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Collective variable theory for optical solitons in fibers
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We present a projection-operator method to express the generalized nonlinear Schro¨dinger equation for pulse
propagation in optical fibers, in terms of the pulse parameters, called collective variables, such as the pulse
width, amplitude, chirp, and frequency. The collective variable~CV! equations of motion are derived by
imposing a set of constraints on the CVs to minimize the soliton dressing during its propagation. The lowest-
order approximation of this CV approach is shown to be equivalent to the variational Lagrangian method.
Finally, we demonstrate the application of this CV theory for pulse propagation in dispersion-managed optical
fiber links.
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I. INTRODUCTION

The propagation of intense light pulses in a standard t
communication fiber can induce a host of nonlinear pheno
ena, such as parametric wave mixing, stimulated Ram
scattering, or self-steepening, to name a few@1,2#. The com-
bined effects of nonlinear phenomena and the fiber ch
matic dispersion lead to many interesting dynamical p
cesses which are difficult to understand in terms of
original pulse field, but can be easily understood by apply
a collective variable~CV! approach. For example, the dy
namics of the propagation of light pulses in an optical fib
can be completely described by a field, sayc, which is a
solution of certain nonlinear partial differential equatio
commonly referred as ‘‘generalized nonlinear Schro¨dinger
equation’’~NLSE!. Exact expression ofc may be given by a
complicated form, depending on the type of dispersive a
~or! nonlinear effects appearing in the evolution equation
the fiber @1,2#. Usually, it is difficult to ascertain directly
from the original fieldc what is exactly happening durin
the pulse propagation. Hence, the fieldc, which describes
the dynamics of the pulse and other excitations of the sys
such as radiations, must be analyzed with extreme car
follow exactly the pulse trajectories in the phase space.
pulse dynamics will become even more complicated in
case of systems that are not integrable. For instance, in
tical communications, it was shown that pulses propaga
in dispersion-managed~DM! fiber links, called ‘‘ DM soli-
tons,’’ possess a richer temporal and spectral structure
modes than a simple collective entity@3#. That is, a DM
soliton is not only able to translate like a whole entity, b
can also vibrate like a diatomic molecule@3#. Hence, it is
useful, especially in such nonintegrable systems, to asso
new variables, called collective variables, with localized c
lective phenomena, in order to simplify somehow the d
scription of the pulse dynamics. For example, such CVs m
represent the amplitude of a pulse, its temporal position,
pulse width, and so on. The number of CVs that can
introduced into the system is usually determined by the ph
ics under consideration. Then one must derive a transfor
tion which allows us to express the original field equation
terms of CVs. In other words, one must derive the equati
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of motion for the CVs, whose solutions will explicitly yield
the complete dynamics of the nonlinear localized modes
der consideration.

Such CV theories have been successfully applied to c
densed matter systems, in particular to nonlinear Kle
Gordon and similar systems@4–11#. Various approaches
such as Lagrange dynamics with Lagrange multipliers@5#,
Hamiltonian dynamics using Dirac brackets@12#, and
projection-operator methods@6–11,13,14# have been used to
derive the CV equations of motion. In particular, one of t
most useful results of CV theory in the condensed ma
systems was obtained by Boeschet al. @6#. They developed a
projection-operator formalism which makes the derivation
the CV equations of motion very simple@6#. They used this
formalism to derive the exact equations of motion for t
center of mass of a discrete sine-Gordon kink and the
quency of its small oscillations in the Peierls-Nabarro w
@7#. The projection-operator approach was also used to
culate the spontaneous emission of radiation from a disc
sine-Gordon kink@8#, the effects of lattice discreteness o
the statistical mechanics of a dilute gas of kinks@9#, and the
dynamics of the discrete sine-Gordon breather@13#. This ap-
proach has also been successful in treating the effect
lattice discreteness in many other nonlinear Klein-Gord
systems which support stable kink structures such as
double-quadratic kink@10#, or the double-sine Gordon kink
@11#.

Quite in contrast, the actual stage of CV treatments
nonlinear partial differential equations in nonlinear fiber o
tics happens to be surprisingly much less elaborated tha
condensed matter physics. One of the reasons for this is
from the period of invention of optical solitons up to ve
recent years, the main line of research in ultrahigh capa
fiber communications was based on the concept of the ‘‘c
sical soliton,’’ which represents an exact balance betw
the fiber group-velocity dispersion and its intensit
dependent refractive index. This soliton arises as a solu
for the standard NLSE, with a well-known hyperbolic seca
profile that can be obtained by different techniques~e.g., the
inverse scattering transform@15#!, without going through any
CV approach@16#. However, well before the first experimen
tal observation of solitons in optical fibers in 1980@17#, it
©2001 The American Physical Society08-1
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has been predicted that electromagnetic waves propag
in nonlinear dielectric media may become unstable in
presence of various perturbing effects~e.g., noise, loss, cros
interactions! @18,19#. Quite naturally, in most of the earl
literature which have used CVs in the context of optical so
tons in fibers, a significant effort was made to analyze
soliton dynamics under the influence of such perturbing f
tors@20–26#. Different perturbation theories were develope
using the adiabatic variation of conserved quantities of
NLSE @20#, the adiabatic variation of the scattering da
based on the inverse scattering transform@21,22#, or the La-
grangian perturbation theory@24#. Kath and Smyth employed
a trial function which consists of a solitonlike pulse wi
variable parameters plus a linear dispersive term in an a
aged Lagrangian to study the dispersive radiative losses
the NLSE@27#. But these perturbation theories yield cons
tent results only in the limit of weak perturbations. This lim
tation has led to the formulation of nonperturbative CV the
ries for the NLSE using the averaged Lagrangian met
@3,28–36#. Most of the recent and current theoretical dev
opments have employed this Lagrangian method to desc
pulse propagation in DM fiber links@37–40#. A major line of
current research focuses on the modelization of soliton tra
mission in DM fiber-optic links, with a view both to upgrad
the capacity of existing terrestrial networks and to des
submarine fiber systems@3,41#. Basically, the dispersion
management technique utilizes a transmission line wit
periodic dispersion map, such that each period is built up
two types of fiber, generally with different lengths and o
posite ground-velocity dispersion. The main limitations
the transmission capacity of such systems include var
effects such as the cross-phase modulation, filtering, ph
and amplitude modulation, third-order dispersion, stimula
Raman scattering, and self-steepening.

