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Analysis of optical pulse propagation with two-by-two„ABCD… matrices
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We review and extend the analogies between Gaussian pulse propagation and Gaussian beam diffraction. In
addition to the well-known parallels between pulse dispersion in optical fiber and cw beam diffraction in free
space, we review temporal lenses as a way to describe nonlinearities in the propagation equations, and then
introduce further concepts that permit the description of pulse evolution in more complicated systems. These
include the temporal equivalent of a spherical dielectric interface, which is used by way of example to derive
design parameters used in a recent dispersion-managed soliton transmission experiment. This formalism offers
a quick, concise, and powerful approach to analyzing a variety of linear and nonlinear pulse propagation
phenomena in optical fibers.
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This paper introduces anab initio study of pulse propa-
gation phenomena analogous to spatial cw diffraction beh
ior. We address both linear dispersive evolution as well
self-phase modulation effects of the nonlinear index of
fraction @1#. The latter is responsible for much of the curre
interest in nonlinear optical communications, since pu
shapes such as solitons and dispersion-managed soliton
play much more attractive transmission properties than lin
transmission formats~e.g., NRZ! @2#.

Such nonlinear pulses are usually self-consistent eige
lutions of a wave equation, which is the primary reason
their robustness to uncompensated spectral broadening
resultant dissipation into the continuum. The conventio
hyperbolic secant soliton is an exact solution of the nonlin
Schrödinger equation@3#, and propagates indefinitely in
lossless medium without losing its shape. Lossless media
be realized in practice quite effectively by using lumped a
plification stages, and erbium-doped fiber amplifiers of
excellent characteristics in this regard.

Breathers, sometimes called dispersion-managed soli
@4,5#, are also self-consistent eigensolutions of the wa
equation that propagate with periodic pulse width, chirp, e
While not strictly unchanging in shape, breathers evo
back to their initial configuration, essentially traversing
closed, nondegenerate orbit in phase space@6#. Unlike pulse
shapes designed for linear transmission channels, t
pulses do not require periodic dispersion compensation a
the transmission channel, and so offer an attractive alte
tive to the strong control requirements of the nonline
Schrödinger soliton.

Characterizing the solutions of the nonlinear wave eq
tion is often simplest via direct numerical simulation, a
this has been particularly true for dispersion-managed s
tons@7#. In order to understand, capture, and then predict
utilize the essential physics that guides this behavior, a m
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conceptually accessible framework is sometimes prefera
such as the variational approach with a pulse shape an
@8#. The pulse shape is described as a dynamical system
write the Hamiltonian based on the action principle and s
solutions to the Euler-Lagrange equations of motion@9,10#.
This approach is not always applicable, however, especi
when the ansatz is incapable of capturing some esse
physical behavior. Also, it is somewhat more of an analyti
tool for probing the dynamics of systems that we alrea
know something about, or can predict at least partially, an
may be convenient to have other approaches that can o
quick insight into constructive aspects of nonlinear propa
tion, so that different geometries can be analyzed and c
pared quickly and easily.

The parallels between dispersive pulse propagation in
tical fibers and paraxial cw Gaussian beam diffraction in f
space have been identified for some time@11–13#. More re-
cently, the analogies have been extended to include temp
lenses as a way to translate the imaging properties of sp
lenses into the temporal domain@14#. In this way, pulse cor-
relation and convolution devices may also be construc
@15#. Still more recently, it was shown that temporal lens
can characterize nonlinear effects in the wave equation le
ing, for example, to the formation of a class of steady-st
repeating pulses@16#. This is perhaps the most potential
useful of the space-time analogies, and in this paper,
further extend the use of this formalism to describe still mo
powerful applications such as Gaussian pulse propagatio
dispersion-managed optical fiber systems, including the
fects of the nonlinear index of refraction.

We first outline the basic physics that motivates this d
cussion and sets the context for further development.

I. SPACE-TIME ANALOGY OF BEAM DIFFRACTION
AND PULSE PROPAGATION

Consider the diffraction of an electromagnetic fie
E(x,z,t) of radian frequencyv and scalar complex ampli

//
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TABLE I. Space-time translation rules.

