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Three-dimensional hybrid solitary waves: Transverse vortex solitons stabilized by longitudinal
parametric solitary waves
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We show that the parametric process in quadratic nonlinear media supports three-dimdB&iphgbrid
solitary wave solution in which a transverse vortex solitons embedded in an infinite plane-wave background is
sustained by a longitudinal parametric solitary wave. The structure of the parametric solitary wave results from
the interplay of the quadratic nonlinearity and the temporal walKidaf, the velocity mismatohbetween the
interacting waves. The 3D hybrid solitary wave proved to be robust with respect to modulational instability, a
feature that contrasts with previous studies on quadratic vortex solitons that revealed them to be always
modulationally unstable. We show that the mechanism of stabilization of the vortex background lies on the
temporal walkoff between the interacting waves that is able to drift the modulational instability out of the
temporally localized structure that constitutes the 3D hybrid solitary wave.
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[. INTRODUCTION walkoff can drift the modulational instability of the vortex
background out of the beam itself. This mechanism of self-

Vortices or screw phase dislocations are ubiquitous entiuenching of the parametric modulational instability allowed
ties encountered in many branches of phy§idsThey con-  for the observation of the quadratic vortex soliton when it is
stitute topological phase singularities of a complex field inembedded in dinite beam backgroungB].
which the field intensity vanishes at the singular point while [N the present paper, we address the problem of the gen-
the phase changes byz21 (m being an integer, the vortex grz_ati.on of stable quadratic vortex soIitons_embeddeq in an
charge along any closed loop around the zero intensity'nf'n'te plane_-v.vave. background from a dlffgrent point of
point. Vortices have been widely investigated in optics inVi€W- The original idea, recently suggested in R& that

several settings such as, e.g., in optical cavities or speckllg_'e traqsvelrszeDspatlfll WaI|I$t off is gblde dt?j s_ta&l]tzebthektwo-
fields. When an optical vortex is generated in a linear bul imensional(2D) vortex soliton embedded in finite back-

medium, it expands during the propagation due to the effeépround, may be extended to 3D in order to stabilize vortex

f diffraction. However the expansion of the vortex cor nsolitons embedded in aimfinite background. This may be
0 action. However the expansion of the VOTex core can, - ;q, e by consideringtamporalwalkoff along the longi-
be compensated in a nonlinear defocusing medium owing t

flidinal axis of propagation instead obpatialwalkoff in the
the nonlinearity-induced change of the refractive index propag P

_ - _ ¢ transverse plane of the optical beam, as suggested if&ef.
thereby creating a stationary structure, iaa,optical vortex Indeed, it is well known that a strong temporal walkoff is

soliton[2,3]. . o . responsible for the spontaneous localization of the optical
Optical vortex solitons have been extensively investigatedie|ds along the longitudinal axis of propagation. This longi-
from both the theoretical and experimental viewpoints in cu-ydinal localization allows for the modulational instability to
bic nonlinear media where they are known as stable twodrift out of the temporally localized structure before it has
dimensional structurel2,3]. In these last few years, a con- time to develop. Since the drift of the modulational instabil-
siderable effort has been realized to generalize the opticaly takes place along the longitudinal axis of propagation,
vortex solitons togquadratic nonlinear mediaThe quadratic  this mechanism of self-stabilization occurs for any transverse
interaction is interesting since it provides an efficient way ofprofile of the field envelopes, in particular, for the transverse
vortex transformation by mixing waves of different frequen- vortex profile embedded in an infinite plane-wave back-
cies, which has been recently investigated experimentallground.
[4]. However, straightforward extension of the concept of Beside this self-stabilization mechanism, we show that,
vortex soliton to the case of quadratic nonlinearities fails.quite remarkably, the longitudinal localization of the inter-
Indeed, it has been shown theoretically that all finite-acting fields results in the formation ofparametric solitary
amplitude plane waves suffer from parametric modulationalvave[9]. This type of solitary wave results from an exact
instability [5]. As a result, no stable vortex solitons have balance between the parametric nonlinear process and the
been found to exist in a pure quadratic medium. Most revelocity mismatch between the interacting waves, i.e., the
cently, it has been shown that a weak defocusing cubic nortemporal walk off. The parametric solitary waves have been
linearity can eliminate the parametric modulational instabil-extensively investigated in the pure 1D case in various con-
ity of plane waves, leading to a stabilization of the vortextexts of nonlinear optic§10,11], in particular, in quadratic
soliton [6,7]. Another mechanism of stabilization has beennonlinear medig12—14. In the multidimensional case of
recently proposed: In the situation where the background oihterest here, the longitudinal parametric solitary wave is
the vortex soliton “is not too large8], atransverse spatial coupled to the transverse vortex soliton to form al3brid
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solitary wave In this way, the proposed 3D solitary wave 1.2
generalizes the previously reported 2D hybrid solitary wave
[15] by including in the solitary wave structure the transverse 1
vortex soliton owing to an additional transverse dimension. n
The main issue lies on the robustness of the 3D hybrid soli- 80-8
tary wave with respect to the modulational instability of the S
transverse vortex background. We show that this robustness %_0-6
results from the self-stabilization mechanism that originates £
in the temporal walkoff between the fields that constitute the <04
3D hybrid solitary wave.
Both the 3D hybrid solitary wave solution and the asso- 0.2
ciated process of self-stabilization of the plane-wave vortex 0 )
background constitute the subject of the present article. The 0 10 15
3D solitary wave proposed here is also relevant to the re- z [Al

