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Analysis of optical pulse propagation with two-by-two (ABCD) matrices
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We review and extend the analogies between Gaussian pulse propagation and Gaussian beam diffraction. In
addition to the well-known parallels between pulse dispersion in optical fiber and cw beam diffraction in free
space, we review temporal lenses as a way to describe nonlinearities in the propagation equations, and then
introduce further concepts that permit the description of pulse evolution in more complicated systems. These
include the temporal equivalent of a spherical dielectric interface, which is used by way of example to derive
design parameters used in a recent dispersion-managed soliton transmission experiment. This formalism offers
a quick, concise, and powerful approach to analyzing a variety of linear and nonlinear pulse propagation
phenomena in optical fibers.
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This paper introduces aab initio study of pulse propa- conceptually accessible framework is sometimes preferable,
gation phenomena analogous to spatial cw diffraction behawsuch as the variational approach with a pulse shape ansatz
ior. We address both linear dispersive evolution as well th¢8]. The pulse shape is described as a dynamical system; we
self-phase modulation effects of the nonlinear index of rewrite the Hamiltonian based on the action principle and seek
fraction[1]. The latter is responsible for much of the currentsolutions to the Euler-Lagrange equations of mo{i@ri0].
interest in nonlinear optical communications, since pulselNis approach is not always applicable, however, especially
shapes such as solitons and dispersion-managed solitons df¢ben the ansatz is incapable of capturing some essential
play much more attractive transmission properties than lineaphysical behavior. Also, it is somewhat more of an analytical
transmission formatée.g., NRZ [2]. tool for probing the dynamics of systems that we already

Such nonlinear pulses are usually self-consistent eigensénow something about, or can predict at least partially, and it
lutions of a wave equation, which is the primary reason fornay be convenient to have other approaches that can offer
their robustness to uncompensated spectral broadening afi#ick insight into constructive aspects of nonlinear propaga-
resultant dissipation into the continuum. The conventionafion, so that different geometries can be analyzed and com-
hyperbolic secant soliton is an exact solution of the nonlineaParéd quickly and easily. . o
Schralinger equatior3], and propagates indefinitely in a Th_e parallels betvv_een dlsperS|ye pulse propagation in op-
lossless medium without losing its shape. Lossless media cdi¢al fibers and paraxial cw Gaussian beam diffraction in free
be realized in practice quite effectively by using lumped am-SPace have been identified for some tifi¢—13. More re-
plification stages, and erbium-doped fiber amplifiers offercently, the analogies have been extended to include temporal
excellent characteristics in this regard. lenses as a way to translate the imaging properties of spatial

Breathers, sometimes called dispersion-managed solitorlgnses into the temporal domgib4]. In this way, pulse cor-
[4,5], are also self-consistent eigensolutions of the wavdelation and convolution devices may also be constructed
equation that propagate with periodic pulse width, chirp, etc[15]- Still more recently, it was shown that temporal lenses
While not Stricﬂy unchanging in Shape, breathers evolvecan characterize nonlinear effects in the wave equation lead-
back to their initial configuration, essentially traversing aing. for example, to the formation of a class of steady-state
closed, nondegenerate orbit in phase sp&¢eUnlike pulse ~ 'epeating pulse§l6]. This is perhaps the most potentially
shapes designed for linear transmission channels, theseful of the space-time analogies, and in this paper, we
pu|ses do not require periodic dispersion Compensation a|0n@lrther extend the use of this formalism to describe still more
the transmission channel, and so offer an attractive altern&owerful applications such as Gaussian pulse propagation in
tive to the strong control requirements of the nonlineardispersion-managed optical fiber systems, including the ef-
Schralinger soliton. fects of the nonlinear index of refraction.

