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Fast Monte Carlo algorithm for site or bond percolation
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We describe in detail an efficient algorithm for studying site or bond percolation on any lattice. The
algorithm can measure an observable quantity in a percolation system for all values of the site or bond
occupation probability from zero to one in an amount of time that scales linearly with the size of the system.
We demonstrate our algorithm by using it to investigate a number of issues in percolation theory, including the
position of the percolation transition for site percolation on the square lattice, the stretched exponential behav-
ior of spanning probabilities away from the critical point, and the size of the giant component for site perco-
lation on random graphs.
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[. INTRODUCTION the site percolation problem yet exists on the simplest two-
dimensional lattice, the square lattice, and no exact results
Percolation[1] is certainly one of the best studied prob- are known on any lattice in three dimensions or above. Be-
lems in statistical physics. Its statement is trivially simple: incause of these and many other gaps in our current under-
site percolation every site on a specified lattice is indepenstanding of percolation, numerical simulations have found
dently either “occupied,” with probabilityp, or not with  wide use in the field.
probability 1—p. The occupied sites form contiguous clus- Computer studies of percolation are simpler than most
ters that have some interesting properties. In particular, theimulations in statistical physics, since no Markov process or
system shows a continuous phase transition at a finite valuether importance sampling mechanism is needed to generate
of p which, on a regular lattice, is characterized by the for-states of the lattice with the correct probability distribution.
mation of a cluster large enough to span the entire systee can generate states simply by occupying each site or
from one side to the other in the limit of infinite system size.bond on an initially empty lattice with independent probabil-
We say such a system “percolates.” As the phase transitioity p. Typically, we then want to find all contiguous clusters
is approached from small valuesmfthe average cluster size of occupied sites or bonds, which can be done using a simple
diverges in a way reminiscent of the divergence of fluctua-depth- or breadth-first search. Once we have found all the
tions in the approach to a thermal continuous phase transélusters, we can easily calculate, for example, average cluster
tion, and indeed one can define correlation functions and aize, or look for a system spanning cluster. Both depth- and
correlation length in the obvious fashion for percolationbreadth-first searches take tin@(M) to find all clusters,
models, and hence measure critical exponents for the transivhereM is the number of bonds on the lattice. This is opti-
tion. mal, since one cannot check the status/aohdividual bonds
One can also consider bond percolation in which theor adjacent pairs of sites in any less th@gM) operations
bonds of the lattice are occupiédr not) with probabilityp  [21]. On a regular lattice, for whicM = 1zN, wherez is the
(or 1—p), and this system shows behavior qualitatively coordination number anl is the number of siteQ(M) is
similar to though different in some details from site percola-also equivalent t@(N).
tion. But now consider what happens if, as is often the case, we
Site and bond percolation have found a huge variety ofvant to calculate the values of some observable qua@tity
uses in many fields. Percolation models appeared originall{e.g., average cluster sizever a range of values @ Now
in studies of actual percolation in materifld—percolation ~we have to perform repeated simulations at many different
of fluids through rock, for examplg2—4]—but have since closely spaced values qf in the range of interest, which
been used in studies of many other systems, including granumakes the calculation much slower. Furthermore, if we want
lar materials[5,6], composite material§7], polymers[8], a continuous curve of(p) in the range of interest then in
concrete[9], aerogel and other porous medit0,11], and theory we have to measu€at an infinite number of values
many others. Percolation also finds uses outside physicef p. More practically, we can measure it at a finite number
where it has been employed to model resistor netwtRE of values and then interpolate between them, but this inevi-
forest fires[13] and other ecological disturbancelst], epi-  tably introduces some error into the results.
demics[ 15,16, robustness of the Internet and other networks The latter problem can be solved easily enough. The trick
[17,18, biological evolution[19], and social influenc€20], [22,23 is to measur&) for fixed numbers of occupied sites
amongst other things. It is one of the simplest and best untor bondg n in the range of interest. Let us refer to the
derstood examples of a phase transition in any system, arehsemble of states of a percolation system with exattly
yet there are many things about it that are still not known.occupied sites or bonds as a “microcanonical percolation
For example, despite decades of effort, no exact solution aénsemble,” the numben playing the role of the energy in
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thermal statistical mechanics. The more normal case ifn each state we measure our observable of int€egtving
which only the occupation probability is fixed is then the a set of measurement® ,}. Then our estimate of the value
“canonical ensemble” for the problenflf one imagines the of Q(p) is given by
occupied sites or bonds as representing particles instead, then

the two ensembles would be “canonical” and “grand ca-

-1
nonical,” respectively. Some authdrg4] have used this no- E P, B(N.n,.P)Q,

o

menclature. Taking site percolation as an example, the prob- Q(p)= , (©)
ability of there being exactly occupied sites on the lattice > P;lB(N,nM,p)

for a canonical percolation ensemble is given by the bino- w

mial distribution: . . . .
wheren , is the number of occupied sites or bonds in sjate

N In normal (canonical simulations of percolatior?,, is just
B(N,n,p)= n(1—p)N-n 1 equal to the binomial distributioB(N,n, ,p), which then
( P) (n)p (1P @ cancels out of Eq(3) to give Q(p)=(1/M)Z,Q, in the
usual fashion. In microcanonical simulatioRg is uniform
(The same expression applies for bond percolation, but witQVer values ofh, and Eq.(3) is equivalent to Eq(2). Sup-
measure our observable within the microcanonical ensembf@f states produced by a canonical simulation at a different
for all values ofn, giving a set of measuremen®,}, then ~ Valué po of the site or bond occupation probability. In this

the value in the canonical ensemble will be given by caseP,=B(N,n,,po), and Eq.(3) becomes

N N

N > [B(N,n,,,p)/B(N,n,,,po)]Q,,
Q(p)=2> B(N,n,p)Qy=2 ( )p“(l—p)N‘”Qn- -~
n=0 n=0\N Q(p)
2 2 B(N,n,,p)/B(N,n,,po)
o

Thus we need only measug, for all values ofn, of which 1 1 N
there areN+ 1, in order to findQ(p) for all p. Since filling > (p——l 5—1) Qu
the lattice takes timeD(N), and construction of clusters r 0 —. (4)

"

O(M), we take timeO(M +N) for each value ofn, and E (i—l)/ (E—l
O(N?+MN) for the entire calculation, or more simply = |\ Po p
O(N?) on a regular lattice. Similar considerations apply for
bond percolation. This equation tells us that if we perform a simulation or set
In fact, one frequently does not want to know the value ofof simulations at occupation probabilify,, and record the
Q(p) over the entire range®p=<1, but only in the critical valugs) of n, andQ, for each state generated, we can use
region, i.e., the region in which the correlation lengths  the results to estimai®(p) at any other value gb. In prac-
greater than the linear dimensianof the system. Ifé~|p  tice, the range over which we can reliably extrapolate away
—p.| 7" close top., wherewv is a (constank critical expo-  from pg using this method is limited by the range of values
nent, then the width of the critical region scaleslas"”. of n sampled; if the values af sampled afp, make negli-
Since the binomial distribution, Ed1), falls off very fast  gible contributions to the canonical ensemble of statgs at
away from its maximun{approximately as a Gaussian with then extrapolation will give poor results. Since the valogs
variance of ordeN™1), it is safe also only to calculat®, are drawn from a binomial distribution with width
within a region scaling ak ~*, and there are orddr®~**  \Npy(1—po), the entire range oh can be sampled with
values ofn in such a region, wheré is the dimensionality of O(N'?) separate simulations at different valuespgf Each
the lattice. Thus the calculation @f(p) in the critical region  simulation takes tim&(N) to complete, and hence it takes
will take time of orderNLY™Y*=N2""|n two dimen- time O(N®? to calculateQ(p) for all values ofp. If we are
sions, for exampley is known to take the valug, and so we only interested in the critical region, this time is reduced to
can calculate any observable quantity over the whole criticaD(N%2~ ") which is O(N%®) in two dimensions. These
region in timeO(N**9). times are considerably faster than those for the direct
An alternative technique for calculatin@(p) over a method, described above, of performing simulations for all
range of values op is to use a histogram methodThis  values ofn, but this speed is offset by the fact that the his-
should not be confused with the method of 2], which is  togram method gives larger statistical errors on measured
also referred to as a “histogram method,” but which is dif- quantities than the direct meth$26,27).
ferent from the method described here. Our histogram In this paper we describe an algorithm that can perform
method is the equivalent for a percolation model of thethe calculation ofQ(p) for all values ofp faster than any of
method of Ferrenberg and Swendg$es] for thermal mod- the algorithms above, in tim®(N). This is clearly far su-
els) Suppose that one performs a numb&iof simulations  perior to theO(N?) direct algorithm while having compa-
of a percolation system, each one generating a single gtate rable accuracy in terms of statistical error. It is also substan-
of the system drawn from some probability distributip. tially faster than thed(N*? histogram method while having
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significantly better statistical accuracy. And even in the case
where we only want to calculat® in the critical region, our
algorithm is still faster doing all values of, than previous
algorithms doing only those in the critical regid8ecause