However, most of the above-mentioned CV theories
optical solitons in fibers@3,20–36# have a common featur
that the soliton dressing is completely ignored, which c
lead to dramatic consequences depending on the choic
the ansatz function. In condensed matter physics, approx
tion of neglecting the soliton dressing is called ‘‘bare a
proximation.’’ Generally, this approximation leads to
simple set of ordinary differential equations that describe
evolution of the CVs, with different degrees of accuracy d
pending on the choice of the ansatz function. However,
bare approximation yields consistent results only when th
is no considerable radiation and the dressing is also ne
gible. This is remarkably well illustrated in a recent study
Abdullaev and Caputo@42#, who performed a careful analy
sis of the validity of the bare approximation for a singl
pulse propagation in a system with spatially varying disp
sion. In particular they showed that the bare approximat
yields very poor results in all the situations where the rad
tion field is important@42#. The main reason for which th
dressing has been largely neglected so far lies in the h
degree of complexity of the CV treatment of the generaliz
NLSE, in which the fiber parameters become functions of
propagation distance in the case of DM systems. The
proximate treatment of the generalized NLSE leads to a c
of challenging and interesting problems related to high
01660
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order effects such as stimulated Raman scattering, th
order dispersion, self-steepening, and their combined eff
in DM fiber lines, which have not yet been sufficiently u
derstood theoretically. A useful step towards a best und
standing of those problems lies in the development of a co
plete CV theory for optical solitons in fibers that careful
takes into account the soliton dressing.

In this paper, we present a rigorous CV treatment of
generalized NLSE for optical solitons in fibers. In this C
theory, we use a projection-operator formalism, in a sim
way to that developed by Boeschet al. @6# for the CV treat-
ment of the nonlinear Klein-Gordon kink equation in co
densed matter physics. But there exists a major differe
between these two types of equations in their degree of c
plexity. From the Lagrangian corresponding to the nonlin
Klein-Gordon kink equation one can straightforwardly d
rive the canonical transformation of this equation into t
CV equations of motion, whereas there is no Lagrang
available for the generalized NLSE. In the present pap
although we do not derive the canonical transformation,
describe the essential steps to express the generalized N
in terms of CV equations of motion. Furthermore, our C
approach is complete in the sense that we have the equa
of motion not only for the CVs but also for the residual fiel
which includes the soliton dressing and any radiat
coupled to the soliton’s motion. In Ref.@43#, we have pre-
sented a CV treatment for DM fiber links. That letter giv
the basic idea of the CV theory for the generalized NL
@43#. One of the most useful advantages of our present
approach for the generalized NLSE is its equivalence t
projection-operator formalism, which makes the derivati
of the CV equations of motion relatively simple. Anoth
important feature in this paper is the direct residual-fie
minimization, which is a fully numerical procedure fo
quickly applying this CV theory.

The paper is organized as follows. In Sec. II, we pres
the CV theory for the generalized NLSE, using th
projection-operator scheme. In Sec. III, we describe a sim
and practical numerical procedure, which is strictly equiv
lent to complete CV theory, that allows us to obtain t
evolution of the CVs directly from the generalized NLS
immediately, i.e., without any need to solve the entire C
equations. We demonstrate the application of this CV the
for the propagation of optical pulses in a typical DM optic
fiber transmission lines in Sec. IV. Finally, in Sec. V w
conclude.

II. COLLECTIVE VARIABLE THEORY

Nonlinear pulse propagation in fiber links may be d
scribed by the generalized NLSE@1,2#:

cz1 i
b2~z!

2
c tt2 ig~z!ucu2c

52
a~z!

2
c1

b3~z!

6
c ttt2 ig r~z!c~ ucu2! t

2gs~z!~ ucu2c! t , ~1!
8-2
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wherec(z,t) is the envelope amplitude of the electric fie
measured in units of square root of Watts at positionz in the
fiber and at timet, the subscriptz ~or t) on c denotes the
partial derivative with respect toz ~or t). The parameters
b2(z) and b3(z) represent the second- and third-order d
persion coefficients, respectively. The parameterg(z)
[@n2(z)v0#/@c Aeff(z)# measures the strength of the nonli
earity, c denotes the speed of light,n2(z) is the nonlinear
index coefficient,Aeff(z) is the effective core area, andv0 is
the frequency of the carrier wave.a(z) represents the linea
loss in the fiber,g r(z)[g(z)TR represents the Raman gai
TR measures the slope of the Raman gain curve for sm
frequency detunings fromv0. The parameter gs(z)
[2g(z)/v0 represents the self-steepening coefficient.

It is important to note that some parameters appearin
the above-generalized NLSE may need to be slightly mo
fied to precisely describe the pulse propagation in some
cific situations. For example, for a DM fiber links, the coe
ficient b2(z) @and evena(z), b3(z), and g(z)# will vary
periodically along the propagation distance. More genera
the most important point to be emphasized here is that
CV approach is formulated in a way such that if any of t
coefficients in the generalized NLSE~1! is modified, then the
same modification has to be carried out straightaway in
final CV equations of motion.

The idea in CV theory is to associate new variables~col-
lective variables! with the quantities of interest for which
equations of motion can be derived, whose solutions y
explicitly the dynamics of the nonlinear localized modes u
der consideration. That is, one may introduceN CVs, sym-
bolically Xj ( j 51, . . . ,N), which are associated with th
nonlinear localized modes~soliton’s width, amplitude, fre-
quency, and so on!. To this end, we decompose the origin
field in the following way:

c~z,t !5 f ~X1 ,X2 , . . . ,XN ,t !1q~z,t !, ~2!

where the ansatz functionf is chosen to be the best represe
tation of the configuration of the pulse andq(z,t) is the
remaining field such that the sum off andq satisfy the origi-
nal generalized NLSE~1!. Note that the most commonl
chosen ansatz function for optical solitons in fiber is
Gaussian profile@1–3#. One can also choose any other su
able profile forf. For example,f can be a hyperbolic secan
profile @25#, or an expansion in terms of Hermite-Gaussi
polynomials@44–46#. In all cases, the fieldq, that we call
residual field, will account for the dressing of the pulse an
any radiation coupled to the pulse’s motion. One cannot s
ply substitutec5 f 1q into the generalized NLSE~1! be-
cause the introduction of the CVs inf ~as dynamical vari-
ables! will give extra degrees of freedom into the syste
which can enlarge the available phase space of the sy
@6,47#. Simply substitutingc into Eq. ~1! would therefore
introduce new and undesirable solutions into the sys
@6,47#. One must constrain the system of new variables~i.e.,
CVs andq) so that the system remains in the same ph
space as the original field equation~1!. The first set of con-
straints is obtained by configuring the ansatz functionf to be
the best fit to the fieldc. In order words, the CVs
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X1 , X2 , . . . ,XN are obtained by configuring that the ansa
function f (X1 ,X2 , . . . ,XN), minimizes the functionalL,
where

L[E
2`

`

uqu2 dt5E
2`

`

uc2 f ~X1 ,X2 , . . . ,XN ,t !u2 dt.

~3!

In this CV approach, the quantityL, corresponding to the
total amount of the energy in the residual field, serves a
measure for the correctness of the ansatz functionf. A fun-
damental point, neglected in previous CV treatments of
tical solitons in fibers, is that the residual field energy~RFE!
L must be sufficiently small to give proper physical meani
for the CVs. The constraints that we impose on the sys
will allow the CVs to evolve only in a particular direction t
minimize the RFE during the dynamics, in the followin
simple way:

Cj5
dL

dXj
'0. ~4!