Characterizing the solutions of the nonlinear wave equa- We first outline the basic physics that motivates this dis-
tion is often simplest via direct numerical simulation, andcussion and sets the context for further development.
this has been particularly true for dispersion-managed soli-
tons[7]. In order to understand, capture, and then predict and

utilize the essential physics that guides this behavior, a more I. SPACE-TIME ANALOGY OF BEAM DIFFRACTION
AND PULSE PROPAGATION

*Electronic address: shayan@caltech.edu; URL: http:// Consider the diffraction of an electromagnetic field
www.its.caltech.edtishayan E(x,z,t) of radian frequencyw and scalar complex ampli-
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TABLE |. Space-time translation rules.

Spatial frequencyFourier variablg Ky Q frequency(Fourier variable
Transverse distance X t—2z/vg time (in moving reference frame
Propagation distance z z propagation distance
Wave vector(inverse k=t -pB" GVD coefficient(negative
tudeu(x,z), which obeys the wave equation E(z,t)=u(z,t)exfi(wot— Bo2)], (6)
214 12 2_ 2 27 ® - al ol - ;
Vau+ku=0, KkK'=wue= - (1) assuming that the optical field is quasimonochromatic cen-

tered atwgy. The differential equation satisifed hy is, to

For optical beams whose plane wave components propaga?@cond order of derivatives with respect to the optical fre-
at small angles to the axis (the paraxial approximation duencye of the mode propagation constabtw) [3],

[17],

ik ik 5
u(z,t)= mf Ug(x")ex _Z(X_X,)

whereug(x) is the envelope of the field at=0. The solution to the above equation[i]
The propagation of cw Gaussian beams in free space and

rotationally symmetric quadratic graded-index media is con- 1 .
: i i / i
veniently described by assuming that the envelope has the u(zt)=\/- f Uo(t')ex (T—t")2|dt’
i2mpB"z 2B"z

form [17]
u=exp[ —i 24(2)

where we find by substitution into the wave equatibnthat
dP/dz=—i/q(z) for such media. The parameter describes
the Gaussian beam completely,

au+ ,07U+1 Nazu_o @
dx’, (2 AR I LTI

P(z)+ r2

®
] )

where T=t—g’z=t—2z/vy is the time coordinate in the
frame of reference comoving with the pulse envelope at the
group velocityv 3= 1/8", andu(t) is the envelope at=0.
Group-velocity dispertiofGVD) is represented by the pa-

rameterg”.
1 1 A The formal similarity between Eq&2) and(8) is the prin-
= =i . (4) cipal motivation for this analysis. We can write down a set of
9(2) R(@)  mnwi(2) space-time translation rulesee Table )l to apply results

from spatial diffraction to temporal dispersion and vice
versa. One family of results that can be derived from this
space-time analogy corresponds to spatial imaging, e.g., the
2-f and 41 optical systems. These can be applied to pulse
compression or expansion experiments, Etd].
© But we will see in later sections that many linear and
nonlinear pulse propagation systems can be described by
cascading simpl&BCD matrices, and this can result in sub-
Aq+B stantially simpler calculations and more direct physical un-
o= (5) derstanding of the physical processes involved in nonlinear
Cq+D pulse propagation. We will first need to develop some addi-
in terms of the inputy parameten; . The real and imaginary tional facility in characterizing optical systems associated

parts ofq, describe the radius of curvature and spot size oiw't_rll_;he pu{sel propagat;on ﬁquatlctans. | valent
the Gaussian beam at the output of the optical system. Mar% € spatialq parameter nas a temporal equivalepin

In the above definitionR(z) describes the radius of curva-
ture of the beam and/(z) describes the beam spot size.

The usefulness of thg parameter lies in the bilinear
transformation(ABCD law) that characterizes how this pa-
rameter evolves with propagation. For an optical system d
scribed by a readlor compley 2xX 2 ABCDmatrix, the output
g parametelq, is given by

practically important optical systems and their correspondin cc_ordance with the space-time translation rules of Table |
phenomena can be described by simpRCD matrices, such efined by
as propagation in a uniform medium, focusing via a thin
lens, beam transformation at a dielectric interface, propaga- 1 1 2B
tion through a curved dielectric interface and thick lens, %(2) = R(2) =, 9
propagation in a medium with a quadratic index variation, ! ! ™(2)
etc. ([17], Table 2-1.

