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Semirelativistic Lagrange mesh calculations
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The Lagrange mesh method is a very powerful procedure to compute eigenvalues and eigenfunctions of
nonrelativistic Hamiltonians. The trial eigenstates are developed in a basis of well-chosen functions and the
computation of Hamiltonian matrix elements requires only the evaluation of the potential at grid points. It is
shown that this method can be used to solve semirelativistic two-body eigenvalue equations. As in the non-
relativistic case, it is very accurate, fast, and very simple to implement.
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[. INTRODUCTION values and eigenfunctions of a semirelativistic Hamiltonian
can be computed very fast and very easily with this modified
The Lagrange mesh method is a very accurate and simpleagrange mesh method. It is worth noting that the Lagrange
procedure to compute eigenvalues and eigenfunctions of @esh technique can be applied if the potential is nonlocal, or
two-body Schrdinger equatiof1—3]. The trial eigenstates if couplings exist between different channels.
are developed in a basis of well-chosen functions and Hamil- The nonrelativistic and semirelativistic Lagrange mesh
tonian matrix elements are obtained with a Gauss approxiM€thods are described in Sec. Il, while Sec. lll presents an
mate quadrature. No numerical evaluation of matrix ele-ansatz to easily comp_ute the only nonlmear parameter of the
ments is required, only the computation of the potential afnethod.. Test calculatlons.are presented in Sec. IV, and some
grid points. The spacings between grid points depend on theoncluding remarks are given in Sec. V.
basis chosen and are not necessarily equal. This method can
be extended to treat, very accurately, three-body systems as Il. METHOD
well in nuclear physics as in atomic physi¢see, for in-
stance, Ref[4]). Recently, a general procedure for deriving
new Lagrange meshes related to orthogonal or nonorthog
nal bases has been develop&dl
The Fourier grid Hamiltonian method is another simple
procedure to solve a two-body ScHiger equation on a f(x)=N"Y25, . 1)
mesh[6,7]. It relies on the fact that the kinetic-energy opera- o
tor is best represented in momentum space, while the potemheyx; and\; are connected with a Gauss quadrature formula
tial energy is generally given in coordinate space. This
method has been generalized to treat a semirelativistic opera- w N
tor in the three-dimensional space for bound stg8éslt has j gx)dx~ >, Ng(Xy). 2
also been applied to the study of scattering equat(®s 0 k=1
This method requires a mesh of equally spaced grid point
As a consequence, a large number of points can someti
be necessary to reach convergence.

A Lagrange mesh is formed & mesh points«; associ-
ated with an orthonormal set dbfindefinitely derivable func-
Rions f;(x) [1-3]. The Lagrange functiori; vanishes at all
mesh points but one; it satisfies the Lagrange conditions

Fere, the case of the Gauss-Laguerre quadrature is consid-
M&¥ed because the domain is¢Q, The Gauss formul&2) is
exact wheng(x) is a polynomial of degreel@—1 at most,

l.t has recen'gly been shown that the Fourier grid Ham.'l'multiplied by exp-x). The Lagrange-Laguerre mesh is then
tonian method is equivalent to a Lagrange mesh caIc:uIauoBased on zeros of a Laguerre polynomial of degvdd]

in which the matrix elements of the kinetic-energy operator
are computed by a discrete Fourier transformafibg] (this Ln(x)=0. 3)
makes possible the computation of bound states for semire-

lativistic kinematic$. In order to escape from the constraint The explicit form of the corresponding regularized Lagrange
of equally spaced grid points, a new method is developegunctions is given by

here to compute the kinetic matrix elements in the Lagrange

mesh method. The idea, already used in R&f] but in fi(x)=(—1)'x Yx(x—x) LLny(x)exp( —x/2), (4
another context, is to compute the square root of an approxi-

mation to the square of the semirelativistic kinetic-energywhich is simply a polynomial of degrelé, multiplied by an
operator. It is shown in this paper that very accurate eigenexponential function. They vanish at the origin anct;atvith
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j#i. In fact, most calculations in the following can be per- 1 /(/+1)

formed without explicit expressions of the; and f;(x); Tij= 2( ij 5 5”), 11
these quantities are only necessary to plot the wave func- 2ph X

tions. The factors\; must be computed in the case of a

nonlocal interactio10]. where(f:=1)