Equations~4!, ~3!, and~2! lead to the following constrain
conditions

Cj5E
2`

`

ReFq
] f *

]Xj
Gdt'0, ~5!

where Re denotes real part. In Eqs.~4! and~5!, the sign ‘‘'’’
indicates the Dirac’s weak equality@12#. Indeed, our proce-
dure for obtaining the equations of motion for the CVs a
coupled fieldq is based on the Dirac theory of constrain
dynamical systems@12#. In Dirac’s terminology, a quantity
which is weakly equal to zero cannot be set to zero until
variations of the quantity with respect to the dynamical va
ables, to obtain the equations of motion, have been p
formed @12#. A careful analysis of the proper way of inco
porating such constraints in CV theories is carried out in R
@14#. In this context, a fundamental point to be emphasize
that the initial values of the CVs,Xj (z50), must be chosen
to satisfy the constraint conditions. The constraints which
satisfied at the beginning of the dynamics~i.e., atz50) do
not guarantee that they will be satisfied throughout
propagation distancez. Consequently, we must introduce
second set of constraints, which will guarantee that the fi
set of constraintsCj will be satisfied for allz if they are
initially satisfied, i.e.,Cj (X1 ,X2 , . . . ,XN ,z50)'0. Thus,
we define the second set of constraints as

dCj

dz
'0. ~6!

Substitution of Eq.~2! into the generalized NLSE~1!
directly yields the equation of motion for the residual field
8-3
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qz1 i
b2~z!

2
qtt2

b3~z!

6
qttt2 ig~z!u f 1qu2q1

a~z!

2
q

1 ig r~z!~ u f 1qu2! tq1gs~z!~ u f 1qu2q! t

52(
j 51

N

Ẋj f Xj
2 i

b2~z!

2
f tt1

b3~z!

6
f ttt1 ig~z!u f 1qu2f

2
a~z!

2
f 2 ig r~z!~ u f 1qu2! t f 2gs~z!~ u f 1qu2f ! t ,

~7!

where the overhead dot represents the derivative with res
to z and the subscriptXj on f denotes the partial derivativ
with respect toXj . To obtain the CV equations of motion
we project Eq.~7! in the direction of

Pk5
] f *

]Xk
. ~8!

That is, multiplying Eq.~7! by Pk and integrating the rea
part of the resulting equation with respect tot, gives

@Ẋ#52F]C

]XG21

@R#, ~9!

which coincides exactly with Eq.~12! of Ref. @43#. In the
above Eq.~9!, @X#, @C#, and @R# are column vectors o
Xj , Cj , and elements involvinga, b2 , g, b3 , g r , and
gs , given explicitly in Ref.@43#. The set of Eqs.~7! and~9!
represents the complete CV treatment for the general
NLSE ~1!.

The lowest-order approximation of the CV theory, call
‘‘bare approximation,’’ is obtained by setting the residu
field to zero@q(z,t)50#. In this case one can assume t
desired form for the ansatz functionf. In Ref. @43#, we have
assumed a Gaussian ansatz function and explicitly der
the bare CV equations. When optical losses and all
higher-order terms of the generalized NLSE~1! are consid-
ered as perturbation terms, then it is possible to make us
the perturbed Lagrangian method to derive the CV equat
of motion, as we show in Appendix A. The equations o
tained by the perturbed Lagrangian method coincide exa
with the bare CV equations derived using our CV theo
Therefore, the perturbed Lagrangian approach correspon
the lowest-order approximation of the complete CV theo
which explicitly includes the soliton dressing and any rad
tion coupled to the soliton’s motion.

III. DIRECT RESIDUAL-FIELD MINIMIZATION

In this section, we present a simple and fully numeri
procedure, which is strictly equivalent to the resolution
the above equations of motion~7! and ~9!, and which re-
quires only a very small fraction of calculations for obtaini
the motion of the CVs and the residual field. This procedu
which lies in the direct minimization of the RFE@Eq. ~3!#,
requires to solve numerically the generalized NLSE~1! for
the original fieldc(z,t) ~e.g., by use of the split-step Fourie
01660
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transform method@1#!. Then, at each propagation distancez,
the first set of constraint conditions~5! is used to obtain the
set of CVs which minimizes the RFE. Note that when t
field c(z,t) is known at a given distancez, then solving the
set of Eq.~5! becomes the familiar problem of minimizatio
of a functional with respect toN variables~CVs!. This prob-
lem can be solved by means of the following iterative p
cedure, which corresponds to the Newton-Raphson met
of minimization procedure@48#:

@X# i 115@X# i2F]C

]XG
i

21

@C# i . ~10!

Here, the subscript on a given quantity indicates the num
of iterations. A simple criterion for achieving this iterativ
process is that the absolute values of all the constraints
kept below a desired small quantit
e: max(@ uC1u,uC2u, . . . ,uCNu# i),e. If the CVs are suit-
ably estimated at the beginning of the iterative processi
50), then only a few iterations will be sufficient to minimiz
the RFE. A good estimation of the CVs to start the proc
can be obtained by the following formulas:

X15max~ ucu!, ~11a!

X25

E
2`

`

~ tucu2!dt

E
2`

`

ucu2 dt

, ~11b!

X35A2A 1

N1
L12X2

2; N15E
2`

`

ucu2 dt;

L15E
2`

`

~ t2ucu2!dt, ~11c!

X45 i

E
2`

`

~ tc* c t!dt

E
2`

`

~ t2c* c t!dt

1c.c., ~11d!

X55

E
2`

`

~wuc̃u2!dw

E
2`

`

uc̃u2 dw

, ~11e!

X650. ~11f!

In Eq. ~11e!, c̃ represents the spectral Fourier transform
c. Thus, it is quite clear that the amount of calculatio
required by the direct minimization of the RFE to obtain t
values for the CVs, represent only a small fraction of t
calculations which are required when solving directly t
equations of motion~7! and~9!. However, more importantly,
the CV equations of motion allow one to proceed further
analytical investigations@43#.
8-4
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IV. APPLICATION OF THE CV THEORY

A. Single-soliton dynamics

In Ref. @43#, to illustrate the CV treatment for DM soli
tons, we have demonstrated the single-pulse propagation
typical DM fiber transmission line, with a periodic dispersio
management using two types of fiber, namely single-m
fiber ~SMF! and dispersion-compensating fiber~DCF!. The
dispersion map is made up of 8.75-km length of SMF fib
and 1.835-km length of DCF fiber. We have performed
calculations on the basis of the parameters for SMF and D
fibers as mentioned in Table I. ParameterTR for both types
of fibers is taken as 1.422 fs. We have also carried out
numerical simulations not presented here, and found that
complete CV theory, bare approximation~or variational
equations!, and direct RFE minimization~described in Sec
III ! essentially give the same result even for the pulse pro
gation over transoceanic distances~6000 km! with negligible
values for the RFE.

