
PHYSICAL REVIEW E, VOLUME 64, 016706
Fast Monte Carlo algorithm for site or bond percolation

M. E. J. Newman1 and R. M. Ziff2

1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
2Michigan Center for Theoretical Physics and Department of Chemical Engineering, University of Michigan,

Ann Arbor, Michigan 48109-2136
~Received 22 January 2001; published 27 June 2001!

We describe in detail an efficient algorithm for studying site or bond percolation on any lattice. The
algorithm can measure an observable quantity in a percolation system for all values of the site or bond
occupation probability from zero to one in an amount of time that scales linearly with the size of the system.
We demonstrate our algorithm by using it to investigate a number of issues in percolation theory, including the
position of the percolation transition for site percolation on the square lattice, the stretched exponential behav-
ior of spanning probabilities away from the critical point, and the size of the giant component for site perco-
lation on random graphs.

DOI: 10.1103/PhysRevE.64.016706 PACS number~s!: 02.70.2c, 05.10.Ln, 64.60.Ak, 05.70.Jk
b-
in
en

s-
th

al
or
te
e
tio
e
ua
n
d
on
n

th

ly
la

o
a

n

sic

rk

u
a
n

n

o-
ults
Be-
der-
nd

ost
or
rate
n.

or
il-
rs
ple
the
ster

and

ti-

we
y

ent

ant

er
vi-

ick
s
e
y
ion
I. INTRODUCTION

Percolation@1# is certainly one of the best studied pro
lems in statistical physics. Its statement is trivially simple:
site percolation every site on a specified lattice is indep
dently either ‘‘occupied,’’ with probabilityp, or not with
probability 12p. The occupied sites form contiguous clu
ters that have some interesting properties. In particular,
system shows a continuous phase transition at a finite v
of p which, on a regular lattice, is characterized by the f
mation of a cluster large enough to span the entire sys
from one side to the other in the limit of infinite system siz
We say such a system ‘‘percolates.’’ As the phase transi
is approached from small values ofp, the average cluster siz
diverges in a way reminiscent of the divergence of fluct
tions in the approach to a thermal continuous phase tra
tion, and indeed one can define correlation functions an
correlation length in the obvious fashion for percolati
models, and hence measure critical exponents for the tra
tion.

One can also consider bond percolation in which
bonds of the lattice are occupied~or not! with probability p
~or 12p), and this system shows behavior qualitative
similar to though different in some details from site perco
tion.

Site and bond percolation have found a huge variety
uses in many fields. Percolation models appeared origin
in studies of actual percolation in materials@1#—percolation
of fluids through rock, for example@2–4#—but have since
been used in studies of many other systems, including gra
lar materials@5,6#, composite materials@7#, polymers @8#,
concrete@9#, aerogel and other porous media@10,11#, and
many others. Percolation also finds uses outside phy
where it has been employed to model resistor networks@12#,
forest fires@13# and other ecological disturbances@14#, epi-
demics@15,16#, robustness of the Internet and other netwo
@17,18#, biological evolution@19#, and social influence@20#,
amongst other things. It is one of the simplest and best
derstood examples of a phase transition in any system,
yet there are many things about it that are still not know
For example, despite decades of effort, no exact solutio
1063-651X/2001/64~1!/016706~16!/$20.00 64 0167
-

e
ue
-
m
.
n

-
si-
a

si-

e

-

f
lly

u-

s,

s

n-
nd
.
of

the site percolation problem yet exists on the simplest tw
dimensional lattice, the square lattice, and no exact res
are known on any lattice in three dimensions or above.
cause of these and many other gaps in our current un
standing of percolation, numerical simulations have fou
wide use in the field.

Computer studies of percolation are simpler than m
simulations in statistical physics, since no Markov process
other importance sampling mechanism is needed to gene
states of the lattice with the correct probability distributio
We can generate states simply by occupying each site
bond on an initially empty lattice with independent probab
ity p. Typically, we then want to find all contiguous cluste
of occupied sites or bonds, which can be done using a sim
depth- or breadth-first search. Once we have found all
clusters, we can easily calculate, for example, average clu
size, or look for a system spanning cluster. Both depth-
breadth-first searches take timeO(M) to find all clusters,
whereM is the number of bonds on the lattice. This is op
mal, since one cannot check the status ofM individual bonds
or adjacent pairs of sites in any less thanO(M) operations
@21#. On a regular lattice, for whichM5 1

2 zN, wherez is the
coordination number andN is the number of sites,O(M) is
also equivalent toO(N).

But now consider what happens if, as is often the case,
want to calculate the values of some observable quantitQ
~e.g., average cluster size! over a range of values ofp. Now
we have to perform repeated simulations at many differ
closely spaced values ofp in the range of interest, which
makes the calculation much slower. Furthermore, if we w
a continuous curve ofQ(p) in the range of interest then in
theory we have to measureQ at an infinite number of values
of p. More practically, we can measure it at a finite numb
of values and then interpolate between them, but this ine
tably introduces some error into the results.

The latter problem can be solved easily enough. The tr
@22,23# is to measureQ for fixednumbers of occupied site
~or bonds! n in the range of interest. Let us refer to th
ensemble of states of a percolation system with exactln
occupied sites or bonds as a ‘‘microcanonical percolat
ensemble,’’ the numbern playing the role of the energy in
©2001 The American Physical Society06-1

th
a-
-
b

e
no

i

b

s

y
o

o

th

ic

if-
am
he

te

e

n
ent
is

et

se

ay
es

t

s

to

ect
all
is-
red

rm

-
an-

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
thermal statistical mechanics. The more normal case
which only the occupation probabilityp is fixed is then the
‘‘canonical ensemble’’ for the problem.~If one imagines the
occupied sites or bonds as representing particles instead,
the two ensembles would be ‘‘canonical’’ and ‘‘grand c
nonical,’’ respectively. Some authors@24# have used this no
menclature.! Taking site percolation as an example, the pro
ability of there being exactlyn occupied sites on the lattic
for a canonical percolation ensemble is given by the bi
mial distribution:

B~N,n,p!5S N

n D pn~12p!N2n. ~1!

~The same expression applies for bond percolation, but w
N replaced byM, the total number of bonds.! Thus, if we can
measure our observable within the microcanonical ensem
for all values ofn, giving a set of measurements$Qn%, then
the value in the canonical ensemble will be given by

Q~p!5 (
n50

N

B~N,n,p!Qn5 (
n50

N S N

n D pn~12p!N2nQn .

~2!

Thus we need only measureQn for all values ofn, of which
there areN11, in order to findQ(p) for all p. Since filling
the lattice takes timeO(N), and construction of cluster
O(M), we take timeO(M1N) for each value ofn, and
O(N21MN) for the entire calculation, or more simpl
O(N2) on a regular lattice. Similar considerations apply f
bond percolation.

In fact, one frequently does not want to know the value
Q(p) over the entire range 0<p<1, but only in the critical
region, i.e., the region in which the correlation lengthj is
greater than the linear dimensionL of the system. Ifj;up
2pcu2n close topc , wheren is a ~constant! critical expo-
nent, then the width of the critical region scales asL21/n.
Since the binomial distribution, Eq.~1!, falls off very fast
away from its maximum~approximately as a Gaussian wi
variance of orderN21), it is safe also only to calculateQn
within a region scaling asL21/n, and there are orderLd21/n

values ofn in such a region, whered is the dimensionality of
the lattice. Thus the calculation ofQ(p) in the critical region
will take time of orderNLd21/n5N221/dn. In two dimen-
sions, for example,n is known to take the value43 , and so we
can calculate any observable quantity over the whole crit
region in timeO(N13/8).

An alternative technique for calculatingQ(p) over a
range of values ofp is to use a histogram method.~This
should not be confused with the method of Hu@22#, which is
also referred to as a ‘‘histogram method,’’ but which is d
ferent from the method described here. Our histogr
method is the equivalent for a percolation model of t
method of Ferrenberg and Swendsen@25# for thermal mod-
els.! Suppose that one performs a numberM of simulations
of a percolation system, each one generating a single stam
of the system drawn from some probability distributionPm .
01670
in

en

-

-

th

le

r

f

al

In each state we measure our observable of interestQ, giving
a set of measurements$Qm%. Then our estimate of the valu
of Q(p) is given by

Q~p!5

(
m

Pm
21B~N,nm ,p!Qm

(
m

Pm
21B~N,nm ,p!

, ~3!

wherenm is the number of occupied sites or bonds in statem.
In normal ~canonical! simulations of percolationPm is just
equal to the binomial distributionB(N,nm ,p), which then
cancels out of Eq.~3! to give Q(p)5(1/M)(mQm in the
usual fashion. In microcanonical simulationsPm is uniform
over values ofn, and Eq.~3! is equivalent to Eq.~2!. Sup-
pose however that insteadPm corresponds to the distributio
of states produced by a canonical simulation at a differ
value p0 of the site or bond occupation probability. In th
casePm5B(N,nm ,p0), and Eq.~3! becomes

Q~p!5

(
m

@B~N,nm ,p!/B~N,nm ,p0!#Qm

(
m

B~N,nm ,p!/B~N,nm ,p0!

5

(
m

F S 1

p0
21D Y S 1

p
21D Gnm

Qm

(
m

F S 1

p0
21D Y S 1

p
21D Gnm

. ~4!

