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Collective variable theory for optical solitons in fibers
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We present a projection-operator method to express the generalized nonlineaii®mrequation for pulse
propagation in optical fibers, in terms of the pulse parameters, called collective variables, such as the pulse
width, amplitude, chirp, and frequency. The collective varialfl&/) equations of motion are derived by
imposing a set of constraints on the CVs to minimize the soliton dressing during its propagation. The lowest-
order approximation of this CV approach is shown to be equivalent to the variational Lagrangian method.
Finally, we demonstrate the application of this CV theory for pulse propagation in dispersion-managed optical
fiber links.
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[. INTRODUCTION of motion for the CVs, whose solutions will explicitly yield
the complete dynamics of the nonlinear localized modes un-
The propagation of intense light pulses in a standard teleder consideration.

communication fiber can induce a host of nonlinear phenom- Such CV theories have been successfully applied to con-
ena, such as parametric wave mixing, stimulated Ramadensed matter systems, in particular to nonlinear Klein-
scattering, or self-steepening, to name a féy2]. The com-  Gordon and similar systemgt—11]. Various approaches
bined effects of nonlinear phenomena and the fiber chrosuch as Lagrange dynamics with Lagrange multiplié&ls
matic dispersion lead to many interesting dynamical proHamiltonian dynamics using Dirac brackef42], and
cesses which are difficult to understand in terms of theprojection-operator method6—11,13,14 have been used to
original pulse field, but can be easily understood by applyinglerive the CV equations of motion. In particular, one of the
a collective variable(CV) approach. For example, the dy- most useful results of CV theory in the condensed matter
namics of the propagation of light pulses in an optical fibersystems was obtained by Boesathal.[6]. They developed a
can be completely described by a field, saywhich is a  projection-operator formalism which makes the derivation of
solution of certain nonlinear partial differential equationthe CV equations of motion very simp[é]. They used this
commonly referred as “generalized nonlinear Safinger  formalism to derive the exact equations of motion for the
equation” (NLSE). Exact expression o may be given by a center of mass of a discrete sine-Gordon kink and the fre-
complicated form, depending on the type of dispersive andjuency of its small oscillations in the Peierls-Nabarro well
(or) nonlinear effects appearing in the evolution equation of 7]. The projection-operator approach was also used to cal-
the fiber[1,2]. Usually, it is difficult to ascertain directly culate the spontaneous emission of radiation from a discrete
from the original fieldys what is exactly happening during sine-Gordon kink[8], the effects of lattice discreteness on
the pulse propagation. Hence, the field which describes the statistical mechanics of a dilute gas of kifR§ and the
the dynamics of the pulse and other excitations of the systerdynamics of the discrete sine-Gordon breafi&. This ap-
such as radiations, must be analyzed with extreme care toroach has also been successful in treating the effects of
follow exactly the pulse trajectories in the phase space. Thattice discreteness in many other nonlinear Klein-Gordon
pulse dynamics will become even more complicated in thesystems which support stable kink structures such as the
case of systems that are not integrable. For instance, in oplouble-quadratic kink10], or the double-sine Gordon kink
tical communications, it was shown that pulses propagating11].
in dispersion-manageM) fiber links, called *“ DM soli- Quite in contrast, the actual stage of CV treatments of
tons,” possess a richer temporal and spectral structure afonlinear partial differential equations in nonlinear fiber op-
modes than a simple collective entifg]. That is, a DM tics happens to be surprisingly much less elaborated than in
soliton is not only able to translate like a whole entity, butcondensed matter physics. One of the reasons for this is that,
can also vibrate like a diatomic moleculd]. Hence, it is  from the period of invention of optical solitons up to very
useful, especially in such nonintegrable systems, to associatecent years, the main line of research in ultrahigh capacity
new variables, called collective variables, with localized col-fiber communications was based on the concept of the “clas-
lective phenomena, in order to simplify somehow the de=sical soliton,” which represents an exact balance between
scription of the pulse dynamics. For example, such CVs mayhe fiber group-velocity dispersion and its intensity-
represent the amplitude of a pulse, its temporal position, theependent refractive index. This soliton arises as a solution
pulse width, and so on. The number of CVs that can bdor the standard NLSE, with a well-known hyperbolic secant
introduced into the system is usually determined by the physprofile that can be obtained by different techniques., the
ics under consideration. Then one must derive a transformanverse scattering transforfa5]), without going through any
tion which allows us to express the original field equation inCV approact16]. However, well before the first experimen-
terms of CVs. In other words, one must derive the equationgal observation of solitons in optical fibers in 19807], it
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has been predicted that electromagnetic waves propagatirggder effects such as stimulated Raman scattering, third-
in nonlinear dielectric media may become unstable in theorder dispersion, self-steepening, and their combined effects
presence of various perturbing effe¢ésg., noise, loss, cross in DM fiber lines, which have not yet been sufficiently un-
interactiong [18,19. Quite naturally, in most of the early derstood theoretically. A useful step towards a best under-
literature which have used CVs in the context of optical soli-standing of those problems lies in the development of a com-
tons in fibers, a significant effort was made to analyze thélete CV theory for optical solitons in fibers that carefully
soliton dynamics under the influence of such perturbing factakes into account the soliton dressing.

tors[20—26. Different perturbation theories were developed, N this paper, we present a rigorous CV treatment of the
using the adiabatic variation of conserved quantities of thg€neralized NLSE for optical solitons in fibers. In this CV
NLSE [20], the adiabatic variation of the scattering datatheory, we use a projection-operator formalism, in a similar
based on the inverse scattering transfé@h,22, or the La- W& to that developed by Boeseh al. [6] for the CV treat-
grangian perturbation theofg4]. Kath and Smyth employed ment of the nonlmegr Klein-Gordon I§|nk equapon in con-
a trial function which consists of a solitonlike pulse with d€nsed matter physics. But there exists a major difference
variable parameters plus a linear dispersive term in an avefetween these two types of equations in their degree of com-