In the temporal case, a single mode in an optical fibewherer(z) represents the pulse widthcaled in theT frame
(usually the lowest-order fundamental mp@an be written by \2) andR(z) is its chirp. A Gaussian pulse in linearly
in terms of the wave numbe,, dispersive fibers is then represented by the envelapk

016611-2



ANALYSIS OF OPTICAL PULSE PROPAGATION WITH . .. PHYSICAL REVIEW B4 016611

70 7 t2 gt from which we see that the ratio of the output to input pulse
u(z,t)=up——exgitan ! —+i———+ — , width is
7(2) o 2B'R(z) |B"| P(2)
" " 27172
(10) _1 _ N ( ,8121+ 3222> (15)
where the pulse width and chirp satisfy evolution equations To TS

in linear dispersive fibers exactly analogous to their spatial

counterparts, beam spot size and radius of curvature, in free We will now verify Eq. (15 using theABCD matrix ap-

spacef16], proach. The system is described very simply by the product
of three matrices,

Z2
A(2)=15 1+ ], 10
{o 1 2z oz
, (11 M=lo 1/l o #2|lo 1
g B”
R(z)=z| 1+ —(2) !
A "
1 z,+ —izz
with Zo= 73/2| 8"| defining the dispersion lengf{3]. B1 16
Il. COMPONENTS OF THE ABCD FORMALISM 0 '8—,2,
FOR GAUSSIAN PULSE PROPAGATION B
As a simple example of the application of the above transso that
lation rules, we consider the propagation of a Gaussian input
pulse with envelope Aq;+B B B
G=c, 1p~ w0t Atz (17)
T2 Cq1+ D :82 :82
U T)=expg — ——|- (12 ) )
2T§ Using the shorthand notation
The transmission medium comprises of two concatenated R,=R(z:+2;), R;=R(0),
sections of fiber with lengths, andz, and with GVD coef- (18
ficients B8] and B85, respectively. We ignore any nonlinear =1(23+2), 7,=17(0),

effects in this simple problem and assume that the medium is h
lossless. We will determine the pulse characteristics at thd/€ have
output of the second medium, i.e., the pulse widtlzatz;

One way of solving this problem is by recourse to the Ry 73 Bg; R 2 ]
wave equation solutiort8) by the Fourier transform tech- 2 [og! 2= ., 2 [og 2t —, 4112,
nique. We have, (i) + 22| P (i) + 2P1 2
_ R, > R, 7-%
~ ~ i
0(22.0) =0z )] 5 1,02 49

The real and imaginary parts of both sides of the above
~ P Y ’ equation have to be equal, leading to a pair of simultaneous
=U(z0,)exp 5 (B121+ B222) Q% (13)  equations. For an unchirped input pulBg=0 so that equal-
ity of the imaginary parts leads to
Taking the inverse Fourier transform, 5
112 [2B3)" [2B3|°
U(z3+2,,T) (R_z) =) = : (20

TS T271

1 (= - [

= Z_J U(O,Q)[E(B[zﬁﬂgzz)ﬂz—iQT}dQ Substituting this expression into the equation of equality of
TS e the real parts of Eq(19) and some algebraic manipulation
To—1(Biz1+ B3zo) W(2+2) 7 _{ ( Biz+ Bz,

12 leads to
271/2
- v f 1+ , 21
T2 7(0) T1 52 ] 2y
xXexp — , 14
F{ 2[T— il 1 o

Biz1+ B325)] which is the same as E@15), sincer=2AT.