of the way it works, our algorithm cannot be used to calcu-
late Q,, only for the critical region; one is obliged to calcu-
late O(N) values ofQ,.) A typical lattice size for percola-
tion systems is about a million sites. On such a lattice our
algorithm would be on the order of a million times faster kG 1. Two examples of bondlotted lines being added to
than the simpleD(N?) method and a thousand times faster hond-percolation configuration&) The added bond joins two clus-

than the histogram method, and even just within the criticaters together(b) The added bond does nothing, since the two joined
region it would still be around six times faster than the his-sites were already members of the same cluster.

togram method in two dimensions, while giving substantially

better statistical accuracy. It is straightforward to convince oneself that all permuta-

The outline of this paper is as follows. In Sec. Il We tjons of the bonds are generated by this procedure with equal
describe our algorithm. In Sec. Ill we give results from theprgpapility, in timeO(M), i.e., going linearly with the num-
application of the algorithm to three different example prob-per of bonds on the lattice.

some of the results given here previously in Reg]. them in that order. The first bond added will, clearly, join
together two of our single-site clusters to form a cluster of
Il. THE ALGORITHM two sites, as will, almost certainly, the second and third.

However, not all bonds added will join together two clusters,

Our algorithm is based on a very simple idea. In the stansince some bonds will join pairs of sites that are already part
dard algorithms for percolation, one must create an entiref the same cluster—see Fig. 1. Thus, in order to correctly
new state of the lattice for every different value mfone  keep track of the cluster configuration of the lattice, we must
wants to investigate, and construct the clusters for that statelo the following two things for each bond added.
As various authors have pointed out, howe\#2,23,29,30) Find: when a bond is added to the lattice we must find
if we want to generate states for each valua &éom zero up  which clusters the sites at either end belong to.
to some maximum value, then we can save ourselves some Union: if the two sites belong to different clusters, those
effort by noticing that a correct sample state withr 1 oc-  clusters must be amalgamated into a single cluster; other-
cupied sites or bonds is given by adding one extra randomlyise, if the two belong to the same cluster, we need do
chosen site or bond to a correct sample state wiglites or  nothing.
bonds. In other words, we can create an entire set of correct Algorithms that achieve these steps are known as “union/
percolation states by adding sites or bonds one by one to théhd” algorithms [31,32. Union/find algorithms are widely
lattice, starting with an empty lattice. used in data structures, in calculations on graphs and trees,

Furthermore, the configuration of clusters on the latticeand in compilers. They have been extensively studied in
changes little when only a single site or bond is added, seomputer science, and we can make profitable use of a num-
that, with a little ingenuity, one can calculate the new clus-ber of results from the computer science literature to imple-
ters from the old with only a small amount of computationalment our percolation algorithm simply and efficiently.
effort. This is the idea at the heart of our algorithm. It is worth noting that measured values for lattice quanti-

Let us consider the case of bond percolation first, forties such as, say, average cluster size, are not statistically
which our algorithm is slightly simpler. We start with a lat- independent in our method, since the configuration of the
tice in which allM bonds are unoccupied, so that each of thelattice changes at only one site from one step of the algo-
N sites is its own cluster with just one element. As bonds argithm to the next. This contrasts with the standard algo-
added to the lattice, these clusters will be joined together intgithms, in which a complete new configuration is generated
larger ones. The first step in our algorithm is to decide arfor every value ofn or p investigated, and hence all data
order in which the bonds will be occupied. We wish to points are statistically independent. While this is in some
choose this order uniformly at random from all possible suchrespects a disadvantage of our method, it turns out that in
orders, i.e., we wish to choose a random permutation of thenost cases of interest it is not a problem, since almost al-

bonds. One way of achieving this is the following. ways one is concerned only with statistical independence of
(1) Create a list of all the bonds in any convenient orderthe results from oneun to another. This our algorithm

Positions in this list are numbered from 1 b clearly has, which means that an error estimate on the results
(2) Seti—1. made by calculating the variance over many runs will be a
(3) Choose a numbgruniformly at random in the range correct error estimate, even though the errors on the observed

iI<jsM. quantity for successive values ofor p will not be indepen-
(4) Exchange the bonds in positionandj. (If i=j then  dent.

nothing happens. In the next two sections we apply a number of different
(5) Seti—i+1. and increasingly efficient union/find algorithms to the perco-
(6) Repeat from step 3 unti=M. lation problem, culminating with a beautifully simple and
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FIG. 2. Number of relabelings of sites performed, per bond FIG. 3. Total number of relabelings of sites performed in a
added, as a function of fraction of occupied bonds, for the twosingle run as a function of system size for the two algorithms
algorithms described in Sec. II A, on a square lattice 0k32  (circles and squargf Sec. Il A. Each data point is an average
sites. over 1000 runs; error bars are much smaller than the points them-

selves. The solid lines are straight-line fits to the rightmost five
almost linear algorithm associated with the names ofoints in each case.

Michael Fischer and Robert Tarjan. . . )
belings in the region of the known percolation transition at

bond occupation probabilitp.= 3.

In Fig. 3 (circles we show the average total number of

Perhaps the simplest union/find algorithm that we can emrelabelings that are carried out during the entire run of the
ploy for our percolation problem is the following. We add a algorithm on square lattices &f=L X L sites as a function
label to each site of our lattice—an integer for example—of N. Given that, as the number of relabelings becomes large,
which tells us to which cluster that site belongs. Initially, all the time taken to relabel will be the dominant factor in the
such labels are differeite.g., they could be set equal to their speed of this algorithm, this graph gives an indication of the
site labe). Now the “find” portion of the algorithm is expected scaling of run time with system size. As we can
simple—we examine the labels of the sites at each end of agee, the results lie approximately on a straight line on the
added bond to see if they are the same. If they are not, thengarithmic scales used in the plot and a fit to this line gives
the sites belong to different clusters, which must be amala run time that scales dd“, with «=1.91+0.01. This is
gamated into one as a result of the addition of this bond. Thslightly better than th€©(N?) behavior of the standard algo-
amalgamation, the “union” portion of the algorithm, is more rithms, and in practice can make a significant difference to
involved. To amalgamate two clusters we have to choose oneinning time on large lattices. With a little ingenuity how-
of them—in the simplest case we just choose one aever, we can do a lot better.
random—and set the cluster labels of all sites in that cluster The algorithm’s efficiency can be improved considerably
equal to the cluster label of the other cluster. by one minor modification: we maintain a separate list of the