Thus, we believe that a careful analysis of the lowe
order approximation equations~A7! should provide maxi-
mum insight for the dynamics due to any detrimental effe
such as optical losses, third-order dispersion, stimulated
man scattering, and self-steepening in DM transmiss
lines. Whereas the bare approximation based on the Gau
ansatz agrees very well with the full CV theory for th
single-pulse dynamics in the above DM transmission li
this approximation may in contrast lead to very poor resul
some other problems, such as the modeling of soliton in
actions, as we discuss below.

B. Intrachannel pulse interactions

In this subsection, we discuss the problem of introduc
the CVs in the NLSE in view of modeling the interaction
adjacent pulses in the same channel of a transmission
tem. Fundamentally, optical solitons in fibers do not poss
a compact support. In other words, DM solitons are char
terized ~theoretically! by infinite wings that cause mutua
interactions between adjacent solitons in the same comm
cation channel. This interaction, which can lead to the c
lescence of adjacent soliton bits after a certain propaga
distance, constitutes a main source of limitation in the ma
mum transmission distance in a single communication ch
nel.

To study the interaction of two adjacent pulses, we
compose the original field in the same way as in Eq.~2! but
with the following ansatz:

f 5 f 11 f 2 , ~12!

where

TABLE I. Fiber parameters.

Dispersion Slope Loss Aeff n2

~ps/nm km! (ps/nm2 km) ~dB/km! (mm2) (m2/W)

SMF 17 0.057 0.20 80 2.7310220

DCF 280 20.175 0.6 20 2.55310220
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f 6~ t,z!5X1 expF2
~ t6X2!2

X3
2

1 i
X4

2
~ t6X2!27 iX5~ t6X2!

1 iX6G . ~13!

An analytical procedure that is commonly used to obt
the CV equations of motion corresponds to a quasipart
approach in which one considers each individual pulse
being weakly perturbed by the other pulse@2,23,26,35,49#.
Mathematically, the original fieldc is taken as a linear su
perposition of two one-soliton fields:

c5u11u2 . ~14!

Next, the nonlinear termucu2c is split into two parts as
follows:

ucu2c5~ uu1u2u112uu1u2u21u1
2u2* !1~ uu2u2u212uu2u2u1

1u2
2u1* !. ~15!

If one considers that only the tails are interacting, then o
can split the NLSE into two equations for the evolution
ul :

]ul

]z
1 i

b2

2

]2ul

]t2
2 iguul u2ul1

a

2
ul5 ig~2uul u2u32 l1ul

2u32 l* !,

~16!

where l (51,2) denotes each pulse. An important point
be noticed here is that the cross-phase modulation~XPM!
term 2uu32 l u2ul has been neglected in Eq.~16!, which is
hereafter referred to as the ‘‘reduced intrachannelNLSE.’’
Then, applying the bare approximation to the reduced in
channel NLSE, that is, substitutingul5 f 6 in Eq. ~16!, and
projecting the resulting equation in the direction of]ul* /]Xk

yields

Ẋ15
1

2
~b2X1X42aX1!2

gX1
2E

8A2
@~1024X2

2/X3
21X3

2X2
2X4

2

22X3
2X2X4X51X3

2X5
2!s14X2~X2X42X5!c#, ~17a!

Ẋ252b2X51
gX1

2E

2A2
@X3

2~X2X42X5!c12X2s#,

~17b!

Ẋ352b2X3X41
gX1

2E

4A2
@4X2X3~X2X42X5!c1~X3

3X2
2X4

2

22X3
3X2X4X524X2

2/X312X31X3
3X5

2!s#, ~17c!
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Ẋ452b2S 4

X3
4

2X4
2D 2

A2gX1
2

X3
2

1
gX1

2E

3A2
F9S 2X2X4X5

2X2
2X4

21
4X2

2

X3
4

2
2

X3
2

2X5
2D c1

X2

X3
2 ~X2X42X5!sG ,

~17d!

Ẋ55
gX1

2E

2A2
F S X4X3

2X52
12X2

X3
2

2X4
2X3

2X2D c

12~3X522X2X4!sG , ~17e!

Ẋ652b2S X5
2

2
2

1

X3
2D 1

5gX1
2

4A2
1

gX1
2E

8A2
@4X2~5X523X2X4!s

1~30210X3
2X2X4X517X3

2X5
2212X2

2/X3
2

13X3
2X2

2X4
2!c#, ~17f!

where

s5sin@~X2X42X5!X2#,

c5cos@~X2X42X5!X2#,

E5exp@21/4~X3
4X2

2X4
222X3

4X2X4X51X3
4X5

2112X2
2!/X3

2#.

Thus, the CV equations of motion~17!, which we hence-
forth refer to as the ‘‘reduced intrachannel bare calcula
tion,’’ are equivalent to the averaged Lagrangian appro
used in Ref.@35#. Knowing that two distinct approximation
schemes~which neglect the XPM terms and the solito
dressing, respectively! are made in the reduced intrachann
BC ~bare calculation!, it is difficult to ascertain precisely the
particular effect of any of these two types of approximatio
by simply comparing the results from the reduced intrach
nel BC to the full CV theory~including the soliton dressing
in the NLSE!. In this context, it is useful to carry out afull
bare calculation using the NLSE~1! @instead of the reduced
intrachannel NLSE~16!#. Substituting the ansatzf 5 f 1

1 f 2 in the NLSE ~1! with losses and gain, and projectin
the resulting equation in the direction of] f * /]Xk yields the
CV equations in the following matrix form:

@Ẋ#5@M #21@F#, ~18!

where the matrices@M# and @F# are given explicitly in Ap-
pendix B. Note that the reduced intrachannel BC~17! has the
convenient feature of requiring much fewer algebraic m
nipulations than the full bare calculation~18!. Figure 1 rep-
resents the dynamics of two pulses, with the arbitrary ini
conditions @X150.23, X256D0/2, X359.88, X45
20.0079, X550, X650#. The initial pulse separationD0
52X2516 ps and 28.5 ps represent approximately
times and 2.4 times the initial pulse width (T0511.6 ps
FWHM!. In all the pictures of the present section, the so
01660
h

l

s
-

-

l

4

curves represent the results obtained from the numerical
cedure of minimization of the RFE described in Sec. I
which will be hereafter referred to as the ‘‘full CV theory.
The dot-dashed and dashed curves will represent the full
reduced intrachannel BCs, respectively. Figure 1 dem
strates the general feature that the BCs based on the Gau
ansatz lead to much less fair results for the modeling
soliton interactions than for the single-soliton dynamics~dis-
cussed in the earlier subsection!. Figures 1~a1!, ~b1!, and
~c1! @which correspond toD0516 ps# and 1~a2!, ~b2!, and
~c2! (D0528.5 ps), respectively, represent situations wh
the two input pulses strongly and weakly overlap with ea
other. For example, we observe in Fig. 1~a1! the following
prediction for the collision distance:Zc5294.7 km ~given
by the full CV theory!. The full BC leads toZc5294.6 km,
which therefore agrees extremely well with the full C
theory. The reduced intrachannel BC (Zc5146.5 km) leads
to a huge discrepancy, of nearly 50%. Then the ques
arises: where does this huge discrepancy come from?
answer this question, we have applied our CV treatm
~based on the residual field minimization! to the reduced

