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We study modulational instabilityMI) of plane waves in nonlocal nonlinear Kerr media. For a focusing
nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely,
irrespective of the particular profile of the nonlocal response function. For a defocusing nonlinearity the
stability properties depend sensitively on the response function profile: for a smooth (@afilea Gaussian
plane waves are always stable, but Ml may occur for a rectangular response. We also find that the reduced
model for a weak nonlocality predicts Ml in defocusing media for arbitrary response profiles, as long as the
intensity exceeds a certain critical value. However, it appears that this regime of Ml is beyond the validity of
the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics
and the theory of Bose-Einstein condensates.
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I. INTRODUCTION wherex is the transverse spatial coordinate a1l (s=
—1) corresponds to a focusin@efocusing nonlinearity.
Modulational instability(MI) constitutes one of the most The evolution coordinate can be time, as for Bose-Einstein
fundamental effects associated with wave propagation iif€ondensateBEC's), or the spatial propagation coordinate,
nonlinear media. It signifies the exponential growth of aas for optical beams. We consider only symmetric spatial
weak perturbation of the amplitude of the wave as it propa+esponse functions that are positive definite amithout loss
gates. The gain leads to amplification of sidebands, whiclof generality obey the normalization condition
breaks up the otherwise uniform wave front and generates
fine localized structuredilamentation. Thus it may act as a *
precursor for the formation of bright spatial solitons. Con- foR(X)dXZ 1. )
versely the generation of dark spatial solitons requires the

absence of MI of the constant intensity background. Thus we exclude asymmetric effects, such as those generated
The phen(:)mena Of MI haS been |dent|f|ed and Studied |rby asymmetric tempora' response func“dmth X being
various physical systems, such as fiuitls plasmg2], non-  time), as in the case of the Raman effect on optical pulses
linear optics[3,4], discrete nonlinear systems, such as mo{1q.
Iec_ular chaing5] and Fermi-resonant interfaces_and wave- |n nonlinear optics Eq(1) represents a general phenom-
guide arrayg6], etc. It has been shown that Ml is strongly enological model for media in which the nonlinear refractive
affected by various mechanisms present in nonlinear syspgex changéor polarization induced by an optical beam is
tems, such as higher order dispersive terms in case of opticgktermined by some kind of a transport process. It may in-
pulses[7], saturation of the nonlinearity8], and coherence ¢|yde, e.g., heat conduction in materials with a thermal non-
properties of optical beani$]. _linearity [11-13 or diffusion of molecules or atoms accom-
~ In this work we study the MI of plane waves propagating panying nonlinear light propagation in atomic vappi].
in a nonlinear Kerr-type medium with a nonlinearithe  Nonlocality also accompanies the propagation of waves in
refractive index changeén, in nonlinear optick that is a  plasma[15-19, and a nonlocal response in the forih)
nonlocal function of the incident field. We consider a phe'appears naturally as a result of many body interaction pro-
nomenological model, in which the nonlocal nonlinearity, cesses in the description of Bose-Einstein condena@ds

induced by a wavée.g., an optical beaywith the intensity The width of the response functidR(x) relative to the
1(x,2), can be represented in general form as width of the intensity profild (x,z) determines the degree of
. nonlocality, as illustrated in Fig. 1. In the limit of a singular
An(|)=sj R(X' — )1 (x',2)dx’, (1) responseR(x)zé(x)_[see _Fig. 19)], the nonlinearity is a
— local function of the intensity,
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kren) RGC1) beams in such a medium was considered in the case when
(a) (b) ¢, =0 [25], which requires the center of mass of the beam to
be always zero.

Modulational instability has thus been studied in the dif-
ferent limits. However, in the general cade the problem of
MI has only been studied for a few particular cases of the
response functioR(x). Here we present an analytical study
of the general case with arbitrary profig(x) and confirm
0 x X 0 x X the results for three specific examples. We further show that
the Ml results of the weakly nonlocal mod@l) lead to er-
(c) R(xx) (d) w,_x) roneous conclusions when used to predict the behavior of the

I(x) Ix)

full model (1).