In the initial stages of the algorithm, when most bonds aresizes of the clusters, indexed by their cluster label, and when
unoccupied, this amalgamation step will be quick andtwo clusters are amalgamated, instead of relabeling one of
simple; most bonds added will amalgamate clusters, but ththem at random, we look up their sizes in this list and then
clusters will be small and only a few sites will have to be relabel the smaller of the two. This “weighted union” strat-
relabeled. In the late stages of the algorithm, when mosegy ensures that we carry out the minimum possible number
bonds are occupied, all or most sites will belong to theof relabelings, and in particular avoids repeated relabelings
system-size percolating cluster, and hence cluster unions witif the large percolating cluster when we are above the per-
rarely be needed, and again the algorithm is quick. Only ircolation transition, which is a costly operation. The average
the intermediate regime, close to the percolation point, willnumber of relabelings performed in this algorithm as a func-
any significant amount of work be required. In this region,tion of number of occupied bonds is shown as the dotted line
there will in general be many large clusters, and much relain Fig. 2, and it is clear that this change in the algorithm has
beling may have to be performed when two clusters aresaved us a great deal of work. In Fig.(&juareswe show
amalgamated. Thus, the algorithm displays a form of criticathe total number of relabelings as a function of system size,
slowing down as it passes through the critical region. Weand again performance is clearly much better. The run time
illustrate this in Fig. ZAsolid line), where we show the num- of the algorithm now appears to scale d$ with «=1.06
ber of site relabelings taking place, as a function of fraction+0.01. In fact, we can prove that the worst-case running
of occupied bonds, for bond percolation on a square lattice ofime goes adN logN, a form which frequently manifests it-
32X 32 sites. The results are averaged over a million runs o$elf as an apparent power law with exponent slightly above
the algorithm, and show a clear peak in the number of relal. To see this, consider that with weighted union the size of

A. Trivial (but possibly quite efficiend union/find algorithms
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will have to be traversed across the tree to reach the root site
from other sites.

There are many varieties of tree-based union/find algo-
rithms, which differ from one another in the details of how
the trees are updated as the algorithm progresses. However,
the best known performance for any such algorithm is for a
very simple one—the “weighted union/find with path

FIG. 4. An example of the tree structure described in the textcompreSSIon —which was first proposed by Fischer

here representing two clusters. The shaded sites are the root sit(a%l’_gz’gz}‘ Its d(_escrlptlon Is brief. .

and the arrows represent pointers. When a bond is atetted F_md: In_the flnd.part of the glg_orlth_m, trees are traversed
line in centey that joins sites that belong to different clustére., (O find their root sites. If two initial sites lead to the same

whose pointers lead to different root sitethe two clusters must be 00t then they belong to the same cluster. In addition, after
amalgamated by making oneft) a subtree of the othefright). the traversal is completed, all pointers along the path tra-
This is achieved by adding a new pointer from the root of one tree/€rsed are changed to point directly to the root of their tree.
to the root of the other. This is called “path compression.” Path compression makes

traversal faster the next time we perform a find operation on

the cluster to which a site belongs must at least double everdY Of the same sites. .

time that site is relabeled. The maximum number of such Union In the union part of the algorithm, two clusters are
doublings is limited by the size of the lattice to jdg, and amalgamated by adding a pointer from the root of one to the
hence the maximum number of relabelings of a site has thE°t Of the other, thus making one a subtree of the other. We
same limit. An upper bound on the total number of relabel-d0 this in a “weighted” fashion a? |nhSec. LA, m(ta)anmg tfhart]
ings performed for alN sites during the course of the algo- W& @lways make the smaller of the two a subtree of the
rithm is thereforeN log, N. (A similar argument applied to larger. In order to do this, we kee_p arecord at the root site of
the unweighted relabeling algorithm implies tHet is an each tree of the number of sites in the corresponding cluster.
upper bound on the running time of this algorithm. The mea /€N two clusters are amalgamated the size of the new com-

sured exponent 1.91 indicates either that the experiments WPSIte clusteris the sum of the sizes of the two from which it

have performed have not reached the asymptotic scaling rdlas formed.

gime, or else that the worst-case running time is not realized Thus our complete percolation algorithm can be summa-

for the particular case of union of percolation clusters on a{'zed as TOHOWS' _ . . . .
square lattics. (2) Initially all sites are clusters in their own right. Each is

An algorithm whose running time scales@éN logN) is its own root site, and contains a record of its own size, which

a huge advance over the standard methods. However, it tur 1.

out that, by making use of some known techniques and re- (2) Bonds are occupieq 'in random order on the lattice.
sults from computer science, we can make our algorithm (3) Each bond added joins together wo sites. We follow

better still while at the same time actually making it simpler. pointe_rs from each of these sit_es separately until we re_ach the
This delightful development is described in the next section/ 90t Sites of the clusters to which they belong. R(.)Ot sites are
identified by the fact that they do not possess pointers to any
other sites. Then we go back along the paths we followed

through each tree and adjust all pointers along those paths to

Almost all modern union/find algorithms make use of datapoint directly to the corresponding root sites.

B. Tree-based uniorffind algorithms

trees to store the sets of obje(is this case clusteyshat are (4) If the two root sites are the same site, we need do
to be searched. The idea of using a tree in this way seems twthing further.
have been suggested first by Galler and Fis¢B&f. Each (5) If the two root sites are different, we examine the

cluster is stored as a separate tree, with each vertex of tteuster sizes stored in them, and add a pointer from the root
tree being a separate site in the cluster. Each cluster hasad the smaller cluster to the root of the larger, thereby mak-
single “root” site, which is the root of the corresponding ing the smaller tree a subtree of the larger one. If the two are
tree, and all other sites possess pointers either to that root sitke same size, we may choose whichever tree we like to be
or to another site in the cluster, such that by following athe subtree of the other. We also update the size of the larger
succession of such pointers we can get from any site to theluster by adding the size of the smaller one to it.
root. By traversing trees in this way, it is simple to ascertain These steps are repeated until all bonds on the lattice have
whether two sites are members of the same cluster: if theipeen occupied. At each step during the run, the tree struc-
pointers lead to the same root site then they are, otherwisres on the lattice correctly describe all of the clusters of
they are not. This scheme is illustrated for the case of bongbined sites, allowing us to evaluate observable guantities of
percolation on the square lattice in Fig. 4. interest. For example, if we are interested in the size of the
The union operation is also simple for clusters stored agargest cluster on the lattice as a function of the number of
trees: two clusters can be amalgamated simply by adding eccupied bonds, we simply keep track of the largest cluster
pointer from the root of one to any site in the ottiEigy. 4). size we have seen during the course of the algorithm.
Normally, one chooses the new pointer to point to the root of Although this algorithm may seem more involved than the
the other cluster, since this reduces the average distance thatabeling algorithm of Sec. Il A, it turns out that its imple-
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mentation is actually simpler, for two reasons. First, there is 10° ¢
no relabeling of sites, which eliminates the need for the code :
portion that tracks down all the sites belonging to a cluster
and updates them. Second, the only difficult parts of the
algorithm, the tree traversal and path compression, can, it
turns out, be accomplished together by a single function
which, by artful use of recursion, can be coded in only three
lines (two in C). The implementation of the algorithm is

100 3
discussed in detail in Sec. Il D and in the Appendix. i ]

number of steps taken across trees

C. Performance of the algorithm

Without either weighting or path compression each step el el
of the algorithm above is known to take time linear in the 10 10 10 10
tree size[34], while with either weighting or path compres- size of system N
sion alone it takes logarithmic tin&4,35. When both are _
used together, however, each step takes an amount of time FIG. 5. Total number of steps taken through trees during a

which is very nearlyconstant, in a sense that we now ex- smglg run of the our algorithm as a fgngtlon of system size. Each
plain point is averaged over 1000 runs. Statistical errors are much smaller

