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Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms
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We develop and test Quantum Monte Carlo algorithms that use a‘‘twist’’ or a phase in the wave function for
fermions in periodic boundary conditions. For metallic systems, averaging over the twist results in faster
convergence to the thermodynamic limit than periodic boundary conditions for properties involving the kinetic
energy and has the same computational complexity. We determine exponents for the rate of convergence to the
thermodynamic limit for the components of the energy of coulomb systems. We show results with twist
averaged variational Monte Carlo on free particles, the Stoner model and the electron gas using Hartree-Fock,
Slater-Jastrow, and three-body and backflow wave function. We also discuss the use of twist averaging in the
grand canonical ensemble, and numerical methods to accomplish the twist averaging.
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Almost all quantum Monte Carlo~QMC! calculations in
periodic boundary conditions have assumed that the phas
the wave function returns to the same value if a particle g
around the periodic boundaries and returns to its orig
position. However, with these boundary conditions, deloc
ized fermion systems converge slowly to the thermodyna
limit because of shell effects in the filling of single partic
states. In this paper we explore an alternative boundary c
dition: one can allow particles to pick up a phase when th
wrap around the periodic boundaries,

C~r11L x̂,r2 , . . . !5eiuxC~r1 ,r2 , . . . !. ~1!

The boundary conditionu50 is called periodic boundary
conditions ~PBC!, u5p antiperiodic boundary condition
~ABC!, and the general condition withuÞ0, twisted bound-
ary conditions~TBC! @1#.

In periodic boundary conditions, the Hamiltonian is i
variant with respect to translating any particle around
periodic boundaries. According to Bloch’s theorem, this i
plies that any solution can be characterized by a given tw
angle. The twist angle also has a physical origin: conside
toroidal geometry. One can either rotate the torus@2# and go
into rotating coordinates, or add a magnetic flux@3# to the
center of the torus. The physical properties will be u
changed. In both cases one can transform away the pertu
tion by applying TBC with the twist angle given byu
5mR2v/h for rotation andu5ef/(c\) for magnetic flux.
A torus is topologically equivalent to periodic boundary co
ditions, so that a nonzero twist will be allowed in period
boundaries. The twist is a degree of freedom, or bound
condition, that can be varied to enable a finite system
approach the thermodynamic limit more quickly or to mak
detailed studies of the properties of the quantum state.

If the periodic boundaries are used in all three directio
each dimension can have an independent twist@4#. Hence, in
three dimension~3D!, the twist is a three component vecto
u i with i 5$1,2,3%. The free energy and hence, all equili
rium properties are~triply! periodic @3# in the twist: F(u i
12p)5F(u i) so that each component of the twist can
restricted to be in the range
1063-651X/2001/64~1!/016702~12!/$20.00 64 0167
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2p,u i<p. ~2!

For systems with a real potential~e.g., no magnetic field!,
one can further restrict the twist to be in the range@0,p#.

For a degenerate Fermi liquid, finite-size shell effects
much reduced if the twist angle is averaged over. We c
this twist averaged boundary conditions~TABC! @5#. This is
particularly important in computing properties that are se
sitive to the single particle energies such as the kinetic
ergy and the magnetic susceptibility. By reducing shell
fects, much more accurate estimations of the thermodyna
limit of these properties can be made. What makes this e
more important is that the most accurate quantum meth
have computational demands that increase rapidly with
number of fermions. Examples of such methods are ex
diagonalization@6# ~exponential increase in CPU time wit
N!, variational Monte Carlo@7#~VMC! with wave functions
having backflow and three-body terms@8,9# ~increases as
N4), and transient-estimate and released-node diffus
Monte Carlo methods@10# ~exponential increase with N!.
Methods that can extrapolate more rapidly to the thermo
namic limit are crucial in obtaining high accuracy. Twi
averaging is especially advantageous for stochastic meth
~i.e., QMC! because the averaging does not necessarily s
down the evaluation of averages, except for the necessit
doing complex rather than real arithmetic.

The use of twisted boundary conditions is a comm
place for the solution of the band structure problem fo
periodic solid. Band structure methods begin by assum
the wave function factors into single particle orbitals char
terized by a lattice momentum. Then in order to calcul
properties of an infinite periodic solid, properties must
averaged by integrating over the first Brillouin zone. Ba
dereschi@11# pointed out that in an insulator, in integratin
over the Brilliouin zone, one can with high accuracy repla
the integral with a ‘‘specialk point.’’ This was generalized to
a grid ofk points@12#. Twisted boundary conditions has bee
discussed in connection with polarization of insulators@13#;
we do not consider that here. The use of twisted bound
conditions is common in the analysis of lattice mode
@6,14#. Gammel@15# showed using perturbation argumen
for certain lattice models why it will converge faster to th
©2001 The American Physical Society02-1
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C. LIN, F. H. ZONG, AND D. M. CEPERLEY PHYSICAL REVIEW E64 016702
thermodynamic limit and applied it to calculating optic
properties. Gros@16# studied size effects in the Hubbar
model with exact diagonalization and showed TABC giv
exact results in the grand canonical ensemble for nonin
acting systems.

Though twisted boundary conditions have a long hist
within quantum physics, their use in QMC has been limit
@17#. In continuum QMC, Rajagopal and others@18,19# used
specialk points to reduce finite size errors for calculations
insulators within VMC. Their use in diffusion Monte Carl
~DMC! results were restricted to PBC and ABC in order
work with real wave functions. Kra´lik et al. @20# used gen-
eralized boundary conditions to compute the momentum
tribution with VMC for silicon~a semiconductor! and Filippi
and Ceperley@21# did a similar calculation for metallic
lithium. This was done in order to enlarge the number
momentum vectors in the region of the fermi surface. T
use of TABC within QMC has not been further develope

We focus in this paper on the use of TABC to redu
finite size effects~FSE! in the energy caused by the quan
zation of momentum with PBC. The FSE have been succ
fully corrected@17# for QMC by assuming that they are pro
portional to the finite size errors in a mean field meth
model such as Hartree-Fock or density function theory.
many cases, the largest finite size effects come from the C
lomb potential energy, in particular, due to the interaction
a charge with the correlation hole around its image in
periodic boundaries. Though these corrections are in m
cases successful, we find a few examples, mainly in me
with strong electron correlation, where TABC allow a mo
accurate extrapolation to the thermodynamic limit.