FIG. 1. Plots showing an intrachannel pulse interaction.~a! Evo-
lution of the pulse positions versus propagation coordinatez. ~b!
Evolution of the normalized residual-field energyL(z)/E(0) ver-
sus propagation coordinatez. ~c! Evolution of the frequency versu
propagation coordinatez. Solid, dot-dashed, and dashed curves c
respond to full CV theory, the full bare calculation, and the reduc
intrachannel bare calculation, respectively.
8-6
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NLSE ~16! and found essentially the same results as for
CV treatment of the NLSE~1!, as represented by the sol
curves in Fig. 1. We thus deduce that the large discrepa
mentioned above results mostly from the approximate na
of the corresponding BC with Gaussian ansatz in Eq.~17!.
Indeed the stability of a given BC~i.e., its ability to accu-
rately follow the exact pulse trajectory in parameter space! is
determined not only by the type of ansatz considered but
by the particular type of nonlinear partial differential equ
tion that describes the dynamics. The results in Fig. 1 rev
that the BC for the reduced NLSE~16! with a Gaussian
ansatz is highly unstable compared with the BC for
NLSE ~1!. Figures 1~b1! and~b2! show the spatial evolution
of the normalized RFE for the three CV approaches. N
that the residual field is given byq(z,t)5c(z,t)2 f (@X#),
wherec(z,t) is the exact DM soliton field obtained by nu
merically solving the NLSE~1!. In all three cases, the RF
execute an oscillating behavior with an amplitude that
creases continually as it approaches the collision point~for
clarity, we have plotted only the envelope of the oscillati
RFE!. We reemphasize that the appearance of a residual
simply indicates that the Gaussian ansatz functions that
use do not correspond to the exact solution of the NLSE~1!.
More importantly, as one could have expected in view of
results in Figs. 1~a1! and~a2!, the reduced intrachannel BC
leads to dramatically large values of the RFE@see the dashed
curve in Figs. 1~b1! and ~b2!#. One can clearly observe i
Fig. 1 ~b1! a peak value that attains nearly 300% of the to
energy of the two pulses, in the range 0<z<Zc . The occur-
rence of these huge values of the RFE gives no phys
meaning to the collective variables obtained via this redu
intrachannel BC. Quite in contrast, the full BC leads to
collision distance much more accurate than for the redu
intrachannel BC. We observe in Figs. 1~a1!, ~b1!, and~c1!,
where the solid and dot-dashed curves essentially coinc
that the full BC leads to excellent results in the case wh
the two input pulses strongly overlap. On the other ha
Figs. 1~a2!, ~b2!, and~c2! reveal that the agreement betwe
the full BC and the full CV theory is not so good in the ca
where the input pulse weakly overlap~compared with the
case of strong initial overlapping!. Nevertheless, here, th
level of the RFE for the full BC, which does not exceed 17
of the total energy of the two pulses@see Fig. 1~b2!#, corre-
sponds to a good qualitative agreement. The full CV the
leads to a RFE that does not exceed 5% of the total energ
the two pulses over the whole collision distance@see the
solid curves in Figs. 1~b1! and ~b2!#, which therefore gives
much better physical meaning to the corresponding CVs

The above-mentioned features appear also clearly in F
2~a! and 2~b!, which represent the peak RFE over 0<z
<Zc , and the collision distance, respectively, as a function
the normalized initial pulse separationD0 /T0. Figure 2~a!
shows that the reduced intrachannel BC leads to huge va
of the RFE@dashed curve in Fig. 2~a!# compared to the full
BC, in a wide region of initial pulse separation ranging fro
the case of weak to strong input-pulse overlap. On the o
hand, we observe in Fig. 2~b! that for D0 /T0'1.85, the two
BCs predict fortuitously well the collision distance. Neve
theless, one cannot conclude that the BCs are then effec
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In particular, the reduced intrachannel BC leads to clea
wrong results in predicting the other soliton parameters~e.g.,
pulse width!, as can be seen in Fig. 3; hence a high RFE@see
Fig. 3~a!#.

Thus, it comes out from the results of this subsection t
the reduced intrachannel BC with the Gaussian ansatz
scribes very poorly the intrachannel pulse interactions. T
full BC gives generally much better results, with an acce
able level of residual field. However, this full BC leads to
small discrepancy~with respect to the full CV theory! for
large initial pulse separation. In such a situation, one m
‘‘dress’’ the Gaussian ansatz to obtain a fair quantitative p
diction of the effects of intrachannel pulse interactions,
make use of an accurate ansatz~e.g., Hermite-Gaussian an
satz@44–46#!.

C. Interchannel pulse interactions

In this subsection, we discuss the application of the C
theory to the problem of interchannel pulse interactions

FIG. 2. ~a! Evolution of the normalized residual-field energ
L(z)/E(0) versus normalized initial pulse separationD0 /T0. ~b!
Evolution of the collision distanceZc versus normalized initial
pulse separationD0 /T0. Solid, dot-dashed, and dashed curves c
respond to full CV theory, the full bare calculation, and the reduc
intrachannel bare calculation, respectively.
8-7
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main source of limitation of the performance of WDM
~wavelength-division multiplexing! systems lies in the ef
fects induced by collisions between pulses propagating
different communication channels. Indeed, in soliton-ba
WDM systems, pulses that are launched in different chan
propagate at different speeds, which leads inevitably to
lisions between fast and slow pulses in long-distance tra
missions. In particular, when two solitons collide in
lumped amplifier, their frequencies undergo a shift due to
amplification-induced imbalance between the local disp
sion and nonlinearity. A permanent frequency shift induc
by repeated collisions in DM systems may lead to signific
timing jitter at the system output. Numerous recent stud
demonstrate that such effects may be reduced by suit
optimizing the dispersion map@33,34,36,50–53#. It is not the
subject of the present study to carry out such optimizat
processes, but rather to analyze the ability of CV treatme
to accurately predict the effects of pulse interactions
WDM systems.

Here, the dynamics of each pulse is strongly influenced
the other pulse intensity. So the XPM term plays a ma

FIG. 3. Plots showing an intrachannel pulse interaction.~a! Evo-
lution of the normalized residual-field energyL(z)/E(0) versus
propagation coordinatez. ~b! Evolution of the pulse positions versu
propagation coordinatez. ~c!,~d!,~e!,~f! Evolution of the pulse am-
plitude, chirp, width, and frequency versus propagation coordin
z. Solid, dot-dashed, and dashed curves correspond to full
theory, the full bare calculation, and the reduced intrachannel
calculation, respectively.
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role. Following the same principle as in the case of the
trachannel, one generally splits the NLSE into two equatio
for the evolution oful @2,26,33,34,36,54–56#:

]ul

]z
1 i

b2

2

]2ul

]t2
2 iguul u2ul1

a

2
ul52iguu32 l u2ul . ~19!