aged Lagrangian to study the dispersive radiative losses fd}!€Xity.: From the Lagrangian corresponding to the nonlinear
the NLSE[27]. But these perturbation theories yield consis-K/€in-Gordon kink equation one can straightforwardly de-
tent results only in the limit of weak perturbations. This limi- "Iv€ the canonical transformation of this equation into the
tation has led to the formulation of nonperturbative CV theo-CV €guations of motion, whereas there is no Lagrangian
ries for the NLSE using the averaged Lagrangian method@Vvailable for the gener_ahzed NLSE. In the present paper,
[3,28—36. Most of the recent and current theoretical deve|_althoggh we do not.derlve the canonical transformgnon, we
opments have employed this Lagrangian method to describ%escr'be the essentlal_ steps to express the generalized NLSE
pulse propagation in DM fiber link87—40. A major line of in terms o_f CVv equat|_ons of motion. Furthermore, our Cy
current research focuses on the modelization of soliton trangPProach is complete in the sense that we have the equations
mission in DM fiber-optic links, with a view both to upgrade of motion not only for the CVs but also for the residual field,
the capacity of existing terrestrial networks and to designVNich includes the soliton dressing and any radiation
submarine fiber system8,41]. Basically, the dispersion- coupled to the soliton’s motion. In Reff43], we have pre-
management technique utilizes a transmission line with Sented a CV treatment for DM fiber links. That letter gives
periodic dispersion map, such that each period is built up b%he basic idea of the CV theory for the generalized NLSE
two types of fiber, generally with different lengths and op-143l- One of the most useful advantages of our present CV
posite ground-velocity dispersion. The main limitations to@PProach for the generalized NLSE s its equivalence to a
the transmission capacity of such systems include variouBroiéction-operator formalism, which makes the derivation
effects such as the cross-phase modulation, filtering, pha the CV equations of motion relatively simple. Another
and amplitude modulation, third-order dispersion, stimulatedMPortant feature in this paper is the direct residual-field
Raman scattering, and self-steepening. minimization, WhIC.h is a fully numerical procedure for
However, most of the above-mentioned CV theories fordUickly applying this CV theory.
optical solitons in fiber§3,20—3§ have a common feature _ 1h€ paper is organized as follows. In Sec. II, we present
that the soliton dressing is completely ignored, which carf’® CV theory for the generalized NLSE, using the
lead to dramatic consequences depending on the choice pfojection-operator scheme. In Sec. Ill, we describe a simple

the ansatz function. In condensed matter physics, approxim&nd practical numerical procedure, which is strictly equiva-
tion of neglecting the soliton dressing is called “bare ap-'€Nt 10 complete CV theory, that allows us to obtain the

proximation.” Generally, this approximation leads to g evolution of the CVs directly from the generalized NLSE

simple set of ordinary differential equations that describe thdmmediately, i.e., without any need to solve the entire CV
evolution of the CVs, with different degrees of accuracy de-€quations. We demonstrate the application of this CV theory
pending on the choice of the ansatz function. However, th
bare approximation yields consistent results only when ther
is no considerable radiation and the dressing is also negl
gible. This is remarkably well illustrated in a recent study by
Abdullaev and Caput{)42], who performed a careful analy- Il. COLLECTIVE VARIABLE THEORY

sis of the validity of the bare approximation for a single-

pulse propagation in a system with spatially varying disper- Nonlinear pulse propagation in fiber links may be de-
sion. In particular they showed that the bare approximatiorscribed by the generalized NLSE,2]:

yields very poor results in all the situations where the radia-

or the propagation of optical pulses in a typical DM optical
jber transmission lines in Sec. IV. Finally, in Sec. V we
gonclude.

tion field is importan{42]. The main reason for which the Bo(2) _

dressing has been largely neglected so far lies in the high ot T¢tt—lv(2)|lﬂ|2¢

degree of complexity of the CV treatment of the generalized

NLSE, in which the fiber parameters become functions of the a(z) Ba(2) _ )
propagation distance in the case of DM systems. The ap- =T +Tlﬂm—|7r(z)¢(|<//| )t
proximate treatment of the generalized NLSE leads to a class

of challenging and interesting problems related to higher- — v (| %)y, (D)
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where #/(z,t) is the envelope amplitude of the electric field X;, X,, ... Xy are obtained by configuring that the ansatz
measured in units of square root of Watts at posii@mthe  function f(Xq,X5, ... ,Xy), minimizes the functionalA,
fiber and at timet, the subscripiz (or t) on ¢ denotes the where

partial derivative with respect ta (or t). The parameters

B-(z) and B3(z) represent the second- and third-order dis- " -

persion coefficients, respectively. The parametg(z) AEJ |q|2dt:f l— (X1, Xs, ... Xy, D)]?dt.
=[n,(2) wo]/[ ¢ Aei(2) ] measures the strength of the nonlin- e -

earity, ¢ denotes the speed of light,(z) is the nonlinear 3
index coefficientAq«(2) is the effective core area, andg, is

the frequency of the carrier wave(z) represents the linear |n this CV approach, the quantitk, corresponding to the
loss in the fiber,y,(z)= y(z) T represents the Raman gain, total amount of the energy in the residual field, serves as a
Tr measures the slope of the Raman gain curve for smalheasure for the correctness of the ansatz fundtigh fun-
frequency detunings fromw,. The parameterys(z)  damental point, neglected in previous CV treatments of op-
=2v(z)/ wy represents the self-steepening coefficient. tical solitons in fibers, is that the residual field ene(B¥E)

It is important to note that some parameters appearing il must be sufficiently small to give proper physical meaning
the above-generalized NLSE may need to be slightly modifor the CVs. The constraints that we impose on the system
fied to precisely describe the pulse propagation in some sp&vill allow the CVs to evolve only in a particular direction to
cific situations. For example, for a DM fiber links, the coef- minimize the RFE during the dynamics, in the following
ficient B,(z) [and evena(z), B3(z), and y(z)] will vary  simple way:
periodically along the propagation distance. More generally,
the most important point to be emphasized here is that our dA
CV approach is formulated in a way such that if any of the C=——~0. (4)
coefficients in the generalized NLSE) is modified, then the IdX
same modification has to be carried out straightaway in the
final CV equations of motion.