For example, let us consider the eigenvalue equation

) 2
tij=1 fi(x) _ & fi(x) dx~—=\"F(x). (12
0

[T(P?)+V()][#)=El), (5 dx?
whereT(p?) is the kinetic-energy term of the Hamiltonian This compact expression is exact for some Lagrange meshes.
andV(r) the potential that depends only on the radial coor-This is not the case for the regularized Laguerre mesh. An

dinater. A variational calculation is performed with the trial €Xact expression can easily be obtaitgee appendix in Ref.
state [2]). However, as shown in R3], it is preferable to use the

approximations(11) and (12). The kinetic matrix elements

N are then even easier to obtain and rgagd
lw)=2, Cilf), (6) - o
=1 . (=) I06x) "M+ x) (%= x) "2 (i#]),
where U (12¢3) T4+ (AN+2)x— X2 (i=j).
(13
(r|f)= MY (t) @) The simplicity of this approach is obvious on EG0). An-
! Jhr smi other striking property, which is not obvious at all, has been

observed on many examplgk-3]: the accuracy of the mesh
and where/ is the orbital angular-momentum quantum approximation remains close to the accuracy of the original
number. The coefficientS; are linear variational parameters Variational calculation without the Gauss approximation.
and the scale factdr is a nonlinear parameter aimed at ad-
justing the mesh to the domain of physical interest. With B. Semirelativistic Hamiltonian

Egs.(2) and (1), the coefiicients read In natural units f=c=1), a semirelativistic Hamiltonian

C= \/h_)\iu(hxi), ) is written

whereu(r) is the regularized radial part of the trial wave

function. They provide a direct picture of the wave function The eigenvalue equation associated with this Hamiltonian is

at mesh points. However, contrary to some other mesh meth- ; )
ods, the wave function is also defined between mesh poin enerally called the spinless Salpeter equation. To apply the

by Egs.(4), (6), and(7) ethod described above, it is necessary to compute the ma-
At the Gauss approximatiokf;|f;)~ &, , and the poten- X elements(f;| Vp?+m?|f;). This can be performed using

H=/p2+m2+\/p2+m3+V(r). (14

tial matrix elements are given by a four-step method suggested in REF1] (see also refer-
ences therein
(FIV()|f;)=V(hx) ;. (9) (i) Computation of the matrid? whose elements are
The potential matrix is both simple to obtain and diagonal. (M2);=(f;|p?+m?[f)). (15

Let us assume that the matrix elemeffgT|f;)~T;; are . o _
known. With Eqs(6) and(9), the variational method applied They are calculated as in the nonrelativistic case with Egs.
to Eq. (5) provides a system dfl mesh equations (11) and(12).
(i) Diagonalization of the matrit?. If D? is the diago-
N nal matrix formed by the eigenvalues bF?, we have
> [Ty+V(hx)8;—E&;]C;=0. (10
i=1 M2=SD?S™ 1, (16)

We shall see that, in this system, the first term is easy to where S is the transformation matrix composed of the
compute. The second one is diagonal and only involves valnormalized eigenvectors.

ues of the potential at scaled mesh points. (i ) Computation oD, the diagonal square root matrix of
D2, by taking the positive square roots of all diagonal ele-
A. Nonrelativistic Hamiltonian ments ofD?.