We begin by discussing the method for noninteract
~NI! fermions. Fermi liquid theory asserts that the spectr
of states in an interacting fermion system is intimately
lated to those of the noninteracting fermion system, henc
detailed analysis for the NI system carries over to stron
interacting fermi liquids. We then discuss interacting s
tems in the Hartree-Fock approximation: the electron gas
the Stoner model. In the Stoner model, we show how TA
can be used to determine a polarization phase transitio
nonzero temperature. Results for TABC are given for
interacting electron gas using a pair product and backfl
wave function in 3D. The electron gas system has been
viously treated with an extrapolation method based on Fe
liquid theory. We show that TABC gives the same results
the thermodynamic limit and verify the applicability of th
NI analysis, in particular, to examine how the energy d
pends on the twist of a given system size. We then pre
VMC results of the polarization energy of the electron g
using the new method and compare to the extrapola
method. In future publications we will study the low dens
properties of the electron gas using this technique. The
pendix discusses details arising in the implementation
TABC in QMC.

I. NONINTERACTING FERMIONS

In a noninteracting homogenous system with PBC,
single particle states are plane waves: exp(ikr )h(s) whereh
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is a spin function. For simplicity, we always assume t
simulation cell is a cube~or square in 2D! of side L. To
satisfy the twisted boundary conditions, the wave vect
obey

kn5~2pn1u!/L, ~3!

wheren is an integer vector. These states have energyEn
5(\2/2m)kn

2 . The ground state in the canonical ensem
consists of theN lowest energy states; the many-body wa
function is a determinant of those states. In this section
will ignore spin, since for a noninteracting system, sp
modifies the results only by doubling the degeneracy of e
level. Figure 1 shows the occupation of states for 13 sp
less fermions in 2D foru50, i.e., with periodic boundary
conditions, and also with a nonzero twist. The occup
states lie within a circle centered at the origin with radi
'kF52(pr)1/2.

Figure 2 shows the relative error in energy versus
number of fermions with PBC. The energy converges slow
to the exact result. One sees ‘‘cusps’’ in the curve at cert
values ofN. These occur at closed-shell values ofN, e.g., the
state depicted in Fig. 1 for PBC is a closed shell since sta
related by symmetry are either all filled or all empty. F
large N the curve is ‘‘quasirandom,’’ with an envelope de
caying algebraically asN2n.

We find numerically that the exponent of the decay of t
relative error of the energy is approximately,n51.33 in 2D

FIG. 1. Momentum distribution for 13 spinless fermions in a 2
square with sideL52p. The top panel shows the occupied stat
~closed symbols! and empty states~open symbols! with zero twist
~circles, PBC! and a twist equal to 2p(0.3,0.15) ~triangles!. The
circle shows the infinite system fermi surface. The bottom pa
shows the occupied states with TABC. The colored regions sh
the occupied region for the lowest level~middle square!, the third
level, up to the outermost 13th level.
2-2
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andn51 in 3D ~see Table I!. To characterize the approac
to the thermodynamic limit, we introduce two different me
sures. Defining the relative scaled errordN as

EN5E`~11N2ndN!, ~4!

TABLE I. Coefficients of the asymptotic decay of the error
the relative NI energy.n is the exponent of the decay. The exp
nents have been determined from the numerical data and are
rate to about 0.02. The amplitude was determined numerically
examining the values for 10<N<10 000. The coefficients are de
fined asa[max(udNu), b5^dN&, c5^@dN2b#2&1/2. n is the number
of phase angles used for the summation in each dimensionu i

52p i /n for i 51, . . . ,n. n51 corresponds to PBC; d is the dime
sionality. O is the property:T, the kinetic energy;V, the Hartree-
Fock potential energy of the electron gas;N, the number of particles
in the twist average grand canonical ensemble~TA-GCE! method.

n O d n a b c

1 T 2 1.33 4.5 0.37 1.77
8 T 2 1.5 0.47 0.27 0.093

1 N 2 0.67 2.18 0 0.65
16 N 2 0.75 0.71 0 0.52

1 V 2 1 0.50 -0.35 0.069
8 V 2 1 0.38 -0.367 0.0058

1 T 3 1 2.4 0.25 1.0
8 T 3 1.33 0.50 0.292 0.065
16 T 3 1.33 0.35 0.21 0.06
32 T 3 1.33 0.35 0.19 0.06

1 N 3 0.55 2.97 0 1.00
16 N 3 0.67 0.83 0 0.63

1 V 3 0.67 0.742 -0.549 0.072
16 V 3 0.67 0.587 -0.582 0.0043

FIG. 2. Relative error of the energy versus number of partic
with PBC (n) and TABC (h) in 2D and 3D. The points shown ar
only those where the relative error has a local maximum. Curves
shown only forN,100.
01670
-
we define a5maxudNu, b5^dN&, and c5^(dN2b)2&1/2.
Table I shows estimates of these coefficients and expon
obtained numerically by examining values of 10<N<104.