The idea in CV theory is to associate new varialfles-
lective variables with the quantities of interest for which
equations of motion can be derived, whose solutions vyield
explicitly the dynamics of the nonlinear localized modes un- C— J"” Re{ ﬁf*}dho
der consideration. That is, one may introdi¢e&CVs, sym- i~ q axX; R
bolically X;(j=1,... N), which are associated with the
nonlinear localized modegsoliton’s width, amplitude, fre-

quency, and so 9nTo this end, we decompose the original Where Re denotes real part. In E¢$.and(5), the sign “~"
field in the following way: indicates the Dirac’s weak equalif{t2]. Indeed, our proce-

dure for obtaining the equations of motion for the CVs and

Wz, =F(X1, Xs, ... Xn 1) +a(21), (2)  coupled fieldq is based on the Dirac theory of constrained
dynamical system§l2]. In Dirac’s terminology, a quantity

where the ansatz functidris chosen to be the best represen-Which is weakly equal to zero cannot be set to zero until all

tation of the configuration of the pulse amdz,t) is the variations of the quantity with respect to the dynamical vari-

remaining field such that the sum bandq satisfy the origi- @ples, to obtain the equations of motion, have been per-
nal generalized NLSH1). Note that the most commonly formed[12]. A careful analysis of the proper way of incor-
chosen ansatz function for optical solitons in fiber is ghorating §uch constraints in CV theorlgs is carried out in Ref.
Gaussian profil§1—3]. One can also choose any other suit- [14]. In thls_context, a fundamental point to be emphasized is
able profile forf. For examplef can be a hyperbolic secant that the initial values of the CV;(z=0), must be chosen
profile [25], or an expansion in terms of Hermite-Gaussiant©® s_at_lsfy the constrglnt_ conditions. The c_;_onstralnts which are
polynomials[44—46. In all cases, the field;, that we call ~ Satisfied at the beginning of the dynamite., atz=0) do
residual field will account for the dressing of the pulse and "ot guarantee that they will be satisfied throughout the
any radiation coupled to the pulse’s motion. One cannot simPropagation distance. Consequently, we must introduce a
ply substitutes=f+q into the generalized NLSEL) be- second set of _constral_nts, whlc_h WI|| guarantge that the first
cause the introduction of the CVs in(as dynamical vari- S€t Of constraint<C; will be satisfied for allz if they are
ables will give extra degrees of freedom into the system,initially satisfied, i.e.,Cj(X1,Xz, ... . Xy,z=0)=0. Thus,
which can enlarge the available phase space of the syste¥¢ define the second set of constraints as

[6,47]. Simply substitutingy into Eq. (1) would therefore

introduce new and undesirable solutions into the system dc

[6,47]. One must constrain the system of new varialfies, d—zj~0. (6)
CVs andq) so that the system remains in the same phase

space as the original field equati@h). The first set of con-

straints is obtained by configuring the ansatz funcfitmbe Substitution of EQ.(2) into the generalized NLSE1)

the best fit to the fieldy. In order words, the CVs directly yields the equation of motion for the residual field:

Equationg4), (3), and(2) lead to the following constraint
conditions

®)
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Ba(2) B3(2) ( 2) transform method1]). Then, at each propagation distarze

g, +! tht 6 —— w1 7(2)|f+al’q+ ——q the first set of constraint conditiorS) is used to obtain the
set of CVs which minimizes the RFE. Note that when the

+iyr(z) (If+al?)q+ ys(2)(|T+9|%q), field ¢(z,t) is known at a given distance then solving the

set of Eq.(5) becomes the familiar problem of minimization
of a functional with respect tbl variables(CVs). This prob-

lem can be solved by means of the following iterative pro-
cedure, which corresponds to the Newton-Raphson method
of minimization procedur¢48|:

——2 Xfx ﬁ—()ft+ Bs(z )fm+|y(z |f+q|2f

4
_#f_iYr(z)(|f+Q|2)tf—ys(z)(|f+q|2f)t )

[Cli. (10

(7) [XJi+1=[X]i—

where the overhead dot represents the derivative with respe
to z and the subscripX; on f denotes the partial derivative
with respect toX;. To obtain the CV equations of motion,
we project Eq.(7) in the direction of

x|,

I§|tere, the subscript on a given quantity indicates the number
of iterations. A simple criterion for achieving this iterative
process is that the absolute values of all the constraints are

kept below a desired small guantity
of* e. max(|Cy|,|Cy|, ... |CN|]))<e. If the CVs are suit-
Pr= Xy (8) ably estimated at the beginning of the iterative process (

=0), then only a few iterations will be sufficient to minimize
the RFE. A good estimation of the CVs to start the process

That is, multiplying Eq.(7) by P, and integrating the real can be obtained by the following formulas:

part of the resulting equation with respectti@ives

JC]-1 Xi=max|y]), (119
[X]——[ax} [R], ©) .
f (tly%)dt
which coincides exactly with Eq.12) of Ref. [43]. In the X,= (11b)
above EQq.(9), [X], [C], and[R] are column vectors of 2 f‘” g2t ’
Xj, Cj, and elements involvingr, B, v, B3, ¥, and e

vs, given explicitly in Ref.[43]. The set of Eqs(7) and(9)

represents the complete CV treatment for the generalized 1 %
NLSE (1). X3=12 T X3; lef || % dt;
The lowest-order approximation of the CV theory, called o

“bare approximation,” is obtained by setting the residual .

field to zero[q(z,t)=0]. In this case one can assume the Ll:J (2|y|?)dt, (110
desired form for the ansatz functiénin Ref.[43], we have —o

assumed a Gaussian ansatz function and explicitly derived

the bare CV equations. When optical losses and all the N

higher-order terms of the generalized NLEE are consid- fﬁm(t‘/’ r)dt

ered as perturbation terms, then it is possible to make use of X4=i——+c.c, (119
the perturbed Lagrangian method to derive the CV equations f (t2* ) dt

of motion, as we show in Appendix A. The equations ob- —o

tained by the perturbed Lagrangian method coincide exactly

with the bare CV equations derived using our CV theory. ~12
Therefore, the perturbed Lagrangian approach corresponds to fﬂc(W| Y% dw
the lowest-order approximation of the complete CV theory Xg=—f7 ™, (11e
which explicitly includes the soliton dressing and any radia- f |Tp|2dw
tion coupled to the soliton’s motion. —o
Xs=0. (11f)