This equation tells us that if we perform a simulation or s
of simulations at occupation probabilityp0, and record the
value~s! of nm andQm for each state generated, we can u
the results to estimateQ(p) at any other value ofp. In prac-
tice, the range over which we can reliably extrapolate aw
from p0 using this method is limited by the range of valu
of n sampled; if the values ofn sampled atp0 make negli-
gible contributions to the canonical ensemble of states ap,
then extrapolation will give poor results. Since the valuesnm
are drawn from a binomial distribution with width
ANp0(12p0), the entire range ofn can be sampled with
O(N1/2) separate simulations at different values ofp0. Each
simulation takes timeO(N) to complete, and hence it take
time O(N3/2) to calculateQ(p) for all values ofp. If we are
only interested in the critical region, this time is reduced
O(N3/221/dn), which is O(N9/8) in two dimensions. These
times are considerably faster than those for the dir
method, described above, of performing simulations for
values ofn, but this speed is offset by the fact that the h
togram method gives larger statistical errors on measu
quantities than the direct method@26,27#.

In this paper we describe an algorithm that can perfo
the calculation ofQ(p) for all values ofp faster than any of
the algorithms above, in timeO(N). This is clearly far su-
perior to theO(N2) direct algorithm while having compa
rable accuracy in terms of statistical error. It is also subst
tially faster than theO(N3/2) histogram method while having
6-2

as

u
-

ou
er
te
ca
is
lly

e
he
b
te

an
ti

ta

om

m

re
t

ic
s
s
a

fo
t-
th
ar
in
a
to
c
th

er

ta-
qual

py
in
of

rd.
rs,
art

ctly
ust

nd

se
her-
do

on/

ees,
in

um-
le-

ti-
cally
the
go-
o-

ted
ta

e
t in
al-
of

ults
a

rved

nt
o-
d

-
ed

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
significantly better statistical accuracy. And even in the c
where we only want to calculateQ in the critical region, our
algorithm is still faster doing all values ofn, than previous
algorithms doing only those in the critical region.~Because
of the way it works, our algorithm cannot be used to calc
late Qn only for the critical region; one is obliged to calcu
late O(N) values ofQn .) A typical lattice size for percola-
tion systems is about a million sites. On such a lattice
algorithm would be on the order of a million times fast
than the simpleO(N2) method and a thousand times fas
than the histogram method, and even just within the criti
region it would still be around six times faster than the h
togram method in two dimensions, while giving substantia
better statistical accuracy.

The outline of this paper is as follows. In Sec. II w
describe our algorithm. In Sec. III we give results from t
application of the algorithm to three different example pro
lems. In Sec. IV we give our conclusions. We have repor
some of the results given here previously in Ref.@28#.

II. THE ALGORITHM

Our algorithm is based on a very simple idea. In the st
dard algorithms for percolation, one must create an en
new state of the lattice for every different value ofn one
wants to investigate, and construct the clusters for that s
As various authors have pointed out, however@22,23,29,30#,
if we want to generate states for each value ofn from zero up
to some maximum value, then we can save ourselves s
effort by noticing that a correct sample state withn11 oc-
cupied sites or bonds is given by adding one extra rando
chosen site or bond to a correct sample state withn sites or
bonds. In other words, we can create an entire set of cor
percolation states by adding sites or bonds one by one to
lattice, starting with an empty lattice.

Furthermore, the configuration of clusters on the latt
changes little when only a single site or bond is added,
that, with a little ingenuity, one can calculate the new clu
ters from the old with only a small amount of computation
effort. This is the idea at the heart of our algorithm.

Let us consider the case of bond percolation first,
which our algorithm is slightly simpler. We start with a la
tice in which allM bonds are unoccupied, so that each of
N sites is its own cluster with just one element. As bonds
added to the lattice, these clusters will be joined together
larger ones. The first step in our algorithm is to decide
order in which the bonds will be occupied. We wish
choose this order uniformly at random from all possible su
orders, i.e., we wish to choose a random permutation of
bonds. One way of achieving this is the following.

~1! Create a list of all the bonds in any convenient ord
Positions in this list are numbered from 1 toM.

~2! Set i←1.
~3! Choose a numberj uniformly at random in the range

i< j <M .
~4! Exchange the bonds in positionsi and j. ~If i 5 j then

nothing happens.!
~5! Set i← i 11.
~6! Repeat from step 3 untili 5M .
01670
e

-

r

r
l

-

-
d

-
re

te.

e

ly

ct
he

e
o
-
l

r

e
e
to
n

h
e

.

It is straightforward to convince oneself that all permu
tions of the bonds are generated by this procedure with e
probability, in timeO(M), i.e., going linearly with the num-
ber of bonds on the lattice.

Having chosen an order for our bonds, we start to occu
them in that order. The first bond added will, clearly, jo
together two of our single-site clusters to form a cluster
two sites, as will, almost certainly, the second and thi
However, not all bonds added will join together two cluste
since some bonds will join pairs of sites that are already p
of the same cluster—see Fig. 1. Thus, in order to corre
keep track of the cluster configuration of the lattice, we m
do the following two things for each bond added.

Find: when a bond is added to the lattice we must fi
which clusters the sites at either end belong to.

Union: if the two sites belong to different clusters, tho
clusters must be amalgamated into a single cluster; ot
wise, if the two belong to the same cluster, we need
nothing.

Algorithms that achieve these steps are known as ‘‘uni
find’’ algorithms @31,32#. Union/find algorithms are widely
used in data structures, in calculations on graphs and tr
and in compilers. They have been extensively studied
computer science, and we can make profitable use of a n
ber of results from the computer science literature to imp
ment our percolation algorithm simply and efficiently.

It is worth noting that measured values for lattice quan
ties such as, say, average cluster size, are not statisti
independent in our method, since the configuration of
lattice changes at only one site from one step of the al
rithm to the next. This contrasts with the standard alg
rithms, in which a complete new configuration is genera
for every value ofn or p investigated, and hence all da
points are statistically independent. While this is in som
respects a disadvantage of our method, it turns out tha
most cases of interest it is not a problem, since almost
ways one is concerned only with statistical independence
the results from onerun to another. This our algorithm
clearly has, which means that an error estimate on the res
made by calculating the variance over many runs will be
correct error estimate, even though the errors on the obse
quantity for successive values ofn or p will not be indepen-
dent.

In the next two sections we apply a number of differe
and increasingly efficient union/find algorithms to the perc
lation problem, culminating with a beautifully simple an

FIG. 1. Two examples of bonds~dotted lines! being added to
bond-percolation configurations.~a! The added bond joins two clus
ters together.~b! The added bond does nothing, since the two join
sites were already members of the same cluster.
6-3

o

m
a
—

all
ir

f
th
a

Th
re
o
a

st

ar
n
th

be
o
h
w
i
i

n
la

ar
ca

-
io
e
s
la

at

of
the

rge,
he
the
an
the
es

-
to
-

ly
the
hen
e of
en
t-
ber
ngs
er-
ge

nc-
line
as

ize,
ime

ing
-
ve
of

nd
w

a
ms
e
em-
ve

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
almost linear algorithm associated with the names
Michael Fischer and Robert Tarjan.

A. Trivial „but possibly quite efficient… unionÕfind algorithms

Perhaps the simplest union/find algorithm that we can e
ploy for our percolation problem is the following. We add
label to each site of our lattice—an integer for example
which tells us to which cluster that site belongs. Initially,
such labels are different~e.g., they could be set equal to the
site label!. Now the ‘‘find’’ portion of the algorithm is
simple—we examine the labels of the sites at each end o
added bond to see if they are the same. If they are not,
the sites belong to different clusters, which must be am
gamated into one as a result of the addition of this bond.
amalgamation, the ‘‘union’’ portion of the algorithm, is mo
involved. To amalgamate two clusters we have to choose
of them—in the simplest case we just choose one
random—and set the cluster labels of all sites in that clu
equal to the cluster label of the other cluster.

In the initial stages of the algorithm, when most bonds
unoccupied, this amalgamation step will be quick a
simple; most bonds added will amalgamate clusters, but
clusters will be small and only a few sites will have to
relabeled. In the late stages of the algorithm, when m
bonds are occupied, all or most sites will belong to t
system-size percolating cluster, and hence cluster unions
rarely be needed, and again the algorithm is quick. Only
the intermediate regime, close to the percolation point, w
any significant amount of work be required. In this regio
there will in general be many large clusters, and much re
beling may have to be performed when two clusters
amalgamated. Thus, the algorithm displays a form of criti
slowing down as it passes through the critical region. W
illustrate this in Fig. 2~solid line!, where we show the num
ber of site relabelings taking place, as a function of fract
of occupied bonds, for bond percolation on a square lattic
32332 sites. The results are averaged over a million run
the algorithm, and show a clear peak in the number of re

FIG. 2. Number of relabelings of sites performed, per bo
added, as a function of fraction of occupied bonds, for the t
algorithms described in Sec. II A, on a square lattice of 32332
sites.
01670
f

-

an
en
l-
e

ne
t

er

e
d
e

st
e
ill
n
ll
,
-
e
l

e

n
of
of
-

belings in the region of the known percolation transition
bond occupation probabilitypc5 1

2 .
In Fig. 3 ~circles! we show the average total number

relabelings that are carried out during the entire run of
algorithm on square lattices ofN5L3L sites as a function
of N. Given that, as the number of relabelings becomes la
the time taken to relabel will be the dominant factor in t
speed of this algorithm, this graph gives an indication of
expected scaling of run time with system size. As we c
see, the results lie approximately on a straight line on
logarithmic scales used in the plot and a fit to this line giv
a run time that scales asNa, with a51.9160.01. This is
slightly better than theO(N2) behavior of the standard algo
rithms, and in practice can make a significant difference
running time on large lattices. With a little ingenuity how
ever, we can do a lot better.