Now consider twisting the boundary conditions, i.e., usi
a nonzero phase. This displaces the set ofk vectors as shown
in the top panel of Fig. 1. Aside from a set of special twis
having zero measure, the energy levels will no longer deg
erate.~When we sort the states to decide the filling, all sta
will have a different energy.! This is because inversion sym
metry and rotational symmetry through 90° are broken. T
breaking of symmetries and absence of degeneracies
crucial difference between TBC and PBC.

At critical values of the twist, when a filled and emp
state have the same energy, the occupation of the s
changes. The condition for the degeneracy is thatk lies on a
plane bisecting and perpendicular to the line joining the o
gin with an integer vector; precisely the Laue condition f
the Bragg planes@22# of the reciprocal lattice of the super
cell. In Fig. 3 is shown the dependence of total energy on
twist angle for a fixed number of particles. One sees cusp
the filled states cross the Bragg planes. The dependen
similar to the band energy of a simple metal. Later, we w
discuss this band structure for an interacting system.
bandwidthEBW ~the spread of energy values in Fig. 3! is
defined as

EBW
2 5~2p!2dE du~E~u!2E`!2 ~5!

and depends on the number of particles and scales asEBW
}N2n where the exponentn is the same as describes th
convergence of the kinetic energy in PBC.

cu-
y

s

re

FIG. 3. Dependence of the energy of NI unpolarized fermio
on the twist angle forN554 in 3D. The solid line shows the energ
along the~100! direction, dotted line along the~110! direction, and
dashed line along the~111! direction. The curves are piecewis
quadratic, with a cusp when the occupation of the states chan
We refer to the rms spread of energy values as the bandwidth.
2-3
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There are several alternative procedures by which
twist angle can be varied:~i! one can average the twist ove
all possible values,~ii ! the twist can become a dynamic
variable, and~iii ! special values of the twist could be use
Of these approaches, none are right or wrong in gene
which method approaches the thermodynamic limit faster
pends on the order of the phase in question, whether fe
liquid, ferromagnetic or antiferromagnetic. However,
compute a variety of properties for a metallic systems,
find the TABC best reduces size effects.

II. TWIST AVERAGING

The twist average of a propertyÂ is defined by

^Â&5~2p!2dE
2p

p

du^c~R,u!uÂuc~R,u!&, ~6!

where it is assumed that the wave functionc(R,u) is nor-
malized for eachu. The momentum distribution,n(k) is a
key property to calculate for delocalized quantum systems
discontinuity inn(k) at the Fermi surface is responsible f
the validity of Fermi Liquid Theory for metals. The kineti
energy is the second moment of the momentum distribut

TN5~\2/2m!E dkk2n~k!. ~7!

Let us analyze the momentum distribution for NI fermions
the canonical ensemble. For any given twistu, theN lowest
energy states from those given by Eq.~3! are occupied. But
any value ofk can only be reached by a unique combinati
of (n,u) if u is restricted by Eq.~2!. This proves that the
averaged momentum distribution is a constant for states
can be reached by some combination of (n,u) and zero oth-
erwise. Hence within TABC, the set of filled states co
prises a ‘‘solid volume’’ bounded by a Fermi surface.
contrast, for a single twist value, the momentum distribut
is a point set. The total volume ink space inside the Ferm
surface is precisely (2p)dr, just as it is in the thermody
namic limit, so the constant is determined by the normali
tion condition,

E dkn~k!51. ~8!

As mentioned above, the Fermi surface is a subset of
Bragg planes. ForN particles the occupied states compri
the union of the firstN Brillouin zones@22#. The (N11)th
electron will go in the (N11)th zone, an area formed b
planes surrounding theNth zone. Figure 1 shows the mome
tum distribution of 13 spinless fermions in 2D using TABC

In 1D, TABC gives the exact momentum distribution b
cause the normalization condition determines everything
higher dimensions the fermi surface is not perfectly circu
~spherical! as shown in Fig. 1. However, one can see t
n(k) is much closer to a disk than the momentum distrib
tion obtained with PBC. A perfect fermi surface~no finite
size corrections! in any dimension, can be obtained by allow
01670
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ing variations in the particle number and working in th
grand canonical ensemble as we discuss below.

Figure 2 shows the convergence of the error of the kine
energy within TABC versus the number of particles. N
merical estimates of the relative error are given in Table
One sees a dramatic improvement in the convergence
respect to PBC. The exponents governing the decay rate
larger and the errors are a factor of 30 smaller in 3D and
smaller in 2D forN'100 ~computed using exponents anda
from Table I.! Note that the TABC kinetic energy must ap
proach the exact energy from above. This is because
shape of a given volume with the smallest moment of ine
is a sphere, so that the distorted shape shown in Fig. 1 h
higher energy. Also shown in Table I is the dependence
the error on the number of twist values in the average. O
needs from 16 to 32 values ofu along each axis to achiev
the full reduction in size effects~better than a percent accu
racy in the relative error of the size effects!. In the Appendix
are discussed the relative merits of performing the aver
on a grid versus sampling the twist values from a unifo
distribution.

Let us now examine how the potential energy conver
with PBC and TABC. This will give us some idea of ho
two particle correlations are affected by the boundary con
tions since the potential energy is a particular integral o
the pair correlation function. The calculation performed b
low is particularly simple for a power law potential,v(r )
5r 2n. In particular, we examine the potential energy of
electron gas (n51) computed using the NI wave functio
~Hartree-Fock approximation!. The NI trial function is valid
for high density when the kinetic energy dominates the
tential energy. The potential energy~using the Ewald image
potential! is conveniently evaluated in Fourier space as
sum over the structure factor:

V5
Nr

2 (
k

vk~Sk21!1NvM , ~9!

where vM is the Madelung energy of a charge interacti
with itself andvk is the Fourier transform of the interparticl
potential. For 1/r potential,vk52p(d21)/kd21. The values
of k in the sum are given byk52pn/L , where n is an
integer vector. For the NI wave function, the structure fac
at wave vectorq is proportional to the probability that afte
we have displaced a filled state byq we are still in a filled
state:

Sq512
1

N K (
k,k8

d~k2k82q!L , ~10!

where the sum is over occupied states and the average is
twisted boundary conditions.

