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Vertical density matrix algorithm: A higher-dimensional numerical renormalization scheme based
on the tensor product state ansatz
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We present a new algorithm to calculate the thermodynamic quantities of three-dimeit3@nelassical
statistical systems, based on the ideas of the tensor product state and the density matrix renormalization group.
We represent the maximum-eigenvalue eigenstate of the transfer matrix as the product of local tensors that are
iteratively optimized by the use of the “vertical density matrix” formed by cutting the system along the
transfer direction. This algorithm, which we cakrtical density matrix algorithnfVDMA ), is successfully
applied to the 3D Ising model. Using the Suzuki-Trotter transformation, we can also apply the VDMA to 2D
guantum systems, which we demonstrate for the 2D transverse field Ising model.
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[. INTRODUCTION given in the present paper for 3D classical systems is more
like the original DMRG. The local tensor is updated by the
Since the density matrix renormalization grol@®MRG)  “block-spin basis transformation” along the vertical direc-

method was invented by Whitgl], the method has been tion. Since this transformation is constructed in terms of the
applied to various problems in one-dimensiofD) quan- ~ density matrix made along the “vertical directioritransfer
tum Systems and 2D classical systdmb Such a great suc- dire.Ction of the translfer matr)xWe call this algorithm the
cess of the DMRG has been stimulating us to extend th¥ertical density matrix algorithm(VDMA). We apply the
algorithm to the one that can handle higher-dimensional sysY PMA to the 3D Ising model and discuss its efficiency. We
tems, principally 2D quantum systems and 3D classical Sys:;_1Iso report the appllt_:atlon of the VDMA to_the 2D transverse
tems[3—6]. f|eld_ Ising model, with help of the Suzuki-Trotter transfor-
We should recall that, in the DMRG, the matrix-productmat'o.n[13]' . . .
structure of the wave function of the target stdtesually the Th!s paper is organized as f.OHOWS'. In Sec. I, we briefly
: . . . explain the VDMA for 3D classical spin systems taking the
ground state or the maximum-eigenvalue eigenstates- 3D Ising model as an example. In Sec. Ill we show the
sential[7]. From this point of view, the tensor-product state numerical result for the 3D Isiné model énd the 2D trans-
(TPS, which is a natural higher-dimensional generalization, o e field Ising model. The last section is devoted to the
of the matrix product state, should play a key role in the.,nclusion.
“higher-dimensional DMRG.” A simple but nontrivial ex-
ample of the TPS is the ground state of 2D valence-bond-
solid (VBS)-type quantum spin systems, where the wave Il. METHOD
function is expressed as a product of local finite-dimensional Let us consider the 3D Ising model on the simple cubic
tensors with all the tensor indices being contradi@d As lattice of the sizeNx Nx 2L in X, Y, andZ directions. Sup-
for 3D classical statistical systems, the maximum—eigenvalu%Ose thal_ andN are sufficiently large and the neighboring
eigenstate of the layer-to-layer transfer matrix of the 3D Claslsing spins ¢ and o' have ferromagnetic interaction

sical system can exactly be represented as the TPS, if We 3.,/ Then the Boltzmann weight for the unit cube is
allow the tensor dimension to be infinite. We should noteitten as
that we can reduce the calculation of the expectation value of
the TPS to a statistical average in a lower-dimensional clas-

sical system; a [D+1)-dimensional classical (or gij Oy O O

D-dimensional quantuin problem reduces to a w o o o o =ex —E(Uijﬁi'j”LUi'jUi'j’

D-dimensional classical statistical probld®)]. In fact, the CEEE g

properties of the 2D VBS model have been studied in terms oo OO OO

of a 2D vertex model associated with the TPS wave function IR R

[9,10] +0-i’jo-i’j'+0-i'j’0-ij/
When developing the TPS formulation, the most impor- o - .

tant step is the determinatidoptimization of the local ten- + i oij+ 00+ 0o

sor in the TPS. In Refd11,12, direct variational formula-
tions are employed for the optimization of the local tensors.
As compared with these “direct” methods, our algorithm

Y

+0—i’j’0-i’j’+0-ij’a-ij’)
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FIG. 1. (&) The Boltzmann weight of a unit cell an@) the
transfer matrixT[Q|Q] (N=4).

wherei’=i+1,j'=j+1, andK=J/T. The locations of the
spin variables are shown in Fig(a.

