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Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms
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We develop and test Quantum Monte Carlo algorithms that use a“twist” or a phase in the wave function for
fermions in periodic boundary conditions. For metallic systems, averaging over the twist results in faster
convergence to the thermodynamic limit than periodic boundary conditions for properties involving the kinetic
energy and has the same computational complexity. We determine exponents for the rate of convergence to the
thermodynamic limit for the components of the energy of coulomb systems. We show results with twist
averaged variational Monte Carlo on free particles, the Stoner model and the electron gas using Hartree-Fock,
Slater-Jastrow, and three-body and backflow wave function. We also discuss the use of twist averaging in the
grand canonical ensemble, and numerical methods to accomplish the twist averaging.
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Almost all quantum Monte Carl¢QMC) calculations in —m<O=<. 2
periodic boundary conditions have assumed that the phase of

the wave function returns to the same value if a particle goegor systems with a real potentié.g., no magnetic field
around the periodic boundaries and returns to its originabne can further restrict the twist to be in the raf@er].
position. However, with these boundary conditions, delocal- For a degenerate Fermi liquid, finite-size shell effects are
ized fermion systems converge slowly to the thermodynamignuch reduced if the twist angle is averaged over. We call
limit because of shell effects in the filling of single particle thjs twist averaged boundary conditiofABC) [5]. This is
states. In this paper we explore an alternative boundary coryarticularly important in computing properties that are sen-
dition: one can allow particles to pick up a phase when thegitive to the single particle energies such as the kinetic en-

wrap around the periodic boundaries, ergy and the magnetic susceptibility. By reducing shell ef-
fects, much more accurate estimations of the thermodynamic
W(ry+LX,p, ... )=€%W(r 1y, ...). (1) limit of these properties can be made. What makes this even

more important is that the most accurate quantum methods
have computational demands that increase rapidly with the

The boundary conditiord=0 is called periodic boundary number of fermions. Examples of such methods are exact
conditions (PBO), 6= antiperiodic boundary conditions diagonalization 6] (exponential increase in CPU time with
(ABC), and the general condition wit## 0, twisted bound-  N), variational Monte Carlg7](VMC) with wave functions
ary conditions(TBC) [1]. having backflow and three-body termi8,9] (increases as

In periodic boundary conditions, the Hamiltonian is in- N%), and transient-estimate and released-node diffusion
variant with respect to translating any particle around theMonte Carlo method$10] (exponential increase with )N
periodic boundaries. According to Bloch’s theorem, this im-Methods that can extrapolate more rapidly to the thermody-
plies that any solution can be characterized by a given twishamic limit are crucial in obtaining high accuracy. Twist
angle. The twist angle also has a physical origin: consider averaging is especially advantageous for stochastic methods
toroidal geometry. One can either rotate the tdjsand go  (i.e., QMO because the averaging does not necessarily slow
into rotating coordinates, or add a magnetic f[& to the  down the evaluation of averages, except for the necessity of
center of the torus. The physical properties will be un-doing complex rather than real arithmetic.
changed. In both cases one can transform away the perturba- The use of twisted boundary conditions is a common
tion by applying TBC with the twist angle given by  place for the solution of the band structure problem for a
=mRw/h for rotation andd=e¢/(ct) for magnetic flux.  periodic solid. Band structure methods begin by assuming
A torus is topologically equivalent to periodic boundary con-the wave function factors into single particle orbitals charac-
ditions, so that a nonzero twist will be allowed in periodic terized by a lattice momentum. Then in order to calculate
boundaries. The twist is a degree of freedom, or boundarproperties of an infinite periodic solid, properties must be
condition, that can be varied to enable a finite system t@veraged by integrating over the first Brillouin zone. Bal-
approach the thermodynamic limit more quickly or to make adereschi11] pointed out that in an insulator, in integrating
detailed studies of the properties of the quantum state. over the Brilliouin zone, one can with high accuracy replace

If the periodic boundaries are used in all three directionsthe integral with a “speciak point.” This was generalized to
each dimension can have an independent tilistHence, in  a grid ofk points[12]. Twisted boundary conditions has been
three dimensiori3D), the twist is a three component vector, discussed in connection with polarization of insulatd3];
6; with i={1,2,3}. The free energy and hence, all equilib- we do not consider that here. The use of twisted boundary
rium properties ardtriply) periodic[3] in the twist: F(6; conditions is common in the analysis of lattice models
+2m)=F(6;) so that each component of the twist can be[6,14]. Gammel[15] showed using perturbation arguments
restricted to be in the range for certain lattice models why it will converge faster to the
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thermodynamic limit and applied it to calculating optical T T Ty e YT
properties. Grod16] studied size effects in the Hubbard

model with exact diagonalization and showed TABC gives

exact results in the grand canonical ensemble for noninter-

acting systems.

Though twisted boundary conditions have a long history =
within quantum physics, their use in QMC has been limited
[17]. In continuum QMC, Rajagopal and oth¢ds,19 used
specialk points to reduce finite size errors for calculations of
insulators within VMC. Their use in diffusion Monte Carlo
(DMC) results were restricted to PBC and ABC in order to
work with real wave functions. Ktk et al. [20] used gen-
eralized boundary conditions to compute the momentum dis-
tribution with VMC for silicon (a semiconductgrand Filippi
and Ceperley[21] did a similar calculation for metallic
lithium. This was done in order to enlarge the number of
momentum vectors in the region of the fermi surface. The
use of TABC within QMC has not been further developed.