An important point to be noticed here is that the four-wa
mixing termul

2u32 l* has been neglected in Eq.~19!, which is
hereafter referred to as the ‘‘reduced interchannelNLSE.’’
Then, applying the bare approximation to the reduced in
channel NLSE, that is, substitutingul5 f 6 in Eq. ~19!, and
projecting the resulting equation in the direction of]ul* /]Xk

yields

Ẋ15
1

2
~b2X1X42aX1!, ~20a!

Ẋ252b2X5 , ~20b!

Ẋ352b2X3X4 , ~20c!

Ẋ452b2S 4

X3
4

2X4
2D 2

A2gX1
2

X3
2

2g
A2

2X3
4 ~4X1

2X3
2

232X1
2X2

2!exp~24X2
2/X3

2!, ~20d!

Ẋ5524A2g
X1

2X2

X3
2

exp~24X2
2/X3

2!, ~20e!

Ẋ652b2S X5
2

2
2

1

X3
2D 1

5gX1
2

4A2
1

g

8X3
2 ~A102X3

2X1
2

2A162X1
2X22!exp~24X2

2/X3
2!. ~20f!

Thus, the CV equations of motion~20!, which we hence-
forth refer to as the ‘‘reduced interchannel bare calcula
tion,’’ are equivalent to the averaged Lagrangian approa
used in Refs.@34,36,54#.

To illustrate our demonstration, we consider the ca
where two given pulses are launched with a temporal se
ration of D05250 ps in two channels spaced byDn
5150 GHz, in a DM line of total lengthL52000 km. Fig-
ure 4 shows the evolution of the pulse parameters during
collision process. The solid, dashed, and dot-dashed cu
represent the full CV theory, reduced interchannel BC, a
full BC, respectively. Figure 4~a! shows that the collision
occurs atZc'1110 km. Note that the pulses execute a z
zag motion that causes repeated collisions in a region aro
Zc ~with full pulse overlapping! before they separate. An
important parameter that serves as a measure of the im
tance of the effects of the collision is thetiming shift:
dX2(Z)[X22(2pDnu^b2&uz1D0/2), represented in Fig
4~b!. The parameter̂b2&522.3531024 ps2/m represents
the average dispersion of the line. One can clearly observ
Fig. 4~b! that the two pulses interact in fact over a relative
large distance ranging fromz'600 km to z'1700 km,

te
V
re
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COLLECTIVE VARIABLE THEORY FOR OPTICAL . . . PHYSICAL REVIEW E 64 016608
through the cross-phase modulation. Using the full C
theory, we find that the interaction leads to a timing shift
dX2(L)523.3 ps, and a permanent frequency shiftdX̃5
5@X5(L)2X5(0)#/2p50.46 GHz. At the same time, th
interaction causes pulse parameters—width and chirp—
execute relatively large-amplitude oscillations around th
initial values, as can be seen in Figs. 4~e! and 4~f!. The
correctness of the above CV treatments is measured thro
the level of the RFE represented in Fig. 4~c!. We observe the
following general features. First, the full CV theory~solid
curve! leads to the smallest RFE, with a peak value t
represents only 1% of the total energy of the two pulses. T
indicates that our procedure of minimizing the solit
‘‘dressing’’ provides an excellent description of the inte
channel pulse interactions. Second, the reduced inter-cha
and full BCs yield essentially the same result, as Fig
shows, thus implying that the reduced interchannel NL
~19! and the reduced interchannel BC~20! provide an ap-
proximate but highly accurate description of pulse propa
tion in well spaced channels. In fact, the ability of the r
duced interchannel BC with Gaussian ansatz, to accura
describe pulse propagation in systems with well-spa

FIG. 4. Plots showing an interchannel pulse interaction forD0

5250 ps andDn5150 GHz.~a! Evolution of the pulse positions
versus propagation coordinatez. ~b! Time shift dX2 versus propa-
gation coordinatez. ~c! Normalized residual-field energy versu
propagation coordinatez. ~d!,~e!,~f! Evolution of the frequency,
width, and chirp versusz. Solid, dot-dashed, and dashed curv
correspond to full CV theory, the full bare calculation, and t
reduced interchannel bare calculation, respectively.
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channels, was already reported in previous studies@28,32–
36#. Thus, our study of the RFE for the reduced interchan
BC @dashed curve in Fig. 4~c!# confirms the previous studies
In such cases where the BC gives excellent results, the
no need todress the Gaussian ansatz, and the use of
reduced interchannel NLSE or the reduced interchannel
~or any similar variational approach! is fully justified
@28,32–36#.

A way to increase the capacity of soliton-based comm
nication systems lies in the use of very closely spaced sig
wavelengths. This technique is commonly exploited for s
ting up the so-called ‘‘dense’’ WDM systems@57,58#. It is
interesting to examine the case of extremely close chann
but where the individual identities of the channels are p
served throughout the pulse transmission. To this end,
have carried out a simulation of the interaction of two puls
in the same conditions as in Fig. 4 but with a smaller f
quency spacing between the two channels:Dn5100 GHz.
The results are displayed in Fig. 5, where the solid, d
dashed, and dashed curves represent the full CV theory
full BC, and the reduced interchannel BC, respectively. F
ures 5 exhibits two distinct regimes of the system behav

~i! First, we observe in Figs. 5~a! and 5~b! a regime of
low-amplitude for the residual field, which takes place fro
z50 up to the collision pointz5Zc'1646 km. Indeed, in
this regime, the RFE predicted by the full CV theory do
not exceed 1.5% of the total energy of the system, thus
dicating that the Gaussian ansatz function provides a fa
good representation of the exact solution of the NLSE~1!. In
fact, the shape of the two pulses remains quite close t
Gaussian profile fromz50 up to a few hundred km after th
collision. This leads to fairly accurate bare calculations, w
a normalized RFE that does not exceed 3%.

~ii ! Now, from z5Zc upwards we observe in Figs. 5~a!
and 5~b! a regime of high-amplitude for the residual fiel
characterized by large values of the RFE. This behavior
dicates that this collision process causes a severe disto
of the pulse~with respect to the initial Gaussian profile!. The
resulting increase of the RFE differs qualitatively depend
on the CV treatment considered. In particular, we observe
Fig. 5~b! that the bare calculations lead to a RFE that
creases continually forz>Zc , with peak values that grow up
to 120% of the total energy of the system. Such huge val
of the RFE give no physical meaning to the correspond
CVs at the system’s output. In other words, the BCs le
there to wrong results at the system’s output. On the ot
hand, as the solid curve in Fig. 5~b! shows, the full CV
theory leads to a RFE that increases continually fromz
5Zc up to z'2500 km before stabilizing around'13%
during the remaining propagation distance. This level of
RFE is one order of magnitude lower than that obtained fr
the bare calculations. Thus, the stabilization of the R
within 13%, is a benefit effect of the process of minimizati
of the residual field in the full CV theory. Nevertheless, t
value of 13% for the RFE is still relatively large to guarant
a fair quantitative prediction of the actual pulse behavior
the system’s output. The agreement here is mainly qua
tive. In particular, Figs. 5~e! and 5~f!, which we obtained by
solving the NLSE~1!, show the exact profiles of the tw
8-9
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FIG. 5. Plots showing an interchannel pulse interaction forD05250 ps andDn5100 GHz.
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output pulses and the corresponding frequency spectrum
spectively. One can clearly observe, as predicted by the
CV theory, that the pulses are severely distorted with resp
to a Gaussian profile; hence a large RFE.