. . . than the data points. The solid line is a straight-line fit to the last
Th_e worst-case performan_ce of the weighted union/fin ive points, ang gives a slope of 1.086.011. g
algorithm with path compression has been analyzed by Tar-
jan[35] in the general case in which one starts witindi-
vidual single-element sets and performs al-1 unions Lo .
(each one reducing the number of sets by 1 froaown to then a(m,n)fsa(n,n)$z. Settingz=3 and making use of
1), and any numbem=n of intermediate finds. The finds are Eq. (5), we find that

performed on any sequence of items, and the unions may be 2

performed in any order. Our case is more restricted. We al- A(3,4)=22 165536 twos. ®
ways perform exactly B finds, and only certain unions and ) ) ) i

certain finds may be performed. For example, we only eve;],—h's number is ludicrously large. For example, with only the
perform finds on pairs of sites that are adjacent on the latticdi"St S out of the 65536 twos, we have

And unions can only be performed on clusters that are adja- 22

cent to one another along at least one bond. However, it is 22" =2.0x10 "8 (7)

clear that the worst-case performance of the algorithm in thg

maximized by settingn=n, in which case if logn<A(z,4)

most general case also provides a bound on the performan @'S numper Is far, far larger than the ”“”T'bef of atoms in the

of the algorithm in any more restricted case, and hence Tar10Wn universe. Indeed, a generous estimate of the number

jan’s result applies to our algorithm. of Planck O\éolumt_as_ in th_e universe would put it at only
Tarjan’s analysis is long and complicated. However, the2round 167 So it is entllrely. safe; o say.that log W'”_

end result is moderately straightforward. The union part of'€Ver €xceed\(3,4), bearing in mind that in our case is

the algorithm clearly takes constant time. The find part take§9u@l 1 N, the number of sites on the lattice. Hence

time that scales as the number of steps taken to traverse tg&M.n) <3 for all practical values o andn and certainly

tree to its root. Tarjan showed that the average number der all lattices that fit within our universe. Thus the average
steps is bounded above kyr(m,n), wherek is an unknown number of steps needed to traverse the tree is at least one and

constant and the functiom(m,n) is the smallest integer at most X, wherek is an unknown constant. The value lof

value ofz greater than or equal to 1, such thez,4m/n]) 'S found experimentally to be of order one. R
>log,n. The functionA(i,j) in this expression is a slight What does th|s mean for our percola}tlon algprlthm. It
variant on Ackermann’s functiof86] defined by means that the time taken by both the union and find steps is

O(1) in the system size, and hence that each bond added to
A(0,))=2j forall j, the lattice takes tim®(1). Thus it takes timeéD(M) to add
S . all M bonds, while maintaining an up-to-date list of the clus-
A(i,00=0 for i=1, . . : :
ters at all times(To be precise the time to add 8 bonds is
A(i,1)=2 for i=1, bounded above b®(M a(2M,N)), wherea(2M,N) is not
AGLD=AG—1AG,]—1)) for i=1, j=2. (5 ©xpected to exceed 3 this side of kingdom come.
In Fig. 5 we show the actual total number of steps taken
in traversing trees during the entire course of a run of the
This function is a monstrously quickly growing function of algorithm averaged over several runs for each data point, as
its arguments—faster than any multiple exponential—whicha function of system size. A straight-line fit to the data shows
means thatv(m,n), which is roughly speaking the functional that the algorithm runs in time proportional N, with o
inverse ofA(i,j), is a very slowly growing function of its =1.006+0.011.(In actual fact, if one measures the perfor-
arguments. So slowly growing, in fact, that for all practical mance of the algorithm in real “wallclock” time, it will on
purposes it is a constant. In particular, note th@m,n) is  most computergcirca 2001 not be precisely linear in sys-
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TABLE I. Time in seconds for a single run of each of the of the algorithm itself is quite simple, taking only a few lines
algorithms discussed in this paper, for bond percolation on a squargf code. In this section, we make a few points about the
lattice of 1000< 1000 sites. algorithm’s implementation, which may be helpful to those
wishing to make use of it.

Algorithm Time in seconds First, we note that the “find” operation in which a tree is
Depth-first search 4 500 000 traversed to find its root and the path compression can be
Unweighted relabeling 16 000 conveniently performed together using a recursive function
Weighted relabeling 4.2 that in pseudocode would look like
Tree-based algorithm 2.9 function find (i: integen: integer

if ptr[i] < O return i
ptr[i] : = find (ptdfi])
tem size because of the increasing incidence of cache misses return pitfi]

as N becomes large. This however is a hardware failing, end function

rather than a problem with the algorithm.

We illustrate the comparative superiority of performanceThiS function takes an integer argument, which is the label of
of our algorithm in Table | with actual timing results for it @ site, and returns the label of the root site of the cluster to
and the three other algorithms described in this paper, fowhich that site belongs. The pointers are stored in an array
square lattices of 10001000 sites, a typical size for numeri- ptr, which is negative for all root nodes and contains the
cal studies of percolation. All programs were compiled usingabel of the site pointed to otherwise. A version of this func-
the same compiler and run on the same computer. As th&on in C is included in the Appendix. A nonrecursive imple-
table shows, our algorithm, in addition to being the simplesimentation of the function is of course possikés is the case
to program, is also easily the fastest. In particular we find itwith all uses of recursionand we give two such implemen-
to be about X 10° times faster than the simple depth-first tations in the appendix for those who prefer this approach.
search[37], and about 50% faster than the best of our relaHowever, both are somewhat more complicated than the re-
beling algorithms, the weighted relabeling of Sec. Il A. For cursive version, and with the benefit of a modern optimizing
larger systems the difference will be greater still. compiler are found to offer little speed advantage.

Site percolation can be handled by only a very slight = The program given in the Appendix measures the largest
modification of the algorithm. In this case, sites are occupieg|ster size as a function of number of occupied sites. Above
in random order on the lattice, and each site occupied ighe hercolation transition in the limit of large system size this
declared to be a new cluster of size 1. Then one adds, one antity is equal to the size of the giant component, and it

one, aII' bonds b.etwe'en this site .and the opcup|ed sites, o has interesting scaling properties below the transition
any, adjacent to it, using the algorithm described above. Th 40]. However, there a many other quantities one might want

same performance arguments apply: generation of a permy- : : : ;
tation of the sites takes tin@(N), and the adding of all the 0 measure using our algo_n_thm. D0|_ng so usually mvol_ves
bonds takes im®(M), and hence the entire algorithm takes keeping track of some additional variables as the algorithm
time O(M+N). On a regular lattice, for whictM =3zN, runs. Here are three exgmples.
where z is the coordination number, this is equivalent to (& Average cluster sizdn order to measure the average
O(N). number of sites per cluster in site percolation it is sufficient

It is worth also mentioning the memory requirements oft0 keep track of only the total numberof clusters on the
our algorithm. In its simplest form, the algorithm requires 1attice. Then the average cluster size is givemby, where
two arrays of size\ for its operation; one is used to store the N is the number of occupied sites. To keep trackcofve
order in which sites will be occupietfor bond percolation ~Simply set it equal to zero initially, increase it by 1 every
this array is sizéM), and one to store the pointers and clustertime a site is occupied, and decrease it by 1 every time we
sizes. The standard depth-first search also requires two arrap§rform a union operation. Similarly, for averages weighted
of size N (a cluster label array and a stacks does the DY cluster size one can keep track of higher moments of the
weighted relabeling algorithna label array and a list of Ccluster-size distribution.
cluster sizes Thus all the algorithms are competitive in  (b) Cluster spanningin many calculations one would like
terms of memory us€The well-known Hoshen—Kopelman to detect the onset of percolation in the system as sites or
algorithm[38], which is a variation on depth-first search and bonds are occupied. One way of doing this is to look for a
runs inO(N2In N) time, has significantly lower memory re- cluster of occupied sites or bonds that spans the lattice from
quirements, of ordeN'~ Y, which makes it useful for stud- One side to the other. Taking the example of site percolation,
ies of particu'ar'y |arge low-dimensional Systebns_ one can test for such a cluster by Starting the lattice in the
configuration shown in Fig. 6 in which there are occupied
sites along two edges of the lattice and no periodic boundary
conditions.(Notice that the lattice is not square ngwhen