IIl. DIRECT RESIDUAL-FIELD MINIMIZATION

In this section, we present a simple and fully numericalin Eq. (118, ¥ represents the spectral Fourier transform of
procedure, which is strictly equivalent to the resolution of. Thus, it is quite clear that the amount of calculations
the above equations of motiof7) and (9), and which re- required by the direct minimization of the RFE to obtain the
quires only a very small fraction of calculations for obtaining values for the CVs, represent only a small fraction of the
the motion of the CVs and the residual field. This procedurecalculations which are required when solving directly the
which lies in the direct minimization of the RHEQ. (3)],  equations of motioit7) and(9). However, more importantly,
requires to solve numerically the generalized NL8Efor  the CV equations of motion allow one to proceed further in
the original fieldy(z,t) (e.g., by use of the split-step Fourier analytical investigation§43].
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TABLE |. Fiber parameters. (t+X )2 X
f+(t,z)=X1exr{— _X—22+i f(tixz)zxix5(ttx2)

Dispersion Slope Loss  Ag n, 3

(psinmkm  (ps/nnfkm) (dB/km) (um?)  (m?/W)
SMF 17 0.057 0.20 80 271020 +iXg|. (13
DCF -80 -0.175 0.6 20 25510 %

An analytical procedure that is commonly used to obtain
IV. APPLICATION OF THE CV THEORY the CV equations of motion corresponds to a quasiparticle
A. Single-soliton dynamics approach in which one considers each individual pulse as

being weakly perturbed by the other puls®23,26,35,49

In Ref. [43], to illustrate the CV. treatment for DM ‘Q’_OH'_ Mathematically, the original fields is taken as a linear su-
tons, we have demonstrated the single-pulse propagation NG rposition of two one-soliton fields:

typical DM fiber transmission line, with a periodic dispersion

management using two types of fiber, namely single-mode

fiber (SMF) and dispersion-compensating fio@CF). The P=ustuz. (14)

dispersion map is made up of 8.75-km length of SMF fiber

and 1.835-km length of DCF fiber. We have performed the Next, the nonlinear term,//|2¢/ is split into two parts as

calculations on the basis of the parameters for SMF and DChollows:

fibers as mentioned in Table I. Parametgrfor both types

of fibers is taken as 1.422 fs. We have also carried out the

numerical simulations not presented here, and found that our

complete CV theory, bare approximaticior variational +udu¥). (15)

equationy and direct RFE minimizatioidescribed in Sec.

[II') essentially give the same result even for the pulse propa- , ) . )

gation over transoceanic distand6800 km) with negligible If one c_onS|ders tha't only the talls'are interacting, then one

values for the RFE. can split the NLSE into two equations for the evolution of
Thus, we believe that a careful analysis of the lowestY"

order approximation equation@\7) should provide maxi-

mum insight for the dynamics due to any detrimental effectsyy, g, 52u,

such as optical losses, third-order dispersion, stimulated RaEwLI? —2—Iy|u||2u|+

man scattering, and self-steepening in DM transmission at

lines. Whereas the bare approximation based on the Gaussian

ansatz agrees very well with the full CV theory for the

single-pulse dynamics in the above DM transmission linewherel (=1,2) denotes each pulse. An important point to

this approximation may in contrast lead to very poor result inbe noticed here is that the cross-phase modulaf(?M)

some other problems, such as the modeling of soliton interterm 2u;_|%u, has been neglected in E¢L6), which is

| 20= (|ua|Pus + 2| uy | Pup+ udud ) + (JuylPuy+ 2| uy?uy

a . 2 2 %
§U|—|7(2|U|| Uz—+ujuz_)),

(16)

actions, as we discuss below. hereafter referred to as theéduced intrachanneNLSE.”
Then, applying the bare approximation to the reduced intra-

B. Intrachannel pu|se interactions channel NLSE, that iS, SUbStituting:ft in Eq (16), and

rojecting the resulting equation in the directiondof / 9X

In this subsection, we discuss the problem of introducin
the CVs in the NLSE in view of modeling the interaction of
adjacent pulses in the same channel of a transmission sys-
tem. Fundamentally, optical solitons in fibers do not possess . 1 yxfE b on  uuruD
a compact support. In other words, DM solitons are charac- X1=§(,32X1X4—01X1)——\/—[(10— AX5I X3+ X5X5X5
terized (theoretically by infinite wings that cause mutual 8v2
interactions between adjacent solitons in the same communi- — 2X2X, X4 X5+ X2XB) s+ 4Xo(X X4 — X5)C], (173
cation channel. This interaction, which can lead to the coa-
lescence of adjacent soliton bits after a certain propagation

ields

distance, constitutes a main source of limitation in the maxi- . YX3E )
mum transmission distance in a single communication chan- ~ X2= —,32X5+—2\/§ [X53(X2Xs—X5)C+2X5s],
nel.
To study the interaction of two adjacent pulses, we de- (170
compose the original field in the same way as in &j.but
with the following ansatz: _ YX2E sn
X3= = B2aXsXg+——=[4XoX3(XoX4—X5) C+ (X3X5X4
f=f, +f_, (12) 442
where — 2X3X,X 1 X5 — 4X5/ X3+ 2X3+ X3X2)s], (179
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4 V2yx3  yX2E A
K= — gl - _x2 +——1 9| 2X,X,X =
4 ﬁZ Xg 4) XZ 3\/5 2/N4/\5 %
2 2 X 2
0
—XEXE+ — = = X2| et —2 (XoXa—Xs)S o
3 X3 X3 Cuf-)l
(179 3
o
X YXE X2X X2X2X 35
_ e _ 2 c .
5 2\/5 4733775 :23 47337732 E 3 (b-l) . (b2)
o L 3
A 25 K
+2(3X5—2X,X4)S (179 ¥ 2 ’ 2
3 15 / / Y
2 E 1 ll 1 ll “
X5 l 5’}/X '}/Xl O 0.5 'l 'I
- T [4Xx(5X5—3X,X4)s = i
=B > X2 4\/— 8.2 2(5X5—=3XX4 o= olaes .
+ (30— 10X5X X4 X5+ TX3XE— 12X5/ X3 N oo
T O
+3X3X3x3)c], a7h B oo
> 0.01
where (2) 0
_ Y _o.01
s=sin (XX, —X5) Xz], 8 -0.02
C -0.03
c=c0g (XoX4— Xs)X,], "

E=exd — LAXGXEX5— 2X XX 1 X5+ XGXE+ 12X2)/X3].