For the book keeping, let us introduce here some nota-
tions for spin variables. Write the configuration of the four

spins surrounding a plaquette in they plane as

O-ij:(a-ija-i’ja-i’j’o-ij’)v (2

where the position of the plaquette can be labeled by th
index ij. Then the Boltzmann weight is simply written as

W( 7). Also for a spin layer in th&XY plane, we denote the
i

configuration of theNX N spins as
011 T1N
(o= + & 3
ON1 ONN

Using these notations, the transfer maffikom a layer{ )]
to the next layef (1] is written as
7
vl ”

O-ij

Trol01= [

i+j=even
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FIG. 2. The graphical representation of the vedipyr). Below
theij plaquette, we find that thle unit cubes are piling up.

|/max, Using the TPS representation of the eigenvector. In
order to analyze the TPS structure|gf,.,, let us consider
the power method briefly, which is the simplest but powerful
technique to calculate ,, and | ¥a0- Define the vector

ly) as
[ ) =T o), 5)

where | ) is an “initial” vector that is not orthogonal to
| #max- Then the maximum-eigenvalue eigenvedioy,,,) is
obtained as

|(ﬂmaX>=COHS[>< lim |¢L> (6)

L—oo

In Fig. 2, we show the graphical representation #f),
where we can see the structure|gf) more clearly. As is
seen in this figure, the unit cubes are piling vertically up to
the surface, and then the product of the vertically arranged
Boltzmann weights can be regarded as a local tensor; we
define the local tensok, at theij plaquette as

A UiLj =W ‘Th w UiLjil w ailj (7)
Ve My Mot Mg
where a'f‘ is the spin configuration at thé plaquette
on the “surface layer,” and the auxiliary variablgh
=(ofof0f-- 0o ") denotes the configuration for the
spins under the surface. Using the local tensors defined

above,|¢ ) is represented as a TPS,

lpo=2> I AL@) 8)

[ i+j=even

In the product of Eq(4), the spin variables are shared by thewhere we assume that details |afp,) can be ignored for
adjacent cubes in the diagonal direction and thus the Boltzsufficiently largeL. Taking the limitL—occ, we obtain the

mann weights form the checkerboard pattern inXheplane

[see Fig. 1b)].
Our goal is to evaluate the maximum eigenvalyg,, of

maximum-eigenvalue eigenvectl,,, Which is now rep-
resented as the product of the local ten&gr.
From the practical view point of the usual power method,

the transfer matrixT and the corresponding eigenvector the eigenvector is improved with the relationy, . 1)

016705-2
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FIG. 3. The vertical density matrig, (o &nl o) -

=T|y) iteratively. In the framework of the TPS, this power

method is reformulated as the recursion relation for the local

tensor,

L+1 L

| w3

with which we can carry out the iterative calculation, until
A, gives a good approximation &f,,. However it is gener-
ally difficult to store the tensoA, in the computer memory
for a sufficiently largel. because the number of statesghf,
which is denoted aM in the following, diverges exponen-
tially asL increases.

In order to restrict the number of the auxiliary variable,
we now import the idea of the DMRG into the TPH. The

;i

- (Th+l
G| =W g (©)
ij i
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whereX' denotes the configuration sum for the all spin vari-
ables exceptry,, &, o, and&y . II’ means the product
for the site (,j) except (,j)=(k,I) and K’,I")=(k—1]
—1). In Eqg. (11), we have also used the notation for the
“checked spins”:

.

Further, we have omitted the dshipejscriptL as it is ap-
parent.

For the case of the isotropic 3D Ising model, the vertical
density matrixpy, is independent of the site inddot in the
thermodynamic limit. Thus we write,, simply asp here.
Moreover it should be noted that, for the isotropic case, the

local tensorsA and A satisfies the relation

Following the spirit of the DMRG, we diagonalize to
have the eigenvaluesy; in the decreasing ordew;=w,=
< =Wy (=0),

!
Tk

&

( (Tk//| n

équ n

Tymn

AL
&

gy

Eir

ayn|

&

i

O'ij

i

O'irj

77irj/

O'irjr

7ij

O'ij

O'i]' O'i]'r a-i’j’ a-i’j

n My Mg Mgl
(12

2 plo'€|log)U(aEH=U(0" &' [Dwg, (19
where U(c¢[€) is the eigenvector forw;. By taking

U(cg[é) withZEel, ... M, we construct the projection op-
eratorU, which is a M XM rectangular matrix. Operating
U on the spin variables on each “edge” &f we then make

essence of the DMRG is that the increased number of statee renormalized local tenseéy,

for gL“ can be reduced, by using the “projection operator”

generated from the “density matrix.” In the present case, the

appropriate density matrix should be constructed for the spi
variables ¢; ,&;) in the vertical directior(we thus call this
density matrix “the vertical density matriX[14]. Introduc-
ing the “transposed” local tensor,