We focus in this paper on the use of TABC to reduce
finite size effectdFSE in the energy caused by the quanti-
zation of momentum with PBC. The FSE have been success-
fully corrected[17] for QMC by assuming that they are pro-
portional to the finite size errors in "?‘ mean .ﬁeld method FIG. 1. Momentum distribution for 13 spinless fermions in a 2D
model such as Hartree-Fock or density function theory. In

square with side.=27. The top panel shows the occupied states

many cases, the largest finite size effects come from the COLdélosed symbolsand empty stateopen symbolswith zero twist

lomb potent_ial energy, in pgrticular, due to the i_nteracti_on Of(circles, PBG and a twist equal to 2(0.3,0.15) (triangles. The
a C_har_ge with th_e correlation hole around _'ts Image_ n thQ:ircle shows the infinite system fermi surface. The bottom panel
periodic boundaries. Though these corrections are in MOshows the occupied states with TABC. The colored regions show

cases successful, we find a few examples, mainly in metalge occupied region for the lowest lev@hiddle squark the third
with strong electron correlation, where TABC allow a more |evel, up to the outermost 13th level.

accurate extrapolation to the thermodynamic limit.
We begin by discussing the method for noninteractingis a spin function. For simplicity, we always assume the
(NI) fermions. Fermi liquid theory asserts that the spectrunsimulation cell is a cubéor square in 2 of side L. To

of states in an interacting fermion system is intimately re-satisfy the twisted boundary conditions, the wave vectors
lated to those of the noninteracting fermion system, hence, ghey

detailed analysis for the NI system carries over to strongly
interacting fermi liquids. We then discuss interacting sys- k,=(2mn+0)/L, 3
tems in the Hartree-Fock approximation: the electron gas and
the Stoner model. In the Stoner model, we show how TABGyheren is an integer vector. These states have end&gy
can be used to determine a polarization phase transition at (#2/2m)k2. The ground state in the canonical ensemble
nonzero temperature. Results for TABC are given for thegonsists of theN lowest energy states; the many-body wave
interacting electron gas using a pair product and backflovfnction is a determinant of those states. In this section we
wave function in 3D. The electron gas system has been pregi|| ignore spin, since for a noninteracting system, spin
viously treated with an extrapolation method based on Fermyyogifies the results only by doubling the degeneracy of each
liquid theory. We show that TABC gives the same results injeyel. Figure 1 shows the occupation of states for 13 spin-
the thermodynamic limit and verify the applicability of the |ess fermions in 2D forv=0, i.e., with periodic boundary
NI analysis, in particular, to examine how the energy de-onditions, and also with a nonzero twist. The occupied
pends on the twist of a given system size. We then presenates lie within a circle centered at the origin with radius
VMC results of the polarization energy of the electron gas~_—2(7p)¥/2
using the new method and compare to the extrapolation Figure 2 shows the relative error in energy versus the
method. In future publications we will study the low density ,umber of fermions with PBC. The energy converges slowly
properties of the electron gas using this technique. The Apgy the exact result. One sees “cusps” in the curve at certain
pendix discusses details arising in the implementation of,es ofN. These occur at closed-shell values\bfe.g., the
TABC in QMC. state depicted in Fig. 1 for PBC is a closed shell since states
related by symmetry are either all filled or all empty. For
large N the curve is “quasirandom,” with an envelope de-
caying algebraically abl™".

In a noninteracting homogenous system with PBC, the We find numerically that the exponent of the decay of the
single particle states are plane waves: 8x((o) whereyn relative error of the energy is approximatebs 1.33 in 2D

I. NONINTERACTING FERMIONS
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FIG. 2. Relative error of the energy versus number of particles FIG. 3. Dependence of the energy of NI unpolarized fermions
with PBC (A) and TABC (@) in 2D and 3D. The points shown are on the twist angle foN=54 in 3D. The solid line shows the energy
only those where the relative error has a local maximum. Curves aralong the(100) direction, dotted line along th@ 10 direction, and
shown only forN<100. dashed line along th€l11l) direction. The curves are piecewise

guadratic, with a cusp when the occupation of the states changes.
andv=1 in 3D (see Table). To characterize the approach We refer to the rms spread of energy values as the bandwidth.
to the thermodynamic limit, we introduce two different mea-
sures. Defining the relative scaled er@y as we define a=maxéy, b=(4dy), and C=((5N—b)2>1/2-
Table | shows estimates of these coefficients and exponents
obtained numerically by examining values of<IB<10%.

Now consider twisting the boundary conditions, i.e., using

TABLE |. Coefficients of the asymptotic decay of the error in a nonzero phase_ This displaces the sét\edctors as shown
the relative NI energyv is the exponent of the decay. The expo- jn the top panel of Fig. 1. Aside from a set of special twists
nents have been determined from the numerical data and are ac%’aving zero measure, the energy levels will no longer degen-
rate to about 0.02. The amplitude was determined numerically by, 516 (\When we sort the states to decide the filling, all states
examining the values for FIN=<10000. The coefficients are de- i \aye g different energy This is because inversion sym-
fined asa=max(&), b=(y), c=([y—bI")"" nis the number . metry and rotational symmetry through 90° are broken. This
of phase angles used for the summation in each dimenglon: . . L
=2mi/nfori=1,...n. n=1 corresponds to PBC; d is the dimen- brea_klng_ of symmetries and absence of degeneracies is a
sionality. O is the property:T, the kinetic energyy, the Hartree- crucial ql.fference between TB.C and PBC. .

