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Photonic band edge effects in finite structures and applications tox „2… interactions
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Using the concept of an effective medium, we derive coupled mode equations for nonlinear quadratic
interactions in photonic band gap structures of finite length. The resulting equations reveal the essential roles
played by the density of modes and effective phase matching conditions necessary for the strong enhancement
of the nonlinear response. Our predictions find confirmation in an experimental demonstration of significant
enhancement of second harmonic generation near the photonic band edge. The measured conversion efficiency
is in good agreement with the conversion efficiency predicted by the effective-medium model.
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I. INTRODUCTION

The past two decades have witnessed an intense inv
gation of electromagnetic wave propagation phenomen
optical frequencies in periodic structures. Usually referred
as photonic band gap~PBG! crystals@1#, the essential prop
erty of these structures is the existence of allowed and
bidden frequency bands and gaps, in analogy with ene
bands and gaps of semiconductors. Many applications h
been envisioned in one-dimensional systems, which usu
consist of multilayer, dielectric stacks, and include: a non
ear optical limiter@2# and a diode@3#; a photonic band edge
laser@4#; a true-time delay line for delaying ultrashort optic
pulses@5#; a high-gain optical parametric amplifier for non
linear frequency conversion@6#; and more recently, transpa
ent metal-dielectric stacks@7# and all-optical switching@8#.
Some demonstrations of the potential applications of th
structures in higher dimensional systems have been h
lighted recently with the realization of photonic crystal fibe
@9#, and in the microwave regime with the development o
PBG structure for applications to antenna substrates@10#.

Second harmonic generation~SHG! has been experimen
tally observed under different circumstances. As an exam
we cite the observation of SHG in a centrosymmetric, cr
talline lattice of dielectric spheres@11#; in a semiconductor
microcavity @12#; and near the band edge of a ZnS/S
multilayer stack@13#. From a theoretical, more analytica
point of view, the study of nonlinear optical interactions
PBG structures has been undertaken mainly in regard to
tonlike pulses~often referred to as gap-solitons! in cubicx (3)

@14# and quadraticx (2) media@15#. One of the more intrigu-
ing aspects related to thex (2) response of PBG crystals tha
is of interest for a number of applications is the possibility
significantly increasing the conversion efficiency of nonl
ear processes. We cite the enhancement of SHG as the
plest and well-known parametric nonlinear process, altho
in general our discussion is valid even for more complica
multiwave mixing processes@16#. The processes that we dis
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cuss owe their increased efficiency to the simultaneous av
ability of: ~a! exact phase matching conditions@17#; and ~b!
high localization of the fields with frequencies tuned to tran
mission resonances near the photonic band edge.

Although it is generally agreed that phase matching c
ditions and strong field localization are responsible for
enhancement of nonlinear interactions near the band e
here we set out to understand how these effects specific
influence nonlinear field dynamics in structures of fin
length, i.e., with the introduction of entry and exit interface
The importance of the concept of the finiteness of the str
ture cannot be understated, and is reflected in the follow
conditions: the spatial extent of incident pulses may exc
the spatial extent of a typical structure by several orders
magnitude, as in Ref.@6#. The circumstances that arise in th
case are not the same as those that are typically consid
@14,15#, where the structure is taken to be much longer co
pared to the spatial extent of the pulse.

The paper is organized as follows: in Sec. II we discu
the basic linear properties of 1D PBG structures of fin
length, and we develop the effective-medium model. T
approach will then be used in Sec. III, where we der
coupled mode equations for nonlinear quadratic interactio
Finally, in Sec. IV we report preliminary experimental r
sults where enhanced SHG was observed for a 1D P
structure composed of 37 periods of alternati
Ga0.7Al0.3As~135.1 nm!/AlAs~106.4 nm! layers. The experi-
mental results are in good agreement with conversion e
ciencies predicted by the effective-medium model.