The algorithm’s efficiency can be improved considerab
by one minor modification: we maintain a separate list of
sizes of the clusters, indexed by their cluster label, and w
two clusters are amalgamated, instead of relabeling on
them at random, we look up their sizes in this list and th
relabel the smaller of the two. This ‘‘weighted union’’ stra
egy ensures that we carry out the minimum possible num
of relabelings, and in particular avoids repeated relabeli
of the large percolating cluster when we are above the p
colation transition, which is a costly operation. The avera
number of relabelings performed in this algorithm as a fu
tion of number of occupied bonds is shown as the dotted
in Fig. 2, and it is clear that this change in the algorithm h
saved us a great deal of work. In Fig. 3~squares! we show
the total number of relabelings as a function of system s
and again performance is clearly much better. The run t
of the algorithm now appears to scale asNa with a51.06
60.01. In fact, we can prove that the worst-case runn
time goes asN logN, a form which frequently manifests it
self as an apparent power law with exponent slightly abo
1. To see this, consider that with weighted union the size

o
FIG. 3. Total number of relabelings of sites performed in

single run as a function of system size for the two algorith
~circles and squares! of Sec. II A. Each data point is an averag
over 1000 runs; error bars are much smaller than the points th
selves. The solid lines are straight-line fits to the rightmost fi
points in each case.
6-4

ve
c

th
e
-

ea
s

r
ze
n

ur
r

hm
er
on

ta

s

f t
a
g
t s

a
th

ai
he

i
on

a
g

t o
t

site

go-
w
ever,
r a
h
er

ed
e

fter
tra-
ee.
es
on

re
the
We
at
the

of
ter.
om-
it

a-

is
ich

.
w
the

are
any
ed
s to

do

e
root
ak-
are
be

rger

ave
ruc-
of

s of
the
of
ter

he
-

x
s

re

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
the cluster to which a site belongs must at least double e
time that site is relabeled. The maximum number of su
doublings is limited by the size of the lattice to log2 N, and
hence the maximum number of relabelings of a site has
same limit. An upper bound on the total number of relab
ings performed for allN sites during the course of the algo
rithm is thereforeN log2 N. ~A similar argument applied to
the unweighted relabeling algorithm implies thatN2 is an
upper bound on the running time of this algorithm. The m
sured exponent 1.91 indicates either that the experiment
have performed have not reached the asymptotic scaling
gime, or else that the worst-case running time is not reali
for the particular case of union of percolation clusters o
square lattice.!

An algorithm whose running time scales asO(N logN) is
a huge advance over the standard methods. However, it t
out that, by making use of some known techniques and
sults from computer science, we can make our algorit
better still while at the same time actually making it simpl
This delightful development is described in the next secti

B. Tree-based unionÕfind algorithms

Almost all modern union/find algorithms make use of da
trees to store the sets of objects~in this case clusters! that are
to be searched. The idea of using a tree in this way seem
have been suggested first by Galler and Fischer@33#. Each
cluster is stored as a separate tree, with each vertex o
tree being a separate site in the cluster. Each cluster h
single ‘‘root’’ site, which is the root of the correspondin
tree, and all other sites possess pointers either to that roo
or to another site in the cluster, such that by following
succession of such pointers we can get from any site to
root. By traversing trees in this way, it is simple to ascert
whether two sites are members of the same cluster: if t
pointers lead to the same root site then they are, otherw
they are not. This scheme is illustrated for the case of b
percolation on the square lattice in Fig. 4.

The union operation is also simple for clusters stored
trees: two clusters can be amalgamated simply by addin
pointer from the root of one to any site in the other~Fig. 4!.
Normally, one chooses the new pointer to point to the roo
the other cluster, since this reduces the average distance

FIG. 4. An example of the tree structure described in the te
here representing two clusters. The shaded sites are the root
and the arrows represent pointers. When a bond is added~dotted
line in center! that joins sites that belong to different clusters~i.e.,
whose pointers lead to different root sites!, the two clusters must be
amalgamated by making one~left! a subtree of the other~right!.
This is achieved by adding a new pointer from the root of one t
to the root of the other.
01670
ry
h

e
l-

-
we
e-
d
a

ns
e-

.
.

to

he
s a

ite

e
n
ir
se
d

s
a

f
hat

will have to be traversed across the tree to reach the root
from other sites.

There are many varieties of tree-based union/find al
rithms, which differ from one another in the details of ho
the trees are updated as the algorithm progresses. How
the best known performance for any such algorithm is fo
very simple one—the ‘‘weighted union/find with pat
compression’’—which was first proposed by Fisch
@31,32,34#. Its description is brief.

Find: In the find part of the algorithm, trees are travers
to find their root sites. If two initial sites lead to the sam
root, then they belong to the same cluster. In addition, a
the traversal is completed, all pointers along the path
versed are changed to point directly to the root of their tr
This is called ‘‘path compression.’’ Path compression mak
traversal faster the next time we perform a find operation
any of the same sites.

Union: In the union part of the algorithm, two clusters a
amalgamated by adding a pointer from the root of one to
root of the other, thus making one a subtree of the other.
do this in a ‘‘weighted’’ fashion as in Sec. II A, meaning th
we always make the smaller of the two a subtree of
larger. In order to do this, we keep a record at the root site
each tree of the number of sites in the corresponding clus
When two clusters are amalgamated the size of the new c
posite cluster is the sum of the sizes of the two from which
was formed.

Thus our complete percolation algorithm can be summ
rized as follows.

~1! Initially all sites are clusters in their own right. Each
its own root site, and contains a record of its own size, wh
is 1.

~2! Bonds are occupied in random order on the lattice
~3! Each bond added joins together two sites. We follo

pointers from each of these sites separately until we reach
root sites of the clusters to which they belong. Root sites
identified by the fact that they do not possess pointers to
other sites. Then we go back along the paths we follow
through each tree and adjust all pointers along those path
point directly to the corresponding root sites.

~4! If the two root sites are the same site, we need
nothing further.

~5! If the two root sites are different, we examine th
cluster sizes stored in them, and add a pointer from the
of the smaller cluster to the root of the larger, thereby m
ing the smaller tree a subtree of the larger one. If the two
the same size, we may choose whichever tree we like to
the subtree of the other. We also update the size of the la
cluster by adding the size of the smaller one to it.

These steps are repeated until all bonds on the lattice h
been occupied. At each step during the run, the tree st
tures on the lattice correctly describe all of the clusters
joined sites, allowing us to evaluate observable quantitie
interest. For example, if we are interested in the size of
largest cluster on the lattice as a function of the number
occupied bonds, we simply keep track of the largest clus
size we have seen during the course of the algorithm.

Although this algorithm may seem more involved than t
relabeling algorithm of Sec. II A, it turns out that its imple

t,
ites

e

6-5

od
te
th
n,
io
re
s

te
he
-

tim
x-

n
a

e
y
a

d
ve
ic
dj
it
th
an
a

th
o

ke
e
r

r

t

f
ic
l

a

he

the
ber

ly

ce

ge
and

It
s is
d to

s-

en
the
t, as
ws

r-

-

a
ach
aller
ast

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
mentation is actually simpler, for two reasons. First, there
no relabeling of sites, which eliminates the need for the c
portion that tracks down all the sites belonging to a clus
and updates them. Second, the only difficult parts of
algorithm, the tree traversal and path compression, ca
turns out, be accomplished together by a single funct
which, by artful use of recursion, can be coded in only th
lines ~two in C). The implementation of the algorithm i
discussed in detail in Sec. II D and in the Appendix.

C. Performance of the algorithm

Without either weighting or path compression each s
of the algorithm above is known to take time linear in t
tree size@34#, while with either weighting or path compres
sion alone it takes logarithmic time@34,35#. When both are
used together, however, each step takes an amount of
which is very nearlyconstant, in a sense that we now e
plain.

The worst-case performance of the weighted union/fi
algorithm with path compression has been analyzed by T
jan @35# in the general case in which one starts withn indi-
vidual single-element sets and performs alln21 unions
~each one reducing the number of sets by 1 fromn down to
1!, and any numberm>n of intermediate finds. The finds ar
performed on any sequence of items, and the unions ma
performed in any order. Our case is more restricted. We
ways perform exactly 2M finds, and only certain unions an
certain finds may be performed. For example, we only e
perform finds on pairs of sites that are adjacent on the latt
And unions can only be performed on clusters that are a
cent to one another along at least one bond. However,
clear that the worst-case performance of the algorithm in
most general case also provides a bound on the perform
of the algorithm in any more restricted case, and hence T
jan’s result applies to our algorithm.

Tarjan’s analysis is long and complicated. However,
end result is moderately straightforward. The union part
the algorithm clearly takes constant time. The find part ta
time that scales as the number of steps taken to travers
tree to its root. Tarjan showed that the average numbe
steps is bounded above byka(m,n), wherek is an unknown
constant and the functiona(m,n) is the smallest intege
value ofz greater than or equal to 1, such thatA(z,4dm/ne)
. log2 n. The functionA(i , j) in this expression is a sligh
variant on Ackermann’s function@36# defined by

A~0,j !52 j for all j ,

A~ i ,0!50 for i>1,

A~ i ,1!52 for i>1,

A~ i , j !5A„i 21,A~ i , j 21!… for i>1, j >2. ~5!