Thus, the CV equations of motigii7), which we hence-
forth refer to as the feduced intrachannel bare calcula-

100 200
z [km]

200 400 600 800
z [km]

FIG. 1. Plots showing an intrachannel pulse interactianEvo-
lution of the pulse positions versus propagation coordizaté)

|J]Evolution of the normalized residual-field energyz)/E(0) ver-

tion,” are equivalent to the averaged Lagrangian approac
used in Ref[35]. Knowing that two distinct approximation
schemes(which neglect the XPM terms and the soliton
dressing, respectivelyare made in the reduced intrachannel
BC (bare calculatiop it is difficult to ascertain precisely the
particular effect of any of these two types of approximations
by simply comparing the results from the reduced intrachancurves represent the results obtained from the numerical pro-
nel BC to the full CV theory(including the soliton dressing cedure of minimization of the RFE described in Sec. IlI,
in the NLSB. In this context, it is useful to carry outfall which will be hereafter referred to as the “full CV theory.”
bare calculation using the NLS@E) [instead of the reduced The dot-dashed and dashed curves will represent the full and
intrachannel NLSE(16)]. Substituting the ansatf=f reduced intrachannel BCs, respectively. Figure 1 demon-
+f_ in the NLSE (1) with losses and gain, and projecting Strates the general feature that the BCs based on the Gaussian
the resulting equation in the direction &f*/9X, yields the —ansatz lead to much less fair results for the modeling of
CV equations in the following matrix form: soliton interactions than for the single-soliton dynaniidis-

cussed in the earlier subsectiofrigures 1(al), (b1), and
(18 (c1) [which correspond td\p=16 p9g and 1(a2), (b2), and

(c2) (Ag=28.5 ps), respectively, represent situations where
where the matricepM] and[F] are given explicitly in Ap-  the two input pulses strongly and weakly overlap with each
pendix B. Note that the reduced intrachannel @) has the  other. For example, we observe in Fig(dl) the following
convenient feature of requiring much fewer algebraic maprediction for the collision distanc&.=294.7 km (given
nipulations than the full bare calculati¢h8). Figure 1 rep- by the full CV theory. The full BC leads tdZ,=294.6 km,
resents the dynamics of two pulses, with the arbitrary initialwhich therefore agrees extremely well with the full CV
conditions [X;=0.23, Xy,=*tAy/2, X3=9.88, X,;= theory. The reduced intrachannel BZ.E& 146.5 km) leads
—0.0079, X5=0, Xg=0]. The initial pulse separatiod, to a huge discrepancy, of nearly 50%. Then the question
=2X,=16 ps and 28.5 ps represent approximately 1.darises: where does this huge discrepancy come from? To
times and 2.4 times the initial pulse widtif{=11.6 ps answer this question, we have applied our CV treatment
FWHM). In all the pictures of the present section, the solid(based on the residual field minimizatjoto the reduced

sus propagation coordinate(c) Evolution of the frequency versus
propagation coordinate Solid, dot-dashed, and dashed curves cor-
respond to full CV theory, the full bare calculation, and the reduced
intrachannel bare calculation, respectively.

[X]=[M]'[F],
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NLSE (16) and found essentially the same results as for the 35
CV treatment of the NLSK1), as represented by the solid
curves in Fig. 1. We thus deduce that the large discrepanc
mentioned above results mostly from the approximate nature
of the corresponding BC with Gaussian ansatz in @4).
Indeed the stability of a given Bd.e., its ability to accu-
rately follow the exact pulse trajectory in parameter space
determined not only by the type of ansatz considered but alsc
by the particular type of nonlinear partial differential equa-
tion that describes the dynamics. The results in Fig. 1 revea
that the BC for the reduced NLSEL6) with a Gaussian
ansatz is highly unstable compared with the BC for the
NLSE (1). Figures 1(b1) and(b2) show the spatial evolution

of the normalized RFE for the three CV approaches. Note | oo emimmimimemimim o 202
that the residual field is given bg(z,t) = (z,t)—f([ X]),
where (z,t) is the exact DM soliton field obtained by nu-
merically solving the NLSE1). In all three cases, the RFE 900
execute an oscillating behavior with an amplitude that in-
creases continually as it approaches the collision pdont 8001
clarity, we have plotted only the envelope of the oscillating 700-
RFE). We reemphasize that the appearance of a residual fielld
simply indicates that the Gaussian ansatz functions that wes 6007
use do not correspond to the exact solution of the NICLBE 500
More importantly, as one could have expected in view of the®
results in Figs. Xal) and(a2), the reduced intrachannel BC S 4007
leads to dramatically large values of the RSEe the dashed = 340
curve in Figs. 1(bl) and (b2)]. One can clearly observe in Q

Fig. 1 (b1) a peak value that attains nearly 300% of the total %) 2007
energy of the two pulses, in the range@<Z.. The occur- (_DI 100
rence of these huge values of the RFE gives no physicaO

1.5

NORMALIZED PEAK RFE

0.5

Z [km]

TANC

meaning to the collective variables obtained via this reducec 0 14 16 18 5 o0 o4
intrachannel BC. Quite in contrast, the full BC leads to a ' ’ ' ’ '
collision distance much more accurate than for the reducec NORMALIZED INITIAL PULSE SEPARATION A /T,

intrachannel BC. We observe in Figs(dl), (bl), and(cl),

where the solid and dot-dashed curves essentially coincide, FIG. 2. (a) Evolution of the normalized residual-field energy

that the full BC leads to excellent results in the case whem (z)/E(0) versus normalized initial pulse separatiag/T,. (b)

the two input pulses strongly overlap. On the other handEvolution of the collision distanc&, versus normalized initial

Figs. 1(a2), (b2), and(c2) reveal that the agreement between pulse separation,/T,. Solid, dot-dashed, and dashed curves cor-

the full BC and the full CV theory is not so good in the caserespond to full CV theory, the full bare calculation, and the reduced

where the input pulse weakly overldpompared with the intrachannel bare calculation, respectively.

