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We study modulational instability~MI ! of plane waves in nonlocal nonlinear Kerr media. For a focusing
nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely,
irrespective of the particular profile of the nonlocal response function. For a defocusing nonlinearity the
stability properties depend sensitively on the response function profile: for a smooth profile~e.g., a Gaussian!
plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced
model for a weak nonlocality predicts MI in defocusing media for arbitrary response profiles, as long as the
intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of
the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics
and the theory of Bose-Einstein condensates.
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I. INTRODUCTION

Modulational instability~MI ! constitutes one of the mos
fundamental effects associated with wave propagation
nonlinear media. It signifies the exponential growth of
weak perturbation of the amplitude of the wave as it pro
gates. The gain leads to amplification of sidebands, wh
breaks up the otherwise uniform wave front and genera
fine localized structures~filamentation!. Thus it may act as a
precursor for the formation of bright spatial solitons. Co
versely the generation of dark spatial solitons requires
absence of MI of the constant intensity background.

The phenomena of MI has been identified and studied
various physical systems, such as fluids@1#, plasma@2#, non-
linear optics@3,4#, discrete nonlinear systems, such as m
lecular chains@5# and Fermi-resonant interfaces and wav
guide arrays@6#, etc. It has been shown that MI is strong
affected by various mechanisms present in nonlinear
tems, such as higher order dispersive terms in case of op
pulses@7#, saturation of the nonlinearity@8#, and coherence
properties of optical beams@9#.

In this work we study the MI of plane waves propagati
in a nonlinear Kerr-type medium with a nonlinearity~the
refractive index changeDn, in nonlinear optics! that is a
nonlocal function of the incident field. We consider a ph
nomenological model, in which the nonlocal nonlineari
induced by a wave~e.g., an optical beam! with the intensity
I (x,z), can be represented in general form as

Dn~ I !5sE
2`

`

R~x82x!I ~x8,z!dx8, ~1!
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wherex is the transverse spatial coordinate ands51 (s5
21) corresponds to a focusing~defocusing! nonlinearity.
The evolution coordinatez can be time, as for Bose-Einstei
Condensates~BEC’s!, or the spatial propagation coordinat
as for optical beams. We consider only symmetric spa
response functions that are positive definite and~without loss
of generality! obey the normalization condition

E
2`

`

R~x!dx51. ~2!

Thus we exclude asymmetric effects, such as those gene
by asymmetric temporal response functions~with x being
time!, as in the case of the Raman effect on optical pul
@10#.

In nonlinear optics Eq.~1! represents a general phenom
enological model for media in which the nonlinear refracti
index change~or polarization! induced by an optical beam i
determined by some kind of a transport process. It may
clude, e.g., heat conduction in materials with a thermal n
linearity @11–13# or diffusion of molecules or atoms accom
panying nonlinear light propagation in atomic vapors@14#.
Nonlocality also accompanies the propagation of waves
plasma@15–19#, and a nonlocal response in the form~1!
appears naturally as a result of many body interaction p
cesses in the description of Bose-Einstein condensates@20#.

The width of the response functionR(x) relative to the
width of the intensity profileI (x,z) determines the degree o
nonlocality, as illustrated in Fig. 1. In the limit of a singula
response,R(x)5d(x) @see Fig. 1~a!#, the nonlinearity is a
local function of the intensity,
©2001 The American Physical Society12-1
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Dn5sI, ~3!

i.e., the refractive index change at a given point is sol
determined by the wave amplitude at that very point. For t
well-known Kerr nonlinearity, which appears in all areas
physics, MI depends only on the signs @3#.

With increasing width ofR(x) the intensity in the vicinity
of the point x also contributes to the index change at th
point. For a weak nonlocality, when the width ofR(x) is
finite but still small compared to the width ofI (x,z) @see Fig.
1~b!#, one can expandI (x8,z) aroundx85x in Eq. ~1! and
obtain the simplified model

Dn5s~ I 1g]x
2I !, g5 1

2 E
2`

`

x2R~x!dx, ~4!

whereg is a small positive parameter. This diffusion typ
model of the nonlocal nonlinearity is a model in its own rig
in plasma physics, whereg can take any sign@15–17#. It was
also applied to BEC’s@21#, nonlinear optics@22# and in the
continuum limit of the theory of energy transfer in biom
lecular systems@23,24#. In contrast to the local Kerr limit the
MI now depends not only on the signs, but also on the
intensity of the plane wave@16#.