This function is a monstrously quickly growing function o
its arguments—faster than any multiple exponential—wh
means thata(m,n), which is roughly speaking the functiona
inverse ofA(i , j), is a very slowly growing function of its
arguments. So slowly growing, in fact, that for all practic
purposes it is a constant. In particular, note thata(m,n) is
01670
is
e
r
e
it
n
e

p

e

d
r-

be
l-

r
e.
a-
is
e
ce
r-

e
f
s

the
of

h

l

maximized by settingm5n, in which case if log2 n,A(z,4)
then a(m,n)<a(n,n)<z. Settingz53 and making use of
Eq. ~5!, we find that

A~3,4!522..
.2

%65 536 twos.
~6!

This number is ludicrously large. For example, with only t
first 5 out of the 65 536 twos, we have

22222

52.031019 728. ~7!

This number is far, far larger than the number of atoms in
known universe. Indeed, a generous estimate of the num
of Planck volumes in the universe would put it at on
around 10200. So it is entirely safe to say that log2 n will
never exceedA(3,4), bearing in mind thatn in our case is
equal to N, the number of sites on the lattice. Hen
a(m,n),3 for all practical values ofm andn and certainly
for all lattices that fit within our universe. Thus the avera
number of steps needed to traverse the tree is at least one
at most 3k, wherek is an unknown constant. The value ofk
is found experimentally to be of order one.

What does this mean for our percolation algorithm?
means that the time taken by both the union and find step
O(1) in the system size, and hence that each bond adde
the lattice takes timeO(1). Thus it takes timeO(M) to add
all M bonds, while maintaining an up-to-date list of the clu
ters at all times.~To be precise the time to add allM bonds is
bounded above byO„Ma(2M ,N)…, wherea(2M ,N) is not
expected to exceed 3 this side of kingdom come.!

In Fig. 5 we show the actual total number of steps tak
in traversing trees during the entire course of a run of
algorithm averaged over several runs for each data poin
a function of system size. A straight-line fit to the data sho
that the algorithm runs in time proportional toNa, with a
51.00660.011.~In actual fact, if one measures the perfo
mance of the algorithm in real ‘‘wallclock’’ time, it will on
most computers~circa 2001! not be precisely linear in sys

FIG. 5. Total number of steps taken through trees during
single run of the our algorithm as a function of system size. E
point is averaged over 1000 runs. Statistical errors are much sm
than the data points. The solid line is a straight-line fit to the l
five points, and gives a slope of 1.00660.011.
6-6

iss
ng

ce
it
f

i-
in
t

es
d
st
la
o

h
ie

e
s,
Th
rm

es

to

o
es
e

te
rra

f
in
n
nd
-
-

m
ice
n
n

s
the
se

is
be

ion

l of
r to
rray
he
c-
-

-
ch.
re-

ng

est
ove
his
d it
tion
ant
es
hm

e
nt

ry
we

ted
the

s or
r a
rom
ion,
the
ed
ary

one
eck
n
he

e
ua

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
tem size because of the increasing incidence of cache m
as N becomes large. This however is a hardware faili
rather than a problem with the algorithm.!

We illustrate the comparative superiority of performan
of our algorithm in Table I with actual timing results for
and the three other algorithms described in this paper,
square lattices of 100031000 sites, a typical size for numer
cal studies of percolation. All programs were compiled us
the same compiler and run on the same computer. As
table shows, our algorithm, in addition to being the simpl
to program, is also easily the fastest. In particular we fin
to be about 23106 times faster than the simple depth-fir
search@37#, and about 50% faster than the best of our re
beling algorithms, the weighted relabeling of Sec. II A. F
larger systems the difference will be greater still.

Site percolation can be handled by only a very slig
modification of the algorithm. In this case, sites are occup
in random order on the lattice, and each site occupied
declared to be a new cluster of size 1. Then one adds, on
one, all bonds between this site and the occupied site
any, adjacent to it, using the algorithm described above.
same performance arguments apply: generation of a pe
tation of the sites takes timeO(N), and the adding of all the
bonds takes timeO(M), and hence the entire algorithm tak
time O(M1N). On a regular lattice, for whichM5 1

2 zN,
where z is the coordination number, this is equivalent
O(N).

It is worth also mentioning the memory requirements
our algorithm. In its simplest form, the algorithm requir
two arrays of sizeN for its operation; one is used to store th
order in which sites will be occupied~for bond percolation
this array is sizeM), and one to store the pointers and clus
sizes. The standard depth-first search also requires two a
of size N ~a cluster label array and a stack!, as does the
weighted relabeling algorithm~a label array and a list o
cluster sizes!. Thus all the algorithms are competitive
terms of memory use.~The well-known Hoshen–Kopelma
algorithm@38#, which is a variation on depth-first search a
runs inO(N2 ln N) time, has significantly lower memory re
quirements, of orderN121/d, which makes it useful for stud
ies of particularly large low-dimensional systems.!

D. Implementation

In the Appendix we give a complete computer progra
for our algorithm for site percolation on the square latt
written in C. The program is also available for download o
the Internet@39#. As the reader will see, the implementatio

TABLE I. Time in seconds for a single run of each of th
algorithms discussed in this paper, for bond percolation on a sq
lattice of 100031000 sites.

Algorithm Time in seconds

Depth-first search 4 500 000
Unweighted relabeling 16 000
Weighted relabeling 4.2
Tree-based algorithm 2.9
01670
es
,

or

g
he
t

it

-
r

t
d
is
by
if
e
u-

f

r
ys

of the algorithm itself is quite simple, taking only a few line
of code. In this section, we make a few points about
algorithm’s implementation, which may be helpful to tho
wishing to make use of it.

First, we note that the ‘‘find’’ operation in which a tree
traversed to find its root and the path compression can
conveniently performed together using a recursive funct
that in pseudocode would look like

function find ~i: integer!: integer
if ptr@i# , 0 return i
ptr @i# : 5 find (ptr@i#)
return ptr@i#

end function

This function takes an integer argument, which is the labe
a site, and returns the label of the root site of the cluste
which that site belongs. The pointers are stored in an a
ptr, which is negative for all root nodes and contains t
label of the site pointed to otherwise. A version of this fun
tion in C is included in the Appendix. A nonrecursive imple
mentation of the function is of course possible~as is the case
with all uses of recursion!, and we give two such implemen
tations in the appendix for those who prefer this approa
However, both are somewhat more complicated than the
cursive version, and with the benefit of a modern optimizi
compiler are found to offer little speed advantage.

The program given in the Appendix measures the larg
cluster size as a function of number of occupied sites. Ab
the percolation transition in the limit of large system size t
quantity is equal to the size of the giant component, an
also has interesting scaling properties below the transi
@40#. However, there a many other quantities one might w
to measure using our algorithm. Doing so usually involv
keeping track of some additional variables as the algorit
runs. Here are three examples.

~a! Average cluster size. In order to measure the averag
number of sites per cluster in site percolation it is sufficie
to keep track of only the total numberc of clusters on the
lattice. Then the average cluster size is given byn/c, where
n is the number of occupied sites. To keep track ofc, we
simply set it equal to zero initially, increase it by 1 eve
time a site is occupied, and decrease it by 1 every time
perform a union operation. Similarly, for averages weigh
by cluster size one can keep track of higher moments of
cluster-size distribution.

~b! Cluster spanning. In many calculations one would like
to detect the onset of percolation in the system as site
bonds are occupied. One way of doing this is to look fo
cluster of occupied sites or bonds that spans the lattice f
one side to the other. Taking the example of site percolat
one can test for such a cluster by starting the lattice in
configuration shown in Fig. 6 in which there are occupi
sites along two edges of the lattice and no periodic bound
conditions.~Notice that the lattice is not square now.! Then
one proceeds to occupy the remaining sites of the lattice
by one in our standard fashion. At any point, one can ch
for spanning simply by performing ‘‘find’’ operations o
each of the two initial clusters, starting, for example, at t

re
6-7

it

-
a

d
an
tra
in

ler
ni

e
-
in
n

io
e
th
he
di
ts
on

a
t

.
he
e

ct
a

an
e
o

n
n

f t
i

th

rob-

we

the
per-
n-

le

for

p-
-

is

f

n.
sily
f-

h-
Sec.
fi-
fol-
q.

. I
la
un
d

ic

, as
tect

nts
ken
e
at

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
sites marked3. If these two clusters have the same root s
then spanning has occurred. Otherwise it has not.

~c! Cluster wrapping. An alternative criterion for percola
tion is to use periodic boundary conditions and look for
cluster that wraps all the way around the lattice. This con
tion is somewhat more difficult to detect than simple sp
ning, but with a little ingenuity it can be done, and the ex
effort is, for some purposes, worthwhile. An example is
the measurement of the positionpc of the percolation transi-
tion. As discussed in Sec. III A, estimates ofpc made using
a cluster wrapping condition display significantly smal
finite-size errors than estimates made using cluster span
on open systems.

A clever method for detecting cluster wrapping has be
employed by Machtaet al. @41# in simulations of Potts mod
els, and can be adapted to the case of percolation
straightforward manner. We describe the method for bo
percolation, although it is easily applied to site percolat
also. We add to each site two integer variables giving thx
andy displacements from that site to the site’s parent in
appropriate tree. When we traverse the tree, we sum t
displacements along the path traversed to find the total
placement to the root site.~We also update all displacemen
along the path when we carry out the path compressi!
When an added bond connects together two sites that
determined to belong to the same cluster, we compare
total displacements to the root site for those two sites
these displacements differ by just one lattice spacing, t
cluster wrapping has not occurred. If they differ by any oth
amount, it has. This method is illustrated in Fig. 7.