2
TO
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beam waist
Gaussian profile

beam width phase fronts
increases
FIG. 1. (a) Spatial lens andb) Temporal lens
showing the parallels between diffraction and dis-
persion, and techniques for their compensation.
Time dispersive fiber
Lens

unchirped Gaussian

pulse input : :
chirped ! unchirped
Gaussian Gaussian

In the above calculation, we have carried out some algewheref, represents the temporal “focal length.”
braic simplifications by hand in order to show that the result A comparison of spatial and temporal lensing is shown in
obtained by theABCD matrix approach is the same as thatFig. 1. In the spatial case, the lens compensates for the
obtained by the Fourier transform approach. Neverthelesspreading of the beam waist and “flips” the phase fronts to
the former is computationally much simpler, and separatingonvert a diverging beam into a converging one. Similarly, a
the real and imaginary parts of E@L9) as part of a numeri- temporal lens reverses the sign of the chirp, so that further
cal algorithm can be carried out without the notational com-propagation in g3”<0 dispersive fiber will compensate for
plexity of, for example, rationalizing the denominator. the chirp(phase modulationcaused this far. This is also an
Our ABCD formalism would be of limited interest if the interesting and physically illuminating approach to discuss-
only phenomena it could capture were that of dispersivéng the physics of the formation of solito$17], Chap. 19.
propgation.The time-lens formalism lets us describe nonlin- One possible implementation, as proposed1f], is to
ear mechanisms as well. By analogy to spatial lenses that aeehieve temporal lensing by self-phase modulation during
characterized by a lens factor edp/2f), which multiplies  the passage of the pulse through a section of nonlinear fiber
an incoming optical beam, we define a temporal lens as @3”~0,n,>0). For short distanceg<w72/|8"| and when
device that multiplies the pulse envelope by a fa¢let,16 g/ r5<(2mn,/\)1, for peak intensityl,, a pulse with in-
put electric field envelopa(O,T) emerges from a lengthof
2
Lf = eXF{ —i !
2B"f,

nonlinear fiber with phase modulation
The ABCD matrix representing a temporal lens has the
same form as that of a spatial lens,

=exd —ibt?]. (22

(24)

u(z,T)zu(o,T)exp[ SR N
2cy

where =\ ule defines the impedance of free space. We
write the pulse intensity as

— 2 2
M=l _1 o @3 I=&=Ipex;{—2(l)

ft 277 ’ (25)
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and keep the first two terms in the Taylor expansion of theDf course, the pulse width evolves differently in the two

exponential in Eq(24), sections of the fiber,
_ .Za)onzlpz 2 ZZ
u(z,T)=u(0T)ex =z | (26) 2= 1+ |, i=12, (32)
Oi

modulo a phase term linear &rthat is independent of. The ) ) ) o
effect of propagation through lengthof nonlinear fiber is to  Where{y; is the dispersion length in fiber .
impart a quadratic Chirp to the pu'se, which we represent by The ABCD matrices for dspatla} Sphe”cal dielectric in-

the multiplicative term exp{ibt? so that terface and its temporal translation are
1 2wgn,l oL 1 0
= " = : 22 : ' (27) ! ° "y ol "
2p"f; cTo M: | np=ny ng || 1-8581 By |. (33
Another method of obtaining time lensing is based on the nR Ny Ry B1

principle of electro-optic modulatiofil4]. An electro-optic

phase modulator driven by a sinusoidal bias voltage of anTo see what this matrix represents, we useABED bilinear
gular frequencyw,, results in a phase modulation that is transformation,

approximately quadratic under either extremum of the sinu-

soid. The phase shift can be written as

1 B3 B3
W2i2 CI2:CI1/ ﬁ(l_ﬁ%ﬁﬁ , (349)
exp[iq&(t)]:ex;{—iK(l—%) , (28) ! !
which implies that
where K is the modulation indexX [17], Sec. 9.4 In this
case,
1 1 285
_ = — |_
2 @ \R 7
o B O D BT S,
We have described our temporal lens by a section of non- R B, R, T% ,3'1'-

linear fiber of 3”~0, analogous to a spatial thin lens, which

is assumed to have no thickness. Just as practical lenses d@ar some algebraic manipulation, we can write the above

have some thickness, practical fibers have nonggroFor ;4

those situations in which this cannot be ignored, or may even

be utilized constructively, we derive the corresponding

equivalent of a spatial “thick lens.” 1
Our first step is to characterize the temporal equivalent of ,8’1’<

a curved dielectric interface: a spatial lens comprises of two

such interfaces separated by a length of material of enhanced o ) o
refractive index. At a planar dielectric interface between twoShoOWing explicitly how the chirp transforms at this interface.