Spatial frequency~Fourier variable! kx V frequency~Fourier variable!
Transverse distance x t2z/vg time ~in moving reference frame!
Propagation distance z z propagation distance
Wave vector~inverse! k21 2b9 GVD coefficient~negative!
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tudeu(x,z), which obeys the wave equation

¹2u1k2u50, k25v2me5S 2pn

l D 2

. ~1!

For optical beams whose plane wave components propa
at small angles to thez axis ~the paraxial approximation!
@17#,

u~z,t !5A ik

2pzE u0~x8!expF2
ik

2z
~x2x8!2Gdx8, ~2!

whereu0(x) is the envelope of the field atz50.
The propagation of cw Gaussian beams in free space

rotationally symmetric quadratic graded-index media is c
veniently described by assuming that the envelope has
form @17#

u5expH 2 i FP~z!1
k

2q~z!
r 2G J ~3!

where we find by substitution into the wave equation~1! that
dP/dz52 i /q(z) for such media. Theq parameter describe
the Gaussian beam completely,

1

q~z!
5

1

R~z!
2 i

l

pnw2~z!
. ~4!

In the above definition,R(z) describes the radius of curva
ture of the beam andw(z) describes the beam spot size.

The usefulness of theq parameter lies in the bilinea
transformation~ABCD law! that characterizes how this pa
rameter evolves with propagation. For an optical system
scribed by a real~or complex! 232 ABCDmatrix, the output
q parameterqo is given by

qo5
Aqi1B

Cqi1D
~5!

in terms of the inputq parameterqi . The real and imaginary
parts ofqo describe the radius of curvature and spot size
the Gaussian beam at the output of the optical system. M
practically important optical systems and their correspond
phenomena can be described by simpleABCDmatrices, such
as propagation in a uniform medium, focusing via a th
lens, beam transformation at a dielectric interface, propa
tion through a curved dielectric interface and thick len
propagation in a medium with a quadratic index variatio
etc. ~@17#, Table 2-1!.

In the temporal case, a single mode in an optical fi
~usually the lowest-order fundamental mode! can be written
in terms of the wave numberb0,
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E~z,t !5u~z,t !exp@ i ~v0t2b0z!#, ~6!

assuming that the optical field is quasimonochromatic c
tered atv0. The differential equation satisifed byu is, to
second order of derivatives with respect to the optical f
quencyv of the mode propagation constantb(v) @3#,

]u

]z
1b8

]u

]t
1

1

2
b9

]2u

]t2
50. ~7!

The solution to the above equation is@16#

u~z,t !5A 1

i2pb9z
E u0~ t8!expF i

2b9z
~T2t8!2Gdt8

~8!

where T5t2b8z5t2z/vg is the time coordinate in the
frame of reference comoving with the pulse envelope at
group velocityvg51/b8, andu0(t) is the envelope atz50.
Group-velocity dispertion~GVD! is represented by the pa
rameterb9.

The formal similarity between Eqs.~2! and~8! is the prin-
cipal motivation for this analysis. We can write down a set
space-time translation rules~see Table I! to apply results
from spatial diffraction to temporal dispersion and vi
versa. One family of results that can be derived from t
space-time analogy corresponds to spatial imaging, e.g.
2-f and 4-f optical systems. These can be applied to pu
compression or expansion experiments, etc.@14#.

But we will see in later sections that many linear a
nonlinear pulse propagation systems can be described
cascading simpleABCDmatrices, and this can result in sub
stantially simpler calculations and more direct physical u
derstanding of the physical processes involved in nonlin
pulse propagation. We will first need to develop some ad
tional facility in characterizing optical systems associa
with the pulse propagation equations.