Shown in Fig. 4 is the convergence of the potential ene
versus the number of particles using PBC and TABC. For
values ofN and twists the potential energy of the finite sy
tem approaches that of the infinite systems from belo
Twist averaging serves to make the decay more regular
does not reduce its overall magnitude that is determined b
charge interacting with the correlation hole of its own ima
2-4
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in the nearby supercell. The smoother convergence obta
with TABC should allow for more accurate extrapolation
N→`. Similar effects are expected for other two partic
quantities.

III. GRAND CANONICAL ENSEMBLE

The use of TABC in the grand canonical ensemble~GCE!
gives the exact single particle occupations for NI particles
shown by Gros@16# within the Hubbard model. Suppos
(a,N) is a label of the quantum states, both for the num
of particles and for other quantum numbers such as the
mentum and letEa,N(u) be the energy of this state. Then th
probability of a given state in the GCE is proportional
exp$2b@Ea,N(u)2Nm#% wherem is the chemical potential. In
the ground state,b→`, the occupied many-body state wi
be the one minimizingEa,N(u)2Nm. ThusN can depend on
u.

We now show that for a NI system, twist averaged B
within the GCE give exact single particle properties; i.
there are no finite size effects. Suppose the single par
energy levels areek . Then the probability of occupying th
N statese1 , . . . ,en is exp$2(k51

N b@ek(u)2m#%. In the occu-

pation numbern̂k basis, this probability distribution factor
izes as

)
k

@ n̂ke
2b[ek(u)2m]1~12n̂k!#, ~11!

so the probability of statek being occupied is precisely th
fermi distribution law nk5$exp@b(ek2m)#11%21. As the
twist angle is varied over its range, each momentum stat
the infinite system occurs precisely once. Hence the avera
occupation number is precisely what it would be in the th

FIG. 4. Relative error in the evaluation of the potential ene
for an electron gas using the Hartree-Fock wave function foN
spinless electrons. The solid line shows TABC, the dashed
PBC.
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modynamic limit. The distortion of the fermi surfaces o
served in the lower panel of Fig. 1 is a consequence of us
the canonical ensemble.

The momentum distribution and hence the kinetic ene
will be exactly equal to their infinite system values. Oth
properties may have finite size corrections; only the sin
particle properties are guaranteed to be exact. We call
procedure the twist average grand canonical ensemble~TA-
GCE!.

With this procedure one does not have a fixed numbe
particles since for a given twist and fermi wave vector, t
number of occupied states will vary. The fluctuations in t
number of particles is closely related to a famous problem
analytic number theory, ‘‘Gauss’s circle problem,’’ to dete
mine the number of lattice points inside a circle of areaA as
its radius tends to infinity@23#. As Gauss posed the problem
the center of the circle was fixed on a lattice site while
TA-GCE the circle is placed randomly~the shifted circle
problem!. It has been shown@24# that in 2D one obtains the
following fluctuation in the particle number for TA-GCE:

lim
N→`

^@N2~LkF!2/4p#2&1/2}N1/4. ~12!

Our numerical estimates for the convergence are show
Table I. Note that the Gauss circle problem differs from t
convergence of the energy in the canonical ensemble s
the energy is the average second moment of the lowesN
points, not the number of points in a circle.

The preceding discussion refers to NI systems, howe
fermi liquid theory asserts that the low lying excited states
an interacting system are in one-to-one correspondence
the NI states. Hence, as argued by Gross@16# and Gammel
@15#, TA-GCE is likely to reduce finite size effects substa
tially for interacting systems as well.

For an interacting many-body system, one difficulty
using the GCE is the need to optimize the wave function
each twist value; in particular to pick out which orbita
should be occupied. For an isotropic system having a sph
cal fermi surface, the order of filling the states is simple. F
a metal with a nonspherical Fermi surface, the usual pro
dure is to determine the filling of single particle states a
cording to a mean field theory such as the Kohn-Sh
method in density functional theory. If one uses the sa
procedure within QMC, the Fermi surface will be substa
tially unchanged. Hence, it would be better to use that filli
which minimizesEN2Nm.

There are other problems in using the GCE for charg
systems in periodic boundary conditions. Usually the po
tive compensating charge, either a uniform background o
fixed array of charged nuclei, is at a fixed density. But if t
number of electrons fluctuates, the periodic cell can hav
net charge, which causes problems in calculating the lo
range potential. Although very promising, we do not co
sider the TA-GCE method further in this paper. The follow
ing examples are for the canonical ensemble.

y

e
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IV. THE STONER MODEL

To test the utility of TABC for determining a phase tra
sition, we simulated the Stoner model, an analytically so
able model@25,26# for strongly correlated fermions, arisin
in the theory of itinerant magnetism@27#. The Stoner mode
differs from NI fermions by the addition of a contact repu
sive potential:( i , jgd(r i j ). The energy is evaluated withi
the mean field~Hartree-Fock! approximation using the N
wave function. For a spin (1/2) system, the potential ene
is E5ENI1gn↑n↓ . In 3D the energy at zero temperature
the thermodynamic limit is

E/N5l
~3p2r!5/3

10p2
@~11z!5/31~12z!5/31b~12z2!#,

~13!

where b5(5gr/6l)(3p2r)22/3 and l5\2/2m. For b
,1.111 the system has an unpolarized ground state and
b.1.3228 the ground state is ferromagnetic. For interme
ate couplings, the ground state has a partial spin polariza
at zero temperature, similar to the behavior sugges
@28,29# for the electron gas at low density.