media of refractive indices, andn,, a Gaussian beam un- | h@ABCDmatrix for a temporal lens of “thicknessd is

dergoes a change in the radius of curvature, but is unchang&ffitten as the product of thre®BCD matrices representing,
in beam width[18,19, when read from right to left, a transition from the input fiber

to the fiber that defines the thin temporal lens, propagation in
the second fiber, and a transition back to the input fiber,

1 1
o3 w 0

ny
R2=n—R1, W1=Ws. (30)
' 1 0 1 0

By analogy, a chirped Gaussian pulse at the interface be- o Vo
tween two fibers of GVD coefficientg] and 85 transforms M=| 1-B1/B; & 0 1 1-B2lB; @
to a different chirp, but with unchanged pulse width, R, B R, B

1 1 Multiplying the matrices together, we get a singd8CD

=, T1=T. (31)  matrix that defines the outpat parameter via the usual bi-

B2R2  B1Ry linear transformationAq,+B)/(Cg,+ D),
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14 "
I Z
1 B1 B1
M= g g ) (37
" " 1 1 4 14
L —ﬁ—[—+—} e I P
Ril =Rl | g Bz] [Ri —Ref[™ “Re| B
|
The temporal focal length, is analogous to the spatial focal !Il- DISPERSION-MANAGED SOLITON TRANSMISSION
EXPERIMENT

length and is given by-A/C,

It has been recently found that a stable, self-consistent
pulse solution exists in a dispersion-managed fiber transmis-

- B3 1 1 B1 sion system[5]. While these are not solitons in the strict
fi=] 1+ R_1 1- E R_1+ -R, - E mathematical sense, they have been called dispersion-
! 2 managed solitons, or perhaps more appropriately, breathers.
d By Bl They demonstrate periodic behavior: the pulse width and
2 1 . : . I
“R-Ry) | 3 - (38  chirp of Gaussian breathers, for instance, are periodic func-
! 2\ By B2 tions of the propagation distance. Breathers share a property

in common with solitons, in that they can propagate indefi-

The temporal focal length defines the time from the outpumitely without losing shape; even though the pulse shape
plane at which an initially unchirped pulse becomes un-undergoes changes within a disperion map period, the pulse

chirped again. does not disperse away to infinity or tend to self-focus to a
We can write the above in slightly simpler notation, for point, either of which invalidate the applicability of the non-

the specific cas®,;= —R,=R, and letk=d/R, AB"=p5 linear Schrdinger equation after a certain distance.

- B, A dispersion-manage(DM) soliton is closer to a Gauss-

ian shape than the hyperbolic secant of the nonlinear Schro
dinger equatiorf20], and it is interesting to ask whether our
analysis is capable of capturing the essential aspects of its

A "
1— Kiﬁ , evolution along a dispersion-managed transmission channel.
;L B1 B2 |R We consider, as our example, the paper by édlal.[21]
f= g | 2 B9 \iho have simulated DM soliton dynamics i irculat
k A" AB" | 2 who have simulate soliton dynamics in a recirculating
1- > fiber loop. Their dispersion map consists of 100 km of dis-
B persion shifted fibeSMF-LS) with normal dispersiorD

equal to —1.10 ps/nm(km) at 1551 nm, followed by an
where the term in parentheses represents an enhanceméapproximately 7-km span” of standard single-mode fiber

factor over the “thin lens” formula. (SMF-28 with an anomalous dispersidd, equal to 16.6
For k<1, we can simplify the above expression keepingps/nimkm) at 1551 nm. The results of the paper indicate that
terms ofO(«), Gaussian shaped pulses of pulse duration 5.67 ps and peak

power 9 dB m were used. We will derive the result that, for
these parameters and given the length of SMF-LS fiber, the
length of SMF-28 fiber that needs to be used is indeed “ap-