l(:entlyl rehportedl g OmF;OSIte ;{e:;tor SO“}()nsi.tcarrytlr?gt a top]?- FIG. 1. Typical envelopes profiles of the parametric solitary
ogical E_;lrge[ ]_or 0 spatiotemporal solitons that aré ot e sojytion in the pure one-dimensional case. Parameterg are
particular interest in quadratic nonlinear media where recent o 11=0.3, 1,=0.6, uz=0 (amplitudes are given in units of

experiments have been performdd]. eo).

Il. GOVERNING EQUATIONS choice of this particular reference frame may appear artificial

We consider the usual three-wave interaction model tha‘?t this point, however, the reason for this choice will become

X . ; , . _Clear later. Note that, without loss of generality, we will as-
govern the spatiotemporal evolution of optical fields in a

. . . sume in the following that;<v,3. For convenience, we
nonlinear quadratic crystal. The evolution of the slowly vary- . : Y ) ' -
) . also write Eqs(1) in a normalized form: the field amplitudes
ing envelopesy; of these fields of frequency; and wave

numberk; obey the coupled partial differential equations uj, the t,'m(,at M the damplng_ratesq _and the spatial coordi-
nates k',y’,z") are normalized with respect to the pump

amplitudeey at the input of the crystal and with respect to

du;  dug T, e o - :
— +v— +y U= 0oqU3us +ip Viug, (1a) the charactelnstlc evolution tlme; of the paramet.rlc_lnterac.tlon
at Jz T0=(01€09) . The corresponding characteristic interaction
length then reads\ = §7y. In dimensionless units, Eqél)
du, du, . 2 then take the following form
—+l}2—+)/2U2:0'2U3U1 +|p2VLU2, (lb)
at’ 9z’ A A
R A = AAS ik V2A 2
ot 57 MAT AR TIKLV A, (29
Ms |y sy +ipaV2 (10
— +tvz— + y3Uz3= —o3UsU  +i us, C
at’ 3{92, 343 su2UyTipgV  Us oA, A, o ,
7"‘ E"‘MzAZ:rzAgAl +|K2VLA2, (Zb)
where V2 =?/gx'2+%/3y'?, x’ andy’ being the trans-
verse spatial coordinates. For definiteness we walli, ,us 0A;  9As
the signal, idler, and pump waves, respectively.are the WJr E+M3A3:_T3A2A1+iK3VfA3y (20)

group velocities of the three waves along the longitudirial

axis andy; are their attenuation coefficients. The nonlinearyhere the variables in real units are related to the dimension-

coefficients ares;j=2mdv;/\in; wheren; is the refractive |ess variables through the transformation=Ae,, t’

index at frequency»; andd is the effective nonlinear sus- —t-  (x'\y’,z")=(x,y,2) 879, vi=pui/7. In these units,

ceptibility. The effect of diffraction is taken into account in {he normalized diffraction coefficients in Eq&) are «;

Egs. (1) through the parameterg;=pjv;, wherep;=1/%; /%7, while the normalized nonlinear susceptibility is

are the diffraction coefficients. . ri=oiloy (i=2,3). In the following, we will assume for
Since our aim here is to study the !nfluence of the tempo‘simplicity thatrs=2r,=2 andx= k,= ko= 2k3. As will be

ral walk off on the transverse dynamics of the vortex struc-gjscyssed in Sec. V, these assumptions are consistent with

ture, we will consider for the sake of simplicity that there is ;o 5istic experimental configurations.