It is worth noting also that, if one’s object is only to dete
the onset of percolation, then one can halt the algorithm
soon as percolation is detected. There is no need to fill in
more sites or bonds once the percolation point is reach
This typically saves about 50% on the run time of the alg
rithm, the critical occupation probabilitypc being of the or-
der of one half. A further small performance improveme
can often be achieved in this case by noting that it is
longer necessary to generate a complete permutation o
sites~bonds! before starting the algorithm. In many cases
is sufficient simply to choose sites~bonds! one by one at
random as the algorithm progresses. Sometimes in doing
one will choose a site~bond! which is already occupied, in

FIG. 6. Initial configuration of occupied~gray! and empty
~white! sites for checking for the presence of a spanning cluster
this example there are no periodic boundary conditions on the
tice. As the empty sites are filled up during the course of the r
the two sites marked3 will have the same cluster root site if an
only if there is a spanning cluster on the lattice.
01670
e

i-
-

ng

n

a
d
n

e
se
s-

.
re

he
If
n
r

s
y
d.
-

t
o
he
t

is

which case one must generate a new random one. The p
ability that this happens is equal to the fractionp of occupied
sites~bonds!, and hence the average number of attempts
must make before we find an empty site is 1/(12p). The
total number of attempts made before we reachpc is there-
fore

NE
0

pc dp

12p
52N ln~12pc!, ~8!

or 2M ln(12pc) for bond percolation. Ifpc50.5, for ex-
ample, this means we will have to generateN ln 2.0.693N
random numbers during the course of the run, rather than
N we would have had to generate to make a complete
mutation of the sites. Thus it should be quicker not to ge
erate the complete permutation. Only oncepc becomes large
enough that2 ln(12pc)*1 does it start to become profitab
to calculate the entire permutation, i.e., whenpc*121/e
.0.632. If one were to use a random selection scheme
calculations over the whole range 0<p<1, then the algo-
rithm would take time

NE
0

121/N dp

12p
5N ln N ~9!

to find and occupy all empty sites, which means overall o
eration would beO(N ln N) not O(N), so generating the per
mutation is crucial in this case to ensure that running time
O(N).

One further slightly tricky point in the implementation o
our scheme is the performance of the convolution Eq.~2! of
the results of the algorithm with the binomial distributio
Since the number of sites or bonds on the lattice can ea
be a million or more, direct evaluation of the binomial coe
ficients using factorials is not possible. And for hig
precision studies, such as the calculations presented in
III, a Gaussian approximation to the binomial is not suf
ciently accurate. Instead, therefore, we recommend the
lowing method of evaluation. The binomial distribution E
~1! has its largest value for givenN and p when n5nmax

n
t-
,

FIG. 7. Method for detecting cluster wrapping on period
boundary conditions. When a bond is added~a! which joins to-
gether two sites that belong to the same cluster, it is possible
here, that it causes the cluster to wrap around the lattice. To de
this, the displacements to the root site of the cluster~shaded! are
calculated~arrows!. If the difference between these displaceme
is not equal to a single lattice spacing, then wrapping has ta
place. Conversely if the bond~b! is added, the displacements to th
root site would differ by only a single lattice spacing, indicating th
wrapping has not taken place.
6-8

o
m

s

iti-
th
x

la
ult
te
lly
-

a
ic
ha

-
c-
e
c
th
ic
ap
i-

a
th
fo
a

a
o

a
ic
is

he

ays

ps
ith
ere,

isfy

m-
n
all

an
the
st

lted
the
t of

v-
are

ge
not

m-
s it

s-
n

is
ions

l-

n
dic

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
5pN. We arbitrarily set this value to 1.~We will fix it in a
moment.! Now we calculateB(N,n,p) iteratively for all
othern from

B~N,n,p!5H B~N,n21,p!
N2n11

n

p

12p
, n.nmax

B~N,n11,p!
n11

N2n

12p

p
, n,nmax.

~10!

Then we calculate the normalization coefficientC
5(nB(N,n,p) and divide all theB(N,n,p) by it, to cor-
rectly normalize the distribution.

III. APPLICATIONS

In this section we consider a number of applications
our algorithm to open problems in percolation theory. So
results given here have appeared previously in Refs.@18# and
@28#. They are gathered here to give an idea of the type
problems for which our algorithm is an appropriate tool.

A. Measurement of the position of the percolation transition

Our algorithm is well suited to the measurement of cr
cal properties of percolation systems, such as position of
percolation transition and critical exponents. Our first e
ample application is the calculation of the positionpc of the
percolation threshold for site percolation on the square
tice, a quantity for which we currently have no exact res

There are a large number of possible methods for de
mining the position of the percolation threshold numerica
on a regular lattice@42–44#, different methods being appro
priate with different algorithms. As discussed in Ref.@28#,
our algorithm makes possible the use of a particularly attr
tive method based on lattice wrapping probabilities, wh
has substantially smaller finite-size scaling corrections t
methods employed previously.

We defineRL(p) to be the probability that for site occu
pation probabilityp there exists a contiguous cluster of o
cupied sites that wraps completely around a square lattic
L3L sites with periodic boundary conditions. As in Se
II D, cluster wrapping is here taken to be an estimator of
presence or absence of percolation on the infinite latt
There are a variety of possible ways in which cluster wr
ping can occur, giving rise to a variety of different defin
tions for RL .

~1! RL
(h) and RL

(v) are the probabilities that there exists
cluster that wraps around the boundary conditions in
horizontal and vertical directions, respectively. Clearly
square systems these two are equal. In the rest of this p
we refer only toRL

(h) .
~2! RL

(e) is the probability that there exists a cluster th
wraps around either the horizontal or vertical directions,
both.

~3! RL
(b) is the probability that there exists a cluster th

wraps around both horizontal and vertical directions. Not
that there are many topologically distinct ways in which th
can occur. Two of them, the ‘‘cross’’ configuration and t
01670
f
e

of

e
-

t-
.
r-

c-
h
n

of
.
e
e.
-

e
r
per

t
r

t
e

‘‘single spiral’’ configuration, are illustrated in Fig. 8.RL
(b) is

defined to include both of these and all other possible w
of wrapping around both axes.

~4! RL
(1) is the probability that a cluster exists which wra

around one specified axis but not the other axis. As w
RL

(h) , it does not matter, for the square systems studied h
which axis we specify.

These four wrapping probabilities satisfy the equalities

RL
(e)5RL

(h)1RL
(v)2RL

(b)52RL
(h)2RL

(b) , ~11!

RL
(1)5RL

(h)2RL
(b)5RL

(e)2RL
(h)5 1

2 ~RL
(e)2RL

(b)!, ~12!

so that only two of them are independent. They also sat
the inequalitiesRL

(b)<RL
(h)<RL

(e) andRL
(1)<RL

(h) .
Each run of our algorithm on theL3L square system

gives one estimate of each of these functions for the co
plete range ofp. It is a crude estimate however: since a
appropriate wrapping cluster either exists or does not for
values ofp, the correspondingRL(p) in the microcanonical
ensemble is simply a step function, except forRL

(1) , which
has two steps, one up and one down. All four functions c
be calculated in the microcanonical ensemble by finding
numbersnc

(h) andnc
(v) of occupied sites at which clusters fir

appear that wrap horizontally and vertically.~This means
that, as discussed in Sec. II D, the algorithm can be ha
once wrapping in both directions has occurred, which for
square lattice gives a saving of about 40% in the amoun
CPU time used.!

Our estimates of the four functions are improved by a
eraging over many runs of the algorithm, and the results
then convolved with the binomial distribution Eq.~2! to give
smooth curves ofRL(p) in the canonical ensemble.~Alter-
natively, one can perform the convolution first and avera
over runs second; both are linear operations, so order is
important. However, the convolution is quite a lengthy co
putation, so it is sensible to choose the order that require
to be performed only once.!

In Fig. 9 we show results from calculations ofRL(p)
using our algorithm for the four different definitions, for sy
tems of a variety of sizes, in the vicinity of the percolatio
transition.

The reason for our interest in the wrapping probabilities
that their values can be calculated exactly. Exact express
can be deduced from the work of Pinson@45# and written
directly in terms of the Jacobiq function q3(q) and the
Dedekindh function h(q). Pinson calculated the probabi

FIG. 8. Two topologically distinct ways in which a percolatio
cluster can wrap around both axes of a two-dimensional perio
lattice.
6-9

l-
b-

be

e

s

n
as

ze

nt

in-
n
ate
s

ia-

r

e-

s
on

r.
s n-

for

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
ity, which he denotedp(Z3Z), of the occurrence on a
square lattice of a wrapping cluster with the ‘‘cross’’ topo
ogy shown in the left panel of Fig. 8. By duality, our pro
ability R`

(e)(pc) is just 12p(Z3Z), since if there is no
wrapping around either axis, then there must necessarily
cross configuration on the dual lattice. This yields@46,47#

R`
(e)~pc!

512
q3~e23p/8!q3~e28p/3!2q3~e23p/2!q3~e22p/3!

2@h~e22p!#2
.

~13!

The probabilityR`
(1)(pc) for wrapping around exactly on

axis is equal to the quantity denotedp(1,0) by Pinson,
which for a square lattice can be written as

R`
(1)~pc!5

3q3~e26p!1q3~e22p/3!24q3~e28p/3!

A6@h~e22p!#2
.

~14!

The remaining two probabilitiesR`
(h) and R`

(b) can now be
calculated from Eq.~11!. To ten figures, the resulting value
for all four are

R`
(h)~pc!50.521 058 290, R`

(e)~pc!50.690 473 725,

R`
(b)~pc!50.351 642 855, R`

(1)~pc!50.169 415 435.
~15!