1% 1— l Ai) ( 1+KAi 208 proximately 7-km.” In other words, we will show that this
fy 2 gy B1 ) RB, given dispersion map can support lowest-order chirped
Gaussian self-consistent solutions, i.e., breathers.
k AB"\2AB" The dispersion map, shown schematically in Fig. 2, con-
~| 1 2 IB_Z RA. 40 gists of three fiber segments: a lengii2 equal to 50 km of

SMF-LS fiber followed by a lengtlz, of SMF-28 fiber
whose numerical value is to be determined, and then the
The above relation confirms our physical intuition that if remainderz,/2 of SMF-LS fiber. Each segment of fiber has
B3— B1=ApB"<0, then we have reduced, the distance to nonlinear characteristics, which we model via a time lens
the point of zero chirp from the output plane, for an initially situated for simplicity at the individual midpoints of the re-
unchirped input pulse. spective segments. Consequently, each segment is described

We now have the tools we need to analyze a reasonablyy the cascaded product of thré8CD matrices, with two
complicated practical problem: designing the length of a disadditional matrices representing the transitions between fi-
persion map so as to get self-consistent eigenpulses with pbers of different3”. For simplicity, we will assume that the
riodic pulse width and chirp. nonlinear properties of the fibers are identical.
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SMF-LS SMF-28 SMF-LS
— 21/2 > 2 >§< 21/2 —>
(@)

GVD transition

(b)

FIG. 2. (a) Analytical schematic of dispersion map frof@1]
and (b) its representation to express in terms ABCD matrix
elements.

time lens propagation

The overallABCD matrix for the system can be written
down quite easily,

1 z/4\[ 1 0(1 24\ (1 0O
M=o 1 —uf, 1)\o 1 /\o BB,
1 z/2\( 1 0\(1 z/2\(1 O
o 1/\-wuf 1)lo 1 /\o pug;

1 z/4\[ 1 0\[1 z/4
o 1/\-wf 1/lo 1)

which after some algebra can be written asABTD matrix
with the following elements:

X

X (41

_ Z; 2\ 71 B1 Z; Z;
A (l_ﬂ)(l_§>_ﬂﬁ_’2’( ‘H) (1‘H)
B Z; 23\ Zp Z; 23\7;
‘[;g(l‘m)(z‘ﬁ)E*(Z‘ﬂ(l‘ﬁ)ﬂ’
(42
o 2\ Bi Zy 4
°T g (“ﬁ)ﬁ(lw) (Z‘E)
B3 2, Z; Z; z; z;
) E—;E( ‘E)‘(l‘ﬁ)(l‘ﬂ) (1—5)1
(43

PHYSICAL REVIEW B4 016611

_ Z; 2\ z B Z1\ |21 Z;
5= (1 E)(l E) H,?g(z E) 2(2 H)
B5 Z; Z5\ 2, Z; Z;\79
*{p(l‘ﬂ 2512 23\ 21 )a
1
1- 2 44
X ik (44
1 2\ B1 Zy Z;
1| B3z, Z; Z; Zl)
_?[_B_gﬁ(z_ﬁ * 1‘5)(1‘5
(45)

The algebraic complexity of writing out the expressions ex-
plicitly should not mask the simplicity of multiplying 22
matrices, usually numerically. Note that the expresgus)

for D is algebraically identical to that fok, Eq. (42), and it
may be verified thaAD—BC=1.

The q parametefwe have dropped the t subscript in this
section for notational elegancevolves according to the bi-
linear transformation law and we require that the pulse repeat
itself after propagation through one sueBCD matrix,

1 A+BIq 46
q C+D/q’ (48
which has the solution
D+A\?
1 D-A =13 .
q 28 B ' “7)

SinceD = A in our above analysis, we already see tpat
purely imaginary az=0, i.e., the pulse has zero chirp at the
midplanes as we would expect a breather to have.

At this stage, we can substitute numerical values for the
various parameter@xceptz,, which is what we segkinto
the expressions for tha, B, C, andD elements, Eqs42)
and(43), and solve Eq(47) numerically forz,. While this is
not difficult and already yields a quick solution to the prob-
lem at hand, we can get further insight via a well-justified
simplification as follows.