In the limit of a strongly nonlocal response, whereR(x) is
much broader than the intensity profile@see Fig. 1~d!#, one
can expand the response function aroundx85x in Eq. ~1!
and obtain the simplelinear model

Dn5s~c01c1x1c2x2!, ~5!

wherec022 are constants. Since this model is linear all pla
waves are stable—there is no MI. The evolution of opti

FIG. 1. Different degrees of nonlocality, as given by the wid
of the response functionR(x) and the intensity profileI (x). Shown
is the local~a!, weakly nonlocal~b!, general~c!, and strongly non-
local ~d! response.
01661
y
is
f

t

e
l

beams in such a medium was considered in the case w
c150 @25#, which requires the center of mass of the beam
be always zero.

Modulational instability has thus been studied in the d
ferent limits. However, in the general case~1! the problem of
MI has only been studied for a few particular cases of
response functionR(x). Here we present an analytical stud
of the general case with arbitrary profileR(x) and confirm
the results for three specific examples. We further show
the MI results of the weakly nonlocal model~4! lead to er-
roneous conclusions when used to predict the behavior of
full model ~1!.

II. GENERAL THEORY

We will consider an optical beam propagating along thz
axis, with the scalar amplitude of the electric field express
as

E~x,z!5c~x,z!exp~ iKz2 iVt !1c.c., ~6!

whereK is the wave number,V is the optical frequency, and
c(x,z) is the slowly varying amplitude. Substituting Eqs.~1!
and ~6! into Maxwell’s equations we obtain the nonloc
nonlinear Schro¨dinger ~NLS! equation

i ]zc1
1

2
]x

2c1scE
2`

`

R~x82x!I ~x8,z!dx850, ~7!

where I (x,z)5uc(x,z)u2 is the intensity of the beam. Th
model ~7! permits plane wave solutions of the form

c~x,z!5Ar0 exp~ ik0x2 iv0z!, r0.0, ~8!

wherer0 , k0, andv0 are linked through the nonlinear dis
persion relation

v05
1

2
k0

22sr0 , ~9!

which is the same as for the standard local NLS equatio

i ]zc1
1

2
]x

2c1sucu2c50. ~10!

Next, let us carry out a linear stability analysis of the pla
wave solutions~8!. Assume that

c~x,z!5@Ar01a1~x,z!#exp~ ik0x2 iv0z!, ~11!

wherea1(x,z) is a small complex perturbation. Inserting th
expression into the nonlocal NLS equation~7! and lineariz-
ing around the solution~8! yields the evolution equation fo
the perturbation

i ]ta11
1

2
]j

2a112sr0E
2`

`

R~j82j!Re$a1~j8,t!%dx850.

~12!
2-2
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In deriving this equation we have used the nonlinear disp
sion relation~9! and gone into a coordinate frame movin
with the group velocitycg5dv0 /dk05k0, i.e.,

t5z, j5x2cgz. ~13!

Decomposing the perturbation into real and imaginary pa
a15u1 iv, we obtain two coupled equations

]tu1
1

2
]j

2v50,

~14!

]tv2
1

2
]j

2u22sr0E
2`

`

R~j82j!u~j8,t!dj850.

By introducing the Fourier transforms

û~k,t!5E
2`

`

u~j,t!exp@ ikj#dj,

v̂~k,t!5E
2`

`

v~j,t!exp@ ikj#dj, ~15!

R̂~k!5E
2`

`

R~j!exp@ ikj#dj,

and exploiting the convolution theorem for Fourier tran
forms, the linearized system is converted to a set of ordin
differential equations ink space

]tû2 1
2 k2v̂50,

~16!
]tv̂1 1

2 k2û22sr0R̂ û50,

which can be written in the compact matrix form

]tX5A X, ~17!

where the vectorX and matrixA are defined as

X5F û

v̂
G , A5F 0

1

2
k2

2
1

2
k212sr0R̂~k! 0

G . ~18!

The eigenvaluesl of the matrixA are given by

l252k2r0@ak22sR̂~k!#, ~19!

where we have defined the parametera as

a51/~4r0!. ~20!

Notice that if the response functionR(x) is real and symmet-
ric then so is the Fourier spectrum ofR(x), i.e., R̂(k)
5R̂* (k)5R̂(2k).

The general eigenvalue equation~19! constitutes the basi
of our further study. First of all we notice thatR̂(0)51,
since the response function is normalized according to
01661
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~2!. For a focusing nonlinearity (s511) we therefore al-
ways have, by continuity, thatak22sR̂(k),0, and thus
l2.0, in a certain wave number band symmetrically ce
tered about the origin, wherek is sufficiently small. It fol-
lows thatwe always will have (long wave) MI in the focusin
case, independently of the details in the behavior of the
sponse function.