In the Appendix we give a complete computer programone proceeds to occupy the remaining sites of the lattice one
for our algorithm for site percolation on the square latticeby one in our standard fashion. At any point, one can check
written in c. The program is also available for download on for spanning simply by performing “find” operations on
the Interne{39]. As the reader will see, the implementation each of the two initial clusters, starting, for example, at the

D. Implementation
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FIG. 7. Method for detecting cluster wrapping on periodic
. ) . . boundary conditions. When a bond is addedl which joins to-

FIG' _6' Initial coqflguratlon of occupiedgray) ar_1d empty ether two sites that belong to the same cluster, it is possible, as
(white) sites for checking for the presence of a spanning cluster. "ﬁere that it causes the cluster to wrap around the lattice. To detect
this example there are no periodic boundary conditions on the Iatt'his ,the displacements to the root site of the clugshaded are
:'ﬁe'm’l'/\s thte empti S;es .ﬁrﬁ flllectihup durlnglthte courie '(t)f Te rgnt:alcuIated(arrows). If the difference between these displacements

el 'fothS| €s markea wi ?V? € S?r:nel CttF‘S errootsite irand s ot equal to a single lattice spacing, then wrapping has taken
only i there 1S a spanning cluster on the latlice. place. Conversely if the bon() is added, the displacements to the

sites markedx . If these two clusters have the same root siterOOt site would differ by only a single lattice spacing, indicating that
then spanning has occurred. Otherwise it has not. wrapping has not taken place.

(c) Cluster wrapping An alternative criterion for percola- hich ca ¢ t d Th b
tion is to use periodic boundary conditions and look for aWb'II't th stetr:).nimus ggneraelzat n?r\]/v rfan t(_)mfone. _edpro )
cluster that wraps all the way around the lattice. This condi 2Py that this happens 1S equal 1o the Iractjpot occupie

tion is somewhat more difficult to detect than simple Span_snes(bonds), and hence the average number of attempts we

ning, but with a little ingenuity it can be done, and the extraMyst make before we find an empty site is ]:f(;l). The
effort is, for some purposes, worthwhile. An example is intOtal number of attempts made before we repgfis there-
the measurement of the positipp of the percolation transi- fore

tion. As discussed in Sec. Il A, estimatesmf made using f

; S ) e pe dp
a cluster wrapping condition display significantly smaller —
finite-size errors than estimates made using cluster spanning o1l-p
on open systems. .
A clever method for detecting cluster wrapping has beerf” —M In(1—pc) for bond percolation. Ifp.=0.5, for ex-
employed by Machtat al.[41] in simulations of Potts mod- amPple, this means we will have to generatén 2=0.69N
els, and can be adapted to the case of percolation in random numbers during the course of the run, rather than the
straightforward manner. We describe the method for bond We would have had to generate to make a complete per-
percolation, although it is easily applied to site percolationmutation of the sites. Thus it should be quicker not to gen-
also. We add to each site two integer variables givingxthe €rate the complete permutation. Only orebecomes large
andy displacements from that site to the site’s parent in the2nough that-In(1—p.)=1 does it start to become profitable
appropriate tree. When we traverse the tree, we sum thed@ calculate the entire permutation, i.e., whpg=1—1/e
displacements along the path traversed to find the total dis=0-632. If one were to use a random selection scheme for
placement to the root sitéWe also update all displacements calculations over the whole range<sp<1, then the algo-
along the path when we carry out the path compressionfithm would take time
When an added bond connects together two sites that are
determined to belong to the same cluster, we compare the le_”Nﬂ:N InN 9)
total displacements to the root site for those two sites. If 0 1-p
these displacements differ by just one lattice spacing, then
cluster wrapping has not occurred. If they differ by any otherto find and occupy all empty sites, which means overall op-
amount, it has. This method is illustrated in Fig. 7. eration would beéD(N In N) not O(N), so generating the per-
It is worth noting also that, if one’s object is only to detect mutation is crucial in this case to ensure that running time is
the onset of percolation, then one can halt the algorithm a®(N).
soon as percolation is detected. There is no need to fill in any One further slightly tricky point in the implementation of
more sites or bonds once the percolation point is reacheaur scheme is the performance of the convolution @y of
This typically saves about 50% on the run time of the algo-the results of the algorithm with the binomial distribution.
rithm, the critical occupation probability, being of the or-  Since the number of sites or bonds on the lattice can easily
der of one half. A further small performance improvementbe a million or more, direct evaluation of the binomial coef-
can often be achieved in this case by noting that it is ndicients using factorials is not possible. And for high-
longer necessary to generate a complete permutation of thgecision studies, such as the calculations presented in Sec.
sites(bonds before starting the algorithm. In many cases itlll, a Gaussian approximation to the binomial is not suffi-
is sufficient simply to choose sitedbonds one by one at ciently accurate. Instead, therefore, we recommend the fol-
random as the algorithm progresses. Sometimes in doing thiswing method of evaluation. The binomial distribution Eq.
one will choose a sit¢bond which is already occupied, in (1) has its largest value for giveN and p when n=n

==NIn(1-p,), ®
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=pN. We arbitrarily set this value to IWe will fix it in a
moment) Now we calculateB(N,n,p) iteratively for all

0.'.
:0.
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, "'N-n p (10) FIG. 8. Two topologically distinct ways in which a percolation

cluster can wrap around both axes of a two-dimensional periodic

Then we calculate the normalization coefficierg  'attice.

=3>,B(N,n,p) and divide all theB(N,n,p) by it, to cor- ) - i . ) A (b) ;
rectly normalize the distribution. “single spiral” configuration, are illustrated in Fig. & is

defined to include both of these and all other possible ways
of wrapping around both axes.
(4) RV is the probaibility that a cluster exists which wraps
In this section we consider a number of applications ofaround one specified axis but not the other axis. As with
our algorithm to open problems in percolation theory. SomeR(Lh), it does not matter, for the square systems studied here,
results given here have appeared previously in R&é&.and  which axis we specify.
[28]. They are gathered here to give an idea of the types of These four wrapping probabilities satisfy the equalities
problems for which our algorithm is an appropriate tool.