We performed a MC simulation of the 3D NI system
within the occupation representation. The state variable
the system consist of occupation numbers~both spin and
wave vector! and the twist angles. We make Monte Car
moves consisting of flipping spins and moving the spa
occupation while keeping the particle number and tw
angle fixed. If the new state is not already occupied,
move was accepted with probability equal to e
$2b@enew(u)2eold(u)#%. Figure 5 shows the convergence
magnetization distribution versus the number of fermio
We found that one could determine the phase transi

FIG. 5. Magnetization as a function ofb for the 3D Stoner
model. Circles are the exact results, diamonds for 54 electrons
PBC, squares for 54 electrons with TABC, and triangles for N5200
with TABC. The temperature wasT50.224 EF and a 83 grid of
twist values was used.
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within a few percent accuracy in the coupling constanb
using only 54 fermions. Such accuracy within PBC wou
require thousands of fermions because of the strong s
effects.

V. ELECTRON GAS

We now present results for the 3D electron gas as a tes
TABC on a correlated many-body continuum system. T
electron gas is a very important model in condensed ma
physics being the basis for the density functional the
method of electronic structure computations.@30,31# The
phase diagram of the electron gas at low density is still
resolved@29#. The wave functions we use are the most ac
rate known for a continuum many-body system with op
mized two-body, three-body, and backflow terms. VMC a
DMC are QMC methods appropriate to zero temperatu
and Path Integral Monte Carlo~PIMC! to T.0. In this pa-
per, we will only discuss VMC and DMC. PIMC will be
discussed in future publications.

In VMC, one assumes an analytic form for a trial functio
CT(R) whereR symbolizes the 3N coordinates. Then one
samplesuCT(R)u2 using a random walk@7#. An upper bound
estimate to the exact ground state energy is the averag
the local energyEL(R)5CT(R)21HCT(R) over the ran-
dom walk. An accurate trial wave function is obtained fro
the NI wave function by multiplying with pair correlation
terms. The pair product or Slater-Jastrow~SJ! wave function
is

C2~R!5Det~eiki r j !e2(
i , j

u(r i j ). ~14!

One can determine the correlation factoru(r ) either with an
analytic argument or by minimizing the energy and/or t
variance of an assumed form. We use a parameter-free
lytic form so that the systematic size and twist effects are
masked by noise in the trial function itself. For the electr
gas an accurate analytic form foru(r ) based on minimizing
the energy within the random-phase approximation@32# has
as low an energy as those with optimized parameters.
used optimized Ewald sums@33# both for the potential and
for the correlation factor so as to have the correct long w
length behavior.

Figure 6 shows the convergence of the VMC energy v
sus the number of particles within TABC and PBC. One c
see the smooth convergence to the thermodynamic limit
was found within the NI system is also evident within VM
using the SJ wave function. We will discuss how to corre
the much larger deviations of the PBC energy in the n
section. The slow convergence of the TABC energy to
limit is due to finite size effects of the potential energy, co
puted with the Ewald summation method. This can be c
rected using various procedures including simply extrapo
tion in inverse powers ofN, or by using a modified
interaction potential@19,38#. In addition to the Slater-Jastrow
trial functions, we also have used optimized backflow-thr
body functions~BF3B! @9# that give a more accurate descri
tion of the low-density electron gas.~They pick up about

ith
2-6
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TWIST-AVERAGED BOUNDARY CONDITIONS IN . . . PHYSICAL REVIEW E64 016702
three-fourth of the remaining correlation energy@9# and
break certain symmetries of the SJ wave functions.!

In the DMC method, one starts with a trial function an
uses exp(2tH) to project out the ground state using a branc
ing random walk. Fermi statistics pose a significant probl
to the projection method, since exact methods such as t
sient estimate or release-node QMC suffer an expone
loss of efficiency for large numbers of particles. For th
reason the approximate fixed-node method is normally u
Using the fixed-node method, one obtains the best up
bound to the energy consistent with an assumed sign of
wave function. Both the FN method and the exact trans
estimate can be generalized to treat complex-valued
functions@34#. These methods are called the fixed-phase
released-phase QMC. We have tried both of these
proaches using TABC@35#.

VI. FERMI LIQUID THEORY AND TABC

Fermi liquid theory ~FLT! for metallic systems allows
both a method to extrapolate to the thermodynamic limit a
a way of understanding the twist dependence of the Q
results. According to Landau, the low-lying excitations of
interacting system are in close relation to those of the
system:

E5E01E dkdnke~k!1E dkdk8dnkdnk8 f ~k,k8!1•••,

~15!

where dnk is the deviation of the quasiparticle occupati
from the ground state, ande(k) and f (k,k8) are one and two
quasiparticle energy functionals. For simplicity we have n
indicated dependence on spin. The energy functionals
usually further expanded about the fermi surface in spher
harmonics and applied to calculate properties in the ther

FIG. 6. Energy versus the number of electrons for the 3D e
tron gas using SJ wave function. The circles and connecting line
TABC with 103 twist values. The filledn ’s are using PBC. The
arrow shows the extrapolation to an infinite system made using
PBC calculations using Eq.~16!.
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dynamic limit. Here we discuss how to apply FLT when t
‘‘excitation’’ is caused by the boundary conditions. For e
ample, we consider the momentum distribution shown
Fig. 1. The change in the energy caused by the noncirc
shape should be given by Eq.~15!.

We can analyze this dependence by comparing the e
gies of the noninteracting system within a given twist w
the interacting system. This is done in Fig. 7 where we
nore the effect of the last term of Eq.~15!. One sees a linea
relation between the two energies, confirming that for th
wave functions, Fermi liquid theory is an appropriate d
scription. The inverse slope is proportional to the effect
mass of the quasiparticles. Then since the NI infinite ene
is known, this gives a way of determining the interacti
system energy in the thermodynamic limit.