II. THE PBG STRUCTURE AS AN ‘‘OPEN CAVITY’’:
DENSITY OF MODES AND EFFECTIVE DISPERSION

RELATION

Under the monochromatic plane-wave approximation,
Helmholtz equation for the evolution of the electric field in
lossless PBG structure is
©2001 The American Physical Society09-1
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FIG. 1. Square modulus of the
field distribution corresponding to
the frequency that identifies th
first transmission resonance~thin
line!, and the second transmissio
resonance~thick line! away from
the band edge. Inset: the two ban
edge resonances, labeled as I a
II, for a 20-period, 12-mm, half/
quarter-wave stack. The indices o
refraction are na51 and nb

51.428 57. The layers have thick
nesses a5l0 /(4na) and b
5l0 /(2nb), l051 mm, v0

52pc/l0 .
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d2Fv

dz2 1
v2«v~z!

c2 Fv50, ~1!

which is subject to the following boundary conditions at t
input (z50) and output (z5L) surfaces:

11r v5Fv~0!, tv5Fv~L !,

i S v

c D ~12r v!5
dFv~0!

dz
, i S v

c D tv5
dFv~L !

dz
, ~2!

where«v(z) is the spatially dependent, real dielectric pe
mittivity function. For simplicity, in Eqs.~1! and~2! we have
normalized the electric field with respect to the amplitude
the incident electric field by introducing the following d
mensionless quantities:Fv(z)5Ev(z)/Ev

I . Also, tv

5(Ev
t /Ev

I )exp@i(v/c)L#, r v5Ev
r /Ev

I ;Fv(z) is the linear
field distribution inside the stack,tv and r v are the coeffi-
cients of transmission and reflection, respective
Ev

I ,Ev
r ,Ev

t are the incident, reflected, and transmitted fiel
respectively. These quantities can be numerically calcula
using the standard matrix transfer technique.

Equation~1! and ~2! describe anon-Hermitian problem
because Eq.~1! is supplemented by boundary conditions
the input and output surfaces that give rise to a reflected
a transmitted wave from the structure. In other words, we
dealing with anopen cavityproblem@18#. Even if the field
appears to become well localizedinsidethe cavity, as shown
in Fig. 1, for example, the field is never really confined in t
true sense of the word because the field must first enter
eventually exit the structure. Thus, while the field distrib
tion in Fig. 1 strongly resembles a bound-state function
time-domain analysis of the problem shows that the w
first enters the structure, gives rise to a highly localiz
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metastable state@19~a!#, and then slowly leaks out throug
the input and output surfaces as shown in Figs. 2. As a re
the problem does not admit true eigenstates intended in
traditional sense of the word, i.e., a complete basis of exp
sion in the space betweenz50 andz5L @20#. Nevertheless,
the problem admits metastable, or quasistationary states
by virtue of their localization properties can be associa
with an effective density of modes~DOM!. One way to de-
fine a proper DOM for structures of finite length is to reso
to the spatially averaged electromagnetic energy density.
the field distributionFv(z), which is expressed in dimen
sionless units, we define the DOM as~see the Appendix!

rv[
1

2Lc E0

LF«v~z!uFvu21
c2

v2 UdFv

dz U2Gdz. ~3!

In general, the DOM should reflect the localization prop
ties of the field inside the structure. Integrating Eq.~3! by
parts, we note that the second term on the right-hand sid

E
0

L

udFv /dzu2dz5~v/c!2E
0

L

«v~z!uFvu2dz

2~2v/c!Im~r v!.

Consequently, the expression for the DOM in Eq.~3! takes
on the following, more suggestive form:

rv5
1

Lc E0

L

«v~z!uFvu2dz2
1

vL
Im~r v!. ~4!

From Eq.~4!, it is clear that the DOM is directly linked to
the localization properties of the field distribution of th
metastable stateFv(z) inside the PBG structure.