Ill. APPLICATIONS

R®=RM+RM—RP =2RrMW R (12)

A Measurer-nent <-)f the posn-lon of the percolation transition B R(Ll): R(Lh)_ R(Lb): R(Le)_ R(Lh): %(R(LE) _ R(Lb))’ (12)
Our algorithm is well suited to the measurement of criti-

cal properties of percolation systems, such as position of theo that only two of them are independent. They also satisfy

percolation transition and critical exponents. Our first ex-the inequalitieR{¥ <RM<R(® andRM<R{M

ample application is the calculation of the positipnof the Each run of our algorithm on the XL square system

percolation threshold for site percolation on the square latgives one estimate of each of these functions for the com-

tice, a quantity for which we currently have no exact resultplete range ofp. It is a crude estimate however: since an
There are a large number of possible methods for detefappropriate wrapping cluster either exists or does not for all

mining the position of the percolation threshold numericallyyalues ofp, the correspondin®, (p) in the microcanonical

on a regular lattic¢42—-44, different methods being appro- ensemble is simply a step function, except Rﬁl), which

priate with different algorithms. As discussed in RE28],  has two steps, one up and one down. All four functions can

our algorithm makes possible the use of a particularly attracye calculated in the microcanonical ensemble by finding the

tive method based on lattice wrapping probabilities, whichy mpersn™™ andn® of occupied sites at which clusters first

has substantially smaller finite-size scaling corrections tha’éppear thcat wrapc horizontally and verticallfThis means

methods employed previously. o , that, as discussed in Sec. Il D, the algorithm can be halted
We defineR, (p) to be the probability that for site occu- 4nce wrapping in both directions has occurred, which for the

pation probabilityp there exists a contiguous cluster of oc- square lattice gives a saving of about 40% in the amount of

cupied sites that wraps completely around a square lattice ¢tpyj time used.

LXL sites with pgrio@ic boundary conditions. .As in Sec. Our estimates of the four functions are improved by av-

II D, cluster wrapping is here taken to be an estimator of thyraging over many runs of the algorithm, and the results are

presence or absence of percolation on the infinite latticeen convolved with the binomial distribution E@) to give

T_here are a varlet_y_of p955|ble ways in whm_h cluster WraPsmooth curves oR, (p) in the canonical ensembléAlter-

ping can occur, giving rise to a variety of different defini- atively one can perform the convolution first and average

tions forBL. o _ over runs second; both are linear operations, so order is not
(1) R{" andR{") are the probabilities that there exists a jmportant. However, the convolution is quite a lengthy com-

cluster that wraps around the boundary conditions in thgytation, so it is sensible to choose the order that requires it

horizontal and vertical directions, respectively. Clearly forig pe performed only onck.

square systems these two are equal. In the rest of this paper | Fig. 9 we show results from calculations & (p)

we refer only tOR(Lh) : using our algorithm for the four different definitions, for sys-
(2) R® is the probability that there exists a cluster thattems of a variety of sizes, in the vicinity of the percolation

wraps around either the horizontal or vertical directions, otransition.

both. The reason for our interest in the wrapping probabilities is
3 R(Lb) is the probability that there exists a cluster thatthat their values can be calculated exactly. Exact expressions

wraps around both horizontal and vertical directions. Noticecan be deduced from the work of Pinsp#b] and written

that there are many topologically distinct ways in which thisdirectly in terms of the Jacobd function ¥5(q) and the

can occur. Two of them, the “cross” configuration and the Dedekind » function 7(q). Pinson calculated the probabil-
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FIG. 9. Plots of the cluster wrapping probability functions
R (p) for L=32, 64, 128, and 256 in the region of the percolation
transition for percolatioria) along a specified axigh) along either
axis, (c) along both axes, an@l) along one axis but not the other.
Note that(d) has a vertical scale different from the other frames. _,,

occupation probability p

The dotted lines denote the expected valuep oindR..(p;)-
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FIG. 10. Convergence with increasing system siz&dfp.) to
its known value at. = for R{® (circles andR{" (squaresunder
(a) site percolation andb) bond percolation. Filled symbols in
panel (a) are exact enumeration results for system sites
... 6. Thedotted lines show the expected slope if, as we con-
jecture,R_(p.) converges a& ~2 with increasingL. The data for
R(Le) in panel(b) have been displaced upwards by a factor of two for

ity, which he denotedm(ZXxZ), of the occurrence on a cjarity.
square lattice of a wrapping cluster with the “cross” topol-
ogy shown in the left panel of Fig. 8. By duality, our prob- we must havep— p. asL—, and hence this solution is an

ability R'®(p,) is just 1-m(ZxZ), since if there is no estimator forp, . Furthermore, it is a very good estimator, as
wrapping around either axis, then there must necessarily bevae now demonstrate.
cross configuration on the dual lattice. This yield§,47|

R (p,)

:1—

The probabilityR®)(p,) for wrapping around exactly one
axis is equal to the quantity denoted(1,0) by Pinson,

which for a square lattice can be written as

RM(pe)=

B 3733(8_677) + 193(9_27T/3) —4193(9_87T/3)

The remaining two probabilitieR™ and R® can now be
calculated from Eq(11). To ten figures, the resulting values

for all four are

Ve[ n(e"2™)]?

1(}3( e 377/8) 1(}3( e 877/3) _ ,&3( e 377/2) 'ﬂg( e 277/3)
2 n(e*M)] '

13

(14

R"(p,)=0.521 058290, R®(p,)=0.690473 725,

R®(p.)=0.351642855, RY(p,)=0.169415435.

If we calculate the solutiop of the equation

RL(P)=R.(pc),

(19

(16)

In Fig. 10, we show numerical results for the finite-size
convergence oR| (p.) to theL =« values for both site and
bond percolation(For site percolation we used the current
best-known value fop. from Ref.[28].) Note that the ex-
pected statistical error oR_(p.) is known analytically to
good accuracy, since each run of the algorithm gives an in-
dependent estimate & which is either 1 or 0 depending on
whether or not wrapping has occurred in the appropriate
fashion when a fractiomp. of the sites are occupied. Thus
our estimate of the mean @t (p.) over n runs is drawn

from a simple binomial distribution that has standard devia-
tion

R.(PJ[1—R.(p.
UR:\/ L(p)[n L(Po)] an

L

If we approximateR, (p.) by the known value oR..(p.),
then we can evaluate this expression for any

As the figure shows, the finite-size correctionsRjo de-
cay approximately a& ~2 with increasing system size. For
example, fits to the data fdR(™) (for which our numerical
results are cleanestive slopes of-1.95(17)(site percola-
tion) and —2.003(5) (bond percolation On the basis of
these results we conjecture thRt(p;) converges to itd
= value exactly ag. ~2.

At the same time, the width of the critical region is de-
creasing as ~ ", so that the gradient @, (p) in the critical
region goes a& . Thus our estimate of the critical occu-

pation probability from Eq(16) converges t@q. according
to
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I 0.59274621(13) for R, 0.59274636(14) for
] R®  0.59274606(15) foR®, and 0.592 746 29(20) for
0320 0.50278 R The first of these is the best, and is indeed the most
accurate current estimate pf for site percolation on the
square lattice. This calculation involved the simulation of
. more than K 10° separate samples, about half of which
0.59276 were for systems of size 128128.
: The wrapping probabilityR(?) is of particular interest,
because one does not in fact need to know its value for the
infinite system in order to use it to estimgte. Since this
R T s function is nonmonotonic it may intercept its=« value at
000000  0.00002 0.00004 0.00006  0.00008 two different values op, but its maximum must negessarlly
i converge top, at least as fast as either of these intercepts.
And the position of the maximum can be determined without
FIG. 11. Finite size scaling of estimates foron square lattices knowledge of the value oRfﬁl)(pC). In fact, in the calcula-
of LXL sites using measured probabilities of cluster wrappingtion shown in Fig. 11, we used the maximum Rf" to
along one axigcircles, either axis(squarey both axes(upward- estimatep, and not the intercept, since in this CE&%) was

pointing triangle, and one axis but not the othédownward- gy jower thanR™ for all p, so that there were no inter-
pointing triangles Inset: results of a similar calculation for cubic cepts

lattices ofL X L X L sites using the probabilities of cluster wrapping . . (1) .
along one axis but not the other twaircles, and two axes but not The criterion of a maximum ifR;”’ can be used to find

0.002 0.004

0.59274

L

the other ondsquares the percolation threshold in oth_gr_ systems for which exact
results for the wrapping probabilities are not known. As an
P po~L 2= ~11/4 (18) example, we show in the inset of Fig. 11 a finite-size scaling