If we calculate the solutionp of the equation

RL~p!5R`~pc!, ~16!

FIG. 9. Plots of the cluster wrapping probability function
RL(p) for L532, 64, 128, and 256 in the region of the percolati
transition for percolation~a! along a specified axis,~b! along either
axis, ~c! along both axes, and~d! along one axis but not the othe
Note that~d! has a vertical scale different from the other frame
The dotted lines denote the expected values ofpc andR`(pc).
01670
a

we must havep→pc asL→`, and hence this solution is a
estimator forpc . Furthermore, it is a very good estimator,
we now demonstrate.

In Fig. 10, we show numerical results for the finite-si
convergence ofRL(pc) to theL5` values for both site and
bond percolation.~For site percolation we used the curre
best-known value forpc from Ref. @28#.! Note that the ex-
pected statistical error onRL(pc) is known analytically to
good accuracy, since each run of the algorithm gives an
dependent estimate ofRL which is either 1 or 0 depending o
whether or not wrapping has occurred in the appropri
fashion when a fractionpc of the sites are occupied. Thu
our estimate of the mean ofRL(pc) over n runs is drawn
from a simple binomial distribution that has standard dev
tion

sRL
5ARL~pc!@12RL~pc!#

n
. ~17!

If we approximateRL(pc) by the known value ofR`(pc),
then we can evaluate this expression for anyn.

As the figure shows, the finite-size corrections toRL de-
cay approximately asL22 with increasing system size. Fo
example, fits to the data forRL

(1) ~for which our numerical
results are cleanest!, give slopes of21.95(17)~site percola-
tion! and 22.003(5) ~bond percolation!. On the basis of
these results we conjecture thatRL(pc) converges to itsL
5` value exactly asL22.

At the same time, the width of the critical region is d
creasing asL21/n, so that the gradient ofRL(p) in the critical
region goes asL1/n. Thus our estimatep of the critical occu-
pation probability from Eq.~16! converges topc according
to

.

FIG. 10. Convergence with increasing system size ofRL(pc) to
its known value atL5` for RL

(e) ~circles! andRL
(1) ~squares! under

~a! site percolation and~b! bond percolation. Filled symbols in
panel ~a! are exact enumeration results for system sizesL
52 . . . 6. Thedotted lines show the expected slope if, as we co
jecture,RL(pc) converges asL22 with increasingL. The data for
RL

(e) in panel~b! have been displaced upwards by a factor of two
clarity.
6-10

to

ob
in
a
-

l
er
e

se

on

s
f

i
en
a

ng

r
ost

of
h

the

y
ts.
ut

-

act
an
ing
e
-
ner-

her
s
h in

d.

tes
n-

the

tter
ture

he
ary

to

he
ing

in

ic
g

t

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
p2pc;L2221/n5L211/4, ~18!

where the last equality makes use of the known valuen5 4
3

for percolation on the square lattice. This convergence
substantially better than that for any other known estima
of pc . The best previously known convergence wasp2pc
;L2121/n for certain estimates based upon crossing pr
abilities in open systems, while many other estimates,
cluding the renormalization-group estimate, converge
p2pc;L21/n @44#. It implies that we should be able to de
rive accurate results forpc from simulations on quite smal
lattices. Indeed we expect that statistical error will ov
whelm the finite-size corrections at quite small system siz
making larger lattices not only unnecessary, but also es
tially worthless.

Statistical errors for the calculation are estimated in c
ventional fashion. From Eq.~17! we know that the error on
the mean ofRL(p) over n runs of the algorithm goes a
n21/2, independent ofL, which implies that our estimate o
pc carries an error spc

scaling according to spc

;n21/2L21/n. With each run taking timeO(N)5O(Ld), the
total timeT;nLd taken for the calculation is related tospc

according to

spc
;

Ld/221/n

AT
5

L1/4

AT
, ~19!

where the last equality holds in two dimensions. Thus
order to make the statistical errors on systems of differ
size the same, we should spend an amount of time that sc
as TL;Ld22/n on systems of sizeL, or TL;AL in two di-
mensions.

In Fig. 11 we show the results of a finite-size scali
calculation of this type forpc . The four different definitions
of RL give four ~nonindependent! estimates of pc :

FIG. 11. Finite size scaling of estimates forpc on square lattices
of L3L sites using measured probabilities of cluster wrapp
along one axis~circles!, either axis~squares!, both axes~upward-
pointing triangles!, and one axis but not the other~downward-
pointing triangles!. Inset: results of a similar calculation for cub
lattices ofL3L3L sites using the probabilities of cluster wrappin
along one axis but not the other two~circles!, and two axes but no
the other one~squares!.
01670
is
r

-
-
s

-
s,
n-

-

n
t

les

0.592 746 21(13) for RL
(h) , 0.592 746 36(14) for

RL
(e) , 0.592 746 06(15) forRL

(b) , and 0.592 746 29(20) fo
RL

(1) . The first of these is the best, and is indeed the m
accurate current estimate ofpc for site percolation on the
square lattice. This calculation involved the simulation
more than 73109 separate samples, about half of whic
were for systems of size 1283128.

The wrapping probabilityRL
(1) is of particular interest,

because one does not in fact need to know its value for
infinite system in order to use it to estimatepc . Since this
function is nonmonotonic it may intercept itsL5` value at
two different values ofp, but its maximum must necessaril
converge topc at least as fast as either of these intercep
And the position of the maximum can be determined witho
knowledge of the value ofR`

(1)(pc). In fact, in the calcula-
tion shown in Fig. 11, we used the maximum ofRL

(1) to
estimatepc and not the intercept, since in this caseRL

(1) was
strictly lower thanR`

(1) for all p, so that there were no inter
cepts.

The criterion of a maximum inRL
(1) can be used to find

the percolation threshold in other systems for which ex
results for the wrapping probabilities are not known. As
example, we show in the inset of Fig. 11 a finite-size scal
calculation of pc for three-dimensional percolation on th
cubic lattice~with periodic boundary conditions in all direc
tions! using this measure. Here there are two possible ge
alizations of our wrapping probability:RL

(1)(p) is the prob-
ability that wrapping occurs along one axis and not the ot
two, and RL

(2)(p) is the probability that wrapping occur
along two axes and not the third. We have calculated bot
this case.

Although neither the exact value ofn nor the expected
scaling of this estimate ofpc is known for the three-
dimensional case, we can estimatepc by varying the scaling
exponent until an approximately straight line is produce
This procedure reveals that our estimate ofpc scales approxi-
mately asL22 in three dimensions, and we derive estima
of pc50.3097(3) and 0.3105(2) for the position of the tra
sition. Combining these results we estimate thatpc
50.3101(10), which is in reasonable agreement with
best known result for this quantity of 0.311 6080(4) @48,49#.
~Only a short run was performed to obtain our result; be
results could presumably be derived with greater expendi
of CPU time.!

B. Scaling of the wrapping probability functions

It has been proposed@50,51# that below the percolation
transition the probability of finding a cluster which spans t
system, or wraps around it in the case of periodic bound
conditions, should scale according to

RL~p!;exp~2L/j!. ~20!

The probability of wrapping around the system is equal
the trace of the product of the transfer matrices for theL
rows of the system. With periodic boundary conditions, t
transfer matrices are equal for all rows, and the wrapp
probability is thus a simple sum of theLth powers of the

g

6-11

st

q

o
d
.

n
b

r
ho

e
r
t

se

i-
E

al-
ce.
on

ro-
,
sing
the
rce
ists
. In
nifi-
-
he
os-
rare
es-

on-
is-
ation
nal
ong
tices
ce
et-
m-
n-
the

nc-
ne,
ate

of
lla-

s-
-

es

t

io
e
Th
.
h
lo

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
eigenvaluesl i of the individual transfer matrices:RL(p)
5(il i

L . For largeL, this sum is dominated by the large
eigenvalue l0 and RL(p)5l0

L5exp(L ln l0). Comparing
with Eq. ~20!, we conclude that the leading constant in E
~20! must tend to unity asL becomes large, and thus

RL~p!5exp~2L/j!5exp@2cL~pc2p!n#, ~21!

wherec is another constant. In other words, as a function
pc2p, the wrapping probability should follow a stretche
exponential with exponentn and a leading constant of 1
This contrasts with previous conjectures thatRL(p) has
Gaussian tails@1,52,53#.

The behavior~21! is only seen when the correlatio
length is substantially smaller than the system dimension,
also greater than the lattice spacing, i.e., 1!j!L. This
means that in order to observe it clearly we need to perfo
simulations on reasonably large systems. In Fig. 12 we s
results for site percolation on square lattices of 102431024
sites, with lnRL plotted against (pc2p)n for various values
of n, to look for straight-line behavior. Interpretation of th
results is a little difficult, since one must discount curvatu
close to the origin wherej*L. However, the best straigh
line seems to occur in the region ofn51.460.1, in agree-
ment with the expectedn5 4

3 , while strongly ruling out the
Gaussian behavior.

A better demonstration of this result is shown in the in
of the figure. Here we plot ln@2ln(RL)# as a function of
ln(pc2p), which, since the leading constant in Eq.~21! is
equal to unity, should give a straight line with slope4

3 in the
regime where 1!j!L. This behavior is clearly visible in
the figure. Note that this kind of plot is only valid for per
odic boundary conditions, since the leading constant in
~20! is not in general equal to 1 in other cases.