In Fig. ~3!, we compare our definition of the DOM
with the definition given in Ref.@21#, namely, rv[(1/
L)(dw t /dv), wherew t(v) is the phase of the transmissio
9-2
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FIG. 2. ~a! 2-ps incident and transmitted
Gaussian pulses with unit incident amplitud
with carrier frequency tuned at the first transmi
sion resonance of the PBG structure. The spec
bandwidth of the pulse is much narrower wit
respect to the bandwidth of the transmission re
nance. Note that spatial extent of the pulse w
respect to structure length is to scale.~b! Internal
field profile when the peak of the pulse reach
the structure. Inset: the pulse is shown in its e
tirely. The large spike visible in the inset corre
sponds to the field profile of the figure. Note th
most of the pulse is located outside the structu
~c! Metastable states for 2-ps@Fig. 2~b!# ~thin
line! and for the 200-fs pulses~thick line!. The
longer pulse is much more localized than th
shorter pulse due to its narrower frequency ban
width.
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function, defined astv5utvuexp@iwt(v)#. These two very dif-
ferent formulations of the DOM yield the same results in t
passband, and show only modest quantitative departure
side the band gap~see inset of Fig. 3!. Although quantitative
differences are slight, our definition given in Eq.~3! is more
appealing from a physical and a conceptual point of vi
because, contrary to the definition given in Ref.@21# in terms
of the transmission function, it establishes a clear direct l
01660
in-

k

between the localization properties of the metastable st
and the concept of DOM. Once the DOMrv has been de-
fined in Eq.~3!, it is then possible to find aneffective disper-
sion relation for a generic, finite structure, not necessar
multilayered, in anunambiguous way@22#. The real part of
the effective dispersion relationkr(v) is the solution of the
following first-order linear differential equation
dkr(v)/dv5rv , supplemented by the initial conditio
9-3
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kr(0)50. The imaginary part of the dispersion relation
calculated by invoking the causality principle through t
Kramers-Kronig relations:

kI~v!52~2/p!PE
0

`

@Vkr~V!/~V22v2!#dV.

From the effective dispersion relationk̂(v)5kr(v)
1 ikI(v), we can also introduce an effective index as@22#:
k̂(v)5(v/c)n̂eff(v)5(v/c)@neff

r (v)1ineff
I (v)#. Both real and

imaginary parts of the effective index of refraction are pl
ted in Figs. 4~a!–4~b! for a 2- and a 20-period structure, an
compared with the dispersion relation of the infinite stru
ture.

III. x „2… INTERACTIONS AND THE EFFECTIVE MEDIUM
APPROACH

In addition to the full numerical integration of Maxwell’
equations to solve for the nonlinear dynamics in a P
structure@6#, other approaches also exist in the form of mo
approximate solutions: a Green’s function approach@23~a!#,
and a coupled mode theory@23~b!#, in the case of shallow
gratings; a Bloch mode expansion for periodic gratings
arbitrary deep@24#. In this work we propose a simple an
elegant approach based on our effective-medium model
gives a direct estimate of the conversion efficiency wh
strong localization effects and the appearance of metast
states of the kind discussed above come into play.The
method that we propose can be applied to any generic lin
index profile provided spectral band shifts do not occur@25#.
The effective index approach can simplify the problem
calculating the conversion efficiency ofx (2) interactions in
PBG structures because in this picture the fields ‘‘see’’
effective bulk material with a well-defined dispersion re
tion.