case of strong initial overlappingNevertheless, here, the

Iefvtil OI tth? RFE for tfhtifu,:l BC, VIVh'Ch dggs n%tzexceed 17%wrong results in predicting the other soliton parameterg.,

ot the total energy ot the two pu sésee Fig. 1(b2)], corre- ulse width, as can be seen in Fig. 3; hence a high Ré&e

sponds to a good qualitative agreement. The full CV theor ig. 3a)].

leads to a RFE that does not exceed 5% of the total energy of 1,5 it comes out from the results of this subsection that

the two pulses over the whole collision distarisee the  he reduced intrachannel BC with the Gaussian ansatz de-

solid curves in Figs. 1b1) and (b2)], which therefore gives  scribes very poorly the intrachannel pulse interactions. The

much better physical meaning to the corresponding CVs. fy|| BC gives generally much better results, with an accept-
The above-mentioned features appear also clearly in Figgble level of residual field. However, this full BC leads to a

2(a) and 2b), which represent the peak RFE ovex@  small discrepancywith respect to the full CV theopyfor

<Z., and the collision distance, respectively, as a function ofarge initial pulse separation. In such a situation, one must

the normalized initial pulse separatiaky,/T,. Figure Za) “dress” the Gaussian ansatz to obtain a fair quantitative pre-

shows that the reduced intrachannel BC leads to huge valueliction of the effects of intrachannel pulse interactions, or

of the RFE[dashed curve in Fig.(8)] compared to the full make use of an accurate ans&tzg., Hermite-Gaussian an-

BC, in a wide region of initial pulse separation ranging from satz[44—46).

the case of weak to strong input-pulse overlap. On the other _ )

hand, we observe in Fig(1) that forA,/To~1.85, the two C. Interchannel pulse interactions

BCs predict fortuitously well the collision distance. Never-  In this subsection, we discuss the application of the CV

theless, one cannot conclude that the BCs are then effectivtheory to the problem of interchannel pulse interactions. A

In particular, the reduced intrachannel BC leads to clearly
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15

w 38 @ @ role. Following the same principle as in the case of the in-
L 3 EAN g trachannel, one generally splits the NLSE into two equations
q 25 N “‘ o) for the evolution ofu, [2,26,33,34,36,54—-36
1T} 2 7 1 |:
N 1 A} (D 2
= ‘ v au B> d°u a
- 15 ' v | O . P2 [ 2 o 2
' \ —+i=—- +-u = _ .
g ; \ o iz 2 v ulfu+ S u=2iylus . (19
o / ;)
O o5 Re = -10 _ . . .
z oLz’ T s An important point to be noticed here is that the four-wave
mixing termu?u?_, has been neglected in EG.9), which is
—0.25 hereafter referred to as theéduced interchanneNLSE.”
N - . . . .
= @ Then, applying the bare approximation to the reduced inter-
2 02 § channel NLSE, that is, substituting=f. in Eq. (19), and
o 0.15 E, projecting the resulting equation in the directiondoff / 9X
=i yields
o
5 o &
% T . 1
2 005 © X1=5 (BoXiX4— aXy), (203
X2: —B2Xs, (20b)
3 Xa=— BaXaXa, (200
T
|_
s X4=—f i—x2 — ﬁyxf_ £(4x2x2
=2 4 2 Xg 4 X% 72X‘31 13
242 2/y2
0 200 400 0 200 400 — 32X Xp)exp( — 4X3/X3), (20d
z [km z [km
[km] [km] ai Xixz -
FIG. 3. Plots showing an intrachannel pulse interactianEvo- Xs=—4\2y X2 exp(—4X5/X3), (209
lution of the normalized residual-field energy(z)/E(0) versus 3
propagation coordinate (b) Evolution of the pulse positions versus ) )
propagation coordinate (c),(d),(e),(f) Evolution of the pulse am- X5 1 SyXi

Xe=—B2 +

Y A Aon2y2
plitude, chirp, width, and frequency versus propagation coordinate 4\/5 * 8X2 102X5X1

z. Solid, dot-dashed, and dashed curves correspond to full CV s

theory, the full bare calculation, and the reduced intrachannel bare - /162>(§X22)exp(—4X§/X§). (20f)

calculation, respectively.

2%

Thus, the CV equations of motidi20), which we hence-
main source of limitation of the performance of WDM forth refer to as the feduced interchannel bare calcula-
(wavelength-division multiplexingsystems lies in the ef- tion,” are equivalent to the averaged Lagrangian approach
fects induced by collisions between pulses propagating itised in Refs[34,36,54.
different communication channels. Indeed, in soliton-based To illustrate our demonstration, we consider the case
WDM systems, pulses that are launched in different channelghere two given pulses are launched with a temporal sepa-
propagate at different speeds, which leads inevitably to colration of A,=250 ps in two channels spaced hyv
lisions between fast and slow pulses in long-distance trans=150 GHz, in a DM line of total length =2000 km. Fig-
missions. In particular, when two solitons collide in a ure 4 shows the evolution of the pulse parameters during this
lumped amplifier, their frequencies undergo a shift due to acollision process. The solid, dashed, and dot-dashed curves
amplification-induced imbalance between the local disperfepresent the full CV theory, reduced interchannel BC, and
sion and nonlinearity. A permanent frequency shift inducedull BC, respectively. Figure @) shows that the collision
by repeated collisions in DM systems may lead to significanbccurs atZ,~1110 km. Note that the pulses execute a zig-
timing jitter at the system output. Numerous recent studiegag motion that causes repeated collisions in a region around
demonstrate that such effects may be reduced by suitab. (with full pulse overlapping before they separate. An
optimizing the dispersion mdj33,34,36,50-5B It is not the  important parameter that serves as a measure of the impor-
subject of the present study to carry out such optimizatioriance of the effects of the collision is théming shift
processes, but rather to analyze the ability of CV treatment§X,(Z)=X,— (— mAv|(B,)|z+ Ay/2), represented in Fig.
to accurately predict the effects of pulse interactions ind(b). The parametets,)=—2.35< 104 ps?/m represents
WDM systems. the average dispersion of the line. One can clearly observe in