FIG. 12. Demonstration of the stretched exponential behav
Eq. ~21!, in simulation results for 102431024 square systems. Th
results are averaged over 1 000 000 runs of the algorithm.
curves are for~top to bottom! n51.2, 1.3, 1.4, 1.5, 1.6, and 1.7
Inset: the same data replotted logarithmically to show the stretc
exponential behavior. The dotted line indicates the expected s
of 4

3 .
01670
.

f

ut

m
w

e

t

q.

C. Percolation on random graphs

For our last example, we demonstrate the use of our
gorithm on a system that is not built upon a regular latti
The calculations of this section are instead performed
random graphs, i.e., collections of sites~or vertices! with
random bonds~or edges! between them.

Percolation can be considered a simple model for the
bustness of networks@17,18#. In a communications network
messages are routed from source to destination by pas
them from one vertex to another through the network. In
simplest approximation, the network between a given sou
and destination is functional so long as a single path ex
from source to destination, and non-functional otherwise
real communications networks such as the Internet, a sig
cant fraction of the vertices~routers in the case of the Inter
net! are nonfunctional at all times, and yet the majority of t
network continues to function because there are many p
sible paths from each source to each destination, and it is
that all such paths are simultaneously interrupted. The qu
tion therefore arises: what fraction of vertices must be n
functional before communications are substantially d
rupted? This question may be rephrased as a site percol
problem in which occupied vertices represent functio
routers and unoccupied vertices nonfunctional ones. So l
as there is a giant component of connected occupied ver
~the equivalent of a percolating cluster on a regular latti!
then long-range communication will be possible on the n
work. Below the percolation transition, where the giant co
ponent disappears, the network will fragment into disco
nected clusters. Thus the percolation transition represents
point at which the network as a whole becomes nonfu
tional, and the size of the giant component, if there is o
represents the fraction of the network that can communic
effectively.

Both the position of the phase transition and the size
the giant component have been calculated exactly by Ca
way et al. @18# for random graphs with arbitrary degree di
tributions. The degreek of a vertex in a network is the num
ber of other vertices to which it is connected. Ifpk is the
probability that a vertex has degreek andq is the occupation
probability for vertices, then the percolation transition tak
place at

qc5

(
k50

`

kpk

(
k50

`

k~k21!pk

, ~22!

and the fractionSof the graph filled by the giant componen
is the solution of

S5q2q(
k50

`

pku
k, u512q1q

(
k50

`

kpku
k21

(
k50

`

kpk

. ~23!

r,

e

ed
pe
6-12

r

.5
a
r
e

n
u

ue
fo
e
y

ur
on
vin
a

-
e
e

s-
a
ou
t

so
t

ite
lue
nd
ll
e

this
ing
s,
he
l-
e

the
for
the
of

he
g
size
om
ion

rl-
is
da-

m
s a

ed,
t
ea-

will

d

of
ter;

t
r

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
For the Internet, the degree distribution has been found to
power law in form@54#, though in practice the power law
must have some cutoff at finitek. Thus a reasonable form fo
the degree distribution is

pk5Ck2te2k/k for k>1. ~24!

The exponentt is found to take values between 2.1 and 2
depending on the epoch in which the measurement was m
and whether one looks at the network at the router level o
the coarser domain level. Vertices with degree zero are
cluded from the graph since a vertex with degree zero
necessarily not a functional part of the network.

We can generate a random graph ofN vertices with this
degree distribution inO(N) time using the prescription give
in Ref. @55# and then use our percolation algorithm to calc
late, for example, the size of the largest cluster for all val
of q. In Fig. 13 we show the results of such a calculation
N51 000 000 andt52.5 for three different values of th
cutoff parameterk, along with the exact solution derived b
numerical iteration of Eq.~23!. As the figure shows, the two
are in excellent agreement. The simulations for this fig
took about an hour in total. We would expect a simulati
performed using the standard depth-first search and gi
results of similar accuracy to take about a million times
long, or about a century.

A number of authors@18,56,57# have examined the resil
ience of networks to the selective removal of the vertic
with highest degree. This scenario can also be simulated
ficiently using our algorithm. The only modification nece
sary is that the vertices are now occupied in order of incre
ing degree, rather than in random order as in the previ
case. We note however that the average time taken to sor
vertices in order of increasing degree scales asO(N logN)
when using standard sorting algorithms such as quick
@31#, and hence this calculation is dominated by the time
perform the sort for largeN, making overall running time
O(N logN) rather thanO(N).

FIG. 13. Simulation results~points! for site percolation on ran-
dom graphs with degree distribution given by Eq.~24!, with t
52.5 and three different values ofk. The solid lines are the exac
solution of Callawayet al. @18#, Eq. ~23!, for the same paramete
values.
01670
be

de
at
x-
is

-
s
r

e

g
s

s
f-

s-
s

the

rt
o

IV. CONCLUSIONS

We have described in detail an algorithm for studying s
or bond percolation on any lattice that can calculate the va
of an observable quantity for all values of the site or bo
occupation probability from zero to one in time which, for a
practical purposes, scales linearly with lattice volume. W
have presented a time complexity analysis demonstrating
scaling, empirical results showing the scaling and compar
running time to other algorithms for percolation problem
and a description of the details of implementation of t
algorithm. A full working program is presented in the fo
lowing Appendix and is also available for download. W
have given three example applications for our algorithm:
measurement of the position of the percolation transition
site percolation on a square lattice, for which we derive
most accurate result yet for this quantity; the confirmation
the expected4

3 -power stretched exponential behavior in t
tails of the wrapping probability functions for percolatin
clusters on the square lattice; and the calculation of the
of the giant component for site percolation on a rand
graph, which confirms the recently published exact solut
for the same quantity.

ACKNOWLEDGMENTS

The authors would like to thank Cris Moore, Barak Pea
mutter, and Dietrich Stauffer for helpful comments. Th
work was supported in part by the National Science Foun
tion and Intel Corporation.

APPENDIX: PROGRAM

In this appendix we give a complete program inC for our
algorithm for site percolation on a square lattice ofN5L
3L sites with periodic boundary conditions. This progra
prints out the size of the largest cluster on the lattice a
function of number of occupied sitesn for values ofn from
1 to N. The entire program consists of 73 lines of code.

First we set up some constants and global variables.

#include,stdlib.h.
#include,stdio.h.
#define L 128 /* Linear dimension */
#define N~L*L !
#define EMPTY~2N21!
int ptr@N#; /* Array of pointers */
int nn@N#@4#; /* Nearest neighbors */
int order@N#; /* Occupation order */

Sites are indexed with a single signed integer label for spe
taking values from 0 toN21. Note that on computers tha
represent integers in 32 bits, this program can, for this r
son, only be used for lattices of up to 231.2 billion sites.
While this is adequate for most purposes, longer labels
be needed if you wish to study larger lattices.

The array ptr@ # serves triple duty: for nonroot occupie
sites it contains the label for the site’s parent in the tree~the
‘‘pointer’’ !; root sites are recognized by a negative value
ptr@ #, and that value is equal to minus the size of the clus
for unoccupied sites ptr@ # takes the value EMPTY.
6-13

b
o

b
to

ci-
pl
h

-
a
,

I
d

es
te

be

d-
ry,
cur-
the

ere
of
ht-

th

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
Next we set up the array nn@ #@ # that contains a list of the
nearest neighbors of each site. Only this array need
changed in order for the program to work with a lattice
different topology.

void boundaries~!
$

int i;
for ~i50; i,N; i11! $

nn@i#@0# 5 ~i11!%N;
nn@i#@1# 5 ~i1N21!%N;
nn@i#@2# 5 ~i1L!%N;
nn@i#@3# 5 ~i1N2L!%N;
if ~i%L550! nn@i#@1# 5 i1L21;
if „~i11!%L550… nn@i#@0# 5 i2L11;

%
%

Now we generate the random order in which the sites will
occupied, by randomly permuting the integers from 0
N21.

void permutation~ !
$

int i,j;
int temp;
for ~i50; i,N; i11! order@i# 5 i;
for ~i50; i,N; i11! $

j 5 i 1 ~N2i!*drand~ !;
temp5 order@i#;
order@i# 5 order@j#;
order@j# 5 temp;

%
%

Here the function drand~ ! generates a random double pre
sion floating point number between 0 and 1. Many peo
will have such a function already to hand. For those w
don’t, a suitable one is supplied with Ref.@39#.

We also define a function which performs the ‘‘find’’ op
eration, returning the label of the root site of a cluster,
well as path compression. The version we use is recursive
described in Sec. II D.

int findroot~int i!
$

if ~ptr@i#,0! return i;
return ptr@i# 5 findroot~ptr@i#!;

%

The code to perform the actual algorithm is quite brief.
works exactly as described in the text. Sites are occupie
the order specified by the array order@ #. The function find-
root~! is called to find the roots of each of the adjacent sit
If amalgamation is needed, it is performed in a weigh
fashion, smaller clusters being added to larger~bearing in
mind that the value of ptr@ # for the root nodes isminusthe
size of the corresponding cluster!.

void percolate~ !
$

int i,j;
int s1,s2;
int r1,r2;
01670
e
f

e

e
o

s
as

t
in

.
d

int big50;
for ~i50; i,N; i11! ptr@i# 5 EMPTY;
for ~i50; i,N; i11! $
r1 5 s1 5 order@i#;
ptr@s1# 5 21;
for ~j50; j,4; j11! $

s2 5 nn@s1#@j#;
if ~ptr@s2#!5EMPTY! $

r2 5 findroot~s2!;
if ~r2!5r1! $

if ~ptr@r1#.ptr@r2#! $
ptr@r2# 15 ptr@r1#;
ptr@r1# 5 r2;
r1 5 r2;

% else$
ptr@r1# 15 ptr@r2#;
ptr@r2# 5 r1;

%
if ~2ptr@r1#.big! big 5 2ptr@r1#;

%
%

%
printf~‘‘%̈ i %i\n’’,i 11,big!;

%
%

The main program is now simple:

main~ !
$

boundaries~ !;
permutation~ !;
percolate~ !;

%

A complete working version of this program can also
downloaded from the Internet@39#.