Il. GENERAL THEORY
I(x)
I(x?) We will consider an optical beam propagating alongzhe
axis, with the scalar amplitude of the electric field expressed
as

»
>

0 x x' Ox x'

E(x,z)=¢(x,z)expiKz—iQt)+c.c., (6)
FIG. 1. Different degrees of nonlocality, as given by the width . . .
of the response functioR(x) and the intensity profile(x). Shown  WhereK'is the wave numbec) is the optical frequency, and

is the local(a), weakly nonlocalb), general(c), and strongly non- ~ ¥(X,2) is the slowly varying amplitude. Substituting E¢%)
local (d) response. and (6) into Maxwell's equations we obtain the nonlocal

nonlinear Schrdinger (NLS) equation
An=sl, ()

194p+ }&itlﬁsl/ff R(X"=x)1(x",2)dx"=0, (7)
i.e., the refractive index change at a given point is solely 2 -
determined by the wave amplitude at that very point. For this
well-known Kerr nonlinearity, which appears in all areas ofwhere (x,z)=|y(x,2)|* is the intensity of the beam. The

physics, MI depends only on the sigri3]. model (7) permits plane wave solutions of the form
With increasing width oR(x) the intensity in the vicinity _ _
of the pointx also contributes to the index change at that ¥(x,2)=po explikox—iwoz),  po>0, (8)

point. For a weak nonlocality, when the width B{x) is

finite but still small compared to the width bfx,z) [see Fig. Wherep, ko, and w, are linked through the nonlinear dis-
1(b)], one can expanti(x’,z) aroundx’=x in Eq. (1) and  persion relation

obtain the simplified model

1
o= 5K5=Spo, 9

—o

An=s(l+ydl), y:%f X2R(X)dX, (4)
which is the same as for the standard local NLS equation

where y is a small positive parameter. This diffusion type 1
model of the nonlocal nonlinearity is a model in its own right i g+ = 2+ s|p|2p=0. (10)
in plasma physics, wherg can take any sigfl5-17. It was 2
also applied to BEC'$21], nonlinear optic§22] and in the . o .
continuum limit of the theory of energy transfer in biomo- Next, let us carry out a linear stability analysis of the plane
lecular system§23,24). In contrast to the local Kerr limit the Wave solutiong8). Assume that
MI now depends not only on the sigs but also on the
intensity of the plane wavgL6). ¥(x,2)=[po+ai(x,2)Jexplikox—iwez), (11
In the limit of a strongly nonlocal response, wh&x) is
much broader than the intensity profllsee Fig. 1d)], one  wherea;(x,z) is a small complex perturbation. Inserting this
can expand the response function arowieEx in Eq. (1) expression into the nonlocal NLS equatiof) and lineariz-
and obtain the simplénear model ing around the solutio8) yields the evolution equation for
the perturbation

An=s(Cy+ C1X+Cox?), (5)

1 ©
, _ o i0,a;+=d%a;+2s J R(&' —&)Rela (&', 7)}dx' =0.
wherec,_, are constants. Since this model is linear all plane 1%t Po) .. (&'~ ORea (&', 7}
waves are stable—there is no MI. The evolution of optical (12
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In deriving this equation we have used the nonlinear disper¢2). For a focusing nonlinearitys& +1) we therefore al-
sion relation(9) and gone into a coordinate frame moving ways have, by continuity, thatrk?—sR(k)<0, and thus

with the group velocitycy,=dwg/dky=ko, i.€.,
(13

7=2, £=X—C4Z.

A2>0, in a certain wave number band symmetrically cen-
tered about the origin, wheitleis sufficiently small. It fol-
lows thatwe always will have (long wave) Ml in the focusing

Decomposing the perturbation into real and imaginary partsSaSe; independently of the details in the behavior of the re-

a;=u-+iv, we obtain two coupled equations

1 2
ﬁTLH— —075020,

2
(14
1 2 * ' ’ ’
&Tv—zﬁgu—ZSpof_mR(g =&u(é’,rdé =0.
By introducing the Fourier transforms
a(k,r):f u(é, 7)exdiké]de,
{;(k,r):f v(€,r)exiké]dg, (15)

R0 [ Reoexdikelde

sponse functian

In contrast, in the defocusing case=—1), the stability
properties depend in a sensitive way on the response func-
tion. Thus the nonlocality could possibly lead to MI, which
would never be present in the defocusing local NLS equation
(10).