The spatialq parameter has a temporal equivalentqt in
accordance with the space-time translation rules of Tab
defined by

1

qt~z!
5

1

Rt~z!
1 i

2b9

t2~z!
, ~9!

wheret(z) represents the pulse width~scaled in theT frame
by A2) andRt(z) is its chirp. A Gaussian pulse in linearl
dispersive fibers is then represented by the envelope@16#
1-2



n
tia
fr

ns
p

te

r
m
th

he
-

lse

uct

ve
ous

of
n
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u~z,t !5u0

t0

t~z!
expF i tan21

z

z0
1 i

t2

2b9Rt~z!
1

b9

ub9u

t2

t2~z!
G ,

~10!

where the pulse width and chirp satisfy evolution equatio
in linear dispersive fibers exactly analogous to their spa
counterparts, beam spot size and radius of curvature, in
space@16#,

t2~z!5t0
2S 11

z2

z0
2D ,

~11!

Rt~z!5zS 11
z0

2

z2D
with z05t0

2/2ub9u defining the dispersion length@3#.

II. COMPONENTS OF THE ABCD FORMALISM
FOR GAUSSIAN PULSE PROPAGATION

As a simple example of the application of the above tra
lation rules, we consider the propagation of a Gaussian in
pulse with envelope

U~0,T!5expS 2
T2

2T0
2D . ~12!

The transmission medium comprises of two concatena
sections of fiber with lengthsz1 andz2 and with GVD coef-
ficients b19 and b29 , respectively. We ignore any nonlinea
effects in this simple problem and assume that the mediu
lossless. We will determine the pulse characteristics at
output of the second medium, i.e., the pulse width atz5z1
1z2.

One way of solving this problem is by recourse to t
wave equation solution~8! by the Fourier transform tech
nique. We have,

Ũ~z2 ,V!5Ũ~z1 ,V!expS i

2
b29z1V2D

5Ũ~z0 ,V!expF i

2
~b19z11b29z2!V2G . ~13!

Taking the inverse Fourier transform,

U~z11z2 ,T!

5
1

2pE2`

`

Ũ~0,V!F i

2
~b19z11b29z2!V22 iVTGdV

5F T0
2

T0
22 i ~b19z11b29z2!

G 1/2

3expF2
T2

2@T0
22 i ~b19z11b29z2!#

G , ~14!
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from which we see that the ratio of the output to input pu
width is

T1

T0
5F11S b19z11b29z2

T0
2 D 2G 1/2

. ~15!

We will now verify Eq. ~15! using theABCD matrix ap-
proach. The system is described very simply by the prod
of three matrices,

M5S 1 z2

0 1 D S 1 0

0
b29

b19
D S 1 z1

0 1 D

5S 1 z11
b29

b19
z2

0
b29

b19

D ~16!

so that

q25
Aq11B

Cq11D
5

b19

b29
q11

b19

b29
z11z2 . ~17!

Using the shorthand notation

R2[R~z11z2!, R1[R~0!,
~18!

t2[t~z11z2!, t1[t~0!,

we have

1

R2
2 i

2b29

t2
2

S 1

R2
D 2

1S 2b29

t2
2 D 2 5

b19

b29

1

R1
2 i

2b19

t1
2

S 1

R1
D 2

1S 2b19

t1
2 D 2 1

b19

b29
z11z2 .

~19!

The real and imaginary parts of both sides of the abo
equation have to be equal, leading to a pair of simultane
equations. For an unchirped input pulse,R150 so that equal-
ity of the imaginary parts leads to

S 1

R2
D 2

1S 2b29

t2
2 D 2

5S 2b29

t2t1
D 2

. ~20!

Substituting this expression into the equation of equality
the real parts of Eq.~19! and some algebraic manipulatio
leads to

t~z11z2!

t~0!
5

t2

t1
5F11S b19z11b29z2

t1
2/2

D 2G 1/2

, ~21!

which is the same as Eq.~15!, sincet5A2DT.
1-3
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FIG. 1. ~a! Spatial lens and~b! Temporal lens
showing the parallels between diffraction and d
persion, and techniques for their compensation
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In the above calculation, we have carried out some a
braic simplifications by hand in order to show that the res
obtained by theABCD matrix approach is the same as th
obtained by the Fourier transform approach. Neverthel
the former is computationally much simpler, and separat
the real and imaginary parts of Eq.~19! as part of a numeri-
cal algorithm can be carried out without the notational co
plexity of, for example, rationalizing the denominator.