Fock potential energy of the electron g&sithe number of particles At critical values of the twist, when a f'”,Ed and empty
state have the same energy, the occupation of the states

En=E(1+N""5y), (4)

in the twist average grand canonical enseni{ila-GCE) method.

n (0] d v a b [

1 T 2 1.33 4.5 0.37 1.77
8 T 2 1.5 0.47 0.27 0.093
1 N 2 0.67 2.18 0 0.65
16 N 2 0.75 0.71 0 0.52
1 Vv 2 1 0.50 -0.35 0.069
8 \% 2 1 0.38 -0.367 0.0058
1 T 3 1 2.4 0.25 1.0

8 T 3 1.33 0.50 0.292 0.065
16 T 3 1.33 0.35 0.21 0.06
32 T 3 1.33 0.35 0.19 0.06
1 N 3 0.55 2.97 0 1.00
16 N 3 0.67 0.83 0 0.63
1 Vv 3 0.67 0.742 -0.549 0.072
16 Vv 3 0.67 0.587 -0.582 0.0043

changes. The condition for the degeneracy is khii¢s on a
plane bisecting and perpendicular to the line joining the ori-
gin with an integer vector; precisely the Laue condition for
the Bragg plane$22] of the reciprocal lattice of the super-
cell. In Fig. 3 is shown the dependence of total energy on the
twist angle for a fixed number of particles. One sees cusps as
the filled states cross the Bragg planes. The dependence is
similar to the band energy of a simple metal. Later, we will
discuss this band structure for an interacting system. The
bandwidthEg,, (the spread of energy values in Fig. i3
defined as

Esz:(ZW)_dJ dO(E(0)—E..)? (5)

and depends on the number of particles and scaldszas
«N~" where the exponent is the same as describes the
convergence of the kinetic energy in PBC.

016702-3



C. LIN, F. H. ZONG, AND D. M. CEPERLEY PHYSICAL REVIEW B4 016702

There are several alternative procedures by which théng variations in the particle number and working in the
twist angle can be variedi) one can average the twist over grand canonical ensemble as we discuss below.
all possible values(ii) the twist can become a dynamical  Figure 2 shows the convergence of the error of the kinetic
variable, and(iii) special values of the twist could be used. energy within TABC versus the number of particles. Nu-
Of these approaches, none are right or wrong in generaimerical estimates of the relative error are given in Table I.
which method approaches the thermodynamic limit faster de©ne sees a dramatic improvement in the convergence with
pends on the order of the phase in question, whether fermiespect to PBC. The exponents governing the decay rate are
liquid, ferromagnetic or antiferromagnetic. However, tolarger and the errors are a factor of 30 smaller in 3D and 20
compute a variety of properties for a metallic systems, wesmaller in 2D forN~ 100 (computed using exponents aad

find the TABC best reduces size effects. from Table I) Note that the TABC kinetic energy must ap-
proach the exact energy from above. This is because the
Il. TWIST AVERAGING shape of a given volume with the smallest moment of inertia
A is a sphere, so that the distorted shape shown in Fig. 1 has a
The twist average of a proper#y is defined by higher energy. Also shown in Table | is the dependence of

the error on the number of twist values in the average. One
~ N ~ needs from 16 to 32 values @falong each axis to achieve
(A)=(2m) dJ’,Wd PR, OIAIUR, 6)), ®) " the full reduction in size effect@etter than a percent accu-
racy in the relative error of the size effecti the Appendix
where it is assumed that the wave functigtR, 6) is nor- ~ are discussed the relative merits of performing the average
malized for eachy. The momentum distributiom(k) is a  ©on a grid versus sampling the twist values from a uniform
key property to calculate for delocalized quantum systems. Alistribution.
discontinuity inn(k) at the Fermi surface is responsible for ~ Let us now examine how the potential energy converges
the validity of Fermi Liquid Theory for metals. The kinetic With PBC and TABC. This will give us some idea of how

energy is the second moment of the momentum distributiontwo particle correlations are affected by the boundary condi-
tions since the potential energy is a particular integral over

) ) the pair correlation function. The calculation performed be-
Tn=(% /2m)J dkk<n(k). (7)  low is particularly simple for a power law potential(r)
=r~". In particular, we examine the potential energy of an
Let us analyze the momentum distribution for NI fermions inelectron gasif=1) computed using the NI wave function
the canonical ensemble. For any given twisthe N lowest (Hartree-Fock approximationThe NI trial function is valid
energy states from those given by E8) are occupied. But for high density when the kinetic energy dominates the po-
any value ofk can only be reached by a unique combinationtential energy. The potential energ@ysing the Ewald image
of (n,6) if @ is restricted by Eq(2). This proves that the potentia) is conveniently evaluated in Fourier space as a
averaged momentum distribution is a constant for states th&um over the structure factor:
can be reached by some combination fd) and zero oth- N
erwise. H“enc_e within 'I::ABC, the set of fllled_states com- V:_p 2 0 (Sc— 1)+ Noy (9)
prises a “solid volume” bounded by a Fermi surface. In 2 X
contrast, for a single twist value, the momentum distribution
is a point set. The total volume i space inside the Fermi Wherevy, is the Madelung energy of a charge interacting
surface is precisely (2)%, just as it is in the thermody- With itself andv, is the Fourier transform of the interparticle
namic limit, so the constant is determined by the normalizapotential. For I potential,v,;=2(d—1)/k?"*. The values
tion condition, of k in the sum are given bk=2#n/L, wheren is an
integer vector. For the NI wave function, the structure factor

at wave vecton is proportional to the probability that after
J' dkn(k)=1. @  we have displaced a filled state bywe are still in a filled
state:
As mentioned above, the Fermi surface is a subset of the 1
Bragg planes. FoN particles the occupied states comprise S—1-— S(k—K' — 10
the union of the firsN Brillouin zones[22]. The (N+1)th a N k<2k, ( D) 10

electron will go in the N+1)th zone, an area formed by
planes surrounding thé!" zone. Figure 1 shows the momen- where the sum is over occupied states and the average is over
tum distribution of 13 spinless fermions in 2D using TABC. twisted boundary conditions.