Previous calculations on the electron gas with PBC h
used another application of FLT to correct for finite si
effects: the extrapolation method@32,36,37#. In this method,
one calculates ground state energies for a sequence of
ticle numbers, and determines the effective mass, pote
correction, and infinite system energy by fitting these en
gies to the relation,

EN5E`1~m/m* !DTN1eN2n, ~16!

whereDTN is the deviation of the NI kinetic energy from th
infinite system andn is the exponent for the potential energ
given in Table I. Figure 6 shows that the estimate of t
infinite system energy obtained using TABC and the e
trapolation method agree within errors. This is reassuri
but expected, since both are based on FLT. The TABC
ergies smoothly converge to the limit, even without FL

-
re

e

FIG. 7. Plot of the VMC energy versus the deviation of the
energy fromE` . Each phase angle is plotted separately. Simu
tions are forN554 unpolarized 3D electron gas atr s550. Since
the excitations are linearly related, Fermi liquid theory describes
phase angle dependence. Upper points are the Slater-Jastrow
function, lower ones are done with the backflow-three-body t
function. Effective masses~the inverse slope! are respectively 1 and
0.61 for the two trial functions.
2-7
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C. LIN, F. H. ZONG, AND D. M. CEPERLEY PHYSICAL REVIEW E64 016702
corrections. This smoothness allows one to determine
next order correction to the potential contribution, a term
orderN22.

When it can be used, the extrapolation method gives p
cise results in the thermodynamic limit. However, there
significant advantages to the TABC method. The fitti
method requires well converged runs for at least three dif
ent values ofN. This can be difficult if the unit cell is large
For example, suppose one is doing a simulation of bcc
drogen where one is limited to values ofN equal to 2K3

5$2,16,54,128,250 . . .%. The last three values are reaso
able to simulate. But if the unit cell contained ten electro
for example, the extrapolation using$540,1280,2500% elec-
trons would be very time consuming. Even more problema
is to use the extrapolation procedure on a liquid metal. O
would have to perform anab initio local-density approxima-
tion simulation of several different sizes of the liquid. The
is also the problem that convergence and trial functions
large N may be inconsistent with those used for smallerN.
For this reason, one typically determinesm/m* ande within
VMC and then applies the extrapolation using the DMC e
ergies. This procedure will have additional systematic er

There are other problems with extrapolation that we illu
trate with the example of spin polarization. For examp
suppose we have a partially spin polarized system withn1
spin up particles andn2 spin down particles. In Fig. 8 ar
shown comparison of computing the polarization energy
r s550 with both TABC and PBC. The upper panel sho
the energy without FLT correction, the bottom panel a
sumes a best fit effective mass for PBC. The TABC energ

FIG. 8. Energy versus spin polarization for the 3D electron
at r s550 computed with variational Monte Carlo with the Slate
Jastrow trial function using PBC~dotted line! and TABC ~solid
line!. In the upper panel, no FLT correction has been made, so
PBC results forN554 (n) andN5108 (h) differ by more than the
polarization energy. In the lower panel, the PBC results have b
corrected as in Eq.~16! with m/m* 51.6, the value chosen to mak
the energy atz51 coincide. No correction has been applied to t
TABC results in either panel. The twist values are sampled as
scribed in the Appendix.
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can be used directly without correction and agree alm
within error bars for systems of 54 and 108 particles, wh
the PBC has visible systematic effects even for 108 partic
In this example, the size effect of the potential energy
small because the pair correlation function is almost in
pendent of polarization and thus cancels out of the polar
tion energy.

In Fig. 9 shows how the results of the polarization ener
depends on the quality of wave function and the QMC te
nique, whether VMC or DMC. One sees that the good res
of TABC are not due to the choice of trial function or QM
technique, but are quite general.

Within TABC, there is the possibility of obtaining result
close to the thermodynamic limit, using only quantities co
puted for a single value ofN, at least as concerns the finit
size effects due to the kinetic energy. Other metho
@19,38,17# are needed to make the potential correction. U
of TABC should allow these correction methods to be mo
accurate, because the structure factor and pair correla
function have more regular size effects as demonstrate
Fig. 4.

VII. OTHER PROCEDURES USING TWISTED BOUNDARY
CONDITIONS

A. Dynamical twist method

As an alternative to TABC, one can let the twist angle
a dynamical variable~DTBC! and be determined self
consistently. By dynamical is meant that the probability o
given twist is proportional to its free energy:

P~u!}exp@2bF~u!#5(
a

exp@2bEa~u!#, ~17!

s

e

en

e-

FIG. 9. Energy versus spin polarization for the 3D electron g
at r s550 within TABC. The solid line is using DMC with the
BF3B trial function~grid of 103 twist values!, the dotted line BF3B-
VMC, and the dashed line SJ-VMC. Then is N554, h N5108.
The VMC calculations are done by sampling the twist values.
2-8
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TWIST-AVERAGED BOUNDARY CONDITIONS IN . . . PHYSICAL REVIEW E64 016702
whereEa(u) is the energy of the statea with twist u. This
distribution of twist angles could be attained within QMC b
enforcing detailed balance on moves of the twist angle d
ing a random walk. The expectation of an operatorA will be

^A&DTBC5
1

ZE due2bF(u)^Ca~u!uA~u!uCa~u!&. ~18!

At zero temperature, a special set of twist angles, those
have the lowest energy, will be singled out, so that
ground state energy will beEDTBC5minu„E(u)…. Then for
noninteracting fermions:EDTBC<E` , in contrast to the
TABC that gives an upper bound for NI particles. In gener
the dynamical energy,EDT converges as slowly to the the
modynamic limit as does the PBC energy: the exponents
fluctuations are the same. The dynamical twist method is
an improvement over PBC for approaching the thermo
namic limit for a metallic system at temperatures much low
than the fermi temperatures.