In contrast, in the defocusing case (s521), the stability
properties depend in a sensitive way on the response f
tion. Thus the nonlocality could possibly lead to MI, whic
would never be present in the defocusing local NLS equa
~10!.

The well-known modulational instability~stability! result
for the standard local NLS equation~10! is easily recovered
from the general eigenvalue equation~19! by settingR(x)
5d(x), whered(x) is the Diracd function: We get

l252k2r0~ak22s! ~21!

wheres511 (s521) yields instability~stability!.

III. WEAKLY NONLOCAL LIMIT

The MI properties in the local limit~3!, described by the
NLS equation~10!, are well known and the strongly nonloca
limit ~5! is linear, so obviously it does not display MI. Her
we briefly consider the interesting regime of a weak non
cality, i.e., the situation when the typical width of the r
sponse kernel is small compared to the characteristic len
of the wave modulation~see Fig. 1!. In this case the nonlin-
earity has the form~4! and the NLS equation~7! reads
@21,24#

i ]zc1
1

2
]x

2c1s~ ucu21g]x
2ucu2!c50, ~22!

where the nonlocality or diffusion parameterg is defined in
Eq. ~4!. Equation~22! has been discussed in the literature
the context of plasma physics@17# and the continuum limit
of discrete molecular structures@23,24# and has been show
to posses bright and dark soliton solutions. Their exact a
lytical soliton form was found recently@24#. Importantly,g
is small and positive when Eq.~22! represents the weakly
nonlocal limit of the general nonlocal model~7!, whereasg
can take any sign in plasma physics, where Eq.~22! is a
model in its own right.

The instability condition for the weak nonlocality is mo
easily obtained by Taylor expanding the spectrum of the
sponse kernel aboutk50 and only retaining the two lowes
order nontrivial terms in the expansion, i.e.,

R̂~k!.12gk2, ~23!

where obviouslygk2!1 must be fulfilled. Physically this
expansion means that the width of the response functio
much narrower than the spatial scale of the intensity dis
bution. The eigenvalue equation then reads

l252k2r0@~a1sg!k22s#. ~24!
2-3
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This result does not depend on the detailed behavior of
response kernel, as should be expected.

The eigenvalue Eq.~24! clearly shows that MI is always
present for a focusing nonlinearity (s511), since for suffi-
ciently small wave numbersl2.0 for all values ofa andg.
This is in correspondence with the results of the general n
local model~7!.

More interesting is the defocusing case (s521), where
there is a critical valuer0

cr of the intensity,

r0
cr51/~4g!, ~25!

which depends on the degree of nonlocality through the
rameterg, and corresponds toa5g. When g is positive
~and s521) low intensity plane waves withr0<r0

cr are
modulationally stable, whereas MI appears at high inten
ties,r0.r0

cr , despite the nonlinearity being defocusing. Th
MI is short-wave, appearing for perturbations with wa
numbers exceeding the threshold value

kcr51/Aua2gu. ~26!

The stability criterionr0,r0
cr corresponds exactly to the cr

terion for existence of dark soliton solutions in this case@24#.
The existence of MI in the weakly nonlocal model is in sha
contrast to the local defocusing Kerr nonlinearity, for whi
there is no MI.

In the caseg,0 in Eq. ~22!, relevant in plasma physics
nonlocality does not affect the MI properties: for a focusi
~defocusing! nonlinearity all plane waves are modulationa
unstable~stable!. In Table I we have summarized the M
results of the weak nonlocality model.

So only for defocusing media withg.0 does a weak
nonlocality change the MI properties in terms of existen
as compared to the local NLS limit. However, nonlocal
does always affect the structure of the MI gain spectrum
illustrated in Fig. 2 forg.0. In the focusing case Fig.
clearly shows how the nonlocality tends to suppress MI
decreasing both the maximum gain and the gain bandwi
In contrast, in the defocusing case, thenonlocality promotes
MI—the higher the degree of nonlocalityg the lower the
threshold value of the wave number, above which the in
bility develops.