Cc - I

calculation ofp, for three-dimensional percolation on the

where the last equality makes use of the known valee: qubic Iat'tice(vx{ith periodic boundary conditions in qll direc-
for percolation on the square lattice. This convergence igo_ns)_usmg this measure. Here the_r_e a(rle) tWO. possible gener-
substantially better than that for any other known estimato@!izations of our wrapping probability?;™’(p) is the prob-
of p.. The best previously known convergence wasp,  ability that V\érapplng occurs anng one axis and not the other
~L~1"Y for certain estimates based upon crossing probtwo, and R®(p) is the probability that wrapping occurs
abilities in open systems, while many other estimates, inak_)ng two axes and not the third. We have calculated both in
cluding the renormalization-group estimate, converge adlis case. _
p—pe~L Y [44]. It implies that we should be able to de-  Although neither the exact value of nor the expected
rive accurate results fqu, from simulations on quite small Scaling of this estimate o is known for the three-
lattices. Indeed we expect that statistical error will over-dimensional case, we can estimateby varying the scaling
whelm the finite-size corrections at quite small system sizeseXponent until an approximately straight line is produced.
making larger lattices not only unnecessary, but also essed-his procedure reveals that our estimat@&cales approxi-
tially worthless. mately asL ~2 in three dimensions, and we derive estimates

Statistical errors for the calculation are estimated in conof p.=0.3097(3) and 0.3105(2) for the position of the tran-
ventional fashion. From Eq17) we know that the error on Sition. Combining these results we estimate that
the mean ofR (p) over n runs of the algorithm goes as =0.3101(10), which is in reasonable agreement with the
n~2 independent of, which implies that our estimate of bestknown result for this quantity of 0.311 60@4) [48,49.
p. carries an error Tp, scaling according to Tp, (Only a short run was performe(_j to optam our result; be_tter
~n~ 2L~ \jith each run taking tim©(N)=0(LY), the results could presumably be derived with greater expenditure

total time T~nL* taken for the calculation is related tq,_ of CPU time)

according to B. Scaling of the wrapping probability functions

Ld2=1v | 14 It has been proposeldb0,5] that below the percolation
Op.~ == (19 transition the probability of finding a cluster which spans the
system, or wraps around it in the case of periodic boundary
where the last equality holds in two dimensions. Thus inCOI’ldItIOhS, should scale according to
order to make the statistical errors on systems of different R, (p)~exp —L/&). (20)
size the same, we should spend an amount of time that scales
asT ~L9 2" on systems of siz&, or T_~L in two di- The probability of wrapping around the system is equal to
mensions. the trace of the product of the transfer matrices for lthe

In Fig. 11 we show the results of a finite-size scalingrows of the system. With periodic boundary conditions, the
calculation of this type fop.. The four different definitions transfer matrices are equal for all rows, and the wrapping
of R, give four (nonindependent estimates of p;: probability is thus a simple sum of tHeth powers of the
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C. Percolation on random graphs

For our last example, we demonstrate the use of our al-
gorithm on a system that is not built upon a regular lattice.
The calculations of this section are instead performed on
random graphs, i.e., collections of sitéw vertices with

log(-log(R,))
T

.
’

I D random bondgor edge$ between them.

-4 - 8 -7 -6 -5

ot - Percolation can be considered a simple model for the ro-
Og\p. =P

bustness of networkd7,18. In a communications network,
messages are routed from source to destination by passing
them from one vertex to another through the network. In the
simplest approximation, the network between a given source
AL N N and destination is functional so long as a single path exists
0.001 0.002 0.003 0.004 from source to destination, and non-functional otherwise. In
.- real communications networks such as the Internet, a signifi-
cant fraction of the vertice§outers in the case of the Inter-
FIG. 12. Demonstration of the stretched exponential behaviorney are nonfunctional at all times, and yet the majority of the
Eg. (21), in simulation results for 10241024 square systems. The network continues to function because there are many pos-
results are averaged over 1000000 runs of the algorithm. Theible paths from each source to each destination, and it is rare
curves are foftop to bottom »=1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. that all such paths are simultaneously interrupted. The ques-
Inset: the same data replotted logarithmically to show the stretchefion therefore arises: what fraction of vertices must be non-
exponential behavior. The dotted line indicates the expected slopgnctional before communications are substantially dis-
of 5. rupted? This question may be rephrased as a site percolation
problem in which occupied vertices represent functional
eigenvalues\; of the individual transfer matrices® (p)  routers and unoccupied vertices nonfunctional ones. So long
ZEN'- For largeL, this sum is dominated by the largest as there _is a giant Componen_t of connected occupied ver_tices
eigenvalue Ao and R, (p)=A5=explLIn\y). Comparing (the equivalent of a percolating cluster on a regular lattice
with Eg. (20), we conclude that the leading constant in Eq.then long-range communication will be possible on the net-

(20) must tend to unity ak becomes large, and thus work. Below the percolation transition, where the giant com-
ponent disappears, the network will fragment into discon-

nected clusters. Thus the percolation transition represents the
R (p)=exp(—L/&)=exd —cL(p;—p)"], (22 point at which the network as a whole becomes nonfunc-
tional, and the size of the giant component, if there is one,
represents the fraction of the network that can communicate
wherec is another constant. In other words, as a function Ofeffectively.
Pc— P, the wrapping probability should follow a stretched  Both the position of the phase transition and the size of
exponential with exponent and a leading constant of 1. the giant component have been calculated exactly by Calla-
This contrasts with previous conjectures tHat(p) has way et al.[18] for random graphs with arbitrary degree dis-
Gaussian tail$1,52,53. tributions. The degrek of a vertex in a network is the num-
The behavior(21) is only seen when the correlation per of other vertices to which it is connected.pif is the
length is substantially smaller than the system dimension, biirobability that a vertex has degrkendq is the occupation

also greater than the lattice spacing, i.es<d<L. This  probability for vertices, then the percolation transition takes
means that in order to observe it clearly we need to performyjace at

simulations on reasonably large systems. In Fig. 12 we show

log R,"(p)

0.000

results for site percolation on square lattices of 202824 ”

sites, with InR_ plotted against§.—p)” for various values kZO kpk

of v, to look for straight-line behavior. Interpretation of the 0c=—= , (22)
results is a little difficult, since one must discount curvature S kk—1)

close to the origin wherg=L. However, the best straight &0 Pk

line seems to occur in the region o=1.4+0.1, in agree-

ment with the expected= 3, while strongly ruling out the

Gaussian behavior. and the fractiorss of the graph filled by the giant component
A better demonstration of this result is shown in the insets the solution of

of the figure. Here we plot [r-In(R)] as a function of

In(p.—p), which, since the leading constant in EQ1) is

equal to unity, should give a straight line with slopén the E KoUK L
regime where & ¢é<L. This behavior is clearly visible in * P Pt

the figure. Note that this kind of plot is only valid for peri- S=q-q>, pu, u=1-gq+q—s (23
odic boundary conditions, since the leading constant in Eq. k=0 S kp

(20) is not in general equal to 1 in other cases. =
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IV. CONCLUSIONS

We have described in detail an algorithm for studying site
or bond percolation on any lattice that can calculate the value
of an observable quantity for all values of the site or bond
occupation probability from zero to one in time which, for all
practical purposes, scales linearly with lattice volume. We
have presented a time complexity analysis demonstrating this
scaling, empirical results showing the scaling and comparing
running time to other algorithms for percolation problems,
and a description of the details of implementation of the
algorithm. A full working program is presented in the fol-
lowing Appendix and is also available for download. We
have given three example applications for our algorithm: the
measurement of the position of the percolation transition for
site percolation on a square lattice, for which we derive the