S o o (iv) Determination of the square root matri in the
For a nonrelativistic Hamiltonian, the operafd¢p?) is original basis by using the transformati6t)
simply given byp?/(2u), where u is the reduced mass.
With Eqg. (2), radial kinetic matrix elements are given by M=SDS . (17
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16 T the eigenvalue. Fortunately, the plateau is very long and the
\ ” value ofh can be taken in a wide range.
14 N Nevertheless, it could be interesting to have a procedure
: to estimate directly a good value ofin order to avoid a
1P search, which is always time consuming. We have remarked
12 1 that the best results are obtained when the mesh covers the
main part of the wave function and that the last mesh points
------- N=10 are located in its asymptotic tail. So, if we choose a point
© e=10",N=20 in the tail of the wave function, the value bfcan be ob-
s tained byh=r,/xy, wherexy is the last zero considered.
0.8 A value ofr, can be computed using the technique devel-
oped in Ref[8]. The first step is to find a potenti®l..(r)
that matches, at best, the potentflr) for r—o. The sec-
00 02 04 06 08 1o L2 4 ond step is to choose a trial stdte) that depends on one
parameten, taken for instance, as the inverse of a distance.
The best matching between the state studied and the trial
FIG. 1. Masses of the S, 2S, and TP UU mesons, with the state is ob'tained by means of the variatiopal principle. The
semirelativistic model of Refl11], as a function of the scale pa- value of\ is determined by the usual condition
rameterh, for two numbers of mesh points=10 and 20. The
values ofh predicted by the algorithm d%scribed in Sec. Il are also (?<)‘|T+V°°(r)|)\> =0
indicated for a value oé=10"°. 2N '

0.6

h(GeVv™h

(18)

The elements\l;; of the matrix computed with Eq17) are whereT is the kinetic part of the Hamiltonian considered. In
1

= the case of the spinless Salpeter equation, the variational
. . 2 2 L
approximations of the numbe¢$;| Vp“+m?|f;). The calcu- oy tion is computed using the fundamental inequality
lation is not exact for two reasons. First, the eIemeM§)(j

are computed with approximate formuldsl) and(12). Sec-
ond, the diagonalization is performed in the limited defini-

tion space of the trial functiof6). In order to compute eX- g yoqyjarized radial pat, (r) of the trial state\) is then

actly the matrix elements of the operatgip®+m?, it is  analyzed to find the value of. that satisfies the following

necessary to compute exactly all eigenvalues of the infinitg¢ondition

matrix whose elements ar<q32+ m?), again exactly com-

puted. This is obviously not possible. We shall see in Sec. IV ux(re)

that the procedure proposed here can give very good results. max u, (r)] = (20
The kinetic matrix elements being calculated not exactly

for the reasons given above, and the potential matrix elewheree is a number small enough to neglect the contribution

ments being computed at the Gauss approximat®nthe  of u,(r) for values ofr greater tham . This value ofr, is

variational character of the method cannot be guaranteethen taken as the valug . Details on this procedure, which

This is only possible if an exact quadrature is performed. Iris very fast, are given in Ref8]. With this method, we have

practice for a sufficiently high number of basis states, thealways obtained a value dfwithin the plateausee Fig. 1,

method is often variationaleigenvalues computed are all provided small enough values efare consideredtypically

upper boundsor antivariational(eigenvalues computed are in the range 10*-10 ). If necessary, the value df ob-

(Np2+m2y=(p?) +m2. (19)

all lower bounds Examples will be given below. tained can be a starting point for a new and better determi-
nation of the scale parameter.
IIl. SCALE PARAMETER For a given value of ,, the accuracy increases with the

number of mesh pointhl. But there is a limit on the values

The accuracy of the eigenvalues and eigenfunctions desf N that can be used. The points of the mesh are the zeros of
pends on two parameters: The number of mesh pdiraad  the Laguerre polynomial. So it is necessary to compute these
the value of the scale parameter The dependence of the zeros with enough precision not to spoil the accuracy of the
eigenvalues om is illustrated in Fig. 1 for the semirelativis- method. With standard routin¢$2], up to the 80 first zeros
tic model of Ref[11]. This behavior is typical; it is obtained can be calculated with high precision. With specific tech-
for all states and for all potentials studied here, as well fomiques, this number can reach 120.
nonrelativistic as semirelativistic kinematics. Whénin- It is worth noting that in an usual variational method, like
creases from zero, a rapid decrease of the eigenvalues is fiistRef.[11], the addition of new basis states does not modify
obtained, followed by a long plateau. As the method is nothe Hamiltonian matrix elements calculated with the smaller
variational, there is no obvious procedure to determine thdasis. The situation is different for the Lagrange mesh
best value ofh. When h is too large, all points of the method. TheN zeros of the polynomial \ are located be-
Lagrange mesh are located in the asymptotic tail of the waveveen theN+1 zeros of the polynomidly, ;. As a conse-
functions and it is then impossible to obtain a good value ofjuence, all matrix elements are changed when the nuiber
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TABLE I. Masses of B, 2S, and 1P states, in arbitrary units, for the Kratzer potential with nonrelativistic kinetic energy, and for
parameter valuesn=1, D=0.5, anda=1.5. The computation is performed witkx 10 basis functions for the Lagrange mesh method and