In Fig. 3 we show the development of MI of a plane wa
in a self-defocusing weakly nonlocal medium, as obtained
numerical integration of the NLS equation~22!. The numeri-
cal procedure involved the split-step Fourier method for fi
propagation combined with the finite difference for calcul
ing the nonlocal term in Eq.~10!. As an initial condition we

TABLE I. Modulational stability properties of the weakly non
local model~22!.

s51 s521

g,0 MI Stability

Stability for r0,r0
cr

g.0 MI MI for r0.r0
cr
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used a plane wave with periodically perturbed amplitude
is evident that this perturbation grows as the wave pro
gates.

Although Eqs.~25! and~26! predict MI in the defocusing
case it is important to stress that this result does not actu
apply to the case of weak nonlocality. In deriving the mod
~22! and the expansion~23! it was assumed that

gk2!1, ~27!

which means that the width of the response function mus
small compared to the characteristic length scale of
modulation. However, from Eq.~24! we get that MI occurs
when

FIG. 2. Growth rate vs wave number for plane waves with
tensity r051 in media with a weakly nonlocal focusing (s51,
solid lines! and defocusing (s521, dashed lines! nonlinearity.

FIG. 3. Development of MI of a plane wave with intensityr0

51 in a weakly nonlocal defocusing~s521! medium. The initial
amplitude is modulated with the wave vectork57p.
2-4
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~a2g!k211,0, ~28!

which can be rewritten as

gk2.11ak2. ~29!

Since a51/(4r0) is positive this condition cannot be fu
filled without violating the perturbation requirement~27!.
Hence, in the region of parameters where MI occurs~and
dark solitons do not exist!, the weak nonlocality approxima
tion breaks down. This is in accordance with the analysis
the full nonlocal model~7!, which, as we show below, doe
not display MI for self-defocusing nonlinearities with
smooth nonlocal response function.

It should be stressed however that the appearance of M
a valid result in the situation when the weakly nonloc
model ~7! is a model in its own right, as, for example, fo
upper hybrid modes in plasma@17#.

IV. FULLY NONLOCAL RESPONSE—EXAMPLES

We will now discuss the stability issue in the gene
nonlocal Kerr nonlinearity with an arbitrary degree of no
locality by considering a few specific examples of the no
local response function.

A. Gaussian response function

Let the response function of the nonlocal nonlinear m
dium have the following Gaussian form

R~x!5
1

sAp
expF2

x2

s2G . ~30!

In this caseg5s2/2, the Fourier transform of the respon
function is given by

R̂~k!5expF2
1

4
s2k2G , ~31!

and the eigenvalue equation~19! reduces to

l252k2r0S ak22s expF2
1

4
s2k2G D . ~32!

For the defocusing case (s521) we find modulational
stability for all values of the intensityr0, in contrast to the
behavior predicted by the weakly nonlocal model~22!, ac-
cording to which plane waves become unstable if their int
sity is higher than the critical intensityr0

cr . Thus, as ex-
pected, this proves that the weakly nonlocal model giv
incorrect predictions of the MI properties of the full gener
nonlocal model.

A simple analysis reveals finite bandwidth MI in the f
cusing case (s511) with a growth rate given by

uRelu5ukuAr0AexpF2
1

4
s2k2G2ak2. ~33!
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The dependence of the growth rate on the wave number
degree of nonlocalitys is displayed in Fig. 4. Evidently, as
degree of the nonlocality increases the MI bandwidth shri
and the maximum growth rate decreases. Thus nonloca
clearly tends to suppress MI in this case, as also predicte
the weakly nonlocal model.

In Fig. 5 we demonstrate the influence of nonlocality
the dynamic development of MI. To this end we integrat

FIG. 4. MI gain profiles forr051 in self-focusing~s51! non-
local Kerr media with a Gaussian response profile.

FIG. 5. Development of MI of a unit amplitude plane wave in
nonlocal self-focusing~s51! medium with a Gaussian respons
function for ~a! s50.1 and~b! s51.0.
2-5
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numerically the NLS equation~7! with the Gaussian re
sponse function~30!. As before we employed the split-ste
Fourier method in conjunction with the finite difference f
calculating the convolution integral in Eq.~7!. As an initial
conditions we used a unit intensity plane wave with impos
weak periodic perturbation

c~x,z50!5111024 cos~1.5x!. ~34!

It is evident that increasing the degree of nonlocalitys sup-
presses the instability by lowering the gain.

B. Exponential response function

Another interesting and important example involves
exponential response function

R~x!5
1

2s
expF2

uxu
s G , ~35!

for which g52s2, with s again determining the degree o
nonlocality. The importance of this particular response lies
the fact that it applies exactly to media with a nonlinear
@i.e., nonlinear refractive indexDn(x)] described by the dif-
fusion equation

2s2
]2Dn

]x2
1Dn5ucu2. ~36!