The well-known modulational instabilitystability) result
for the standard local NLS equatighO) is easily recovered
from the general eigenvalue equati@i) by settingR(x)
= 8(x), where §(x) is the Diracé function: We get

N2=—K%po(ak?®—s) (22

wheres=+1 (s=—1) yields instability(stability).

Ill. WEAKLY NONLOCAL LIMIT

The MI properties in the local limi€3), described by the
NLS equation10), are well known and the strongly nonlocal
limit (5) is linear, so obviously it does not display MI. Here

and exploiting the convolution theorem for Fourier trans-we briefly consider the interesting regime of a weak nonlo-
forms, the linearized system is converted to a set of ordinargality, i.e., the situation when the typical width of the re-

differential equations ik space

a.u—1k? =0,

R R L (16)
9,0+ 2k?u—2spoRu=0,
which can be written in the compact matrix form
IX=AX, (17)
where the vectoX and matrixA are defined as
1
R 0 —K?
u 2 K
x=|.|, A=| (18
vl = - SK+2spoR(k) O
The eigenvaluea of the matrixA are given by
N=—K2po[ ak?—sRK)], (19
where we have defined the parameteas
a=1/(4py). (20)

Notice that if the response functid®(x) is real and symmet-
ric then so is the Fourier spectrum &#(x), i.e., IA?(k)
=R*(k)=R(—k).

sponse kernel is small compared to the characteristic length
of the wave modulatioiisee Fig. 1 In this case the nonlin-
earity has the form(4) and the NLS equatior{7) reads
[21,24

1
19,0+ S o+ syl + vl wy=0, (22

where the nonlocality or diffusion parametgiis defined in

Eq. (4). Equation(22) has been discussed in the literature in
the context of plasma physi¢47] and the continuum limit

of discrete molecular structur¢®3,24] and has been shown

to posses bright and dark soliton solutions. Their exact ana-
lytical soliton form was found recentlj24]. Importantly, y

is small and positive when Eq22) represents the weakly
nonlocal limit of the general nonlocal mod@l), whereasy

can take any sign in plasma physics, where E29) is a
model in its own right.

The instability condition for the weak nonlocality is most
easily obtained by Taylor expanding the spectrum of the re-
sponse kernel abolt=0 and only retaining the two lowest
order nontrivial terms in the expansion, i.e.,

R(k)=1—yk?, (23)
where obviouslyyk?<1 must be fulfilled. Physically this
expansion means that the width of the response function is
much narrower than the spatial scale of the intensity distri-

The general eigenvalue equatid®) constitutes the basis pytion. The eigenvalue equation then reads

of our further study. First of all we notice theﬁt(O)=1,

since the response function is normalized according to Eq.

N2= —k2po[ (a+sy)k2—s]. (24)
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TABLE |. Modulational stability properties of the weakly non- 1.0 ' !
local model(22). =0 !
0.8¢ !
s=1 s=-1 :
¥<0 M Stability g 0.6 =06 11
Stability for po<p' g =05
y>0 MI MI for po>p¢ g 041 P
0.27 -
This result does not depend on the detailed behavior of the ;
response kernel, as should be expected. 0.0 . 2 L
The eigenvalue Eq24) clearly shows that Ml is always 0.0 0.5 1.0 1.5 2.0 25
present for a focusing nonlinearitg< + 1), since for suffi- wave number k

ciently small wave numbers®>0 for all values ofa andy. o

This is in correspondence with the results of the general non- F!G: 2. Growth rate vs wave number for plane waves with in-

local model(7). ten.sny po=1 in medlalwnh a weakly non!ocal fogusmg;%l,
More interesting is the defocusing case=(—1), where solid lineg and defocusingg= — 1, dashed lin@snonlinearity.

there is a critical valugg of the intensity, _ o _
used a plane wave with periodically perturbed amplitude. It

is evident that this perturbation grows as the wave propa-
gates.