R
o \ey) e )

the explicit form of the vertical density matrix is defined as

(see Fig. 3,
LA

A
Ao

L
O'ij

O'ij

&j

!

pr(oéalowéa) =
[o].[&.[ 7]

Il//

k”l "

"nn
gk |

|

XA

k//| n

Oy

gkl

X

>

11

T T T oo
n A(__”)E 2 W i’j i’ i )
g” aij & gij  Ojrj OTjrjr Ojjr
gij  Ojrj Ojrjr COjjr )
XA Uo & (&)
gij §i'j gi’j’ 5”, ij |]| ij
XU(U"Jgi’i|~§i’i)u(0i'j'fi'j'réirj/)
XU (aij & (&) (14)

Using Egs.(9) and(14) recursively, we can now calculate

the effective local tensdk.. . However we encounter another
problem in this process; it is also a numerically heavy prob-
lem to compute the vertical density matrix with E@.1),
where a huge memory space to store the spin variables is
required in carrying out the summation.

Let us next explain how to overcome the difficulty in
calculating the vertical density matrix. The key idea is that
we can consider Eq11) as a configuration sum for a kind of
2D classical spin system with a point defect. To see it, we
define here a new tensor

016705-3
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G — A ¢ M=2;m=12 J, )
o0 ¢ omin B ]
+  M=2;m=16 Y
A M=3;m=16 -
X M=4;m=16 H ]
---------- wvcv approximation ;:ég i
FIG. 4. The effective Boltzmann weigi@. Y E—
T
i 7 o FIG. 5. The spontaneous magnetization of the 3D Ising model.
G| o | =A A , (15
oij) | &
§i i 0ij
Al =W . (18
which is graphically represented in Fig. 4. 7ij 7ij
; ; ; ; 2
Reggrdlng t_he spin variables along thexis as a M For the Ferro boundary condition, defiAg as
state single spin,
. Tij Tij o
7ij Al =W [ XW w1l (19
Sij=| i |, (16) ! N
&ij where (+1) means that the four Ising spins are aligned up-
ward.
we can see thab(s;) = G(s;;s;Sij'Sij) becomes the Bolt- (b) Define the effective Boltzmann weight of the 2D clas-

zmann weight for the 2D effective classical model. Then thesical spin system with Eq15).

vertical density matrixo can be expressed as the density (c) Perform the CTMRG calculation for the 2D effective
matrix for the spin variables at the center of the 2D classicatlassical spin system with the Boltzmann weighiand ob-
model, tain the vertical density matrig.

(d) Diagonalizep and construct the projection operatdr
/ G(Sj)} (e) Renormalize the local tensérwith Eq. (14).

(f) Return to(b) until the local tensoA is converged.
. In this VDMA calculation, the accuracy is determined by
X G(5¢17) G(S1) (170 the number of retained basis for the auxiliary variables:

and », and m for the CTMRG calculation in 2D classical

where the meaning of the prime at the summation and th%ystem. We can check the convergence of the computed
product is the same as E@L1), and the “checked spin” is quantities with respect tb andm.

!

pulopénlonéan) = 2
[o].[&.[m

i+j=even

given by
Yo IIl. RESULTS
ék,,l,,: &k”w A. The 3D Ising model
& Figure 5 shows the spontaneous magnetizgtioncalcu-
kHlH

lated by using the VDMA. For comparison we also show the
results of the 3D version of the Kramers-Wannier approxi-
mation [11] and Talapov and Ble's Monte Carlo results

[16]. After 20-50 iterations both in the vertical and horizon-

We calculate each component of the vertical density ma
trix (17) as a partition function of the 2D classical system

with the point defect that consists of the four fixed spiris, tal directions, we have successfully reached the fixed point

&+ O, andgy sitting at the center of the system. To thiS ¢, o2 v andm. We find good convergence with respect to

end we apply the corner transfer matrix renormalization__ .
e g - -~ min the whole temperature range and observe that the con-
group(CTMRG) [15], which is quite efficient for 2D classi- vergence with respect td is also sufficient in the off-critical

cal statistical systems. Particularly we note that the CTMRGPegion. Near the critical point, however, the magnetization

works well for a problgm with a point defect. becomes smaller a4 is increased, implying that largd is
Thus we have obtained a closed algorithm to calculate thﬁeeded for the calculation in the critical region

local tensorA with Egs. (9) and (14), assisted by the
CTMRG for the 2D effective classical model. We summarize
the numerical procedure as follows.