a walk off only between the signal and the pump-idler fields,

i.e., we assume that the pump and idler waves propagate with

the same group velocity,=wv3. This assumption allows us

to define a unique parametée (v, 3—v4)/2 that represents In a recent work we investigated Eq&) in the pure

the amount of walk off between the interacting waves. one-dimensional casex(=0) and found a family of para-
Owing to this assumption, we now write Eq4) in the  metric solitary wave solutiongl3] whose typical envelopes

reference frame traveling at the average group veloaity ( profilesA; are illustrated in Fig. 1. The longitudinal confine-

+v,2/2 of the signal and the comoving pump and idlerment of the down-converted signal and idler fields results

waves, we thus define the new varialdle=z' —6t’. The  from the interplay of the parametric amplification from the

. SYMMETRY CONSIDERATIONS
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(b) vents the vortex structure to be conserved during the para-
metric amplification.

o o
w »

IV. 3D SOLITARY WAVE GENERATION

o ¢

Amplitude

These simple considerations on the symmetries of the
parametric process indicate that the nondegenerate configu-
ration is essential in order to investigate a 3D hybrid solitary
X wave in which a transverse vortex soliton is sustained by the

FIG. 2. Typical evolution, after few interactions times=4), of Iong'ltu?mal parametric solitary wave. Indeed, meg 'to the
the parametric amplification from a plane-wave pump of an initialPArticular symmetry of the nondegenerate configuration, we
vortex profile: the nondegenerate configuration of the parametrié@Y anticipate that the parametric growth of the vortex pro-

process preserves the vortex struci@ewhereas in the degenerate fil€ would be preserved during the amplification and would
configuration, the initial vortex evolves to a stripe pattésh form a vortex soliton if it could be stabilized through a mu-

tual compensation of diffraction and nonlinearity. Morever,

continuous pump and the velocity mismatch between the inwe may expect that the temporal walkoff, which is inherent
teracting wavesi.e., the temporal walkoff We investigate to the longitudinal parametric solitary wave, would permit
here a 3D hybrid structure in which the longitudinal parametthe modulational instability of the vortex background to drift
ric solitary wave sustains a transverse vortex soliton in theut of the temporally localized structure before it has time to
transverse planex(y) [«;#0 in Egs.(2)]. In this respect, let develop. In this regard, the longitudinal parametric solitary
us make some preliminary remarks on the simpler problenwave would play an essential role in the mechanism of sta-
of the parametric amplification of a vortex structure from abilization of the plane-wave vortex background. This impor-
plane-wave pump. tant aspect as regards the vortex stability will be discussed in

An important aspect to point out is that the plane-wavedetails in the next sectiofSec. \). Before considering the
pump can only sustain a vortex structure when the paramestability problem, let us discuss first the existence of the 3D
ric process takes place in t®ndegenerate configuration hybrid solitary wave.
This may be easily seen by invoking some simple symme- To investigate numerically the existence and spontaneous
tries considerations. Indeed, one can easily verify that Eqdormation of the 3D hybrid solitary wave, we consider the
(2) are invariant under the transformatiomA,(A,,A;)  Pparametric amplification of a signal field that exhibits a vor-
—(Arexdio]Aexd —i¢],As), Where is an arbitrary con-  tex structure in its transverse profile in the ) plane and
stant phase. Owing to this particular symmetry associatethat is localized along the longitudinalaxis. Since we are
with the continuous variables, we may anticipate that the looking for a solitary wave that results from the energy trans-
vortex structure of the down-converted fields , is pre- fer from the pump to the down-converted fields, we have to
served when the amplification process is driven by a planedeglect the loss of the pump wave. Settjng=0 is indeed
wave pumpAz=cte [1]. Conversely, when the parametric the only way to keep constant the energy transfer from the
process takes place in theéegenerateconfiguration (v, pump to the signal so as to generate a stationnary field struc-
=w,,A;=A,), the previous continuous symmetry reducesture. This is a usual approximation for parametric solitary
to the following discrete symmetryAG,As)—(—A;,Az) waves[11-15. Note however that in the presence of pump
and we may expect that the vortex structure of the signaloss (u3#0), the parametric solitary wave still exists and
beamA, is no longer preserved during the amplification pro-Simply undergoes adiabatic reshaping during propagation to
cess[1]. adapt its profile to the local value of the exponentially de-