. . Although Egs.(25) and(26) predict Ml in the defocusing
Wh'cr,‘[ dependds on the de%re? of_non\l/sﬁahty through_t_the Paase it is important to stress that this result does not actually
rametery, and corrésponds ta=ry. eny IS positive apply to the case of weak nonlocality. In deriving the model

(and s=—1) low intensity plane waves witlpo<pg are (22) and the expansiof23) it was assumed that
modulationally stable, whereas MI appears at high intensi-

ties, po>pg , despite the nonlinearity being defocusing. This
Ml is short-wave, appearing for perturbations with wave
numbers exceeding the threshold value

pI=1/(47), (25

yk?<1, (27)

which means that the width of the response function must be

k= 1/\|a— . (26)  small C(_)mpared to the characteristic length scale of the
modulation. However, from Eq24) we get that Ml occurs
when

The stability criterionpy< pg corresponds exactly to the cri-
terion for existence of dark soliton solutions in this cEz4.
The existence of Ml in the weakly nonlocal model is in sharp
contrast to the local defocusing Kerr nonlinearity, for which
there is no MI. 0?5
In the casey<<0 in Eq.(22), relevant in plasma physics, ol il
o3 %

nonlocality does not affect the MI properties: for a focusing
(defocusing nonlinearity all plane waves are modulationally 1-

- “ \ A RS
unstable(stablg. In Table | we have summarized the Ml =z , o= " ik | A R R
results of the weak nonlocality model. E o \ “"":;"M‘l.:'l',',“?,"::‘),‘"']?‘::’)‘,"‘W]‘,":;‘:”l“"“::"'#“i?‘:"‘%&?‘:;’4’}‘:"&?‘?‘:}'&?‘?‘3’&",
So only for defocusing media with>0 does a weak =~ * “\“"“'n,l]"‘l“l,,l"“6‘:l,h‘[”‘4‘:h‘"0':0t,}ﬂg}l':ff,:ﬁ"'0;'lﬁ,}lMl,,'0'MI,"’""l,"ll,'h,"l;,'ngo,:lp,"#,'
nonlocality change the MI properties in terms of existence, +-°¢ \\\\\‘0:';,,‘Wl,,'l"“l,"l,,'h:‘l,”!,,‘w,}0,:1,}';:‘0,:’,”0',:%’!I}}O,{#’fl,}#}}if}&{l;,?&,}l,%%
as compared to the local NLS limit. However, nonlocality 8% \\\\W'o':l,}l,,';)':l;,"l'}l;"l’,’l,;l,::/,"'a:li"’,':0;%0,:0%030%’%%:%%%
does always affect the structure of the MI gain spectrum, as N \‘\'!;,"'I,"lo,"'l,"l,:bf" QW,/WW%%%
illustrated in Fig. 2 fory>0. In the focusing case Fig. 2 0.0 "":':,"'I,','l',"'l %@?@%%%W
clearly shows how the nonlocality tends to suppress Ml by W%WWWW@W"'
decreasing both the maximum gain and the gain bandwidth o 003 WW@MN
In contrast, in the defocusing case, thenlocality promotes %& "i,j';, Gl
MI—the higher the degree of nonlocality the lower the - 0.0%
threshold value of the wave number, above which the insta- =2 N
bility develops. 0.0 2 .o
In Fig. 3 we show the development of Ml of a plane wave a9 Ofa‘ﬂ‘"”“
in a self-defocusing weakly nonlocal medium, as obtained by 000 s 9‘93&:\3\ ©

numerical integration of the NLS equati¢?2). The numeri-
cal procedure involved the split-step Fourier method for field FIG. 3. Development of MI of a plane wave with intensjiy
propagation combined with the finite difference for calculat-=1 in a weakly nonlocal defocusing=—1) medium. The initial
ing the nonlocal term in Eq10). As an initial condition we  amplitude is modulated with the wave vector 7.
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- y)k?+1<0, 28 1.0 ' ‘
(a—v) (28) 5205

which can be rewritten as 0.87

yk2>1+ ak?. (29 ‘q‘é 0.6 c=1 .