The q parameter at the midplanes, where it is purely
imaginary, is given by

1 28

2
q 0 To

(48)

where 8]=1.40<10 %’s/m and input pulse widthr,
=5.67x 1012 s. Consequently, for such pulseg4/0 and
sinceA=D, this implies thatA=1 in Eq. (47).

With the notational substitutions
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single temporal lens. A better approximation may be to in-

X= 2, y= ﬁ, ﬁ’r’:ﬁ (490  clude several temporal lenses for each segment of the fiber;
2f 4f B3 this would make the algebraic expressions in this paper quite
. cumbersome to write down explicitly, but the numerical
we get the necessary condition computation would not be much more difficult since the ma-
2 " trices are only X2 in size and comprise of purely real ele-
[(A=Y)"=(2=y)yl(1=x)=By(2=y)(1-Y) ments. The experimental configuration[@fl] also includes
1 several other elements that can affect the pulse shape such as
- —(1-y)(2-x)x=1. (50) filters, fiber amplifiers, and polarization controllers.

r

The solution of this equation is given by IV. HERMITE-GAUSSIAN BASIS

y(2—y) Our ABCD matrix formalism for pulse propagation ap-
x=p ——~ (51) plies to chirped Gaussian pulses. To analyze more compli-
1-y cated shapes, we can expand the given pulse shape in a basis
of chirped Hermite-Gaussian functions, which form a com-

or, in terms of the initial variables, plete orthonormal bas[4.8,20. The Hermite-Gaussian func-

7 7 tion (we consider only unchirped Gaussians here for simplic-
=2 2——1) ity) of order n is defined as the product of the Hermite
Z,= & 2 4f (52) polynomial of ordem with a Gaussian function,
Byl [, 7’
ST () =H(t)exp —t?/2), (54)

which is the necessary condition in order to have a stablgyhere, for example,

self-consistent Gaussian eigenpulseeathey solution to the

dispersion-map proplem. _ . _ Ho()=1, Hy(t)=2t, Hz(t)=4t2—2. (55)
All that remains is for us to interpret the variables in

terms of the original problem and numerically evaluate this

expression to get the desired length of SMF-28 fiber in

this dispersion map. The various numerical values are

We can expand an arbitrary input amplitugigt) in this
basis, analogous to expanding a field in terms of plane wave
a(?omponents, as in solution techniques of the standard para-

follows: bolic diffraction equation by means of the Fourier transform,
B1=1.40<10"2" &/m,
Uo(t)= 2, cH (t)exp —t?/2), 56
By=—2.12x10"% /m, olt) ngo nHn(t)exp ) ()
7o=5.67x10"1? s, where because of orthogonality of the Hermite-Gaussian
functions, the expansion coefficients are given by
21:10‘5 m.
Given the nature of the problem, we realize our time lens Cn:;fx Uo()H, () exp( —t2/2). (57)
with the nonlinear fiber as described earli&qg. (27)], so Jm2t ) -
that

The propagation E(8) defines the output pulse shape as
, [2m\nal by the convolution of the input shape with a Gaussian kernel.
(_)— (53 Hermite-Gaussians, when convolved with a Gaussian, yield
the product of a Hermite polynomial and a Gausgia8],
and takegy = B3, 1,=3.62x10° W/m? so that with fiber
core ared\ =47 um, we getP=8 mwW=9 dBm. Also,
we takeL y, =2z, consistent with our choice gy, .
The numerical solutiorfof the quadratic equatigrfor z,

® a
ledto l/’n(to)exl{ - E(t_to)z

is equal to 7.00 km, which is indeed the value “approxi- 27 [a—1\"? at? a

mately 7 km” stated in the papé¢R1]. In spite of apparent “Va+ilar1 & 2(a?—1) ¥ \/gz__lt :
exact agreement, we should be careful to appreciate that this

analysis is a characterization of only the most important pro- (58

cesses in this experiment. Possible sources for approximation

include the fact that a DM soliton is only approximately —Taking as input thenth Hermite-Gaussian mode
Gaussian, and that we have represented the combined disper,(t) (which has width7y=1/2), the amplitude of this
sive and nonlinear properties of the fiber segments by anode after propagation through distarcis