Here, the dynamics of each pulse is strongly influenced byrig. 4(b) that the two pulses interact in fact over a relatively
the other pulse intensity. So the XPM term plays a majodarge distance ranging from~600 km to z=~1700 km,
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g 150 = channels, was already reported in previous stuf28s32—
= 100 EOOS 36]. Thus, our study of the RFE for the reduced interchannel
O & ' BC [dashed curve in Fig.(d)] confirms the previous studies.
('% o 5 o «d In such cases where the BC gives excellent results, there is
o @) & (d) no need todressthe Gaussian ansatz, and the use of the
w %0 8 reduced interchannel NLSE or the reduced interchannel BC
9100 '5.':_"0'05 (or any similar variational approaghis fully justified
150 w [ [28,32-38.
A way to increase the capacity of soliton-based commu-
2 (b) 18] (e) nication systems lies in the use of very closely spaced signal
7z 1 15 wavelengths. This technique is commonly exploited for set-
E’ 0 g 14 f[ing up_the so-calle_d “dense” WDM systeni§7,58. It is
= -1 T 1 interesting to examine the case of extremely close channels,
O -2 '5 12 but where the individual identities of the channels are pre-
§ _3 S served throughout the pulse transmission. To this end, we
E 4 1 have carried out a simulation of the interaction of two pulses
s 10 in the same conditions as in Fig. 4 but with a smaller fre-
X107 quency spacing between the two channdlg=100 GHz.
Wwoooal (€) ) The results are displayed in Fig. 5, where the solid, dot-
oc ) A dashed, and dashed curves represent the full CV theory, the
o 0.03 J/ § 0 full BC, and the reduced interchannel BC, respectively. Fig-
K N 7 = ures 5 exhibits two distinct regimes of the system behavior.
2 0.02 n // "v/ a ! (i) First, we observe in Figs.(8 and 3b) a regime of
= A T » low-amplitude for the residual field, which takes place from
% 0.01 \/ 5 B z=0 up to the collision poinz=Z.~1646 km. Indeed, in
z 0 -3 this regime, the RFE predicted by the full CV theory does
0 1000 2000 0 1000 2000 not exceed 1.5% of the total energy of the system, thus in-
z [km] z[km] dicating that the Gaussian ansatz function provides a fairly

good representation of the exact solution of the NI(BE In

fact, the shape of the two pulses remains quite close to a
Gaussian profile from=0 up to a few hundred km after the
collision. This leads to fairly accurate bare calculations, with

FIG. 4. Plots showing an interchannel pulse interactionXgr
=250 ps andAv=150 GHz.(a) Evolution of the pulse positions
versus propagation coordinate(b) Time shift X, versus propa-

ation coordinatez. (c) Normalized residual-field energy versus .
gropagation coordinate. (d),(e),(f) Evolution of the frgguency, a n(_)_rmahzed RFE that does not exceed 3%. .
width, and chirp versug. Solid, dot-dashed, and dashed curves (i) Now, from z=Z. upwards we observe in Figs(ds
correspond to full CV theory, the full bare calculation, and the@nd 5b) a regime of high-amplitude for the residual field,
reduced interchannel bare calculation, respectively. characterized by large values of the RFE. This behavior in-
dicates that this collision process causes a severe distortion
through the cross-phase modulation. Using the full CVof the pulsgwith respect to the initial Gaussian projil@he
theory, we find that the interaction leads to a timing shift ofresulting increase of the RFE differs qualitatively depending
5X,(L)=-3.3 ps, and a permanent frequency shiXs  on the CV treatment considered. In particular, we observe in
=[Xs5(L)—X5(0)]/2r=0.46 GHz. At the same time, the Fig. 5b) that the bare calculations lead to a RFE that in-
interaction causes pulse parameters—width and chirp—tereases continually fa=Z., with peak values that grow up
execute relatively large-amplitude oscillations around theiito 120% of the total energy of the system. Such huge values
initial values, as can be seen in FiggeMand 4f). The of the RFE give no physical meaning to the corresponding
correctness of the above CV treatments is measured throudbVs at the system’s output. In other words, the BCs lead
the level of the RFE represented in Figc¥ We observe the there to wrong results at the system’s output. On the other
following general features. First, the full CV theo(golid  hand, as the solid curve in Fig(§ shows, the full CV
curve leads to the smallest RFE, with a peak value thatheory leads to a RFE that increases continually from
represents only 1% of the total energy of the two pulses. ThissZ; up to z=2500 km before stabilizing aroung 13%
indicates that our procedure of minimizing the solitonduring the remaining propagation distance. This level of the
“dressing” provides an excellent description of the inter- RFE is one order of magnitude lower than that obtained from
channel pulse interactions. Second, the reduced inter-chanritle bare calculations. Thus, the stabilization of the RFE
and full BCs yield essentially the same result, as Fig. 4within 13%, is a benefit effect of the process of minimization
shows, thus implying that the reduced interchannel NLSBEOf the residual field in the full CV theory. Nevertheless, the
(19) and the reduced interchannel B@0) provide an ap- value of 13% for the RFE is still relatively large to guarantee
proximate but highly accurate description of pulse propagaa fair quantitative prediction of the actual pulse behavior at
tion in well spaced channels. In fact, the ability of the re-the system’s output. The agreement here is mainly qualita-
duced interchannel BC with Gaussian ansatz, to accurateljve. In particular, Figs. &) and 5f), which we obtained by
describe pulse propagation in systems with well-spacegolving the NLSE(1), show the exact profiles of the two
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FIG. 5. Plots showing an interchannel pulse interactionAfg+ 250 ps andA =100 GHz.
output pulses and the corresponding frequency spectrum, re- V. CONCLUSION

spectively. One can clearly observe, as predicted by the full

CV theory, that the pulses are severely distorted with respect In the present work, we have developed a rigoroqs cv
to a Gaussian profile: hence a large RFE. treatment for the generalized NLSE for the propagation of