£

Since a=1/(4py) is positive this condition cannot be ful- S 0.4l
filled without violating the perturbation requiremef(®7). =0
Hence, in the region of parameters where MI occ{ansd ozl 1
dark solitons do not existthe weak nonlocality approxima- ) 6 =10
tion breaks down. This is in accordance with the analysis of 0.0

the full nonlocal model(7), which, as we show below, does
not display MI for self-defocusing nonlinearities with a
smooth nonlocal response function.

It should be stressed however that the appearance of Ml is FIG. 4. Ml gain profiles forp,=1 in self-focusing(s=1) non-
a valid result in the situation when the weakly nonlocallocal Kerr media with a Gaussian response profile.
model (7) is a model in its own right, as, for example, for

0.0 0.5 1.0 1.5 2.0
wave number k

upper hybrid modes in plasnja7]. The dependence of the growth rate on the wave number and
degree of nonlocalityr is displayed in Fig. 4. Evidently, as
IV. FULLY NONLOCAL RESPONSE—EXAMPLES degree of the nonlocality increases the Ml bandwidth shrinks

and the maximum growth rate decreases. Thus nonlocality

We will now discuss the stability issue in the generalclearly tends to suppress Ml in this case, as also predicted by
nonlocal Kerr nonlinearity with an arbitrary degree of non-the weakly nonlocal model.

locality by considering a few specific examples of the non-  |n Fig. 5 we demonstrate the influence of nonlocality on
local response function. the dynamic development of MI. To this end we integrated

A. Gaussian response function

Let the response function of the nonlocal nonlinear me-
dium have the following Gaussian form

X2

1
R(X):O-\/;eXF{ - ; .

In this casey= 0?/2, the Fourier transform of the response
function is given by

(30

. 1
R(k)= exp[ -2 a?k?|, (31
and the eigenvalue equati¢h9) reduces to
1
A2=— k2p0< ak’—s exp{ 2 o?k? ) . (32

For the defocusing cases€ —1) we find modulational
stability for all values of the intensity,, in contrast to the
behavior predicted by the weakly nonlocal mod¢2®), ac-
cording to which plane waves become unstable if their inten-
sity is higher than the critical intensitgg'. Thus, as ex-
pected,this proves that the weakly nonlocal model gives
incorrect predictions of the Ml properties of the full general
nonlocal model

A simple analysis reveals finite bandwidth Ml in the fo-
cusing caseq= +1) with a growth rate given by

FIG. 5. Development of Ml of a unit amplitude plane wave in a
— ak? (33) nonlocal self-focusing's=1) medium with a Gaussian response
' function for(a) o=0.1 and(b) o=1.0.

1
|Re7\|—|k|\/%\/exp{— Z{azk2
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numerically the NLS equatiort7) with the Gaussian re- TN
sponse function30). As before we employed the split-step
Fourier method in conjunction with the finite difference for 0.8r 1
calculating the convolution integral in E¢7). As an initial o 6=0.5
conditions we used a unit intensity plane wave with imposed g 0.6 i
weak periodic perturbation g c=1
=] - i

¥(x,z=0)=1+10"*cog 1.5). (34) g 04
It is evident that increasing the degree of nonlocaditgup- 0.21 .
presses the instability by lowering the gain. 6=10

0.0 1 1 1
B. Exponential response function 00 05 1.0 15 2.0

. . . . wave number k
Another interesting and important example involves the

exponential response function FIG. 6. MI gain profiles forpy=1 in nonlocal self-focusing
(s=1) media with an exponential response function.

]
R(x)= %exp{ N ?} (39 ber for a few values of the nonlocality parameterAs for
the Gaussian response the nonlocality tends to suppress Mi
for which y=202, with o again determining the degree of by narrowing the gain bandwidth and decreasing the maxi-
nonlocality. The importance of this particular response lies ilfmum gain. However, only in the extreme limit of an infi-
the fact that it applies exactly to media with a nonlinearity nitely nonlocal responses{— ) does MI completely disap-
[i.e., nonlinear refractive indexn(x)] described by the dif- pear, as the medium no longer exhibits any nonlinearity.
fusion equation

) C. Rectangular response function

,0 An ) . . )
-0 5 +An=|y|° (36) Finally we consider the rectangular response function
X