Our ABCD formalism would be of limited interest if the
only phenomena it could capture were that of dispers
propgation.The time-lens formalism lets us describe non
ear mechanisms as well. By analogy to spatial lenses tha
characterized by a lens factor exp(ikr2/2f ), which multiplies
an incoming optical beam, we define a temporal lens a
device that multiplies the pulse envelope by a factor@14,16#

L f5expF2 i
t2

2b9 f t
G[exp@2 ibt2#. ~22!

The ABCD matrix representing a temporal lens has t
same form as that of a spatial lens,

M5S 1 0

2
1

f t
0D ~23!
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where f t represents the temporal ‘‘focal length.’’
A comparison of spatial and temporal lensing is shown

Fig. 1. In the spatial case, the lens compensates for
spreading of the beam waist and ‘‘flips’’ the phase fronts
convert a diverging beam into a converging one. Similarly
temporal lens reverses the sign of the chirp, so that furt
propagation in ab9,0 dispersive fiber will compensate fo
the chirp~phase modulation! caused this far. This is also a
interesting and physically illuminating approach to discu
ing the physics of the formation of solitons~ @17#, Chap. 19!.

One possible implementation, as proposed in@16#, is to
achieve temporal lensing by self-phase modulation dur
the passage of the pulse through a section of nonlinear fi
(b9'0,n2.0). For short distances,z!pt0

2/ub9u and when
b9/t0

2!(2pn2 /l)I p for peak intensityI p , a pulse with in-
put electric field envelopeu(0,T) emerges from a lengthz of
nonlinear fiber with phase modulation

u~z,T!5u~0,T!expF2 i
v0n2z

2ch
uu~0,T!u2G ~24!

where h5Am/e defines the impedance of free space. W
write the pulse intensity as

I 5
uuu2

2h
5I p expF22S T

t0
D 2G , ~25!
1-4
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and keep the first two terms in the Taylor expansion of
exponential in Eq.~24!,

u~z,T!5u~0,T!expF i
2v0n2I pz

ct0
2

T2G , ~26!

modulo a phase term linear inz that is independent ofT. The
effect of propagation through lengthL of nonlinear fiber is to
impart a quadratic chirp to the pulse, which we represen
the multiplicative term exp(2ibt 2) so that

b5
1

2b9 f t

52
2v0n2I pL

ct0
2

. ~27!

Another method of obtaining time lensing is based on
principle of electro-optic modulation@14#. An electro-optic
phase modulator driven by a sinusoidal bias voltage of
gular frequencyvm results in a phase modulation that
approximately quadratic under either extremum of the si
soid. The phase shift can be written as

exp@ if~ t !#5expF2 iK S 12
vm

2 t2

2 D G , ~28!

where K is the modulation index~ @17#, Sec. 9.4!. In this
case,

b5
2

Kvm
2

. ~29!

We have described our temporal lens by a section of n
linear fiber ofb9'0, analogous to a spatial thin lens, whic
is assumed to have no thickness. Just as practical lense
have some thickness, practical fibers have nonzerob9. For
those situations in which this cannot be ignored, or may e
be utilized constructively, we derive the correspondi
equivalent of a spatial ‘‘thick lens.’’

Our first step is to characterize the temporal equivalen
a curved dielectric interface: a spatial lens comprises of
such interfaces separated by a length of material of enha
refractive index. At a planar dielectric interface between t
media of refractive indicesn1 andn2, a Gaussian beam un
dergoes a change in the radius of curvature, but is unchan
in beam width@18,19#,

R25
n2

n1
R1 , w15w2 . ~30!

By analogy, a chirped Gaussian pulse at the interface
tween two fibers of GVD coefficientsb19 andb29 transforms
to a different chirp, but with unchanged pulse width,

1

b29R2

5
1

b19R1

, t15t2 . ~31!
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Of course, the pulse width evolves differently in the tw
sections of the fiber,

t i
2~z!5t0i

2 S 11
z2

z0i
2 D , i 51,2, ~32!

wherez0i is the dispersion length in fiberi.
The ABCD matrices for a~spatial! spherical dielectric in-

terface and its temporal translation are

M : S 1 0

n22n1

n2R

n1

n2

D °S 1 0

12b29/b19

Rl

b29

b19
D . ~33!