03 |

02 |

size of giant component S

o1 |

0.0 0.2

0.4

0.6

fraction of occupied sites g

FIG. 13. Simulation result§ointg for site percolation on ran-
dom graphs with degree distribution given by E@4), with 7
=2.5 and three different values af The solid lines are the exact

most accurate result yet for this quantity; the confirmation of
the expected;-power stretched exponential behavior in the
tails of the wrapping probability functions for percolating

solution of Callawayet al. [18], Eq. (23), for the same parameter
values.

clusters on the square lattice; and the calculation of the size
of the giant component for site percolation on a random

graph, which confirms the recently published exact solution
For the Internet, the degree distribution has been found to bgyr the same quantity.

power law in form[54], though in practice the power law
must have some cutoff at finite Thus a reasonable form for ACKNOWLEDGMENTS
the degree distribution is
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The exponentr is found to take values between 2.1 and 2.5tion and Intel Corporation.
depending on the epoch in which the measurement was made
and whether one looks at the network at the router level or at
the coarser domain level. Vertices with degree zero are ex- . ) . .
cluded from the graph since a vertex with degree zero is N this appendix we give a complete progranciffor our
necessarily not a functional part of the network. algorithm for site percolation on a square lattice Nf L

We can generate a random graphNofzertices with this XL sites with periodic boundary conditions. This program
degree distribution i®(N) time using the prescription given Prints out the size of the largest cluster on the lattice as a
in Ref.[55] and then use our percolation algorithm to calcu-function of number of occupied sitesfor values ofn from
late, for example, the size of the largest cluster for all valued 0 N. The entire program consists of 73 lines of code.
of g. In Fig. 13 we show the results of such a calculation for ~ First we set up some constants and global variables.
N=1 000000 andr=2.5 fc_)r three different _values_of the #include <stdlib.h>
cutoff parametek, along with the exact solution derived by 4include <stdio.h>
numgncal iteration of Eq(23). As the_ f|gurg shows, the two #define L 128 /* Linear dimension */
are in excellent agreement. The simulations for this figure 4jeafine N(L*L )
took about an hour in total. We Woulq expect a S|mula§|qn #define EMPTY(—N—1)
performed using the standard depth-first search and giving

p=Ck e ¥« for k=1. (24)

APPENDIX: PROGRAM

- e int ptr{NJ; [* Array of pointers */
results of similar accuracy to take about a million times as ;. nnNJ[4]:  /* Nearest neighbors */
long, or about a century. int ordefN];  /* Occupation order */

A number of author$18,56,57 have examined the resil-
ience of networks to the selective removal of the verticesSites are indexed with a single signed integer label for speed,
with highest degree. This scenario can also be simulated efaking values from 0 tdN—1. Note that on computers that
ficiently using our algorithm. The only modification neces- represent integers in 32 bits, this program can, for this rea-
sary is that the vertices are now occupied in order of increasson, only be used for lattices of up td'22 billion sites.
ing degree, rather than in random order as in the previousvhile this is adequate for most purposes, longer labels will
case. We note however that the average time taken to sort the needed if you wish to study larger lattices.
vertices in order of increasing degree scalesO#bl log N) The array pfr] serves triple duty: for nonroot occupied
when using standard sorting algorithms such as quicksorites it contains the label for the site’s parent in the fthe
[31], and hence this calculation is dominated by the time td‘pointer” ); root sites are recognized by a negative value of
perform the sort for largeN, making overall running time ptrf ], and that value is equal to minus the size of the cluster;
O(NlogN) rather thanO(N). for unoccupied sites ftf takes the value EMPTY.
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Next we set up the array hif ] that contains a list of the
nearest neighbors of each site. Only this array need be
changed in order for the program to work with a lattice of

PHYSICAL REVIEW E64 016706

int big=0;
for (i=0; i<N; i++) pti] = EMPTY;
for (i=0; i<N; i++) {

different topology.
void boundarie§

{
int i;
for (i=0; i<N;i++){
nni][0] = (i+1)%N;
nni][1] = (i+N—1)%N;
nni][2] = (i+L)%N;
n(i][3] = (i+N—L)%N;
if (i%L==0) nn(i][1] =i+L—-1;
if (I+1)%L==0) nni][0] = i—L+1;
¥
}

Now we generate the random order in which the sites will be
occupied, by randomly permuting the integers from 0 to

N—1.
void permutatiof))

int ij;
int temp;
for (i=0; i<N; i++) ordefi] = i;
for (i=0; i<N;i++){
j =1+ (N=i)*drand);
temp = ordefi];
ordefi] = ordefj];
ordefj] = temp;
}
1

Here the function drarid generates a random double preci-

rl = s1 = ordefi];

ptsl] = —1;
for (j=0; j<4; j++) {
s2 = nn(s1][j];

if (pt{s2!=EMPTY) {
r2 = findroot(s2);
if (r2!'=r1) {
if (ptiri]>ptdr2)) {
ptr2] += ptrl];
ptrl] = r2;
rl =r2;
1 else{
ptrl] += ptr2];
pt{r2] = ri;

}
if (—pt{rl]>big) big = —ptrrl];

}
}
printf(“%i %i\n”,i +1,big);
}
¥

The main program is now simple:
main( )
{

boundarie6);
permutation );
percolaté¢ );

sion floating point number between 0 and 1. Many peopléA complete working version of this program can also be
will have such a function already to hand. For those whodownloaded from the Interng89].

don't, a suitable one is supplied with R¢89].

While our recursive implementation of the function find-

We also define a function which performs the “find” op- root() is concise, some readers may find it unsatisfactory,
eration, returning the label of the root site of a cluster, aither because they are using a compiler under which recur-
well as path compression. The version we use is recursive, &ve code runs slowly, or because they want to translate the

described in Sec. Il D.
int findroof(int i)

{
if (pti]<O0) return i;
return ptfi] = findroot(ptri]);

The code to perform the actual algorithm is quite brief. It
works exactly as described in the text. Sites are occupied in {

the order specified by the array orfiér The function find-

root() is called to find the roots of each of the adjacent sites.
If amalgamation is needed, it is performed in a weighted

fashion, smaller clusters being added to lar¢egaring in
mind that the value of pftr] for the root nodes isninusthe
size of the corresponding cluster

void percolaté)
int i,j;
int s1,s2;
int rl,r2;

program into another language, suchrRARTRAN77 which
does not support recursion. For their benefit we give here
two alternative implementations of this function, neither of
which makes use of recursion. The first of these is a straight-
forward implementation combining the find operation with
path compression, as before, but using an explicit stack.

#define STACKSIZE 100
int findroot(int i)

intr;
int sp=0;
int stackSTACKSIZE];
r=i
while (ptr{r]>=0) {
stacksp++] =r;
r = ptr];

}
while (sp) ptr[stack——sp[] = r;
return r;

}
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The stack used is small, having just 100 elements. Thiglgorithm that runs in linear time overall. Here is a version of

should be more than sufficient in almost all cases, since th
average distance traversed across the tree is only about 3.
A more elegant way to implement findr@gtwithout re-
cursion is to modify the union/find algorithm itself slightly.
There is, it turns out, another union/find algorithm which
runs inO(N) time. In this algorithm the union operation is as
before, but the find operation now involves “path halving”

instead of path compression. With path halving, each pointer
along the path traversed is changed to point to its “grand-

parent” in the tree, which effectively halves the length of the
path from a site to the root of the cluster each time findpoot

is called. Tarjar{58] has shown that this find operation also
runs asymptotically in very nearly constant time, giving an

the function findrodt) that implements path halving:

int findroot(int i)
{
intr,s;
r=s=i
while (ptr{r]>=0) {
ptrfs] = ptrr];

S=1;

r = ptr];
}
return r,

}
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