1
The equivalence between the nonlocal nonlineaywith %0 for |x<e&
the exponential respon$85) and the diffusion model36) is R(x)= (40
easily shown by Fourier transformation. 0 for |x|>o
As discussed by Litvalet al. [18] the model(36) de- '
scribes the nonlinear thermal self-focusing of electromagfor which y=¢%/3. From the Fourier transform
netic waves in a weakly ionized plasma. In this particular

caseAn corresponds to the change of the plasma tempera- . sin(ko)
ture. From the Fourier transform RK=—5"" (41)
R we obtain the eigenvalue equation
R(k)= ———. 37 g a
1+ 07k .
sin(ko)
. . . N2=—k?pg| ak?—s . (42
we obtain the eigenvalue equation ko

In the focusing case one again finds that there is alvfays
, (38) any value ofa and o) a finite bandwidth MI gain band
symmetrically located about the origin kspace, i.e., for
|k|<k¢, Where

N2=—Kk2po| ak?®—s

1+ (ok)?

which coincides with that derived in R€f18] [Eq. (4.1 in
this referencg The dispersion relatior{38) imposes Ml sin(kq,o)
properties similar to those found for the Gaussian response. akg:

In particular, it follows that in the self-defocusing regime
(s=—1) the plane wave solution @lwaysmodulationally g i jllustrated in Fig. 7, where we show the gain profiles
stable. On the other hand, in the self-focusing case planf.=Or several degrees of nonlocality. Again Ml is being sup-
wave develops transverse instability with the growth ratepressed by the nonlocality, but now additional MI bands ap-

: (43)

Keor

given by pear for large values of (seeo=20).
1 In the defocusing case a careful analysis reveals that for
_ large and moderate values of the parameter?, i.e., small
Re\|=|k|Vpo \/ ——— — akZ 39 i
[Rex|=| NE 1+ (ok)? “« (39 and moderate values @fo?, plane waves are modulation-

ally stable, while in the opposite regime one or more Ml
In Fig. 6 we show the MI growth rate versus the wave num-bands appear, as shown in Fig. 8. This instability is caused
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T — 0.20 AR '
6=05 c=10
0.8 ] 0.15" 03 ;
o © ¢ =20
£ 0.6l _ 1 5
: o=l g 0.0/ 1
2 =)
© 0.4f ] g j
0.05) | 1
0.2r / g=10 ] ]
sy 6=20 :.
ol = 0.00

0.0 0.2 04 0.6 08 1.0

0.0 05 1.0 15 2.0 25
wave number k

wave number k
FIG. 8. MI gain profiles forpy=1 in self-defocusings=—1)

FIG. 7. MI gain profiles forpy=1 in self-focusing(s=1) non- I -
gain p Po 9s=1) nonlocal media with a rectangular response function.

local media with a rectangular response function.

by the negative-sign bands of the sipprofile Fourier trans- Waves are stable for any degree of nonlocality. However,
form (41), with the first instability band being in the region exotic profiles with jump discontinuities like the rectangular

m<ka=<2m. More specifically the instability appears when "€SPonse, may actually promote MI when the intensity is

the background intensity exceeds the threshold value sufficiently high. .
In the so-called weakly nonlocal limiinarrow response

p})h> 21.0562. (44)  function compared to the intensity profilee find that plane
waves become modulationally unstable if their intensity ex-
ceeds a certain critical value. However, we show that this

V. CONCLUSIONS surprising prediction of Ml in the defocusing case can never

We studied the modulational stability properties of planeapply to the full nonlocal model with a smooth response
waves in nonlinear media with a general nonlocal Kerr non{rofile. Thus one should be cautious with applying results of
linearity, described by a nonlocal NLS equation. We derivedhe simple weakly nonlocal model to the real general case, in
an analytical expression for the growth rate of the instabilityparticular when studying MI and dark solitons.
for arbitrary response profiles, i.e., for arbitrary degrees of
nonlocality.. We_ found that in the self-focusing case the plane ACKNOWLEDGMENTS
wave solution is always unstable—the nonlocality tends to
suppress the instability, independently of the form of the This work was supported by the Danish Technical Re-
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