surface grandluidized flows, some of the grains are involved in plastic
lar flows, including avalanches. However, due to its intrinsicmotion, while others maintain prolonged static contacts with
assumptions, it only works when the granular material istheir neighbors. Accordingly, we write the stress tensgras
well separated in a thin surface flow and an immobile bulk@ sum of the hydrodynamic part proportional to the flow
In many practically important situations, this distinction be- Strain ratee;; , and the strain-independent past; , i.e., o;
tween “liquid” and “solid” phases is more subtle and itself =¢€; +crisj . We assume that the diagonal elements of the ten-
is controlled by the dynamics. sor o}, coincide with the corresponding components of the

In this Rapid Communication we propose a new con-“true” static stress tensow) for the immobile grain configu-
tinuum model for multiphase granular matter. The underlyingration in the same geometry, and the shear stresses are re-
idea of our approach is borrowed from the Landau theory ojuced by the value of the order parametercharacterizing
phase transitiongl6]. We assume that the shear stresses in &he “phase state” of granular matter. Thus, we write the
partially fluidized granular matter are composed of two partSstress tensor in the form
the dynamic part proportional to the shear strain, and the
strain-independer{pr “static”) part. The relative magnitude
of the static shear stress is controlled by the order parameter o= 77(
(OP), which varies from 0 in the “liquid” phase to 1 in the
“solid” phase. Unlike ordinary matter, the phase transition in
granular matter is controlled not by the temperature, but thélere, 7 is the viscosity coefficient. In a static stajes 1,
dynamics stresses themselves. In particular, the Mohrerijzaioj, andv;=0, whereas in a fully fluidized statg,
Coloumb vyield failure conditiof4] is equivalent to a critical =0 and the shear stresses are simply proportional to the
melting temperature of a solid. The OP can be related to thetrain rates as in ordinary fluids.
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To close the system we need a set of constitutive relations
between static shear and normal stresses, as well as an equa-
tion for the order parametgr. The issue of constitutive re-
lations in granular materials is complex and not completely
understood4,18]. It appears that in many cases, the consti-
tutive relations are determined by the construction history
[19]. Recent studies indicated a fundamental role of the net-
work of the force chains, which carry forces longitudinally
[20]. We will assume that for any given problem, the corre-
sponding static constitutive relations have been specified.

For the order parameter, we apply pure dissipative dy-
namics, which can be derived from the “free-energy” type

dau form for F~ [dr[1?|V p|?+f(p,¢)], which includes a
“local potential energy” and the diffusive spatial coupling.
Here, |,7 are characteristic length and time respectively.
From dimension arguments, one expects thatof the order

of average grain size andof the order of collision times
~\I/g. The potential energf(p, ) should have extrema at
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FIG. 1. Schematic representation of a chute geometry.

where the subscripts after commas mean partial derivatives.

. . . The solution to Egs(5), in the absence of lateral stresses
functional 7, i.e., 7p=— 6FI/ 5p. We adopt the standard Lan- o _ as(S)

Oyy™

oyx=0y,=0, is given by
0 _ _
0,,=— —(JCOoSgpz,

(6)

0 _
Uxx,x_o'

o) =gsinez,

In a static equilibrium there is a simple relation between

p=0 andp=1, corresponding to uniform solid and liquid shear and normal stressas,= —tanec?,. According to
phases. According to the Mohr-Coulomb yield criterion for o conjecture, this relation between the static components of

noncohesive grainp4] or its generalizatiof20], the static

the stress is maintained in the flowing regime as well. For the

equilibrium failure and transition to flow is controlled by the cnyte flow geometry, the value of paramegen Eq. (4) can

value of the nondimensional ratip=maxo>, {05, where

also be easily specified. In this case, the most “unstable”

the maximum is sought over all possible orthogonal direcyield direction is parallel to the inclined plane, so we can
tionsn andm, in the bulk of the granular material. We simply simply write ¢p=|0%/0?2 .

use this ratio as a parameter in the potential energy for the giationary solutionsf Eq. (4), for the confined chute ge-

OPp. Without loss of generality, we write the equation fgr

ometry in Fig. 1, are subject to the following boundary con-

ditions (BC): no-flux conditionp,=0 at the free surface

p=12V2p—p(1-p)F(p,d). (3)