We write the coupled mode equations for nonlinear q
dratic interactions in a finite PBG structure of lengthL as if

FIG. 3. Density of modes for the PBG structure described in
caption of Fig. 1 calculated using Eq.~3! ~solid line! and using the
phase of the transmission function~dotted line!. Inset: inside of the
gap is magnified. The difference is about 10% at center gap.
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the interaction were taking placein a bulk material of the
same lengthL, but with an effective dispersion relation a
described in Sec. II. In the case of two monochromatic wa
at fundamental frequency~FF! v and second harmonic fre
quency~SH! 2v, each tuned at a peak of transmittance wh
the imaginary part of the effective dispersion relation is ze
@17#, the coupled mode equations written for the effecti
medium are

dAv

dz
5 i

v

neff
r ~v!c

deffA2vAv* exp@ iDkeffz#, ~5a!

dA2v

dz
5 i

v

neff
r ~2v!c

deffAv
2 exp@2 iDkeffz#, ~5b!

whereDkeff5kr(2v)22kr(v) is theeffective phase mismatc
calculated using the real part of the effective dispersion

e

FIG. 4. ~a! Real part of the effective index for a 2-~long dashes!
and 20-period~solid curve! structure; dispersion relation for th
infinite structure~short dashes!. In the inset the band edge is mag
nified. ~b! Imaginary part of the effective index, same as Fig. 4~a!,
without the 2-period curve. The real part of the index displa
anomalous dispersion inside the gap and between resonances
imaginary component is identically zero at each transmission re
nance.
9-4
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PHOTONIC BAND EDGE EFFECTS IN FINITE . . . PHYSICAL REVIEW E 64 016609
lation; neff
r is the real part of the effective index; anddeff is

the effective nonlinear coupling coefficientdefined as

deff5
1

L E
0

L

d~2!~z!uFv~z!u2uF2v~z!udz, ~6!

whered(2)(z) is the quadratic coupling function. It is ove
lapped with the square modulus of the linear FF field and
modulus of linear field at the SH frequency, both calcula
using Eqs.~1! and ~2!. For second harmonic generation
the undepleted pump approximation, we obtain the exp
sion for the conversion efficiencyh in analogy with the con-
version efficiency calculated for bulk materials,

h5
8p2deff

2 L2 Ĩ p

@neff
r ~v!#2neff

r ~2v!«0cl2 sinc2S DkeffL

2 D , ~7!

whereĨ p5( 1
2 )«0cneff

r (v)uAvu2 is the scaled input pump inten
sity. From Eq. ~4!, at the peak of transmittancerv

5(1/Lc)*0
L«v(z)uFvu2dz. As a consequence,deff is en-

hanced by a factor proportional to the DOM when the
field is localized inside the nonlinear layers,deff}rvdlayer

(2) ,
wheredlayer

(2) is the actual second-order susceptibility of t
nonlinear layer. Therefore, we expect an enhancement o
conversion efficiency approximately proportional torv

2 .
In order to draw meaningful comparisons with an app

priate bulk material we can define, from Eq.~7!, a figure of
merit F merit as:

F merit5L2S deff

dlayer
~2! D 2

sinc2S L

2Lc
D , ~8!

whereLc51/Dkeff is either one coherence length in the ca
of bulk material or the effective coherence length (Lc

eff) cal-
culated via the real effective indexneff

r in the case of a PBG
structure.

Now that we have developed all the major components
the model, we mention its fundamental limitations. Coup
mode equations~5! cannot give detailed information abou
the actual nonlinear dynamics of the fields inside the str
ture. This is evident if we recall that our approach to t
problem consists in substituting the finite PBG structure w
an equivalent length of bulk material and an effective disp
sion relation. As a result, we cannot expect that this mo
will yield both a reflected and a transmitted compone
However, the solutions of Eqs.~5! yield remarkably accurate
energy conversion efficiencies when compared to the con
sion efficiencies calculated by numerically integrating t
nonlinear coupled Maxwell’s equations@6#. In Fig. ~5! we
calculate the SH conversion efficiency for a multilayer sta
@see caption of Fig.~5!#. The structure was designed to sa
isfy the perfect phase matching conditions in the sense of
effective index:Dkeff50, with the pump incident at an angl
of 30° with respect to the surface of the structure. We fin
conversion efficiency of approximately 15% in a single pa
through the device, with input power levels of 40 GW/cm2.
To test the validity of the effective-medium model, in Fi
~6! we plot the results of a numerical integration carried o
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as discussed in Ref.@6#. The conversion efficiency obtaine
numerically is approximately equal to what the effectiv
medium model predicts.