In 1D, TABC gives the exact momentum distribution be- ~ Shown in Fig. 4 is the convergence of the potential energy
cause the normalization condition determines everything. Iversus the number of particles using PBC and TABC. For all
higher dimensions the fermi surface is not perfectly circularvalues ofN and twists the potential energy of the finite sys-
(spherical as shown in Fig. 1. However, one can see thatem approaches that of the infinite systems from below.
n(k) is much closer to a disk than the momentum distribu-Twist averaging serves to make the decay more regular but
tion obtained with PBC. A perfect fermi surfa¢ro finite  does not reduce its overall magnitude that is determined by a
size correctionsin any dimension, can be obtained by allow- charge interacting with the correlation hole of its own image
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modynamic limit. The distortion of the fermi surfaces ob-
served in the lower panel of Fig. 1 is a consequence of using
the canonical ensemble.

The momentum distribution and hence the kinetic energy
will be exactly equal to their infinite system values. Other
properties may have finite size corrections; only the single
particle properties are guaranteed to be exact. We call this
procedure the twist average grand canonical enseffi#le

S 5D GCB.

TN With this procedure one does not have a fixed number of
particles since for a given twist and fermi wave vector, the
number of occupied states will vary. The fluctuations in the
number of particles is closely related to a famous problem in
; analytic number theory, “Gauss’s circle problem,” to deter-
10+ Ll R mine the number of lattice points inside a circle of afeas
100 1000 its radius tends to infinity23]. As Gauss posed the problem,

N the center of the circle was fixed on a lattice site while in

FIG. 4. Relative error in the evaluation of the potential energyTA'GCE the circle is placed randqml@lhe shifted _C'rde
for an electron gas using the Hartree-Fock wave functionNor problem. It has been show[24] that in 2D one obtains the
spinless electrons. The solid line shows TABC, the dashed lindollowing fluctuation in the particle number for TA-GCE:
PBC.
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in the nearby supercell. The smoother convergence obtained lim ([N—(Lkg)“/4m]°) e N2, (12
with TABC should allow for more accurate extrapolation to N
N—oo. Similar effects are expected for other two particle

guantities. . . .
Our numerical estimates for the convergence are shown in

Table I. Note that the Gauss circle problem differs from the
lll. GRAND CANONICAL ENSEMBLE convergence of the energy in the canonical ensemble since

. . the energy is the average second moment of the loWest
. The use of TA.BC n the.grand cano_nlcal ensen{ﬂ@_:E) goints, not the number of points in a circle.
gives the exact single particle occupations for NI particles, a

shown by Gros[16] within the Hubbard model. Suppose Thg pr.eceding discussion refers to N.I systems, however,
(a.N) is a label of the quantum states, both for the numbeFerm' liquid theory asserts that the low lying excited states of

of particles and for other quantum numbers such as the m@n interacting system are in one-to-one correspondence with

mentum and IeE,, (6) be the energy of this state. Then the tN€ NI states. Hence, as argued by Gras3 and Gammel
probability of a given state in the GCE is proportional to [15], TA-GCE is likely to reduce finite size effects substan-

exp{— BlE.n(6)—Nul} wherep is the chemical potential. In tially for interacting systems as well.

the ground state8— =, the occupied many-body state will For an interacting many-body system, one difficulty in
be the one minimizing,, \(#) — N . ThusN can depend on using the GCE is the need to optimize the wave function at
0. N each twist value; in particular to pick out which orbitals

cshould be occupied. For an isotropic system having a spheri-
cal fermi surface, the order of filling the states is simple. For
@ metal with a nonspherical Fermi surface, the usual proce-
dure is to determine the filling of single particle states ac-
cording to a mean field theory such as the Kohn-Sham
method in density functional theory. If one uses the same
procedure within QMC, the Fermi surface will be substan-
tially unchanged. Hence, it would be better to use that filling
which minimizesEy— Ng.
. . There are other problems in using the GCE for charged
l_k[ [nge Al =m 4 (1-ny)], (11)  systems in periodic boundary conditions. Usually the posi-
tive compensating charge, either a uniform background or a
fixed array of charged nuclei, is at a fixed density. But if the
so the probability of stat& being occupied is precisely the number of electrons fluctuates, the periodic cell can have a
fermi distribution law n,={exdB(e.—w)]+1} 1. As the net charge, which causes problems in calculating the long-
twist angle is varied over its range, each momentum state afinge potential. Although very promising, we do not con-
the infinite system occurs precisely once. Hence the averageider the TA-GCE method further in this paper. The follow-
occupation number is precisely what it would be in the thering examples are for the canonical ensemble.

We now show that for a NI system, twist averaged B
within the GCE give exact single particle properties; i.e.,
there are no finite size effects. Suppose the single particl
energy levels are,. Then the probability of occupying the
N stateseq, ... ,e, is exd—=p_,48&(6)—wl. In the occu-
pation numbem, basis, this probability distribution factor-
izes as
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1

within a few percent accuracy in the coupling consthnt
using only 54 fermions. Such accuracy within PBC would
require thousands of fermions because of the strong shell

0.8 effects.

V. ELECTRON GAS

s We now present results for the 3D electron gas as a test of

TABC on a correlated many-body continuum system. The
electron gas is a very important model in condensed matter
physics being the basis for the density functional theory
method of electronic structure computatiof80,31] The
phase diagram of the electron gas at low density is still not
resolved 29]. The wave functions we use are the most accu-
rate known for a continuum many-body system with opti-
mized two-body, three-body, and backflow terms. VMC and
DMC are QMC methods appropriate to zero temperature,
and Path Integral Monte Carl@IMC) to T>0. In this pa-
per, we will only discuss VMC and DMC. PIMC will be
discussed in future publications.