=0, andp=1 at the bottom of the chute= —h (a granular

] . medium is assumed to be in a solid phase near the rough
Further, according to observations, we assume that the statigrfacg. There always exists a stationary solution to E.

equilibrium is unstable ifp< ¢, wherep;=tan ¢ is the

p=1, corresponding to a static equilibrium. Fér1, it is

internal friction angle for a particular granular material. Ad- staple at smalh, but loses stability at a certain threshold

ditionally, we assume that i$<¢q, the “dynamic” phase
p=0 is unstable. Values of, and ¢, do not coincide in

hs>1. The most “dangerous” mode of instability satisfying
the above boundary conditions, ascos(@rz/2h). The eigen-

general. Typically there is a range in which both static and,gjye of this mode i (h) = §— 1— 7%/4h2, thus the neutral
dynamics phases coexighis is related to the so-called Bag- curve A\ =0, for the linear stability of the solutiop=1, is

nold hysteresig5]). The simplest form ofF(p, ), which
satisfies these constraints, B5(p,$)=—p+ 5, where &
=(¢— o)/ (Pp1— ¢g). Rescalingx—x/l,t—t/7, we arrive
at

p=V2p+p(1—p)(p—9). (4)

For ¢pg<p<¢4, both static p=1) and dynamic §=0)
phases are linearly stable, and E4) possesses a moving
front solution that “connects” these phases. The speed of th
front, in the direction ofp=0, is given byV=(1-25)/2.

At 6=1/2 both phases coexist.

Chute flowLet us now apply this formulation to a specific
problem of the chute flow. We consider a layer of dry cohe-
sionless grains on an inclined rough surfésee Fig. 1L In
the static equilibrium, one has,

0 0o _
Uzzz+ Oyzx— — g COSp,

given by

@)

Forh>hg( ), grains spontaneously start to roll, and a granu-
lar flow ensues. In addition to the trivial stape=1, for h
>h.(6), there exists a unique nontrivial stationary solution
satisfying the above BC. The value bof can be found as a
fhinimum of the following integral, as a function @f, the
value ofp at the surface=0:

®

1 dp
hc=minJ ,
ro [p* 2(6+1)p° ,
?_TM” —c(po)

where c(po) = pal2—2(6+1)p3/3+ 6p3. This integral can

©) be calculated analytically fof—c and d— 1/2. It is easy to

0 0o _ H
sz,z‘" Oyxx—9Sinoe,

020301-2

show that for larges, the critical solution of Eq(4) has a
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case the slope of the free surface may not be equal to the
slope of the inclined plane, but is itself determined by the

15 | amount of sand which is poured on the surface up stream.
Thus, the closure of the problem will be provided by the
constraint)=const.

Avalanches in shallow chutén the vicinity of the neutral
- 10 | curve[Eq. (7)] Egs. (1) and(3) can be simplified. We look
for the solution in the form
5F1 p=1— Acos( 2h + (higher-order terms (11
whereA<1 is a slowly varying function of, x, andy. Sub-
0 . . . stituting ansatZEq. (11)] into Eq.(3) and applying orthogo-
0.25 0.75 5 1.25 1.75 nality conditions, we obtain
o , ) 8(2—15) 3
FIG. 2. Stability diagram. Dashed line shows the neutral curve A=NNA+VIA+ — A2— ZA3, (12)
a

[Eq. (7)], solid line shows the existence limit of fluidized sthiay.
(8)], dotted line shows the transition from triangular to up-hill ava-

2 2 2 .. .
lanches for8=3.15 and@=0.025. Symbols show experimental Where Vi =05 +(9 AMh)=6-1 ST /4h3 Deriving this
data from Ref[7]. equatlon we assumed that(®)A- andA® are of the same

order, i.e.,6~2, however, a qualitatively similar equation,
form p=1+acosks, with a<l and k=(6—1)2 and with a different nonlinearity, can be obtained for asigndh.
therefore ho(8)— hy(3). For 5—1/2, the critical phase tra- Equation (12 must be coupled to the mass conservation
jectory comes close to two saddle poings=0 and p=1 equations, which reads #ésere we neglect contribution from

and an asymptotic evaluation of Eq8) gives h,= the flux along they axis J,~dyh<J),

— /2 log(6—1/2)+const. This expression agrees with the 3

L . dh 4J dh*A

empirical formula ¢— ¢g~exd —h./hg] proposed in Ref. — == (13
[7]. at X ox '

The neutral stability curvehy(5), and the critical line,
h.(6), limiting the region of existence of nontrivial granular
flow solutions, are shown in Fig. 2. They divide the param-
eter plane §,h) into three regions. Ah<<h.(4), the trivial ~ (s o)
static equilibriump=1 is the only stationary solution of Eq. — 1 %o/ . .