with i Gaussian wave functions. The valuergfis the one predicted by the algorithm described in Sec.d# {0 ®). The exact results are
also given fori = .

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
ra 20.32 47.72 47.72
1 1.7989 491271 1.8090 140683 1.9212831800 1.8970189 881 308 1.9020584 965 588
2 1.7 989 357 935 1.8026 218788 1.9212503621 1.9236 462941 1.8970179601 704 1.8973 990442 706
3 1.7 989 353 246 1.7999 271967 1.9212496 211 1.9217084 733 1.8970179570 392 1.8970487 465 924
4 1.7989 351 384 1.7 991 388 244 1.9212 495 444 1.9215316924 1.8970179569 203 1.8970267 073117
5 1.7989 351013 1.7990 179 046 1.9212 495 247 1.9213213780 1.8970179568 941 1.8970199 788 150
6 1.7 989 350 909 1.7989714114 1.9212 495100 1.9212 845605 1.8970179568 899 1.8970187 892477
7 1.7 989350873 1.7989 445 797 1.9212 495048 1.9212 595 866 1.8970179568 893 1.8970181 291186
8 1.7 989 350 860 1.7989382512 1.9212 495026 1.9212 525000 1.8970179568 892 1.8970181 007 165
0 1.7 989 350 844 1.9212 495003 1.8970179 568 882

is modified. Moreover, if the value df is not changed, the Supplemented by a nonrelativistic kinetic energy, the bind-
value of r, is modified, and vice versa. Let us recall thating energies are given by the following analytical formula as
ra.=hxy. a function of the radial quantum numhe(0,1, . . .) and the
orbital angular momentum’
IV. NUMERICAL TESTS 2ua’D?
E=— . (22
(N+1/2+ \J2ua’D + (/£ +1/2)%)?

We have tested the accuracy of our method with a large
number of different potential§Coulomb-type, finite range,
confining, coupled channels, nonlocal interaction,)ednid  Results for the Kratzer potential with nonrelativistic kine-
with a wide range of particle masses. We shall present hemnatics are gathered in Table |. For a fixed number of “ba-
our results for three potentials in the case of two identicakis” states, the Gaussian method gives better results than the
particlesm=m;=m,. Only masses of thed, 2S, and 1P Lagrange mesh method. Nevertheless, the number of
states are given. The number of points of the mesh, that is tbagrange functions can be easily increased and a very high
say, the number of basis states, is limited to 80. precision can be reached. In this case, the Lagrange mesh

To check our method, we have also compared our resultsethod is variational, but counterexamples eki<d].
with those obtained with a variational method: The develop- We have also tested our method with a semirelativistic
ment of the trial state with Gaussian functiddg]. This last model used to describe mesons as quark-antiquark states
method is known to yield very precise results in the two-[11]. The short-range part of the interaction is of Coulomb-
body and many-body quantum problems. In this paper, eactype, while the long-range is a confining potential
Gaussian function depends on two parameters: its amplitude,
which is a linear variational parameter, and its size, which is
a nonlinear parameter. The sizes of the various Gaussian
functions can be determined stochastically or with an effec-
tive formula(arithmetic progression for instancén this pa-  with k=0.437,a=0.203 GeV, andC=—0.599 GeV. For
per, we chose to compute these parameters with a full minithe quarku, we havem=0.150 GeV. Masses of somey
mization procedure, in order to obtain the best possible lowefesons for this model are presented in Table Il. No exact
bound. But it is very difficult to obtain results with more than result is known, but the masses obtained with the two meth-
eight functions because these functions are not orthogonglds are in good agreement. Because of the redundancy prob-
and redundancies appear in the size parameters. Let us naén with the Gaussian functions, a better convergence can be
that the first radial excitation must be Computed with at |eaSbbtained for the Lagrange mesh method’ which is antivaria-
two Gaussian functions. tional in this case.