As a general remark on all the above examples of ap
cations of the CV theory to DM systems, it comes out th
the BC~or similar variational approaches! describes more o
less well the pulse propagation depending on the partic
situation under consideration. On one hand, the BC w
Gaussian ansatz provides a fair quantitative description
the system’s behavior in case of a single-pulse propaga
in a DM line @43#, and in the case of two pulses interacting
well spaced communication channels. In such cases, the
no need to dress the Gaussian ansatz. Another useful ad
tage of the BC is that it requires only a small fraction of t
amount of calculations required when using a full CV a
proach. On the other hand, we have observed that the
with Gaussian ansatz provides either very poor results
completely wrong results, in predicting the system’s beh
ior in case of intrachannel pulse interactions and when
pulses interact in very closely spaced channels. In s
cases, one must either make use of more accurate a
functions, or dress the Gaussian ansatz to fairly describe
behavior of optical solitons in fibers.
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V. CONCLUSION

In the present work, we have developed a rigorous
treatment for the generalized NLSE for the propagation
optical soliton in fibers, using a projection-operator form
ism. We have described the essential steps for obtaining
CV equations of motion. The first fundamental point of t
present work, which makes the greatest qualitative differe
with respect to all other previous CV treatments of t
NLSE, lies in the fact that we have introduced a resid
field q accounting for the dressing of the soliton and a
radiation coupled to the soliton’s motion. The second fun
mental point of our CV approach lies in the introduction
constraints,Cj'0, Eq. ~5!, on the CVsXj ( j 51, . . . ,N),
which give proper physical meaning for the CVs by confi
uring the ansatz functionf (X1 ,X2 , . . . ,XN) to be a best fit
to the original field variablec. The main virtue of this CV
approach is to make the derivation of the CV equations
motion relatively simple. Finally we have also demonstra
the application of this CV theory for a typical DM fiber link
Although we have focussed on the two-soliton dynamics,
CV theory presented in this paper can be straightforwar
extended to a general multisoliton dynamics. In particu
the generalized NLSE can be used to describe the dyna
8-10
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COLLECTIVE VARIABLE THEORY FOR OPTICAL . . . PHYSICAL REVIEW E 64 016608
of soliton packet in WDM or time division multiplexing
transmission systems. For example, the dynamics of a g
number of solitons, sayM, propagating in different channel
of a WDM system may be effectively handled in the C
theory by expressing the ansatz functionf as a linear super
position of one-soliton ansatz,

f 5 (
n51

M

f n~X1n ,X2n ,X3n ,X4n ,X5n ,X6n!, ~21!

where X1n , X2n , X3n , X4n , X5n , and X6n represent the
soliton amplitude, temporal position, width, chirp, frequenc
and phase, respectively, in thenth channel with frequency
vn5X5n /(2p). With the above ansatz, the generaliz
NLSE can be expressed in terms of CVsXjn , exactly as we
have done for the two-soliton case. From a practical poin
view, the information that may be gained now from this C
treatment of the generalized NLSE should provide a d
insight into detrimental effects that cause instability p
cesses on optical solitons in fibers. This CV approach
therefore be exploited for the optimization of fiber transm
sion lines in optical communications.
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APPENDIX A: AVERAGED LAGRANGIAN APPROACH

In this appendix, we briefly present the essential steps
are needed to express the generalized NLSE in terms of C
using the perturbed Lagrangian approach. We consider
generalized NLSE in the form

cz1 i
b2~z!

2
c tt2 ig~z!ucu2c5eR, ~A1!

where

eR52
a~z!

2
c1

b3~z!

6
c ttt2 ig r~z!c~ ucu2! t

2gs~z!~ ucu2c! t . ~A2!

The Lagrangian for Eq.~A1! without perturbation term (eR
50) is given by

L5E
2`

` Fb2~z!

2
uc tu21

g~z!

2
ucu41

i

2
~c* cz2ccz* !Gdt.

~A3!

Substituting the Gaussian ansatz functionf given by
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f 5X1 expF2
~ t2X2!2

X3
2

1 i
X4

2
~ t2X2!21 iX5~ t2X2!1 iX6G ,

~A4!

whereX1 , X2 , A2 ln 2X3, X4 /(2p), X5 /(2p), andX6 rep-
resent the pulse amplitude, temporal position, pulse wi
~FWHM!, chirp, frequency, and phase, respectively, in E
~A3!, and performing the integration leads to the followin
Lagrange function of the CVs:

L5
Ap

2A2
b2~z!X1

2S 1

X3
1

X3
3X4

2

4
1X3X5

2D 1
Ap

4
g~z!X3X1

4

2
Ap

8A2
X1

2X3
3Ẋ42

ApX1
2X3

A2
~Ẋ61X5Ẋ2!

2X1
2X3

2@b2~z!X4X52X4Ẋ22Ẋ5#. ~A5!

Then, the variational equations are written as

]L

]Xj
2

d

dzS ]L

]Ẋj
D 5E

2`

`

eR
] f *

]Ẋj

1c.c. ~A6!

Substituting the ansatz functionf in eR @i.e., settingc5 f in
Eq. ~A2!#, and performing the integration of the right-han
side of Eq.~A6!, we obtain the following variational equa
tions:

Ẋ152
1

2
a~z!X11

1

2
b2~z!X1X42

1

2
b3~z!X1X4X5 ,

~A7a!

Ẋ252b2~z!X51b3~z!S 1

2X3
2

1
X5

2

2
1

X3
2X4

2

8 D
1

3

2A2
gs~z!X1

2 , ~A7b!

Ẋ352b2~z!X3X41b3~z!X3X4X5 , ~A7c!

Ẋ452b2~z!S 4

X3
4

2X4
2D 2

A2g~z!X1
2

X3
2

1b3~z!S 4X5

X3
4

2X4
2X5D 1

A2gs~z!X1
2X5

X3
2

, ~A7d!

Ẋ55
A2g r~z!X1

2

X3
2

1
gs~z!X1

2X4

A2
, ~A7e!
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Ẋ65b2~z!S 1

X3
2

2
X5

2

2 D 1
5g~z!X1

2

4A2

1b3~z!S X5
3

3
1

X3
2X4

2X5

8
2

X5

2X3
2D 1

gs~z!X1
2X5

4A2
.

~A7f!

The above equations~A7! are exactly same as Eqs.~14!
of Ref. @43#. Thus, the perturbed Lagrangian approach c
responds to the lowest-order approximation of t
projection-operator approach. More importantly, in nonline
fiber optics, there exist a host of nonlinear partial differen
equations, which do not possess the Lagrangian function
such cases, one cannot apply the Lagrangian appro
whereas the projection-operator approach can be used i
cases for obtaining the CV equations of motion without
help of the Lagrangian function.