0.4

0.2

FIG. 5. Magnetization as a function df for the 3D Stoner In VMC, one assumes an analytic form for a trial function
model. Circles are the exact results, diamonds for 54 electrons wit ! y

PBC, squares for 54 electrons with TABC, and triangles fer200 ™(R) Wherestymbollzes the B coordinates. Then one
with TABC. The temperature was=0.224 Eg and a & grid of sampleé,\PT(R)| using a random walk7]. An upper bound

twist values was used. estimate to the exact ground state energy is the average of
the local energyE, (R)=Y1(R) 'H¥{(R) over the ran-
IV. THE STONER MODEL dom walk. An accurate trial wave function is obtained from

the NI wave function by multiplying with pair correlation

To test the utility of TABC for determining a phase tran- terms. The pair product or Slater-Jastr¢8d wave function
sition, we simulated the Stoner model, an analytically solv4g

able model[25,26] for strongly correlated fermions, arising

in the theory of itinerant magnetisf27]. The Stoner model _

differs from NI fermions by the addition of a contact repul- Vy(R)= D(Et(e'kiri)e*iz<j ulri), (14)

sive potential:2;-;g4(r;;). The energy is evaluated within

the mean fieldHartree-Fock approximation using the NI 50 can determine the correlation factgr) either with an
wave function. For a spin (1/2) system, the potential ene_rg%nalytic argument or by minimizing the energy and/or the
is E=Ey,;+gnn, . In 3D the energy at zero temperature in\ariance of an assumed form. We use a parameter-free ana-

the thermodynamic limit is lytic form so that the systematic size and twist effects are not
2 \5/3 masked by noise in the trial function itself. For the electron
E/N=\ (37%p) [(1+ )53+ (1— )53+ b(1- 2], gas an accurate analytic form fa(r) based on minimizing
0m? the energy within the random-phase approximafi®®| has

(13 as low an energy as those with optimized parameters. We
used optimized Ewald suni83] both for the potential and
where b=(5gp/6\)(3m%p) %3 and N=#2%2m. For b  for the correlation factor so as to have the correct long wave
<1.111 the system has an unpolarized ground state and fégngth behavior.
b>1.3228 the ground state is ferromagnetic. For intermedi- Figure 6 shows the convergence of the VMC energy ver-
ate couplings, the ground state has a partial spin polarizatiosus the number of particles within TABC and PBC. One can
at zero temperature, similar to the behavior suggestedee the smooth convergence to the thermodynamic limit that
[28,29 for the electron gas at low density. was found within the NI system is also evident within VMC
We performed a MC simulation of the 3D NI system, using the SJ wave function. We will discuss how to correct
within the occupation representation. The state variables ahe much larger deviations of the PBC energy in the next
the system consist of occupation numbépsth spin and section. The slow convergence of the TABC energy to the
wave vector and the twist angles. We make Monte Carlo limit is due to finite size effects of the potential energy, com-
moves consisting of flipping spins and moving the spatialputed with the Ewald summation method. This can be cor-
occupation while keeping the particle number and twistrected using various procedures including simply extrapola-
angle fixed. If the new state is not already occupied, theion in inverse powers ofN, or by using a modified
move was accepted with probability equal to expinteraction potentidll9,38. In addition to the Slater-Jastrow
{—Bleeul0)—ed(A)]}. Figure 5 shows the convergence of trial functions, we also have used optimized backflow-three-
magnetization distribution versus the number of fermionsbody functiongdBF3B) [9] that give a more accurate descrip-
We found that one could determine the phase transitiomion of the low-density electron ga$They pick up about
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N FIG. 7. Plot of the VMC energy versus the deviation of the NI
FIG. 6. Energy versus the number of electrons for the 3D elecenergy fromE,,. Each phase angle is plotted separately. Simula-
tron gas using SJ wave function. The circles and connecting line artons are forN=>54 unpolarized 3D electron gas ®&{=50. Since
TABC with 10° twist values. The filledA’s are using PBC. The the excitations are linearly related, Fermi liquid theory describes the
arrow shows the extrapolation to an infinite system made using thphase angle dependence. Upper points are the Slater-Jastrow wave
PBC calculations using E¢16). function, lower ones are done with the backflow-three-body trial
function. Effective masseshe inverse slopeare respectively 1 and
three-fourth of the remaining correlation enerfg] and  0.61 for the two trial functions.
break certain symmetries of the SJ wave functipns.

In the DMC method, one starts with a trial function and dynamic limit. Here we discuss how to app|y FLT when the
uses expftH) to project out the ground state using a branch-«excitation” is caused by the boundary conditions. For ex-
ing random walk. Fermi statistics pose a significant problemymple, we consider the momentum distribution shown in
to the projection method, since exact methods such as trafFig. 1. The change in the energy caused by the noncircular
sient estimate or release-node QMC suffer an exponentiajhape should be given by E(L5).
loss of efﬂCiency for Iarge numbers of partiCleS. For this We can ana|yze this dependence by Comparing the ener-
reason the approximate fixed-node method is normally usegjies of the noninteracting system within a given twist with
Using the fixed-node method, one obtains the best uppehe interacting system. This is done in Fig. 7 where we ig-
bound to the energy consistent with an assumed sign of thgore the effect of the last term of E(L5). One sees a linear
wave function. Both the FN method and the exact transienfe|ation between the two energies, confirming that for these
estimate can be generalized to treat comp_lex—valued trigkave functions, Fermi liquid theory is an appropriate de-
functions[34]. These methods are called the fixed-phase andcription. The inverse slope is proportional to the effective
released-phase QMC. We have tried both of these apmass of the quasiparticles. Then since the NI infinite energy

proaches using TABE35]. is known, this gives a way of determining the interacting
system energy in the thermodynamic limit.
VI. FERMI LIQUID THEORY AND TABC Previous calculations on the electron gas with PBC have

o ] used another application of FLT to correct for finite size
Fermi liquid theory(FLT) for metallic systems allows effects: the extrapolation meth§82,36,37. In this method,
both a method to extr_apolate to _the thermodynamic limit angyne calculates ground state energies for a sequence of par-
a way of understanding the twist dependence of the QMGjcle numbers, and determines the effective mass, potential

results. According to Landau, the low-lying excitations of ancorrection, and infinite system energy by fitting these ener-
interacting system are in close relation to those of the Nyjes to the relation,

system:

— * —v
E=E0+f dkénke(k)+f dkdk’ S f(k k') + -+, En= Bt (m/m) ATy +eN (16
(15
whereATy is the deviation of the NI kinetic energy from the
where én, is the deviation of the quasiparticle occupation infinite system and is the exponent for the potential energy
from the ground state, are(k) andf(k,k’) are one and two given in Table |. Figure 6 shows that the estimate of the
quasiparticle energy functionals. For simplicity we have notinfinite system energy obtained using TABC and the ex-
indicated dependence on spin. The energy functionals areapolation method agree within errors. This is reassuring,
usually further expanded about the fermi surface in sphericdbut expected, since both are based on FLT. The TABC en-
harmonics and applied to calculate properties in the thermcergies smoothly converge to the limit, even without FLT
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FIG. 8. Energy versus spin polarization for the 3D electron gas ¢
atr¢=50 computed with variational Monte Carlo with the Slater-
Jastrow trial function using PBQdotted ling and TABC (solid FIG. 9. Energy versus spin polarization for the 3D electron gas

line). In the upper panel, no FLT correction has been made, so thgt r =50 within TABC. The solid line is using DMC with the
PBC results foN=54 (A) andN=108 () differ by more thanthe  BF3B trial function(grid of 10® twist values, the dotted line BF3B-
polarization energy. In the lower panel, the PBC results have beegymc, and the dashed line SJ-VMC. The is N=54, [ N=108.

corrected as in E¢16) with m/m* = 1.6, the value chosen to make The VMC calculations are done by sampling the twist values.
the energy at=1 coincide. No correction has been applied to the

TABC results in either panel. The twist values are sampled as decan be used directly without correction and agree almost
scribed in the Appendix. within error bars for systems of 54 and 108 particles, while
the PBC has visible systematic effects even for 108 particles.
corrections. This smoothness allows one to determine thg this example, the size effect of the potential energy is
next order correction to the potential contribution, a term ofsmall because the pair correlation function is almost inde-
orderN 2. pendent of polarization and thus cancels out of the polariza-
When it can be used, the extrapolation method gives pretion energy.
cise results in the thermodynamic limit. However, there are In Fig. 9 shows how the results of the polarization energy
significant advantages to the TABC method. The fittingdepends on the quality of wave function and the QMC tech-
method requires well converged runs for at least three differnique, whether VMC or DMC. One sees that the good results
ent values oN. This can be difficult if the unit cell is large. of TABC are not due to the choice of trial function or QMC
For example, suppose one is doing a simulation of bcc hytechnique, but are quite general.
drogen where one is limited to values Wfequal to X3 Within TABC, there is the possibility of obtaining results
={2,16,54,128,26. . .}. The last three values are reason-close to the thermodynamic limit, using only quantities com-
able to simulate. But if the unit cell contained ten electronsputed for a single value df,, at least as concerns the finite
for example, the extrapolation usiq$40,1280,2500elec- size effects due to the kinetic energy. Other methods
trons would be very time consuming. Even more problemati¢19,38,17 are needed to make the potential correction. Use
is to use the extrapolation procedure on a liquid metal. On@f TABC should allow these correction methods to be more
would have to perform aab initio local-density approxima- accurate, because the structure factor and pair correlation
tion simulation of several different sizes of the liquid. Therefunction have more regular size effects as demonstrated in
is also the problem that convergence and trial functions foFig. 4.
large N may be inconsistent with those used for smaNer
For this reason, one typically determineém* ande within ~ VIl. OTHER PROCEDURES USING TWISTED BOUNDARY
VMC and then applies the extrapolation using the DMC en- CONDITIONS
ergies. This procedure will have additional systematic error.
There are other problems with extrapolation that we illus-
trate with the example of spin polarization. For example, As an alternative to TABC, one can let the twist angle be
suppose we have a partially spin polarized system with a dynamical variable(DTBC) and be determined self-
spin up particles and, spin down particles. In Fig. 8 are consistently. By dynamical is meant that the probability of a
shown comparison of computing the polarization energy agiven twist is proportional to its free energy:
r=50 with both TABC and PBC. The upper panel shows

the energy without FLT correction, the bottom panel as- P(o —BF()]= —BE (6 1
sumes a best fit effective mass for PBC. The TABC energies (6)exil — BF(6)] ; exil -~ BEL(O)], (17

A. Dynamical twist method
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whereE () is the energy of the state with twist . This  properties correctly, rather than only a subset of properties.
distribution of twist angles could be attained within QMC by The use of special points will be better than using PBC but
enforcing detailed balance on moves of the twist angle durfor correlated systems TABC will lead to higher accuracy.
ing a random walk. The expectation of an operadawill be  As we discuss in the Appendix, except for the problem of
determining the phase dependence of the trial wave function,
TABC does not impose an excessive computational burden,
and is to be preferred over using only special twist values for
strongly correlated metallic systems.