To see what this matrix represents, we use theABCDbilinear
transformation,

q25q1 Y F 1

Rl
S 12

b29

b19
D q11

b29

b19
G , ~34!

which implies that

1

q2
5S 1

R2
1 i

2b29

t2
2 D

5
1

Rl
S 12

b29

b19
D 1S 1

R1
1 i

2b19

t1
2 D b29

b19
. ~35!

After some algebraic manipulation, we can write the abo
as

b19S 1

Rl
2

1

R2
D5b29S 1

Rl
2

1

R1
D , ~36!

showing explicitly how the chirp transforms at this interfac
TheABCDmatrix for a temporal lens of ‘‘thickness’’d is

written as the product of threeABCD matrices representing
when read from right to left, a transition from the input fib
to the fiber that defines the thin temporal lens, propagatio
the second fiber, and a transition back to the input fiber,

M5S 1 0

12b19/b29

R2

b19

b29
D S 1 d

0 1D S 1 0

12b29/b19

R1

b29

b19
D .

Multiplying the matrices together, we get a singleABCD
matrix that defines the outputqt parameter via the usual bi
linear transformation (Aqt1B)/(Cqt1D),
1-5



SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 64 016611
M5S 11
d

R1
F12

b29

b19
G d

b29

b19

d

R1@2R2# Fb29

b19
21GF12

b19

b29
G2F 1

R1
1

1

2R2
GF12

b19

b29
G 11

d

2R2
F12

b29

b19
G D . ~37!
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The temporal focal lengthf̂ t is analogous to the spatial foca
length and is given by2A/C,

f̂ t5F11
d

R1
S 12

b29

b19
D G Y F S 1

R1
1

1

2R2
D S 12

b19

b29
D

2
d

R1~2R2! S b29

b19
21D S 12

b19

b29
D G . ~38!

The temporal focal length defines the time from the out
plane at which an initially unchirped pulse becomes u
chirped again.

We can write the above in slightly simpler notation, f
the specific caseR152R25R, and letk5d/R, Db95b29
2b19 ,

f̂ t5F 12k
Db9

b19

12
k

2

Db9

b19

b29

Db9G R

2
, ~39!

where the term in parentheses represents an enhance
factor over the ‘‘thin lens’’ formula.

For k!1, we can simplify the above expression keepi
terms ofO(k),

1

f t
'S 12

k

2

Db9

b19
D S 11k

Db9

b19
D 2Db9

R b29

'S 11
k

2

Db9

b19
D 2Db9

R b29
. ~40!

The above relation confirms our physical intuition that
b292b195Db9,0, then we have reducedf t , the distance to
the point of zero chirp from the output plane, for an initial
unchirped input pulse.

We now have the tools we need to analyze a reason
complicated practical problem: designing the length of a d
persion map so as to get self-consistent eigenpulses with
riodic pulse width and chirp.
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III. DISPERSION-MANAGED SOLITON TRANSMISSION
EXPERIMENT

It has been recently found that a stable, self-consis
pulse solution exists in a dispersion-managed fiber transm
sion system@5#. While these are not solitons in the stri
mathematical sense, they have been called dispers
managed solitons, or perhaps more appropriately, breath
They demonstrate periodic behavior: the pulse width a
chirp of Gaussian breathers, for instance, are periodic fu
tions of the propagation distance. Breathers share a prop
in common with solitons, in that they can propagate inde
nitely without losing shape; even though the pulse sh
undergoes changes within a disperion map period, the p
does not disperse away to infinity or tend to self-focus to
point, either of which invalidate the applicability of the non
linear Schro¨dinger equation after a certain distance.