We checked these predictions by the numerical simulatio§r€asing pump amplitude.
of Egs. (2) where we neglected for simplicity the temporal ~ With this asumption, we solved Eq&) numerically by
walkoff between the interacting waves. Starting from an ini-extending to three dimensions the numerical scheme outlined
tial vortex profile[A;(r,6,t=0)= e tanh(Ar)exp(6), (r,6) in Ref. [18]. We considered a cubic grid of 8464X64
being the polar coordinates of the,{) plane,e andA being ~ Points, with a window size ofL=16(x=[-8,8],y=
constanty we see in Fig. @) that the nondegenerate para- [ —8,8],2=[0,16]). In this example the damping parameters
metric interaction preserves the vortex structure during thére ©1=0.3, u>=0.6 and the diffraction parameter is=6
parametric amplification. Conversely, in the degenerate conx 10 % As the initial condition int=0, we took a plane
figuration, the initial vortex structure rapidly evolves to awave for the pumpAs(x,y,z,t=0)=1 and a zero field for
stripe patterr{Fig. 2(b)] that is subsequently preserved dur- the idler waveA,(x,y,z,t=0)=0. For the signal, we con-
ing the amplification owing to the specific symmetry of the sidered a transverse vortex profile with topological charge
degenerate parametric process. Note that the vortex-to-strigg=1 that is bounded along the longitudinal axis
evolution is a simple consequence of the phase sensitive n&4(r,6,z,t=0)=etanhAr)exp(6)z(L—2) where €=0.05
ture of the degenerate interaction that results in the amplifiand A=0.3. We solved Eq92) numerically to get the evo-
cation of the real part of the signal amplitudg to the det- lution of the fieldsA(x,y,z,t) at any timet in the reference
riment of its imaginary partwhen the initial pump amplitude frame of the signal wave defined by the variables=¢
As=cteis assumed to be realThen, as a result the particu- +t,7=t). A typical example is shown in Figs. 3 and 4 that
lar symmetry of the degenerate parametric interaction preillustrate the time evolution of the signal and pump intensi-

y
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FIG. 5. Typical longitudinal profile of the 3D hybrid solitary
wave along the axis: the amplitudeA;| are plotted along the line
0 8 (x=5,y=5). Parameters are the same as in FigaBplitudes are
y [A] given in units ofey).
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FIG. 3. 3D hybrid solitary wave generation: Evolution of the @long the longitudinal axig in the form of the parametric
signal () and pump(b) amplitudes|A, 4 (in the signal reference solitary wave. Conversely, in the transverse dimensions, the
frame, é=z+t,7=t) along the longitudinalz) and transverse¢y) down-converted fields evolve after a transient to a vortex
axes in the plang=0. After a transientt(>40), the optical fields soliton whose transverse stationary profile results from the

self-structurate in the form of a steady structure that propagatesterplay of diffraction and nonlinearity. Figure 6 illustrates
uniformly along the longitudinalz axis. Parameters are=6 two typical transverse profiles of the signal field in the
X 1072, 1;=0.3, u,=0.6 and the window size is=16A. asymptotic regime of the hybrid solitary wave. As we previ-
ously expectedFig. 2), owing to its nondegenerate configu-
ties |A; 4. Figure 3 represents the evolution of the ampli-ration, the parametric amplification preserves the vortex
tudes|A, 4 in the planex=0, which includes the line of the structure in the transverse dimension. More precisely, ac-
vortex core where the signal field vanishés(x=0y  cording to the particular phase symmetry of the nondegener-
=0,z,t=0)=0. Figure 4 represents the amplitudés J in  ate configuration, the idler vortex has a change — 1 that
the proximity of the vortex core in the plaxe=1. Note that s the opposite of that of the signal vortex that was imposed
the same results are obtained by plotting the signal and pumip the initial condition m=1). Note that the vortex back-
intensities in the planeg=0 andy=1, respectively, which ground of the signal and idler modes exhibits a rather com-
confirms that the generated three-dimensional structure preylicate profile that is related to the envelope reshaping in-
sents a circular symmetry in the transverse plang)( duced by the parametric solitary wave along the longitudinal
After a complex transientt{40), the three interacting axisz Indeed, as shown in Fig(l6), the amplitude variation
waves self-organize in the form of the anticipated 3D hybridat the edge of the vortex core is no longer monotonic but
solitary wave that is characterized by a parametric solitaryather displays a ring shaped hump, a feature terhed
wave along the longitudina axis and a vortex soliton in the vortexin the context of the parametric vortex solitorg.
transversex,y) plane. Figure 5 shows a typical longitudinal ~ We may notice that, as expected, the pump wave does not
profile of the three interacting fields in the asymptotic regimedisplay a vortex structure in the transverse plargy) in
of the hybrid solitary wavet(=45). As evidenced by com- contrast with the signal and idler componeffsy. 7(a)]. In
paring Figs. 5 and 1, the three envelopes self-structuratthis respect, the vortex solitons considered here are quite
different from those considered in Réf]. Here, the prop-