While our recursive implementation of the function fin
root~ ! is concise, some readers may find it unsatisfacto
either because they are using a compiler under which re
sive code runs slowly, or because they want to translate
program into another language, such asFORTRAN77, which
does not support recursion. For their benefit we give h
two alternative implementations of this function, neither
which makes use of recursion. The first of these is a straig
forward implementation combining the find operation wi
path compression, as before, but using an explicit stack.

#define STACKSIZE 100
int findroot~int i!
$

int r;
int sp50;
int stack@STACKSIZE#;
r 5 i;
while ~ptr@r#.50! $

stack@sp11# 5 r;
r 5 ptr@r#;

%
while ~sp! ptr†stack@22sp#‡ 5 r;
return r;

%

6-14

h
th
3

.
ch
s
’’

nt
nd
he
t
o

an

of

FAST MONTE CARLO ALGORITHM FOR SITE OR BOND . . . PHYSICAL REVIEW E64 016706
The stack used is small, having just 100 elements. T
should be more than sufficient in almost all cases, since
average distance traversed across the tree is only about

A more elegant way to implement findroot~ ! without re-
cursion is to modify the union/find algorithm itself slightly
There is, it turns out, another union/find algorithm whi
runs inO(N) time. In this algorithm the union operation is a
before, but the find operation now involves ‘‘path halving
instead of path compression. With path halving, each poi
along the path traversed is changed to point to its ‘‘gra
parent’’ in the tree, which effectively halves the length of t
path from a site to the root of the cluster each time findroo~!
is called. Tarjan@58# has shown that this find operation als
runs asymptotically in very nearly constant time, giving
c

ev

. J

D

ly
ut
in

us
oc

01670
is
e
.

er
-

algorithm that runs in linear time overall. Here is a version
the function findroot~ ! that implements path halving:

int findroot~int i!
$
int r,s;

r 5 s 5 i;
while ~ptr@r#.50! $

ptr@s# 5 ptr@r#;
s 5 r;
r 5 ptr@r#;

%
return r;

%

.

ys.

,

,

the

ng
tive

the
00

.

@1# D. Stauffer and A. Aharony,Introduction to Percolation
Theory, 2nd ed.~Taylor and Francis, London, 1992!.

@2# P. G. de Gennes and E. Guyon, J. Mec.3, 403 ~1978!.
@3# R. G. Larson, L. E. Scriven, and H. T. Davis, Chem. Eng. S

15, 57 ~1981!.
@4# M. Sahimi, J. Phys. I4, 1263~1994!.
@5# T. Odagaki and S. Toyofuku, J. Phys.: Condens. Matter10,

6447 ~1998!.
@6# J. Tobochnik, Phys. Rev. E60, 7137~1999!.
@7# S. de Bondt, L. Froyen, and A. Deruyttere, J. Mater. Sci.27,

1983 ~1992!.
@8# A. Bunde, S. Havlin, and M. Porto, Phys. Rev. Lett.74, 2714

~1995!.
@9# D. P. Bentz and E. J. Garboczi, Mater. Struct.25, 523 ~1992!.

@10# J. Machta, Phys. Rev. Lett.66, 169 ~1991!.
@11# K. Moon and S. M. Girvin, Phys. Rev. Lett.75, 1328~1995!.
@12# L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B31,

4725 ~1985!.
@13# C. L. Henley, Phys. Rev. Lett.71, 2741~1993!.
@14# K. A. With and T. O. Crist, Ecology76, 2446~1995!.
@15# M. E. J. Newman and D. J. Watts, Phys. Rev. E60, 7332

~1999!.
@16# C. Moore and M. E. J. Newman, Phys. Rev. E62, 7059

~2000!.
@17# R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. R

Lett. 85, 4626~2000!.
@18# D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D

Watts, Phys. Rev. Lett.85, 5468~2000!.
@19# T. S. Ray and N. Jan, Phys. Rev. Lett.72, 4045~1994!.
@20# S. Solomon, G. Weisbuch, L. de Arcangelis, N. Jan, and

Stauffer, Physica A277, 239 ~2000!.
@21# An algorithm does exist, for two-dimensional systems on

which will generate the hull of the spanning cluster witho
populating the rest of the lattice. If one is interested only
this cluster, then this algorithm is faster. In particular, beca
the system-spanning hull in two dimensions is known to
cupy a fraction of the lattice which scales asN7/8 at criticality,
the algorithm will run in timeO(N7/8) in the critical region.
See R. M. Ziff, P. T. Cummings, and G. Stell, J. Phys. A17,
3009 ~1984!.

@22# C.-K. Hu, Phys. Rev. B46, 6592~1992!.
i.

.

.

.

,

e
-

@23# H. Gould and J. Tobochnik,An Introduction to Computer
Simulation Methods, 2nd ed.~Addison-Wesley, Reading, MA,
1996!, p. 444.

@24# L. N. Shchur and O. A. Vasilyev, e-print cond-mat/0005448
@25# A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.61,

2635 ~1988!.
@26# A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Ph

Rev. E51, 5092~1995!.
@27# M. E. J. Newman and R. G. Palmer, J. Stat. Phys.97, 1011

~1999!.
@28# M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett.85, 4104

~2000!.
@29# C. Moukarzel, Int. J. Mod. Phys. C9, 887 ~1998!.
@30# J. E. de Freitas, L. S. Lucena, and S. Roux, Physica A266, 81

~1999!.
@31# R. Sedgewick,Algorithms, 2nd ed.~Addison-Wesley, Reading

MA, 1988!.
@32# D. E. Knuth,The Art of Computer Programming, Fundamental

Algorithms, Vol. 1, 3rd ed.~Addison-Wesley, Reading, MA,
1997!.

@33# B. A. Galler and M. J. Fischer, Commun. ACM7, 301~1964!.
@34# M. J. Fischer, inComplexity of Computer Calculations, edited

by R. E. Miller and J. W. Thatcher~Plenum Press, New York
1972!.

@35# R. E. Tarjan, Commun. ACM22, 215 ~1975!.
@36# W. Ackermann, Math. Ann.99, 118 ~1928!.
@37# We did not, as the reader may have guessed, actually run

depth-first search algorithm for 4.5 million seconds~about 2
months!, since this would have been wasteful of computi
resources. Instead, we ran the algorithm for 100 representa
values ofn, the number of occupied bonds, and scaled
resulting timing up to estimate the run-time for all 1 000 0
values.

@38# J. Hoshen and R. Kopelman, Phys. Rev. B14, 3438~1976!.
@39# http://www.santafe.edu/;mark/percolation/
@40# M. Z. Bazant, Phys. Rev. E62, 1660~1999!.
@41# J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. M

Chayes, Phys. Rev. E54, 1332~1996!.
@42# P. J. Reynolds, H. E. Stanley, and W. Klein, J. Phys. A11,

L199 ~1978!.
6-15

-
-

.

.

om-

int

o-

ia,

M. E. J. NEWMAN AND R. M. ZIFF PHYSICAL REVIEW E64 016706
@43# P. J. Reynolds, H. E. Stanley, and W. Klein, Phys. Rev. B21,
1223 ~1980!.

@44# R. M. Ziff, Phys. Rev. Lett.69, 2670~1992!.
@45# H. T. Pinson, J. Stat. Phys.75, 1167~1994!.
@46# R. M. Ziff, C. D. Lorenz, and P. Kleban, Physica A266, 17

~1999!.
@47# Sometimes~for example, in the symbolic manipulation pro

gramMATHEMATICA ! the h function is defined in complex ar
gument form. If we were to use this definition, theh functions
in the denominators of Eqs.~13! and~14! would becomeh(i).

@48# C. D. Lorenz and R. M. Ziff, J. Phys. A31, 8147~1998!.
@49# H. G. Ballesteros, L. A. Ferna´ndez, V. Martı´n-Mayor, A.

Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys
32, 1 ~1999!.

@50# L. Berlyand and J. Wehr, J. Phys. A28, 7127~1995!.
@51# J.-P. Hovi and A. Aharony, Phys. Rev. E53, 235 ~1996!.
01670
A

@52# M. E. Levinshtein, B. I. Shklovskii, M. S. Shur, and A. L
Efros, Zh. Éksp. Teor. Fiz.69, 386 ~1975! @Sov. Phys. JETP
42, 197 ~1976!#.

@53# F. Wester, Int. J. Mod. Phys. C11, 843 ~2000!.
@54# M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. C

mun. Rev.29, 251 ~1999!.
@55# M. E. J. Newman, S. H. Strogatz, and D. J. Watts, e-pr

cond-mat/0007235.
@56# R. Albert, H. Jeong, and A.-L. Baraba´si, Nature~London! 406,

378 ~2000!.
@57# A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajag

palan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw.33,
309 ~2000!.

@58# R. E. Tarjan,Data Structures and Network Algorithms~Soci-
ety for Industrial and Applied Mathematics, Philadelph
1983!.
6-16