The precision of the Lagrange mesh method is known to  The eigenvalue equation with a semirelativistic Hamil-

be very good for nonrelativistic modell$—3]. Nevertheless,  tonian supplemented by a Coulomb-type potential
we present here the results obtained for the Kratzer potential

K
V=—F+ar+C, (23

14] p. 17 K
([(14] p. 178 V-~ (24
a a? : : iy
V=—2D|=-— _) _ (21)  Is often called the Herbst's equatior (s a positive number
r2r2 without dimension It has been intensively studied, but the
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TABLE Il. Masses in GeV of B, 2S, and 1P uUmesons, with the semirelativistic model of REE1].
The computation is performed wittx 10 basis functions for the Lagrange mesh method and iwthussian
wave functions. The value af, is the one predicted by the algorithm described in Sec.d# 10" 7). The

results obtained in Refl11] are also given.

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
ra 26.81 (GeV)! 26.74 (GeVy'! 26.64 (GeV)'!
1 0.70237 255 0.73445725 1.4154 184 1.2402390936 1.2581207 451
2 0.70257022 0.70812172 1.4158542 14263285 1.2402381667 1.2416398117
3 0.70258437  0.70403501 1.4158778 14179611 1.2402381681 1.2404159078
4 0.70258719  0.70304 037 1.4158 826 14167156 1.2402381688 1.2402686201
5 0.70258805 0.70274634 1.4158 840 14163172 1.2402381697 1.2402444923
6 0.70258839  0.70264 838 1.4158 846 14160095 1.2402381710 1.2402396711
7 0.70258854  0.70261279 1.4158 849 14159263 1.2402381729 1.2402386124
8 0.70258863  0.70259 896 1.4158 850 14159018 1.2402381754 1.2402383528
Ref. 0.703 1.416 1.240

spectra is not known analytically. Nevertheless, approximawhereF is an hypergeometric functidri7], and wherey is
tions are available for some eigenvalues. For the ground minimization parameter. For a vanishing angular momen-
state, we have compared our results with a lower bound dugim, an approximation for all radial quantum numbers is

to Martin and Roy{15]

and with an upper bound due to Lucha and Sehb[16]

known up to orderx’ [18]. The precision of all these ap-
proximate formulas increases whendecreases. Results for
the Herbst's equation are shown in Tables Il and IV for two
values ofx. The two methods give similar results and are in
agreement with the bounds and approximation available.
Again, the Lagrange mesh method is antivariational and al-
lows a better convergence than the Gaussian method.

1+1— 2

=2m’\/ —— for

k<1,
2

(29

2 It is worth noting that with 80 basis states the method

|| 128 1 7 m ! .
Eo<min{ | —F| —=,2;2:1— — | —«|x proposed here can be several times faster than the Gaussian

x| [1o7 22 2 method with eight functiongby a factor that can reach 100

in some casgsThe diagonalization is more time consuming
for KSE (26) for the Lagrange mesh method, but there is no lengthy de-

37’ termination of nonlinear parameters to perform.
TABLE 1ll. Masses in GeV of B, 2S, and 1P states for Herbst's equation wittn=0.5 GeV and«=0.05. The computation is

performed withi X 10 basis functions for the Lagrange mesh method andiv@tussian wave functions. The valuergfis the one predicted

by the algorithm described in Sec. llé€ 10 ). A lower bound (), an approximation up to order (A), and an upper boundl) are given
when they are availablesee Sec. V.