IV. EXPERIMENTAL RESULTS

We now demonstrate SH enhancement due to an incr
of the density of modes and to the effective phase ma
ing conditions discussed above. We designed and fabric
a 1D semiconductor structure, grown by metallorga

FIG. 5. Second harmonic conversion efficiency vs the in
pump intensity in the undepleted pump approximation~dotted line!
and in the case of pump depletion~continuous line!. A conversion
efficiency of approximately 15% is reached for input pump inte
sity of 40 GW/cm2. Inset: Transmittance for a 30-period, 6-mm,
SiO2 /AlN, quarter-wave/half-wave stack. The reference wav
length is 0.53mm. The FF~800 nm! and SH~400 nm! fields are
tuned to the first transmission resonance near the first-order b
gap and to the second resonance near the second-order gap, re
tively.

FIG. 6. Energy converted from the pump to the SH field
function of the time.l ref corresponds to a wavelength of 1mm. We
pump with a 2-ps pulse incident from the left, with 40 GW/cm2 of
peak input intensity. The conversion efficiency, given by t
amount of energy converted to SH divided the total amount
initial energy in the FF, is approximately (4/30)'13%, in good
agreement with that predicted by the effective-medium model.
9-5
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vapor-phase epitaxy on a GaAs substrate, composed o
periods of Ga0.7Al0.3As(135.1 nm)/AlAs(106.4 nm). The
Ga0.7Al0.3As and AlAs refractive indices arenv53.231 and
2.902 at FF wavelength, andn2v53.4662 and 3.0149 at th
SH wavelength, respectively. The details of the experim
will be reported elsewhere@26#. Here we give a brief over-
view of the results. The structure was grown on the us
@001# direction, and designed for operation at an oblique
cidence angle. Indeed, the high 43̄m symmetry of III-V zinc-
blende semiconductors leaves only one nonlinear coeffic
(d14) for the second-order susceptibility. Though this coe
cient is extremely large~120 pm/V for GaAs!, one important
consequence of the symmetry rules is that second-order
cesses are forbidden along the three crystal axes of wi
used substrate orientations for mature epitaxy technology
GaAs~that is,@100#, @010#, and@001#!. A solution consists of
sending the laser beam on the structures at an oblique a
For a FF external angle of 10° with respect to the stack a
the Ga0.7Al0.3As effectivex (2) is of the order of 13 pm/V,
and almost zero in the AlAs layers. This external angle c
responds to a very small internal angle~;3°! for which the
PBG’s FF resonances are almost identical for incident
and TE polarized fields. As we will see in the following, th
allows us to directly test the influence of the effective pha
matching conditions by comparing the performance of
PBG operated for a TM- or a TE-polarized FF waveleng

Figure ~7! depicts the geometry of the air/PBG/air su
pended sample as well as the FF angle incidence with res
to the crystallographic axis. We recall that for an azimut
anglef5p/4 „azimuth corresponding to the angle betwe
@100# crystal axis and the projection of the wave vector
the ~001! plane… only TM→TM and TE→TM interactions
are allowed by the symmetry of thex (2)GaxAl12xAs tensor.