(@) (b)

16 (b)
(0] (0] 1
E8 g g
=o. =05
Q. [= %
g g
0 0 3 i W
-8 0 8 -8 0 8 S ~
YAl YAl y X y X
FIG. 4. Same as in Fig. 3, except that the sig@aland pump FIG. 6. Typical transverse signal profiles of the 3D hybrid soli-
(b) amplitudes|A, 4 are plotted in the plan&=1 that does not tary wave att=45: the amplitudgA,| is plotted in the planeg
include the vortex core located along the line0,y=0). Param- =6 (a) and z=7 (b). Parameters are the same as in Fig. 3, the
eters are the same as in Fig. 3, the window sizie=is16A. window size isL=16A.
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(b) signal vanishes appears through a tubular shape in Hiy. 8

: where the isosurface is given g&,;|=0.3. The double-leaf
shape that displays the signal in FigbBmerely reflects the
localization of the signal amplitud@.e., nonmonotonous
variation along the longitudinak axis. Conversely, the 3D-
view of the pump fieldFig. 8(c)] exhibits a single-leaf shape
because of the monotonous decreasing of the pump ampli-
tude|As| along thez axis (see Fig. 5. Indeed, owing to the
X y X y parametric process, the plane-wave pump transfers its energy
in the whole 3D space except in the proximity of the line of
the vortex core where the down-converted fields are com-
pelled to remain small, which prevents the depletion of the
pump. This results in the formation of a tubular shape along
the line of the vortex core in the 3D view of the pump field
Fig. 8(c)]. Longitudinal and transverse cross sections of the
hree-dimensional view of the pump field are shown in Figs.
s7(a) and 7b).

ol

Amplitude

M

=
i | '

'i: ”I\I\]

Amplitude
o

o

_

FIG. 7. Typical transvers@) and longitudinalb) pump profiles
of the 3D hybrid solitary wave at=80: the amplitudelA;| is
plotted in the planeg=7 (a) andx=0 (b). Parameters are the same
as in Fig. 3, the window size is=16A.

erty of the transverse vortex exhibited by the signal and idIe{
fields is closer to a topologicghase defecas described in
the pioneering work on optical vortex structures in laser ; . :
systems[19]. Indeed, in lasers, the nonlinear system is L€t us finally remark that the hybrid solitary wave does
driven far from equilibrium by an external field. Therefore, N0t Propagate with the signal group velocity. Indeed, if
the analogy between the laser vortices and the 3D hybrigiS was the case, the hybrid solitary wave would not move
solitary wave reported here can be viewed as follows: Thé the S|g_nal reference _frame and the numerical _S|mulat|on
pump wave plays the role of the external field for the signaivould evidence a stationary structure at any time. Con-
and idler modes, which see an incoming pump that is conversely, Fig. 3 |IIl_Jstrafces a un_lform drift of the solltary_wave
tinually maintained constant owing to the temporal walkoffalong the axist (i.e., in the signal reference framavhich
between the pump and the down-converted fields. In thigneans that the hybrid solitary wave propagates with a par-
view, we may consider the transverse vortex soliton of thdicular selected velocity; . This is not a surprising result
down-converted fields to be sustained by the incoming pumgince we have previously shown in the 1D and 2D cases that
in the form of a topological phase defect. This analogy withthe parametric solitary wave is subject to a mechanism of
lasers systems is corroborated by the recent study on topy€locity selection that results from the interplay of the group-
logical phase defects in nondegenerate optical parametric o¥€locity difference between the interacting waves. In the 3D
cillators where vector-vortex phase defects, with propertiesase of interest here, we may easily determine the selected
similar to that described here, have been repof2d. In  velocity V5 in a way akin to the 2D casel5]. Indeed, we
particular, as in parametric oscillatdial], we may notice in may notice that in the regions far from the vortex core, the
Fig. 7(a) that the transverse distribution of the pump ampli-transverse profile of the hybrid solitary wave displays a flat
tude displays a pulse sitting on a constant background, wavefront where the diffraction effect plays no role. Accord-
feature that may be merely explained by the local frustratioringly, the longitudinal profile of the hybrid solitary wave
of the parametric process due to the zero value of the signatakes the same shape as in the pure one-dimensional case, as
idler amplitudes imposed by the phase defect. evidenced by the comparison of Figs. 5 and 1. Considering
To complete the description of the 3D hybrid solitary the fact that the 3D hybrid solitary wave propagates without
wave, we reported in Fig. 8 the three-dimensional contoudistortion, its velocityV} turns to be the velocity of the pure
plot that illustrates the surface of equal amplityde 4 of  one-dimensional parametric solitary wave. This velocity may
the signal and pump fields. FiguréaBrepresents the signal be determined analytically following the Kolmogorov-
amplitude distribution fotA;|=0.8, it clearly shows that the Petrovskii-Piskunov analysi®2], which has been success-
transverse vortex soliton is localized along the longitudimal fully applied to Brillouin[11] and parametric solitary waves
axis. Along this axis, the line of the vortex core where the[13,14]. In the particular case of the nondegenerate paramet-