Although the dynamic twist method is not satisfactory f
a Fermi liquid at low temperatures, for certain lattice mod
such as an antiferromagnetic Heisenberg model, it can
definite improvement over PBC and TABC. This is becau
one can only establish a defect-free Ne´el ordering if the unit
cell is commensurate with the boundary conditions. For
Heisenberg model on a triangular lattice, the ground state
a given twist per lattice spacing. Using DTBC allows one
establish this twist value automatically, without imposing
in advance. This is equivalent to the classical variable
method where the dimensions and aspect ratio of the su
cell of a crystal become dynamical variables, so that one
determine the most stable crystal lattice structure@39# in-
stead of examining each crystal structure explicitly.

B. Special points

For each value ofN there exists a set of twist values fo
which E(u)5E` . One can determine these special twist v
ues for the NI system and then perform simulations at o
one of those twist values for the interacting system, ther
getting rid of single particle size effects. This is similar to t
special k point method of Baldereschi@11# for insulators
where a singlek point is determined by symmetry, thus a
lowing one to replace an integral over the Brillouin zo
with evaluation at a singlek point. This method was use
within QMC by Rajagopalet al. @18# for solid germanium.

The specialk-point method is advantagous if one eval
ates an integral over a function that varies smoothly throu
out the Brillouin zone and, as a result, is well approxima
its lowest fourier components. This is appropriate for a fill
band but not certain to work for a metal because the oc
pation number is discontinuous at the Fermi surface. A
the ‘‘special point’’ cannot be specified in advance by sy
metry because the location of the fermi surface can cha
between the interacting and noninteracting wave functio
In addition, it is not expected that the same twist valu
appropriate for the NI energy, will be appropriate for oth
quantities such as the potential energy, or spin susceptib
It is better to have a method that can give a spectrum
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properties correctly, rather than only a subset of propert
The use of special points will be better than using PBC
for correlated systems TABC will lead to higher accurac
As we discuss in the Appendix, except for the problem
determining the phase dependence of the trial wave funct
TABC does not impose an excessive computational burd
and is to be preferred over using only special twist values
strongly correlated metallic systems.

VIII. CONCLUSIONS

Note that there is a significant difference in the efficien
for stochastic~QMC! methods versus explicit methods su
as density functional theory or exact diagonalization in
gards to the TABC. In explicit methods, computations f
each twist require an equal amount of computer time so
averaging overNG twist values will take roughlyNG times
as long as a single twist value. One can use inversion
rotational symmetry to reduce this, so that for a grid of 13

points with cubic symmtery, TABC will require only 165
twists. On the other hand, in QMC, all the twists reduce
statistical error of the average. The twists are simply th
more degrees of freedom on top of the 3N coordinate vari-
ables to be averaged over. However, one must also take
account startup costs associated with each twist, such a
optimizing the trial wave function or equilibrating the ran
dom walk. Neglecting these startup costs, there is no los
statistical efficiency in performing TABC so that the gain
reducing the systematic error is free. This is examined
more detail in the Appendix.

There are many examples where twist averaging can
fect considerable improvement over the use of PBC.
have been able to perform quite accurate calculations of
polarization energy of the 2D and 3D electron gas@35# and
of liquid 3He using backflow wave functions with on th
order of 100 fermions. As pointed out by Ortizet al. @29#
calculations on such small systems in PBC have consider
systematic errors. Another related property that could
computed more accurately with TABC is the estimation
fermi liquid parameters by calculating particle-hole exci
tion @40#. TABC can reduce the shell effects that caus
much difficulty in that calculation. A related example is
computation of the charge response of the electron gas@41#
where a considerable effort was made to cancel out effect
the PBC. We are presently studying the electron gas confi
to a slab@42# to determine the work function and surfac
energy of a metallic surface. The filled states consist of a
of disks, each of which will have a certain occupation nu
ber. By doing twist averaging we have shown reduced s
effects with respect to PBC.

Experimental systems are at a nonzero temperature.
NI systems one occupies the states with probability given
the Fermi-Dirac distribution. Because the Fermi function
nonzero temperature is a continuous function, the conv
gence to the thermodynamic limit will be much faster, ev
with PBC. However in practice, one is interested in ele
tronic systems close to the ground state; the relevant qua
is the thermal deBroglie wave length of the electro
\/(mekbT)1/2'32 Å at T5300 K. Because this length i
2-9
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C. LIN, F. H. ZONG, AND D. M. CEPERLEY PHYSICAL REVIEW E64 016702
usually larger than the simulation cell in QMC, the localiz
tion of the density matrix does not help at reducing ferm
finite size at these temperatures. Using a nonzero temp
ture just to achieve faster convergence to the thermodyna
limit is not practically useful. However, TABC is extendab
to finite temperature PIMC simulations using the fixed-ph
method@34# and will reduce size effects at low temperatu

The TABC method is likely to be valuable for all QMC
calculations in systems with a fermi surface. The calculati
on the electron gas demonstrate that even though it may
little slower per step of the random walk, it is better to
TABC than a larger system with periodic boundary con
tions because TABC converges much faster to the ther
dynamic limit. The overall efficiency of any numerica
method is ultimately judged by the computer time needed
reduce systematic and statistical error below a given va
TABC is effective in reducing the systematic errors and th
improve the overall efficiency.
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APPENDIX

Here we discuss numerical details of implementing tw
averaged boundary conditions. Many of the changes cau
by twisted boundary conditions arise from the need to h
complex wave functions. Although the wave function a
energies in special cases are real~e.g., PBC and ABC!, com-
plex functions are needed for general twist angles. There
factor of roughly 2.5 in additional CPU time to do the arit
metic to evaluate the determinant and its derivatives. T
actual impact on the total speed is smaller than this beca
the calculations of two-particle quantities such as the po
tial energy and correlation factors are still done with re
arithmetic; the actual penalty of working with nonzero tw
depends on the number of particles and the type of trial w
function. However, as we have discussed earlier, even a
tor of 2.5 in computer time is worthwhile if one is able
approach the thermodynamic limit quicker, since QM
methods scale asNn with 1<n<4 or, in the case of exac
fermion methods, as exp(gN). If TABC saves going to larger
N, the additional time doing complex arithmetic is well ju
tified.