016611-8
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P 1™ focusing, periodic pulse width expansion and narrowing, etc.
1+ — The spatialg parameter has a temporal equivalgpin ac-
u(2T)= /| 1 Bz cordance with the given space-time translation rules. The
me 1+iB"z i real and imaginary parts cq‘{l represent the chirp and the
- width of the pulse as a function of propagation distance
Bz The propagation of various input pulse shapes can be de-
i T2 T l scribed by expanding the given pulse in a basis of Hermite-

X ex A Gaussian functions; th&dBCD formalism applies to each
28"z . 1 V1+(B"2)?

Gaussian wave function separately. Propagation through a
(ﬁ’T)Z complicated system of optical elements is simple to calculate
in terms of ABCD matrices: the resultant matrix is the cas-
(59 caded product of theABCD matrices of each of the indi-
vidual elements with the appropriate ordering. The ovegall
parameter is given by a bilinear transformation in terms of
the ABCD elements of the overall product matrix, exactly
analogous to the spatial case.
We have formulatedABCD matrices for pulse propaga-
tjon in dispersive fibers and for temporal lenses, which can
haracterize self-phase modulation phenomena. A spatial di-

on the.order of the Hermite-Gaussian function is a phag lectric interface translates to an interface between fiber seg-
term; higher-order modes have greater phase advances SiNCSnts of dissimilar GVD coefficienig”. The temporal

their spectral content Is higher. Th_e Important observat!on '.Sequwalent of a curved dielectric interface is useful for char-

that the orthogonality of the Hermite-Gaussian expansion ig . e P,

: ; ., ~acterizing the transition between such dissimigr fibers

preserved, and so this expansion may be used to predict the ! . . -

) : ; with the added presence of fiber nonlinearities arising from

pulse shape obtained by propagating an input pulse. Our for; : . :

. . ) . . . the nonlinear index of refraction,. We have used these
malism remains valid as long as the differential equatio : . . i

. X . .. tools to characterize a dispersion map for self-consistent
describing the propagation of a particular order Herm|te-Stable ropacation of a dispersion-manaaged soliton
Gaussian function is of the forif), i.e., the slowly-varying propag P 9 '

envelope approximation is valid. Therefore, we can expector\r/]\/elerag:\;g c?rf/err?ti)tzgld l:)lfseanrzlyzlsat]itgamrﬁetiogzesftlﬂ:h
that the lower-order expansions are usually valid; the result§OMP P bropag

of applying our analysis to higher-order expansion term<&S the split-step Fourier transform numerical proced[B&s

generate the residual field corrections to the lower-order re\fvhiCh are substaptially more Comp.“ta“O”?”Y intensiv_e. The
sults[22] ABCD approach is useful for clarifying the important disper-

sive and nonlinear focusing effects in dispersion-managed
nonlinear fiber segments. Together with the variational ap-
proach[8,9], the q parameter offers an insight into pulse

We have developed ax22 ABCD matrix formalism for ~ €volution from a theoretical standpoint.
pulse propagation in media described by Maxwell's equa-
tions, apcounting for disp_ersion, nonlinear, an_d gain/loss_ ACKNOWLEDGMENTS
mechanisms. The method is analogous to techniques used in
cw beam diffraction analysis, and correspondingly similar This work was supported by the Office of Naval Research
phenomena can be predicted, such as chirp transformatioand the Air Force Office of Scientific Research.

which can be seen to agree with Edl).

A Hermite-Gaussian function therefore maintains its
shape during propagation, but adds a chinhich is the
same for all modgsand a scaling of the width according to
Eq. (11). Power conservation implies that the amplitude cor-
respondingly scales down. The only term that is depende

V. CONCLUSIONS
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