A dispersion-managed~DM! soliton is closer to a Gauss
ian shape than the hyperbolic secant of the nonlinear Sc¨-
dinger equation@20#, and it is interesting to ask whether ou
analysis is capable of capturing the essential aspects o
evolution along a dispersion-managed transmission chan

We consider, as our example, the paper by Muet al. @21#
who have simulated DM soliton dynamics in a recirculati
fiber loop. Their dispersion map consists of 100 km of d
persion shifted fiber~SMF-LS! with normal dispersionD1

equal to 21.10 ps/nm(km) at 1551 nm, followed by a
‘‘approximately 7-km span’’ of standard single-mode fib
~SMF-28! with an anomalous dispersionD2 equal to 16.6
ps/nm~km! at 1551 nm. The results of the paper indicate th
Gaussian shaped pulses of pulse duration 5.67 ps and
power 9 dB m were used. We will derive the result that,
these parameters and given the length of SMF-LS fiber,
length of SMF-28 fiber that needs to be used is indeed ‘‘
proximately 7-km.’’ In other words, we will show that thi
given dispersion map can support lowest-order chirp
Gaussian self-consistent solutions, i.e., breathers.

The dispersion map, shown schematically in Fig. 2, co
sists of three fiber segments: a lengthz1/2 equal to 50 km of
SMF-LS fiber followed by a lengthz2 of SMF-28 fiber
whose numerical value is to be determined, and then
remainderz1/2 of SMF-LS fiber. Each segment of fiber ha
nonlinear characteristics, which we model via a time le
situated for simplicity at the individual midpoints of the re
spective segments. Consequently, each segment is desc
by the cascaded product of threeABCD matrices, with two
additional matrices representing the transitions between
bers of differentb9. For simplicity, we will assume that the
nonlinear properties of the fibers are identical.
1-6
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ANALYSIS OF OPTICAL PULSE PROPAGATION WITH . . . PHYSICAL REVIEW E64 016611
The overallABCD matrix for the system can be writte
down quite easily,

M5S 1 z1/4

0 1 D S 1 0

21/f t 1D S 1 z1/4

0 1 D S 1 0

0 b19/b29
D

3S 1 z2/2

0 1 D S 1 0

21/f t 1D S 1 z2/2

0 1 D S 1 0

0 b29/b19
D

3S 1 z1/4

0 1 D S 1 0

21/f t 1D S 1 z1/4

0 1 D , ~41!

which after some algebra can be written as anABCD matrix
with the following elements:

A5F S 12
z1

4 f D S 12
z2

2 f D2
z1

4 f

b19

b29
S 22

z1

4 f D G S 12
z1

4 f D
2Fb29

b19
S 12

z1

4 f D S 22
z2

2 f D z2

2 f
1S 22

z1

4 f D S 12
z2

2 f D z1

4 f G ,

~42!

D52
z1

4 f F S 12
z2

2 f D1
b19

b29
S 12

z1

4 f D G S 22
z1

4 f D
2Fb29

b19

z2

2 f S 22
z2

2 f D2S 12
z2

2 f D S 12
z1

4 f D G S 12
z1

4 f D ,

~43!

FIG. 2. ~a! Analytical schematic of dispersion map from@21#
and ~b! its representation to express in terms ofABCD matrix
elements.
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B5F S 12
z1

4 f D S 12
z2

2 f D2
z1

4 f

b19

b29
S 22

z1

4 f D G z1

4 S 22
z1

4 f D
1Fb29

b19
S 12

z1

4 f D S 22
z2

2 f D z2

2
1S 22

z1

4 f D S 12
z2

2 f D z1

4 G
3S 12

z1

4 f D , ~44!

C52
1

f F S 12
z2

2 f D1
b19

b29
S 12

z1

4 f D G S 12
z1

4 f D
2

1

f F2
b29

b19

z2

2 f S 22
z2

2 f D1S 12
z2

2 f D S 12
z1

4 f D G .

~45!

The algebraic complexity of writing out the expressions e
plicitly should not mask the simplicity of multiplying 232
matrices, usually numerically. Note that the expression~43!
for D is algebraically identical to that forA, Eq. ~42!, and it
may be verified thatAD2BC51.

The q parameter~we have dropped the t subscript in th
section for notational elegance! evolves according to the bi
linear transformation law and we require that the pulse rep
itself after propagation through one suchABCD matrix,

1

q
5

A1B/q

C1D/q
, ~46!

which has the solution

1

q
5

D2A

2B
6 i

A12S D1A

2 D 2

B
. ~47!