APPENDIX B: FULL BARE CALCULATION

In this appendix, we present the full bare calculatio
Substituting the ansatz

f 5 f 11 f 2 , ~B1!

where

f 6~ t,z!5X1 expF2
~ t6X2!2

X3
2

1 i
X4

2
~ t6X2!2

7 iX5~ t6X2!1 iX6G ~B2!

in the NLSE ~1! with losses and gain, and projecting th
resulting equation in the direction of] f * /]Xk yields the CV
equations in the following matrix form:

@Ẋ#5@M #21@F#, ~B3!

where the matrices@M# and @F# are explicitly given by

@M #5S m11 m12 m13 m14 m15 0

m12 m22 m23 m24 m25 m26

m13 m23 m33 0 m35 m36

m14 m24 0 m44 m45 m46

m15 m25 m35 m45 m55 m56

0 m26 m36 m46 m56 m66

D ,
01660
-

r
l
In
ch,
all
e

.

@F#5

¨

b2~z!

2
F111g~z!F212

a~z!

2
F31

b2~z!

2
F121g~z!F222

a~z!

2
F32

b2~z!

2
F131g~z!F232

a~z!

2
F33

b2~z!

2
F141g~z!F242

a~z!

2
F34

b2~z!

2
F151g~z!F252

a~z!

2
F35

b2~z!

2
F161g~z!F262

a~z!

2
F36

©
, ~B4!

where

m115A2X3~11E1!,

m125
X1

A2
E1~2X3

4X4
2X21X3

4X4X524X2!/X3 ,

m135
X1

A2
@12E1~2X3

222X3
4X2X4X51X3

4X5
224X2

2

1X3
4X2

2X4
2!/X3

2#,

m145
X1

A2
X2X3

3E1~2X2X41X5!,

m1552
X1

A2
X3

3E1~2X2X41X5!,

m225
X1

2

2A2
@~4X3

21X3
6X4

214X3
4X5

2!/X3
31E1~X3

8X4
2X5

22X3
6X4

2

1X3
8X4

4X2
222X3

8X4
3X2X5116X2

224X3
218X3

4X2
2X4

2

28X3
4X2X4X5!/X3

3#,

m2352
X1

2

2A2
E1~16X2

324X2X3
214X2

2X4X5X3
424X2X5

2X3
4

13X3
6X4

2X223X3
6X4X52X3

8X4
4X2

313X3
8X4

3X2
2X5

23X3
8X4

2X2X5
21X3

8X4X5
3!/X3

4 ,

m245
X1

2

4A2
@2X3

3X51X3~28X5X2
218X4X2

312X3
2X5

12X3
4X5

2X2X424X3
2X4X212X3

4X4
3X2

3

24X3
4X5X2

2X4
2!E1#,
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m2552
X1

2

2A2
@X3

3X41X3~2X4X3
21X4

3X3
4X2

21X4X3
4X5

2

24X5X214X4X2
222X4

2X3
4X2X5!E1#,

m2652A2X1
2X3X5 ,

m335
X1

2

2A2
@3X3

4/X3
51E1~X3

8X2
4X4

41X3
8X5

426X3
6X2

2X4
2

26X3
6X5

213X3
428X2

2X3
218X2

4X4
2X3

4216X2
3X4X5X3

4

18X2
2X5

2X3
4116X2

4112X3
6X2X4X524X3

8X2
3X4

3X5

16X3
8X2

2X4
2X5

224X3
8X2X4X5

3!/X3
5#,

m355
X1

2

2A2
E1~3X3

2X4X223X3
2X52X3

4X4
3X2

313X3
4X5X2

2X4
2

23X3
4X5

2X2X41X3
4X5

324X4X2
314X5X2

2!,

m36522A2X1
2X2E1~2X2X41X5!,

m445
X1

2

32A2
@3X3

51X3~X3
8X2

4X4
41X3

8X5
426X3

6X2
2X4

2

112X3
6X2X4X526X3

6X5
213X3

418X2
4X4

2X3
428X2

2X3
2

216X2
3X4X5X3

418X2
2X5

2X3
4116X2

424X3
8X2

3X4
3X5

16X3
8X2

2X4
2X5

224X3
8X2X4X5

3!E1#,

m4552
X1

2

4A2
X2X3E1~2X3

21X3
4X2

2X4
222X3

4X2X4X51X3
4X5

2

14X2
2!,

m465
X1

2

4A2
@X3

32X3~2X3
222X3

4X2X4X51X3
4X5

224X2
2

1X3
4X2

2X4
2!E1#,

m555
X1

2

2A2
@X3

31X3~2X3
21X3
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2X4

222X3
4X2X4X51X3

4X5
2

14X2
2!E1#,

m5652A2X1
2X2X3E1 ,

m665A2X1
2X3~11E1!,

F115F215F3650,

F1252
X1

2

2A2
X5~4X3

2X5
211213X3

4X4
2!/X3 ,
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F135
X1

2

A2
@22X41E1~16X5X2

3212X3
2X5X222X3

4X4

23X3
8X4

3X2
2X5

21X3
8X4

2X2X5
3116X2

3X5X4
2X3

4

28X2
2X5

2X4X3
413X3

8X4
4X2
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415X3
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2

2X3
8X4
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2X4X2
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427X3
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F145
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1E1~24X3
426X3
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424X3
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2216X3

4X4
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4

1X3
12X4

2X5
41X3

12X4
6X2

4!/X3
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X1

2

2A2
@2X3

3X4X51E1~X3
8X4

2X5
2X218X3

4X4
2X2

31X3
8X4

4X2
3

23X3
6X4

2X228X3
4X5X2

2X412X3
6X4X522X3

8X4
3X5X2

2

212X3
2X2116X2

3!/X3
3#,

F1652
X1

2

2A2
@~2X3

6X4
224X3

224X3
4X5

2!/X3
31E1~X3

8X4
2X5

2

2X3
6X4

21X3
8X4

4X2
222X3

8X4
3X2X5116X2

224X3
2

18X3
4X2

2X4
228X3

4X2X4X5!/X3
3#,

F225@~2X1
4X2X3

2X423X1
4X3

2X5!C1~22X1
4X2S

11/2X1
4X2X4

2SX3
421/2X1

4X4SX5X3
4!#

E3

X3
2X1

4X3X5

22X1
4E2X3X512X1

4E2X2X3X4 ,

F235@~22X1
4X2X512X1

4X2
2X4!C14X2

2X1
4S/X3

2#E3

22X1
4X2X5E412X2

2X1
4X4E4 ,

F245~24X1
4X3X2

212X1
4X3

5X2X4X52X1
4X3

5X5
212X1

4X3
3

2X1
4X3

5X2
2X4

2!CE5/81~X1
4X3

322X1
4X3

5X2
2X4

2
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4X3
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5X5
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4X3
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3
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2
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