At zero temperature, a special set of twist angles, those that

have the lowest energy, will be singled out, so that the VIIl. CONCLUSIONS

ground state energy will bEptgc=minygE(6)). Then for . N _ . -
noninteracting fermionsEprac=<E., in contrast to the Note that there is a significant difference in the efficiency

TABC that gives an upper bound for NI particles. In general /" stochastidQMC) methods versus explicit methods such
the dynamical energyEpr converges as slowly to the ther- &S density functional theory_ or exact dlagonallzatpn in re-
modynamic limit as does the PBC energy: the exponents an@@rds to the TABC. In explicit methods, computations for
fluctuations are the same. The dynamical twist method is ndtach twist require an equal amount of computer time so that
an improvement over PBC for approaching the thermody2veraging oveNg twist values will take roughlfNg times
namic limit for a metallic system at temperatures much loweS 10ng as a single twist value. One can use inversion and
than the fermi temperatures. rotational symmetry to reduce this, so that for a grid of 16

Although the dynamic twist method is not satisfactory for Points with cubic symmtery, TABC will require only 165
a Fermi liquid at low temperatures, for certain lattice modelstwists. On the other hand, in QMC, all the twists reduce the
such as an antiferromagnetic Heisenberg model, it can be atistical error of the average. The twists are simply three
definite improvement over PBC and TABC. This is becausemore degrees of freedom on top of thil goordinate vari- -
one can only establish a defect-freéelNerdering if the unit ~ ables to be averaged over. However, one must also take into
cell is commensurate with the boundary conditions. For théiccount startup costs associated with each twist, such as re-
Heisenberg model on a triangular lattice, the ground state ha&Ptimizing the trial wave function or equilibrating the ran-

a given twist per lattice spacing. Using DTBC allows one todom walk. Neglecting these startup costs, there is no loss of
establish this twist value automatically, without imposing it Statistical efficiency in performing TABC so that the gain in
in advance. This is equivalent to the classical variable celfeducing the systematic error is free. This is examined in
method where the dimensions and aspect ratio of the supefaore detail in the Appendix. . _

cell of a crystal become dynamical variables, so that one can There are many examples where twist averaging can ef-
determine the most stable crystal lattice structig@] in-  fect considerable improvement over the use of PBC. We
stead of examining each crystal structure explicitly. have been able to perform quite accurate calculations of the
polarization energy of the 2D and 3D electron ¢a5] and

of liquid 3He using backflow wave functions with on the
order of 100 fermions. As pointed out by Ortit al. [29]

For each value oN there exists a set of twist values for calculations on such small systems in PBC have considerable
whichE(#)=E.,. One can determine these special twist val-systematic errors. Another related property that could be
ues for the NI system and then perform simulations at onlycomputed more accurately with TABC is the estimation of
one of those twist values for the interacting system, therebyermi liquid parameters by calculating particle-hole excita-
getting rid of single particle size effects. This is similar to thetion [40]. TABC can reduce the shell effects that caused
specialk point method of BalderescHill] for insulators much difficulty in that calculation. A related example is in
where a singlek point is determined by symmetry, thus al- computation of the charge response of the electron 4l
lowing one to replace an integral over the Brillouin zonewhere a considerable effort was made to cancel out effects of
with evaluation at a singl& point. This method was used the PBC. We are presently studying the electron gas confined
within QMC by Rajagopakt al. [18] for solid germanium.  to a slab[42] to determine the work function and surface

The speciak-point method is advantagous if one evalu- energy of a metallic surface. The filled states consist of a set
ates an integral over a function that varies smoothly throughef disks, each of which will have a certain occupation num-
out the Brillouin zone and, as a result, is well approximatedber. By doing twist averaging we have shown reduced size
its lowest fourier components. This is appropriate for a filledeffects with respect to PBC.
band but not certain to work for a metal because the occu- Experimental systems are at a nonzero temperature. For
pation number is discontinuous at the Fermi surface. AlsoNI systems one occupies the states with probability given by
the “special point” cannot be specified in advance by sym-the Fermi-Dirac distribution. Because the Fermi function at
metry because the location of the fermi surface can changeonzero temperature is a continuous function, the conver-
between the interacting and noninteracting wave functionsgence to the thermodynamic limit will be much faster, even
In addition, it is not expected that the same twist valueswvith PBC. However in practice, one is interested in elec-
appropriate for the NI energy, will be appropriate for othertronic systems close to the ground state; the relevant quantity
guantities such as the potential energy, or spin susceptibilitis the thermal deBroglie wave length of the electron:
It is better to have a method that can give a spectrum ofi/(mek,T)?~32 A atT=300 K. Because this length is

1
(Aotec=7 f doe PFO(W ,(0)|A(0)[W,(0)). (18)

B. Special points
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usually larger than the simulation cell in QMC, the localiza- As we discuss below, all three methods are satisfactory; there
tion of the density matrix does not help at reducing fermionis no fundamental difference in efficiency. The choice of
finite size at these temperatures. Using a nonzero temperahether to sample or use a grid is primarily based on con-
ture just to achieve faster convergence to the thermodynamignience and programming considerations and only secondly
limit is not practically useful. However, TABC is extendable on efficiency. We note that all methods are easy to parallel-
to finite temperature PIMC simulations using the fixed-phaseéZ€-
method[34] and will reduce size effects at low temperature.
The TABC method is likely to be valuable for all QMC
calculations in systems with a fermi surface. The calculations First, we must address the question of which grid and
on the electron gas demonstrate that even though it may beiategration rule to use. Since all properties are periodic with
little slower per step of the random walk, it is better to dorespect to the twist, the grid should be a Bravais lattice with
TABC than a larger system with periodic boundary condi-equally weighted points. One must keep in mind that the
tions because TABC converges much faster to the thermgaroperties, though periodic and continuous, have discontinu-
dynamic limit. The overall efficiency of any numerical ous derivatives at the Bragg planes. Unless grid points can be
method is ultimately judged by the computer time needed tdocated on these planéwhich is difficult to achieve in prac-
reduce systematic and statistical error below a given valudice), the integration error will go asGocAezocNgZ’D where
TABC is effective in reducing the systematic errors and thus\ is the number of grid points. Numerically, we find that
improve the overall efficiency. 16° grids are needed for an accuracy of $Qsee Table)l
This slowly convergent, systematic error is the main draw-
back of the grid integration method. For an insulator with a
large enough gap to excitations, properties would be analytic
This research was supported by NSF DMR-98-02373 andor all 4 since the occupation of single particle states will not
the Department of Physics at the University of lllinois change as a function of twist angle and the grid error would
Urbana-Champaign. We acknowledge useful discussionsonverge exponentially fast.
with R. M. Martin and G. Bauer. Computational resources Once a grid is chosen, one can use symmgrg., inver-
were provided by the NCSA. We thank H. Edelsbrunner forsion and rotation through 90°) to reduce the number of grid