(a) For the free-boundary condition in th& direction, Let us next consider the VDMA for the 2D transverse
define the initial local tensoh; as field Ising (TFI) model on the square lattice, which is one of

B. The 2D transverse field Ising model
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the fundamental quantum spin models in 2D. The Hamil- ' '
tonian of the 2D TFI model is given by 0.55

H=—J<izj> afaf—rZ ol (20)

<0>

0.5

where J(>0) is the ferromagnetic coupling constart;
(a=Xx, y, orz) are the Pauli matrices, afd,j) denotes the 0.45
nearest-neighbor pairs on the square lattice. The transverse Tt
field I' induces the quantum fluctuation into the system. At 0.01 .02
zero temperature, the TFI model exhibits the quantum phase e
transition atl’=T"., below which the spontaneous magneti-
zation{ o) behaves ago)~ (I';—TI')?. The critical fieldT", FIG. 6. The extrapolation of the magnetizationlat 3.0. The
and the critical exponenfs have been estimated ds.  solid lines are linear fits of data.
=3.06 andB=0.31 by the quantum Monte Carl@MC)
simulation[17]. In the following we consider the VDMA for
the 2D TFI model at zero temperature and show the resulté
of (o).

As was described in the previous section, the VDMA is
formulated for the 3D classical systems. In order to apply the< 0 hl
VDMA to the 2D TFI model, we map the model to the 3D ) converges to O smoothly.
anisotropic Ising model by using the Suzuki-Trotter transfor- In Fig. 7, we show th¢o)-1" curve and the results of the

mation[13]. The partition functiorZ of the 2D TFI model is  Sefiés expansion for comparisdi9]. For I'<2.6, the
obtained as the limit of the 3D anisotropic Ising model, VDMA results are sulfficiently reliable, where the number of

the VDMA iterations is of the order of 10 in both Trotter and
) - L horizontal directions and the convergency abmwandM is
Z:LI'”lTreX thl GED 0i 70, szl Z 7i,:%,7+1|»  also good. In the small field regiod € 2.0) then, we can
- 21) see the good agreement of the VDMA results with the series
expansion. In the vicinity of the critical point, however, the
whereo; , is the Ising variable at the positidnand imagi-  calculated magnetization exhiblts dependence. In addition,
nary timer. The effective coupling&, andK, in Eq.(21)  we note that several thousands of iterations are required in

In Fig. 6, we show thd o) vs €2 plots atI'=3.0 as an
xample, which are obtained with the VDMA of the numbers
of retained basesM,m)=(2,8) and (3,18), where the con-
vergence with respect tm is rapid. In the regiol >3.2,

are given by the Trotter direction, whereas at most 50 iterations are
K. = e] 22) needed in the horizontal direction. The roughly estimated
h ' critical field from the VDMA calculation is about 3.2, which
1 is 4% larger than the QMC one.
K,=— Eln[tanh( el], (23
e=1/TL), (24 IV. CONCLUSION
where the subscripth and v denote the horizontalXY) In this paper we have constructed a higher-dimensional

direction and the vertica(Trotten direction, respectively. numerical renormalization algorithm that utilizes the natural
We can perform the VDMA calculation for this anisotropic tensor-product form of the maximum-eigenvalue eigenstate
3D Ising model. |#may Of the transfer matrix. In our algorithm, called

We should make a comment on the boundary condition
before proceeding to details. As was seen in the previous
section, the open boundary condition is assumed in the
VDMA. However, the periodic boundary condition is im-
posed along the Trotter direction in E@1). As far as the Ty
zero-temperature properties are concerned, the boundary L
condition is inessential due to the double lifit=0 andL 0.5- g )
—0, allowing us to apply the VDMA to Eq21) [18]. IR

For a fixed value ofe, we calculate the magnetization L ; me.me

. . e . M=3, m=18

(o (€)) with the VDMA for the infinite volume. After obtain- IR— Series expansion . -
ing (o (e€)) for variouse, we take thes— 0 limit by extrapo- L .
lation. In the actual calculation, we have observed the fol- ol vt v e
lowing e dependence 2 T

(a(€))y=(a(0))+ consiX €, (25) o
FIG. 7. €=0 limit of (o)-I" curve atT=0. The arrow shows the
which we adopt as the extrapolation formula. critical field obtained by the QMC simulatidi.7].

1

=28 -
.E.B‘llu

<0>
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