Figure ~8! ~upper traces! depicts the expected~solid line!
and measured~dotted line! transmissions for TM polarization
around the FF and SH wavelength. Stop bands are cle
visible near 1.52 and 0.79mm. The arrows indicate the op
erating FF~1.55mm! and SH~0.775mm! wavelengths. The

FIG. 7. Schematic view of the experimental, semiconduc
sample. The incidence~u! and azimuthal~f! angles are also repre
sented together with the crystal axis.
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lower curve depicts the calculated DOM~solid lines!, nor-
malized to the DOM corresponding to one coherence len
of Ga0.7Al0.3As, for a TM-polarized FF. The expected DOM
enhancement is 7.1 for FF and 4.5 for the SH. Note that
already stressed, these values are close to those expecte
a TE polarized FF~6.8 and 4.3, respectively!. The dispersion
of the effective refractive index is represented as well fo
TM polarizedF ~dashed lines!. The effective refractive indi-
ces areneff,F

r,TM53.1539 andneff,F
r,TE53.1584 for the FF, and

neff,SH
r ,TM 53.2362 andneff,SH

r ,TE 53.2355 for the SH. It become
clear that under the present experimental conditions, mate
dispersion is too high to be fully compensated with geome
cal dispersion alone. Nevertheless, an appreciable chang~by
almost a factor of 3! on the effective coherence lengthLc

eff is
obtained with respect to the original one. Moreover, t
change is different for a TM- or a TE-polarized FF wav
length:Lc

TM,eff52.86Lc andLc
TE,eff53.03Lc . This gives a di-

rect way, without the need of any external calibration,
testing the effective parameter theory.

From these considerations, and using Eq.~8!, we expect
enhancement factors of

S FPBG
merit

FLc
meritD TM→TM

510.8 and S FPBG
merit

FLc

meritD TE→TM

568.4

with respect to one coherence length of nonlinear mate
FLc

merit is the figure of merit for one coherence length

Ga0.7Al0.3As. While the TM-polarized FF wavelength DOM
is comparable to that for the TE polarization, the figure
merit is significantlygreater for a TE polarized FF wave-
length than for the TM. The TE→TM process owes its in-
creased efficiency with respect to the TM→TM process pri-
marily to the smaller mismatch in the effective inde
~Dneff

r 50.0778 for TE→TM to be compared toDneff
r

50.0823 for the TM→TM case!.
In the experiments we used 8-ps pulses generated b

mode-locked fiber-laser, with 20-MHz repetition rate. T
laser source is tunable between 1.53 and 1.56mm. Figure 9
represents the second harmonic intensity as a function of

r

FIG. 8. Top view calculated~dotted lines! and measured~solid
lines! transmission spectra around the fundamental and the se
harmonic wavelength~indicated by vertical arrows!. Bottom view:
inferred DOM ~full line! and effective refraction index~dashed
lines!.
9-6
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FF wavelength. The FF wavelength is TM polarized, with
mean power of 30 mW. The external and the azimut
angles areu510° andf5p/4, respectively. The spectra
width of the generated SH is comparable to the bandwidth
the SH resonance, clearly demonstrating the effect of P
double resonance. Figure 10 represents, in a semilogarith
scale, the SH signal generated in transmission with a
~filled circles! and a TE~filled squares! polarized FF wave-
length, as a function of the fundamental power. Both cur
follow the expected quadratic behavior. Also represente
the SH signal generated by one coherence length
Ga0.7Al0.3As under identical geometrical conditions~TM is
in open circles, and TE in open squares!. The FF azimuthal
angle isf5p/4. The measured enhancement is ten times~50
times! for TM ~TE! incident FF wavelength, in good agre
ment with the theoretical prediction.

The good agreement obtained between the experime
results and the theoretical predictions, for an azimuthal an
of f5p/4, clearly shows that the higher DOM and the e
fective coherence length are responsible for the observed
hancement of SH in the PBG. The role that the DOM pla
was furthermore emphasized by a comparison of presen
sults and experiments performed on the same sample u
100-fs incident pulses. In contrast to the 8-ps long pulses,
shorter pulses have bandwidths much larger than the P
resonance bandwidth and effects due to field localization

FIG. 9. Second harmonic intensity as a function of the fun
mental wavelength. Fundamental is polarized TM andu510°.