The equivalence between the nonlocal nonlinearity~1! with
the exponential response~35! and the diffusion model~36! is
easily shown by Fourier transformation.

As discussed by Litvaket al. @18# the model ~36! de-
scribes the nonlinear thermal self-focusing of electrom
netic waves in a weakly ionized plasma. In this particu
caseDn corresponds to the change of the plasma temp
ture. From the Fourier transform

R̂~k!5
1

11s2k2
, ~37!

we obtain the eigenvalue equation

l252k2r0Fak22s
1

11~sk!2G , ~38!

which coincides with that derived in Ref.@18# @Eq. ~4.1! in
this reference#. The dispersion relation~38! imposes MI
properties similar to those found for the Gaussian respo
In particular, it follows that in the self-defocusing regim
(s521) the plane wave solution isalwaysmodulationally
stable. On the other hand, in the self-focusing case p
wave develops transverse instability with the growth r
given by

uRelu5ukuAr0A 1

11~sk!2
2ak2. ~39!

In Fig. 6 we show the MI growth rate versus the wave nu
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ber for a few values of the nonlocality parameters. As for
the Gaussian response the nonlocality tends to suppres
by narrowing the gain bandwidth and decreasing the ma
mum gain. However, only in the extreme limit of an infi
nitely nonlocal response (s→`) does MI completely disap-
pear, as the medium no longer exhibits any nonlinearity.

C. Rectangular response function

Finally we consider the rectangular response function

R~x!5H 1

2s
for uxu<s

0 for uxu.s,

~40!

for which g5s2/3. From the Fourier transform

R̂~k!5
sin~ks!

ks
, ~41!

we obtain the eigenvalue equation

l252k2r0Fak22s
sin~ks!

ks G . ~42!

In the focusing case one again finds that there is always~for
any value ofa and s) a finite bandwidth MI gain band
symmetrically located about the origin ink space, i.e., for
uku<kcr , where

akcr
2 5

sin~kcrs!

kcrs
, ~43!

This is illustrated in Fig. 7, where we show the gain profil
for several degrees of nonlocalitys. Again MI is being sup-
pressed by the nonlocality, but now additional MI bands a
pear for large values ofs ~sees520).

In the defocusing case a careful analysis reveals that
large and moderate values of the parametera/s2, i.e., small
and moderate values ofr0s2, plane waves are modulation
ally stable, while in the opposite regime one or more M
bands appear, as shown in Fig. 8. This instability is cau

FIG. 6. MI gain profiles forr051 in nonlocal self-focusing
~s51! media with an exponential response function.
2-6
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by the negative-sign bands of the sin(x)-profile Fourier trans-
form ~41!, with the first instability band being in the regio
p<ks<2p. More specifically the instability appears whe
the background intensity exceeds the threshold value

r0
th.21.05/s2. ~44!

V. CONCLUSIONS

We studied the modulational stability properties of pla
waves in nonlinear media with a general nonlocal Kerr n
linearity, described by a nonlocal NLS equation. We deriv
an analytical expression for the growth rate of the instabi
for arbitrary response profiles, i.e., for arbitrary degrees
nonlocality. We found that in the self-focusing case the pla
wave solution is always unstable—the nonlocality tends
suppress the instability, independently of the form of t
response function, but can never suppress it completely.

In self-defocusing media the stability properties depe
strongly on the specific form of the nonlocal response.
any strictly positive continuous response profile all pla

FIG. 7. MI gain profiles forr051 in self-focusing~s51! non-
local media with a rectangular response function.
s

nd

.R
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waves are stable for any degree of nonlocality. Howev
exotic profiles with jump discontinuities like the rectangul
response, may actually promote MI when the intensity
sufficiently high.

In the so-called weakly nonlocal limit~narrow response
function compared to the intensity profile! we find that plane
waves become modulationally unstable if their intensity e
ceeds a certain critical value. However, we show that t
surprising prediction of MI in the defocusing case can ne
apply to the full nonlocal model with a smooth respon
profile. Thus one should be cautious with applying results
the simple weakly nonlocal model to the real general case
particular when studying MI and dark solitons.
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nonlocal media with a rectangular response function.
,

tt.

v.
@1# T.B. Benjamin and J.E. Feir, J. Fluid Mech.27, 417 ~1967!.
@2# A. Hasegawa,Plasma Instabilities and Nonlinear Effect

~Springer-Verlag, Heidelberg, 1975!.
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