(4) for (?hosen Bg Foh (5)<hi/h (5), thgre is a bistablg We studied Eqgs(12) and (13) numerically. The simula-
regime, the static equilibrium state coexists with the s,tatlontlons were performed in fairly large systems, 400 dimension-
ary flow. Forh>h(8), the static regime is linearly unstable, less units in thex direction(downhill), and 200 units in thg

and the only stable regime corresponds to the granular flov§li'éction, with the number of grid points 128®00, respec-
This qualitative picture completely agrees with the recemt've'y As initial conditions, we used uniform static layér:
experimental finding$7,9]. Moreover, if we rescale the ex- — ho,A=0. We triggered avalanches by a localized pertur-
perimental phase diagram obtained by Daerr and Dofiagy Pation introduced near the point,¢) = (L,/4.L ,/2). Close to
using the limiting valuesb, ; [22], and choose the character- the solid line in Fig. 2, we indeed observed avalanches
istic length scaléd to be eqhal to the particle size, we obtain propagating only downhill, with the shape very similar to the

excellent agreement with our theoretical phase diagisee ~ €XPerimental one. The avalancteee Fig. 3 leaves a trian-
Fig. 2. gular trace, with the opening anglg, in which the layer

thicknessh is decreased with respect to original valug At
the front of the avalanche, the layer depth is increased with

where J was calculated from Eq(10) and a=2(#?
—8)g sing/ 7. Taking into account that variations inalso
change local surface slope, we adapt 5,— Bh, with B

The velocity profile corresponding to a stationary profile
of p(z), can be easily found from Eq2),

respect tah.
duy . 0 ) For larger values o6 or h we observed avalanches of the
17— =9sinez—po,,~gsing(l-p)z. (9 second typdsee Fig. 4 The avalanche propagates also up-
hill, and contrary to the previous case, the whole avalanche
The flux of grains in the stationary flowis given by zone is in motion, as new rolling particles constantly arrive

from the upper boundary of the avalanche zone. Sometimes,
we observed small secondary avalanches in the wake of a
f f [1-p(2")]z'dZ'dz. large primary avalanchisee Fig. 4c)].
(10) The transition from triangular to up-hill avalanches occurs
at the dotted line in Fig. 2. At largh, this line approaches
For a deep chuteh¢>1), the stationary solution of E¢4)  the solid line h (), limiting the region of existence of
can be found analyticallycf. Ref.[21]). However, in this granular flow. Thus, in deep layers, there are only up-hill

gsine

J= ffhvy(z)dz—
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FIG. 3. Gray-coded images demonstrating evolution of triangu- FIG. 4. Images of an up-hill avalanche for 40 (a), t=100 (b),
lar avalanche fot=50 (a), t=200 (b), and 250(c). White shade and 180(c). Parameters of Eqg12) and (13) are, «=0.05, 8
corresponds to maximum height of the layer, and black to minimum=0.25, §=1.07, andhy=5.5. A small secondary avalanche is seen
height. Parameters of Egdl2) and(13) are,a=0.15, 3=0.25, § on the imagdc).

=1.2, andhy=3.
of our model are established from comparison with experi-
T . ment.
avalanches. The transition line in Fig. 2 is plotted for
=0.025. At this value ofy, this line agrees well with experi- We thank Dan Howell, Pierre-Gilles de Gennes, Deniz
mental data by Daerr and Douagly]. Ertas, Joe Goddard, Bob Behringer, and Adrian Daerr for

In conclusion, we developed a continuum description ofuseful discussions. This research is supported by the Office
partially fluidized granular flows. Our order-parameter modelof the Basic Energy Sciences at the U.S. DOE, Grant Nos.
captures important aspects of the phenomenology of chuté/-31-109-ENG-38, DE-FG03-95ER14516, and DE-FGO03-
flows observed in recent experimef#s-9]. The parameters 96ER14592.
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