1. Grid averaging
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references concerning Gauss’s circle problem. points and give them a weighiv{ with gi’\':GlWi: 1) propor-
tional to their multiplicity. It is easy to show that the optimal
APPENDIX amount of computer time at each grid point should be chosen

proportional tow; /£(6,)2 where the MC efficiency a#, is

Here we discuss numerical details of implementing twistdefined as'(¢;) = 1/{vaf E(6;)]X cpu timé. We have found
averaged boundary conditions. Many of the changes causesh the calculations of the electron gas described earlier, that
by twisted boundary conditions arise from the need to havehis efficiency is independent of the twist angle except at the
complex wave functions. Although the wave function andspecial PBC and ABC points where real functions can be
energies in special cases are r@ay)., PBC and ABE com-  ysed. Even though we have symmetry and can integrate over
plex functions are needed for general twist angles. There is & reduced set of twist values, we must integrate longer at
factor of roughly 2.5 in additional CPU time to do the arith- high multiplicity points since they contribute more to the
metic to evaluate the determinant and its derivatives. Thgverage_ Hence, the symmetry does not significantly reduce
actual impact on the total speed is smaller than this becausge needed amount of CPU time.
the calculations of two-particle quantities such as the poten- Since the calculations at different twist angles are uncor-
tial energy and correlation factors are still done with realrelated, one can easily show that the efficiency of calculating

arithmetic; the actual penalty of working with nonzero twist the twist averaged energy is given by the relation,
depends on the number of particles and the type of trial wave

function. However, as we have discussed earlier, even a fac- 1 1
tor of 2.5 in computer time is worthwhile if one is able to { 221 Wi T 6;). (A1)
approach the thermodynamic limit quicker, since QMC o

methods scale a” with 1<wv=<4 or, in the case of exact Hence, the overall efficiency of the TABC energy is an av-
fermion methods, as exp). If TABC saves going to larger erage of the efficiencies of the individual twist calculations
N, the additional time doing complex arithmetic is well jus- and is higher than that of the slowest converging twist angle.

Ng

tified. The additional averaging over twist angle costs nothing in
There are several alternatives for performing the twist avefficiency.
eraging: This discussion did not take into consideration start-up

(1) Evaluate as;w;E; using a grid defined by points; costs at each twist angle, such as the need to reoptimize the
with weightsw; (with ;w;=1) in the region specified by trial wave function at a new twist value, and equilibration
Eq. (2). costs. By equilibration, we mean that whenever the twist

(2) Sample the twist during the QMC random walk and angle is changed, enough random walk steps must be taken
take the average. so that the configurations are sampled from the new twist

(3) A combination of the two approaches: working on avalue. During this equilibration, averages cannot be taken.
grid that is augmented with random displacements. These computational costs cause a decrease of efficiency by
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the factor (useful time/(total time and are the main extra “bandwidth” defined in Eq.(5). If one spends too long at a
computational penalty of the TABC method within QMC. given twist angle, one is not adequately exploring the twist
Since the start-up time will scale with the number of neededingle degree of freedom. This gives a definite rule for how
grid points, using the above estimate of the systematic errogften the twist angle should be updated: the time spent at a
e, We find that the needed start-up time scaless@8”?  given twist angle should be much longer than the equilibra-
while the time to achieve equivalent statistical error scales agon time but less than the time needed to get the error in the
e 2. Hence, for very precise calculations<0) andD<4,  energy at that twist value equal to the “bandwidth” of the
start-up costs can be neglected. Many QMC calculations argystem. If it is not possible to achieve this relation, the grid
dominated by the optimization of parameters in the trialscheme should be used.
wave function, so the start-up times of TABC will be pro-  jith either method, one can achieve more accurate re-
hibitive. However, it should be possible to reduce thesgyis and less systematic error by correcting the results using
start-up costs by using analytic properties of the trial func-ggm; jiquid theory. That is, using the twist values and cor-
tion with respect to the twist. responding energies one can estimate the effective mass and
twist averaged energy using a least squares fit as discussed in
Sec. VI. However, there will be additional statistical and
Now consider the second alternative, where the twissystematic error resulting from the fit.
angle is sampled during the random walk. With this method, Finally, one can combine the positive features of two
we do not have to decide on a grid in advance and there is nmethods using antithetic sampling: use a relatively coarse
systematic error of a finite grid. Again, one must equilibrategrid, but then randomly displace the origin of the grid a
the configurations after the change of twist angle and comaumber of times during the run, so as to eliminate the sys-
puter time used in that process does not reduce the variantematic error of the grid and estimate the true errors. Since
of the average. the twist angle will change by a small amount, set-up time
There is an additional increase in variance caused by sanand equilibration time can be reduced. A related approach is
pling the twist angle. One can show that the efficiency deto sample the twist angle using a quasirandom number se-
creases by a factofl + Eé\,\,/vr:lr(Eg)]‘l whereEgy is the  quence so as to reduce the dispersion of the twist values.
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