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
r.  1414.63 (GeVv)? 3274.43 (GeVy? 3274.43 (GeV)?!
1 0.999687 256848 0.999734683111 0.999921 835334 0.9999218678794 0.9999 292609670
2 0.999687260874 0.999696 226562 0.999921835623 0.999926963018 0.9999218678794 0.9999 229 386 266
3 0.999687 262433 0.999689200665 0.999921835944  0.999922679874 0.9999218678794 0.9999220389573
4 0.999687262779 0.999687 740479 0.999921836103 0.999922071982 0.9999218678794 0.9999219965679
5 0.999687 262876 0.999687397211 0.999921836163 0.999922010639 0.9999218678794 0.9999 218831427
6 0.999687 262910 0.999687365466 0.999921836186 0.999921996493 0.9999218678794 0.9999218744770
7 0.999687 262925 0.999687320679 0.999921836196 0.999921990438 0.9999218678794  0.9999218 719 455
8 0.999687 262932 0.999687286164 0.999921836200 0.999921846628 0.9999218678794 0.9999218712517
L 0.999 687 255 538
A 0.999 687 262 947 0.999921 836 208
U 0.999 687 267 936
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TABLE IV. Same as Table Ill but witm=0.5 GeV andk=0.5.

2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
ra 137.01 (GeV)* 324.90 (GeV)? 324.90 (GeVy?
1 0.96 645 459 0.97 287 140 0.99178095 0.9921160226 777 0.9928911 718096
2 0.96 653 341 0.96 818 509 0.99180940 0.99 252 953 0.9921160 108 390 0.9922 346 609 017
3 0.96 654 234 0.96 703 865 0.99181276 0.99198 052 0.9921160 110 896 0.9921 363722236
4 0.96 654 384 0.96 670985 0.99181 348 0.99186 778 0.9921160111002 0.9921199615 358
5 0.96 654 431 0.96 660 465 0.99181372 0.99 183946 0.9921160111013 0.9921 168 705 023
6 0.96 654 450 0.96 656 792 0.99181 382 0.99 182810 0.9921160111014 0.9921 162 242 900
7 0.96 654 459 0.96 655 426 0.99181 386 0.99181883 0.9921160111015 0.9921161028 139
8 0.96 654 463 0.96 654 883 0.99 181 389 0.99181581 0.9921160111015 0.9921160815791
L 0.96 592 583
A 0.96 664 937 0.99 182 664
U 0.96 694 460

V. CONCLUDING REMARKS above. The number of grid points can be automatically in-
reased until a convergence is reached for the eigenvalues.
his number can be as small as 20.

It is very fast: The method involves the use of symmetric

eal matrices of ordeN, the number of grid points, which

In this paper, we have shown that the Lagrange mes
method can be used to solve nonrelativistic and semirelativ-
istic two-body eigenvalue equations. This method is very,

convenient: does not exceed 100. The most time-consuming part of the

th Jg\gﬁ;ﬁg'r?g?t'hsevegeﬁz;?/attos'g:ﬁéen;%m:c:itnrtglun'(rjeﬁoﬂgmethod is the diagonalization of the Hamiltonian matrices.
P gnad p his is not a problem for modern computers. Moreover, sev-

calculation of matrix elements in a given basis. The k|net|ceral powerful techniques for finding eigenvalues and/or

matrix elements are computed with a standard prOCEmlljre'igenvectors exist and can be used at the best convenience.

The method generates _direc_tly the values of the radial part o This method is very competitive with all other techniques
the wave function at grid points. However, contrary to SOM& ' < ve two-bo dy eigenvalue equations,

other mesh methods, the wave function is also defined be-
tween mesh points. Moreover, the extension of the method to
the cases of nonlocal interactions or coupled channel equa-
tions is trivial. C. Semay would thank the FNRS for financial support. M.

It is very precise: The accuracy of the solutions depend$lesse acknowledges the FRIA for financial support. This
only on two parameters: The number of grid points and thdext presents research results of the Belgian program P4/18
scale parameter. The eigenvalues are not sensitive to this lash interuniversity attraction poles initiated by the Belgian-
factor. Moreover, a very good estimation of this parametesstate Federal Services for Scientific, Technical, and Cultural
can be easily obtained by using the procedure describedffairs.
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