FIG. 10. Second harmonic intensity as a function of fundam
tal power. Filled circles~squares! correspond to a TM~TE! polar-
ized fundamental. Also indicated are the values for 1 Ga0.7Al0.3As
coherence length.
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effective nonlinear gain are strongly attenuated@6#, as dis-
cussed in earlier sections and in Fig. 2~b!. In addition, ex-
periments performed under a different azimuthal angle de
onstrate clearly that surface and interface second harm
generation are negligible, and constitute additional proof t
the observed enhancement@26# of second harmonic genera
tion is primarily due to the simultaneous availability of hig
mode density and change of coherence length near the
edge.

V. CONCLUSIONS

In summary, we have analyzed the properties of nonlin
quadratic interactions near the photonic band edge by stu
ing the linear properties of finite PBG structures and by
ing the concept of an effective medium. We arrive at nonl
ear coupled mode equations that are formally similar to
equations for quadratic interactions in bulk materials, sca
by the appropriate coupling coefficients that define
multilayer stack. These equations predict energy convers
rates that are in agreement with those predicted by an i
gration of the coupled wave equations in the time doma
and with the experimental results. Both theory and exp
ment suggest that enhancement effects near the band
are entirely due to the simultaneous availability of field l
calization~high density of modes! and the engineering of the
phase matching conditions. In our view, these unusual
cumstances make PBG structures the best candidates
micron-sized nonlinear frequency converters based on q
dratic nonlinearities.
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APPENDIX

The definition of DOM given in our Eq.~3! can be justi-
fied in analogy with the quantum mechanical properties
massive particles. The probability that a quantum parti
can be found with a momentum between\k and\(k1dk) is
given by

dP~k!5C~k!C* ~k!dk, ~A1!

whereC(k) is the wave function of the quantum particle
the momentum representation. Mapping Eq.~A1! into the
frequency domain can be accomplished with knowledge
the dispersion relation. That is, ifk5k(v), the mapping
P(k)→p(v), C(k)→c(v) leads to

dp~v!5c~v!c* ~v!rvdv, ~A2!

where rv5(dk/dv) is the DOM. From Eq.~A2! we for-
mally obtain the expression for the DOM in the followin
form:

-

-

9-7
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rv5

dp~v!

dv

uc~v!u2 . ~A3!

Note thatdp(v) is only proportional, and not equal, to the
probability that a quantum particle can be found with
energy between\v and \(v1dv) because in general th
mapping of the functions fromk space into the frequenc
domain via the dispersion relationk5k(v) does not corre-
spond to a unitary transformation.

Following Bohm @19b#, in the case of classical electro
magnetic fields, i.e., when many quanta of light are exci
in a coherent state and the classical limit is approached@27#,
we may resort to theelectromagnetic energy densitythat in
this case plays a role analogous to the role played by
probability density in the case of massive, quantum partic
In fact, in the classical limit, the electromagnetic energy d
sity Uv is proportional to the mean number of photons in t
range fromv to (v1dv) @19b#. Keeping these consider
N.
-
,
ti,

er

n

n

.
.

.

M.

.

ro

tt
s.

, D

01660
d

e
s.
-

ations in mind, we express the DOM for the finite 1-D PB
structure as the spatially averaged electromagnetic en
density, which in our case plays a role analogousdp(v)/dv,
as in Eq.~A3!. The normalization factor found in Eq.~A3!,
uc(v)u2, is then replaced by the energy density of the in
dent fieldcuEv

I u2. We therefore write the DOM as

rv5

1

2L E
0

LF«v~z!uEvu21
c2

v2 UdEv

dz U2Gdz

cuEv
I u2

. ~A4!

Introducing the dimensionless field distribution inside t
PBG structure asFv(z)5Ev(z)/Ev

I , we obtain,

rv5
1

2Lc E0

LF«v~z!uFvu21
c2

v2 UdFv

dz U2Gdz, ~A5!

that is, the definition of DOM we give in Eq.~3! in the text.
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