SinceD5A in our above analysis, we already see thatq is
purely imaginary atz50, i.e., the pulse has zero chirp at th
midplanes as we would expect a breather to have.

At this stage, we can substitute numerical values for
various parameters~exceptz2, which is what we seek! into
the expressions for theA, B, C, andD elements, Eqs.~42!
and~43!, and solve Eq.~47! numerically forz2. While this is
not difficult and already yields a quick solution to the pro
lem at hand, we can get further insight via a well-justifi
simplification as follows.

The q parameter at the midplanes, where it is pure
imaginary, is given by

1

q0
5

2ub19u

t0
2

~48!

where b1951.40310227s2/m and input pulse widtht0

55.67310212 s. Consequently, for such pulses 1/q'0 and
sinceA5D, this implies thatA51 in Eq. ~47!.

With the notational substitutions
1-7
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x5
z2

2 f
, y5

z1

4 f
, b r95

b19

b29
~49!

we get the necessary condition

@~12y!22~22y!y#~12x!2b r9y~22y!~12y!

2
1

b r9
~12y!~22x!x51. ~50!

The solution of this equation is given by

x5b r9
y~22y!

12y
~51!

or, in terms of the initial variables,

z25Ub19

b29
U
z1

2 S 22
z1

4 f D
S 12

z1

4 f D
, ~52!

which is the necessary condition in order to have a sta
self-consistent Gaussian eigenpulse~breather! solution to the
dispersion-map problem.

All that remains is for us to interpret the variables
terms of the original problem and numerically evaluate t
expression to get the desired lengthz2 of SMF-28 fiber in
this dispersion map. The various numerical values are
follows:

b1951.40310227 s2/m,

b29522.12310226 s2/m,

t055.67310212 s,

z15105 m.

Given the nature of the problem, we realize our time le
with the nonlinear fiber as described earlier@Eq. ~27!#, so
that

1

f
524bNL9 S 2p

l Dn2I pLNL

t2
~53!

and takebNL9 5b29 , I p53.623106 W/m2 so that with fiber
core areaAeff547 mm, we getP58 mW59 dB m. Also,
we takeLNL5z2 consistent with our choice ofbNL9 .

The numerical solution~of the quadratic equation! for z2
is equal to 7.00 km, which is indeed the value ‘‘appro
mately 7 km’’ stated in the paper@21#. In spite of apparent
exact agreement, we should be careful to appreciate that
analysis is a characterization of only the most important p
cesses in this experiment. Possible sources for approxima
include the fact that a DM soliton is only approximate
Gaussian, and that we have represented the combined di
sive and nonlinear properties of the fiber segments b
01661
le

s

as

s

his
-
on

er-
a

single temporal lens. A better approximation may be to
clude several temporal lenses for each segment of the fi
this would make the algebraic expressions in this paper q
cumbersome to write down explicitly, but the numeric
computation would not be much more difficult since the m
trices are only 232 in size and comprise of purely real ele
ments. The experimental configuration of@21# also includes
several other elements that can affect the pulse shape su
filters, fiber amplifiers, and polarization controllers.

IV. HERMITE-GAUSSIAN BASIS

Our ABCD matrix formalism for pulse propagation ap
plies to chirped Gaussian pulses. To analyze more com
cated shapes, we can expand the given pulse shape in a
of chirped Hermite-Gaussian functions, which form a co
plete orthonormal basis@18,20#. The Hermite-Gaussian func
tion ~we consider only unchirped Gaussians here for simp
ity! of order n is defined as the product of the Hermi
polynomial of ordern with a Gaussian function,

cn~ t ![Hn~ t !exp~2t2/2!, ~54!

where, for example,

H0~ t !51, H1~ t !52t, H2~ t !54t222. ~55!

We can expand an arbitrary input amplitudeu0(t) in this
basis, analogous to expanding a field in terms of plane w
components, as in solution techniques of the standard p
bolic diffraction equation by means of the Fourier transfor

u0~ t !5 (
n50

cnHn~ t !exp~2t2/2!, ~56!

where because of orthogonality of the Hermite-Gauss
functions, the expansion coefficients are given by

cn5
1

Ap2nn!
E

2`

`

u0~ t !Hn~ t !exp~2t2/2!. ~57!