There are several alternatives for performing the twist
eraging:

~1! Evaluate as( iwiEi using a grid defined by pointsu i
with weightswi ~with ( iwi51) in the region specified by
Eq. ~2!.

~2! Sample the twist during the QMC random walk a
take the average.

~3! A combination of the two approaches: working on
grid that is augmented with random displacements.
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As we discuss below, all three methods are satisfactory; th
is no fundamental difference in efficiency. The choice
whether to sample or use a grid is primarily based on c
venience and programming considerations and only seco
on efficiency. We note that all methods are easy to para
ize.

1. Grid averaging

First, we must address the question of which grid a
integration rule to use. Since all properties are periodic w
respect to the twist, the grid should be a Bravais lattice w
equally weighted points. One must keep in mind that
properties, though periodic and continuous, have discont
ous derivatives at the Bragg planes. Unless grid points ca
located on these planes~which is difficult to achieve in prac-
tice!, the integration error will go aseG}Du2}NG

22/D where
NG is the number of grid points. Numerically, we find th
163 grids are needed for an accuracy of 1023 ~see Table I!.
This slowly convergent, systematic error is the main dra
back of the grid integration method. For an insulator with
large enough gap to excitations, properties would be anal
for all u since the occupation of single particle states will n
change as a function of twist angle and the grid error wo
converge exponentially fast.

Once a grid is chosen, one can use symmetry~e.g., inver-
sion and rotation through 90°) to reduce the number of g
points and give them a weight (wi with ( i 51

NG wi51) propor-
tional to their multiplicity. It is easy to show that the optim
amount of computer time at each grid point should be cho
proportional towi /z(u i)

1/2 where the MC efficiency atu i is
defined asz(u i)51/$var@E(u i)#3cpu time%. We have found
on the calculations of the electron gas described earlier,
this efficiency is independent of the twist angle except at
special PBC and ABC points where real functions can
used. Even though we have symmetry and can integrate
a reduced set of twist values, we must integrate longe
high multiplicity points since they contribute more to th
average. Hence, the symmetry does not significantly red
the needed amount of CPU time.

Since the calculations at different twist angles are unc
related, one can easily show that the efficiency of calculat
the twist averaged energy is given by the relation,

z21/25(
i 51

NG

wiz
21/2~u i !. ~A1!

Hence, the overall efficiency of the TABC energy is an a
erage of the efficiencies of the individual twist calculatio
and is higher than that of the slowest converging twist ang
The additional averaging over twist angle costs nothing
efficiency.

This discussion did not take into consideration start-
costs at each twist angle, such as the need to reoptimize
trial wave function at a new twist value, and equilibratio
costs. By equilibration, we mean that whenever the tw
angle is changed, enough random walk steps must be ta
so that the configurations are sampled from the new tw
value. During this equilibration, averages cannot be tak
These computational costs cause a decrease of efficienc
2-10
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the factor~useful time!/~total time! and are the main extra
computational penalty of the TABC method within QMC
Since the start-up time will scale with the number of need
grid points, using the above estimate of the systematic e
eG , we find that the needed start-up time scales aseG

2D/2

while the time to achieve equivalent statistical error scale
e22. Hence, for very precise calculations (e→0) andD,4,
start-up costs can be neglected. Many QMC calculations
dominated by the optimization of parameters in the tr
wave function, so the start-up times of TABC will be pr
hibitive. However, it should be possible to reduce the
start-up costs by using analytic properties of the trial fu
tion with respect to the twist.

2. Twist sampling

Now consider the second alternative, where the tw
angle is sampled during the random walk. With this meth
we do not have to decide on a grid in advance and there i
systematic error of a finite grid. Again, one must equilibra
the configurations after the change of twist angle and co
puter time used in that process does not reduce the vari
of the average.

There is an additional increase in variance caused by s
pling the twist angle. One can show that the efficiency
creases by a factor:@11EBW

2 /var(Eu)#21 whereEBW is the
th
a

is
da

r.,

,

a
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‘‘bandwidth’’ defined in Eq.~5!. If one spends too long at a
given twist angle, one is not adequately exploring the tw
angle degree of freedom. This gives a definite rule for h
often the twist angle should be updated: the time spent
given twist angle should be much longer than the equilib
tion time but less than the time needed to get the error in
energy at that twist value equal to the ‘‘bandwidth’’ of th
system. If it is not possible to achieve this relation, the g
scheme should be used.

With either method, one can achieve more accurate
sults and less systematic error by correcting the results u
Fermi liquid theory. That is, using the twist values and c
responding energies one can estimate the effective mass
twist averaged energy using a least squares fit as discuss
Sec. VI. However, there will be additional statistical an
systematic error resulting from the fit.

Finally, one can combine the positive features of tw
methods using antithetic sampling: use a relatively coa
grid, but then randomly displace the origin of the grid
number of times during the run, so as to eliminate the s
tematic error of the grid and estimate the true errors. Si
the twist angle will change by a small amount, set-up tim
and equilibration time can be reduced. A related approac
to sample the twist angle using a quasirandom number
quence so as to reduce the dispersion of the twist value
nd

ys.
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