S ey

FIG. 8. Three-dimensonal view of the hybrid
solitary wave att=45: Surface of equal ampli-
tudes of the signdl(a) |A,|=0.8, (b) |A;|=0.3]
and the pumg(c) |A;|=0.4] amplitude distribu-
tions. Parameters are the same as in Fig. 3.

i
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ric configuration, this velocity has been determined in Ref.
[13], and reads

xR BT AL 0 o "
’ A+ (my—p)? o8y
= 0.64

From this expression of the velocity one can easily veriny_O
that —1<V; <1. This means that the velocity* of the e
hybrid solitary wave in the laboratory reference frame and inLoa2d "
real physical units, is bounded by the signal veloeityand
the pump-idler velocity, 3, i.e.,v;<v*<v,3. As for the
2D hybrid solitary wave, the expressid®) of the velocity
V3 proved to be in excellent agreement with the velocity of
the 3D hybrid solitary wave calculated through numerical
simulations.

B

FIG. 9. Instability of the transverse vortex background of the 3D
hybrid solitary wave: Transverse signal profiletat35 for a value
of k=1.2x10 ! that is greater than the critical value,=1.05
. Other parameters are the same as in Fig. 3.

V. STABILITY OF THE VORTEX STRUCTURE

Let us now discuss the important aspect regarding thé 10!
stability of the transverse vortex structure of the hybrid soli-
tary wave. The stability of the vortex background is closely
related to the stability of plane-wave amplitudes that wer
shov_vn to be qlways modulationally unstable i.n quadraticunstable. We checked this prediction by solving E@®.
nonlllnear.medle{5—8]. This aspect contrasts with the 3D numerically, starting from the same initial condition and for
hybrid solitary wave reported above whose transverse vorte

background was revealed to be modulationally stable. Infhe same parameters as in Figs. 3-8, except that we in-

deed, we have been able to pursue the numerical integrati greased the value of the paramekeand added a perturba-
' P 9 ?LR/e noise on the initial condition in order to accelerate the

irr?tp?rtet? :1” F—Igzsdos_sngvvir Vefy|d|0rf]19t (i:gar:i}cterlstlc :'Tﬁ; odevelopment of the modulational instability. A typical result
eraction (= ) @ e could not identify any growing is illustrated in Fig. 9 that represents a transverse vortex

modes that would be responsible for the onset of the mOdubrofile of the signal amplitudiA, | for x=1.2x 101 at time

lational instability. t=35. As expected, the signal field displays the typical
modulated pattern in the profile of the vortex background
that characterizes the development of the modulational insta-

The mechanism responsible for the stabilization of thebility. Interestingly, the emergence of the modulational insta-
vortex background originates in the temporal walkoff be-bility proved to be very abrupt with respect to variations of
tween the interacting waves. Owing to the temporal walkoffthe parametek. For the particular values of the damping
the down-converted fields become localized along the longiparameterg.; =0.3,u,= 0.6 considered in Figs. 3—8, we ob-
tudinal z axis in the form of the parametric solitary wave served the onset of the modulational instability for values of
(Fig. 5. This suggets that, in the presence of a strong temx greater than the critical value,=1.05x 10" 1. The exis-
poral walkoff, the comoving pump and idler amplitudes in-tence of a critical value of the parameterfor the onset of
teract with the localized signal over a very short time, whichthe modulational instability clearly shows the essential role
prevent the onset of modulational instability. Inversely, thisof the temporal walkoff on the stabilization of the vortex
reasoning also indicates that, as the temporal walka#e-  soliton embedded in an infinite plane-wave background.
creases, the overlapping of the three fields in the localizetlote that, for the sake of simplicity, we restricted our study
structure takes place over a larger time, which would allowto the particular case where the pump and idler group veloci-
for the development of the modulational instability in the ties are matchedv,=v3). However, since the mechanism of
vortex background. We may then expect to recover the usuahabilization described here originates in the temporal
modulational instability of the vortex background for small walkoff between the interacting waves, it is also expected to
values of the walkoff parametef, in concordance with the occur in the general case where the three velocities involved
previous studies on parametric vortex solitgbs-8]. in the interaction are different.