The propagation Eq.~8! defines the output pulse shape
the convolution of the input shape with a Gaussian kern
Hermite-Gaussians, when convolved with a Gaussian, y
the product of a Hermite polynomial and a Gaussian@18#,

E
2`

`

dt0 cn~ t0!expF2
a

2
~ t2t0!2G

5A 2p

a11S a21

a11D n/2

expF at2

2~a221!
GcnF a

Aa221
tG .

~58!

Taking as input thenth Hermite-Gaussian modeu0

5cn(t) ~which has widtht05A2), the amplitude of this
mode after propagation through distancez is
1-8
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un~z,T!5A 1

11 ib9zF 2

11
i

b9z

12
i

b9z

G n/2

3expF i

2b9z

T2

11
1

~b9z!2
GcnF T

A11~b9z!2G ,

~59!

which can be seen to agree with Eq.~11!.
A Hermite-Gaussian function therefore maintains

shape during propagation, but adds a chirp~which is the
same for all modes! and a scaling of the width according t
Eq. ~11!. Power conservation implies that the amplitude c
respondingly scales down. The only term that is depend
on the order of the Hermite-Gaussian function is a ph
term; higher-order modes have greater phase advances
their spectral content is higher. The important observatio
that the orthogonality of the Hermite-Gaussian expansio
preserved, and so this expansion may be used to predic
pulse shape obtained by propagating an input pulse. Our
malism remains valid as long as the differential equat
describing the propagation of a particular order Herm
Gaussian function is of the form~7!, i.e., the slowly-varying
envelope approximation is valid. Therefore, we can exp
that the lower-order expansions are usually valid; the res
of applying our analysis to higher-order expansion ter
generate the residual field corrections to the lower-order
sults @22#.

V. CONCLUSIONS

We have developed a 232 ABCD matrix formalism for
pulse propagation in media described by Maxwell’s eq
tions, accounting for dispersion, nonlinear, and gain/l
mechanisms. The method is analogous to techniques us
cw beam diffraction analysis, and correspondingly simi
phenomena can be predicted, such as chirp transforma
,

F.

nd

-
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nt
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focusing, periodic pulse width expansion and narrowing, e
The spatialq parameter has a temporal equivalentqt in ac-
cordance with the given space-time translation rules. T
real and imaginary parts ofqt

21 represent the chirp and th
width of the pulse as a function of propagation distancez.

The propagation of various input pulse shapes can be
scribed by expanding the given pulse in a basis of Herm
Gaussian functions; theABCD formalism applies to each
Gaussian wave function separately. Propagation throug
complicated system of optical elements is simple to calcu
in terms ofABCD matrices: the resultant matrix is the ca
caded product of theABCD matrices of each of the indi
vidual elements with the appropriate ordering. The overalqt
parameter is given by a bilinear transformation in terms
the ABCD elements of the overall product matrix, exact
analogous to the spatial case.

We have formulatedABCD matrices for pulse propaga
tion in dispersive fibers and for temporal lenses, which c
characterize self-phase modulation phenomena. A spatia
electric interface translates to an interface between fiber
ments of dissimilar GVD coefficientb9. The temporal
equivalent of a curved dielectric interface is useful for ch
acterizing the transition between such dissimilarb9 fibers
with the added presence of fiber nonlinearities arising fr
the nonlinear index of refractionn2. We have used thes
tools to characterize a dispersion map for self-consis
stable propagation of a dispersion-managed soliton.

We believe this method of analysis forms a use
complement to conventional pulse propagation methods s
as the split-step Fourier transform numerical procedures@3#,
which are substantially more computationally intensive. T
ABCDapproach is useful for clarifying the important dispe
sive and nonlinear focusing effects in dispersion-mana
nonlinear fiber segments. Together with the variational
proach @8,9#, the q parameter offers an insight into puls
evolution from a theoretical standpoint.
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