This prediction may be easily verified by direct numerical It is worth noting that the modulational instability that is
simulation of Egs.(2). Indeed, owing to the normalization discussed here does not occur from plane-wave nonlinear
adopted in Eqs(2), the parameters;=uv;p;o,€q/ 5% simply eigenmodes, as in the previous studies of modulational insta-
measure the relative weight of two antagonist effects as rehility in quadratic nonlinear medigb]. The modulational in-
gards the stability of the vortex background. On the onestability of the hybrid solitary wave rather occurs from the
hand, the diffraction parametpr and the pump amplitude,  specific envelope profile imposed by the parametric solitary
would favor the development of the modulational instability, wave along the longitudina axis. In this respect, the trans-
and on the other hand, the walkoff paramederinversely, verse modulational instability encountered here is of the

would quench the modulational instability. We may then ex-
ect that, as the parameteincreases, the 3D hybrid solitary
ave reported in Figs. 3—8 would become modulationally

1. Influence of the temporal walkoffé
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same nature as that reported in R&3] where the longitu- gence in order to take advantage of a strong temporal walk-
dinal profile of the interacting fields is not uniform, but off to ensure the stability of the hybrid solitary wave.

rather displays a periodic pattern associated with the periodic

energy conversion and back conversion that characterizes the 2. Influence of the selected velocity;V

quadratic nonlinear interaction. Moreover, in the case of the - o nymerical simulations reveal that the critical value of

3D hybrid solitary wave, Fhe field_s interqct in the presence Ofche parametek,, above which the hybrid solitary wave be-
the temporal walkoff, which again considerably intricate theomeg ynstable, is not a constant value but rather depends on

studly of transr\]/ers,ﬁ rr:jodullational insftark])il[m]. 4uihe damping parameteys; , of the down-converted fields.
Also note that the development of the transverse modulan gk this result may be surprising at the first sight, it

tional instability .has not been observed in the previous stud}cnay be interpreted by the fact that the damping parameters
of the 2D hybrid solitary wave because in that work we affect the velocity of the hybrid solitary wawe* [Eq.
considered the backward configuration of the parametric pr (—,5']2 which in turn affects its stability z

cess[15]. Owing fo the large temporal walkofb that is The influence of the selected velockf on the stability

related to the backward interaction, the parametés com- . i
of the vortex structure may be merely explained as follows:

pelled to remain small, which ensures the stability of theW . ) ; .
. . hen the hybrid solitary wave propagates with a velocit
backward 2D hybrid solitary wave. However, due to the ., that is cl};ser o thatyof the 3 P Ig de. then the i Y
Xz gnal mode, then the time

technical difficulties encountered in achieving the quasiphas ; : : .
spent by a given point of the signal amplitude to walk

matching in the backward configuration, it would be more h the localized be | h
convenient to discuss the experimental conditions requireHj_roug the localized structure may be large enough to per-
mit the modulational instability to develop. Conversely,

for the observation of the hybrid solitary wave in the usual hen the sianal Al Ik f he localized
forward configuration of the parametric process. One mayV'nen the signal wave rapidly walks away from the localize

generally expect the hybrid solitary wave to be unstable iétrudctrrg, th?.n thebt_:mebrequired for thi develr?_p::]ent of the
the forward configuration because of the typical small valuednodulational instability becomes very short, which may pre-
of the temporal walkoffs available in this configuration. vent the onset of the instability. In other terms, owing to the

However, let us note that there exist particular experimenta"l’ldv‘ECtlon between the modulationally unstable signal field

conditions that may considerably increase the walkoff pa_and the localized structure, the modulational instability is

rameters in the forward configuration. As an example, we drifted out of the localized structure before it has time to

may consider the configuration of the parametric interactiorfievcell‘)p'I th . Iso holds wh id
in which the pump and idler modes are ordinarily polarized early, the same reasoning aiso noids when one consid-
while the signal mode is extraordinarily polarizé., type ers the advection between the hybrid solitary wave and the

[l configuration). In this way, one takes advantage of crystal comaving pump and idler waves. Since the solitary wave

Lo X .
birefringence in order to increase the temporal walkoff be-VEIOC"[y v* is bounded by the signal velocity, and the

tween the signal and the pump-idler waves. Moreover, tUmP-idler velocity, 3, we may expect that the hybrid soli-

avoid the influence of spatial walkoff that has not been in-tary wave would be more robust against modulational insta-

cluded in Eqs(2), we assume that the crystal operates in thebiIity whe_never _it propagate_s with the_ average veloc'ﬂzx_(
noncritical phase-matching configuration. Under these condi: V23/2. 1-€., with the velocity that minimizes the effective
tions, we may consider a periodically poled LiNp@rystal interaction time during which the three fields overlap in the

that is quasiphase matched for the following wavelengths o mporally .Iocalized gtructure. We checkeq this prediction
the three modes;=2.35 um, \,=2.9 um, Ag=1.3 wm. y performing extensive numerical simulations of E@.

For these particular wavelengths, the required periothe ~ OWind to Eq.(3), we changed the velocity; by varying the
periodically poled LiNbQ crystal is in the rangel ~ damping parameters,,, and, for each realization we com-
=27 um. Using the dispersion relatiorSellmeier equa- pute_d the prltlcal value of the parameter above which the
tions of the LiNbO; crystal[25] one gets the signal group hybrid solitary wave becomes unstable. A§ expected, we
velocity v,=1.32x 1(Bm/s, as well as the pump and idler found tha_t the critical valug of the parameterincreases as
group velocities that turn out to be almost identicakv,  the velocityV; of the hybrid solitary wave approaches zero
—1.37x1Pm/s. With these velocities, the respective [i-€., asv* approachesu;+uv,2)/2]. According to Eq.(3),
walkoff parameter iss=2.5x10° m/s and the numerical We haveV; =0 when the damping parametets , are cho-
simulation reported in Figs. 3 —8would correspond to an insen such thaf., +u,=2. For this particular case we found
put pump intensity of 1=200 MW/cn? (i.e., e the critical value of the parameter,=3x10 %, which is
=32 MV/m) for an effective nonlinear susceptibilitg  three times the value found in the previous case reported in
=5 pm/V. According to this numerical simulation, the 3D Figs. 3—8, where the velocity; of the hybrid solitary wave
hybrid solitary wave is stable and, in view of the realistic was closer to the group velocity of the signal waw (
experimental data given above, it would be observable in the=0.995). This numerical study confirms the relevant influ-
usual forward configuration of the parametric interactionence of the advection between the hybrid solitary wave and
with currently available technology and nonlinear opticalthe modulationally unstable field in the mechanism of stabi-
crytals. Note that we considered the particular case of thézation of the plane-wave vortex background.

LiINbO; crystal to give a specific realistic example, however, Let us finally mention an analogy between this mecha-
we may expect that other nonlinear optical crystals wouldhism of stabilization of a localized structure and a similar
also be suitable provided that one may exploit their birefrin-mechanism that has been pointed out in the context of stimu-
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lated Raman scattering in optical fib¢26]. In that case, the owing to its selected velocity? , the localized structure is
superluminous velocity of the solitary wave is able to walkable to walk away from the modulationally unstables fields.
away from an “inertial instability” in a way akin to the 3D We presented the 3D hybrid solitary wave in the particu-
hybrid solitary wave, reported here, able to walk away fromlar context of nonlinear optics because quadratic nonlinear
the modulationally unstable field. optical crystals constitute ideal test beds for the experimental
verification of our predictions. However, the proposed 3D
hybrid solitary wave as well as the associated mechanism of
. self-stabilization are quite general results that may be ex-
In summary, we showed that the three-wave mixing proyended to other physical parametric processes encountered in

cess in quadratic nonlinear media supports 3D hybrid solig,cy giverse fields as hydrodynamics, acoustics, or plasma

tary wave solutions_in \_/vhich a trans_versg vortex soIiton_ isphysics[g]. More recently, it has also been pointed out that
sustained by a longitudinal parametric solitary wave. By in-4,4 parametric processes play an important role in pattern

voking simple symmetry considerations, we showed thaforming systems subject to a temporal forcifig7] or

such a three-dimensional structure can only be sustained upled molecular and atomic Bose-Einstein condensates
the nondegenerate configuration of the parametric interac[zs]_ In this view, the experimental observation of the 3D

tion. In contrast to quadratic vortex solitons that were Showr&olitary wave would be relevant to many branches of nonlin-
to be always modulationally unstable, the 3D hybrid solitaryear physics owing to the universality of the resonant wave
wave proved to be robust with respect to modulational '”Stafnixing process.

bility. Our numerical analysis reveals that the process of sta-
bilization of the vortex background lies on two mechanisms.
On the one hand, the temporal walkoff between the interact-
ing waves leads to a localization of the down-converted
fields, which in this way limits the effective interaction time  The author thanks Professor M. Haelterman for illuminat-
during which the instability may develop. On the other hand,ng discussions and for his valuable comments on this work.

VI. CONCLUSION
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