As a general remark on all the above examples of appngptical soliton in fibgrs, using a projection—operator formal—
cations of the CV theory to DM systems, it comes out thatSM- We have described the essential steps for obtaining the
the BC (or similar variational approachedescribes more or CV equations of motion. The first fundamental point of the
less well the pulse propagation depending on the particulapresent work, which makes the greatest qualitative difference
situation under consideration. On one hand, the BC withwith respect to all other previous CV treatments of the
Gaussian ansatz provides a fair quantitative description dNLSE, lies in the fact that we have introduced a residual
the system’s behavior in case of a single-pulse propagatiofield g accounting for the dressing of the soliton and any
in a DM line[43], and in the case of two pulses interacting in radiation coupled to the soliton’s motion. The second funda-
well spaced communication channels. In such cases, there mgental point of our CV approach lies in the introduction of
no need to dress the Gaussian ansatz. Another useful advagenstraints,C;~0, Eq. (5), on the CVsX;(j=1,... N),
tage of the BC is that it requires only a small fraction of thewhich give proper physical meaning for the CVs by config-
amount of calculations required when using a full CV ap-uring the ansatz functiof(Xy,X5,, ... . Xy) to be a best fit
proach. On the other hand, we have observed that the B® the original field variabley. The main virtue of this CV
with Gaussian ansatz provides either very poor results oapproach is to make the derivation of the CV equations of
completely wrong results, in predicting the system’s behavimotion relatively simple. Finally we have also demonstrated
ior in case of intrachannel pulse interactions and when twdhe application of this CV theory for a typical DM fiber link.
pulses interact in very closely spaced channels. In sucAlthough we have focussed on the two-soliton dynamics, the
cases, one must either make use of more accurate ans&t¥ theory presented in this paper can be straightforwardly
functions, or dress the Gaussian ansatz to fairly describe thextended to a general multisoliton dynamics. In particular,
behavior of optical solitons in fibers. the generalized NLSE can be used to describe the dynamics

016608-10



COLLECTIVE VARIABLE THEORY FOR OPTICA.. .. PHYSICAL REVIEW E 64 016608

of soliton packet in WDM or time division multiplexing (t=X»)? X,
transmission systems. For example, the dynamics of a givefi=X; exr{ -5 ti 7(t—x2)2+ix5(t—x2)+ix61,
number of solitons, sall, propagating in different channels X3
of a WDM system may be effectively handled in the CV (A4)
theory by expressing the ansatz functfoas a linear super-
position of one-soliton ansatz, whereX, X,, V2 n2Xs, X, 1(27), Xs/(27), andXg rep-

M resent the pulse amplitude, temporal position, pulse width

(FWHM), chirp, frequency, and phase, respectively, in Eq.
(A3), and performing the integration leads to the following
Lagrange function of the CVs:

f= ngl fa(X1n:X2n X530 Xan » X0 Xen) s (21)

where X1, Xon, Xan, Xan, Xsn, and Xg, represent the

soliton amplitude, temporal position, width, chirp, frequency, N 1 x3x2 J7

and phase, respectively, in tmth channel with frequency L= —Bz(Z)Xi R £+X3X§ + —y(z)x3x‘l‘
w,=Xs,/(27). With the above ansatz, the generalized 2\2 X3 4 4

NLSE can be expressed in terms of CXg,, exactly as we )

have done for the two-soliton case. From a practical point of B ﬁxzxgx _ \/;Xlx3(>'< +XeXy)

view, the information that may be gained now from this CV g2 1 2 67 A2

treatment of the generalized NLSE should provide a deep

insight into detrimental effects that cause instability pro- = X2X3[ Bo(2) X4 X5— X4X5— Xs]. (AB)

cesses on optical solitons in fibers. This CV approach can
therefore be exploited for the optimization of fiber transmis-

sion lines in optical communications. Then, the variational equations are written as
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o gf*
= J eR—+c.c. (AB6)
axX

— i

Substituting the ansatz functidnn €R [i.e., settingy=f in
g. (A2)], and performing the integration of the right-hand
de of Eq.(A6), we obtain the following variational equa-
tions:

. 1 1 1
Xi=—za(2) X+ = )X Xy— = Z) X1 X4 X
APPENDIX A: AVERAGED LAGRANGIAN APPROACH ! 2a( )Xy 2B2( )X1Xa 2/33( VX1 XaXs,

A73
In this appendix, we briefly present the essential steps that (A7a)
are needed to express the generalized NLSE in terms of CVs,
using the perturbed Lagrangian approach. We consider the . X2 X3x3
generalized NLSE in the form X2= = B2(2)Xs+ B3(2) E+ 278
3
- B2(2) . 5
A = 3
Vet Y@= R, (A1) + ﬁ“ys(z)xz, (A7b)
where
a(z)  Bs(2) . X3= = B2(2)X3Xa+ B3(2) X3X4Xs, (ATc)
eR=— Tl/f"‘ Tl//ttt_ iy (2) (| %),
- 2 : 4 V2y(2)X2
Vo912 (2) Yoo ﬁM(g— g - 2rKd
The Lagrangian for EqA1) without perturbation termeR ° s
=0) is given by ax V2y<(Z)X2X
+Bs(2) X—f —X3Xs | + # (A7d)
» | B2(2) ¥(2) i 3 3
L= [ ESR l TE 0 g g
(A3) 27 (@2XE v(2)XEX,
Xg= —+ , (A7e)
Substituting the Gaussian ansatz functiagiven by X3 2
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. (B4

: 1 XZ 5y(2)X? B2(2) _— a(z)
= — |+ — 1t Y2)Fa———Fa
Xe 52(2)()(% 2 4\/5 2 2
3 y2y2 2 B2) _ a2
X5 X5XiXs  Xs | vs(2)X1Xs 5 Fut v(2)Fu— ——Fa
+B3(Z) ?4— 3 72 + —.
x5/ 42 Bal2) «(2)
(A7) 5 Fast ¥(2)Fos— ——Fas
" A2 R Pk
The above equation@7) are exactly same as Eqd.4) 2 H2)F a4 2
of Ref.[43]. Thus, the perturbed Lagrangian approach cor- Bo(2) a(2)
responds to the lowest-order approximation of the ——Fi5t ¥(2)F5— ——F35
projection-operator approach. More importantly, in nonlinear 2 2
fiber optics, there exist a host of nonlinear partial differential B(2) a(z)
equations, which do not possess the Lagrangian function. In 2 Fiet ¥(2)F 26— TF36
such cases, one cannot apply the Lagrangian approach,
whereas the projection-operator approach can be used in glhere
cases for obtaining the CV equations of motion without the
help of the Lagrangian function. My= \/§X3(1+ E,),
APPENDIX B: FULL BARE CALCULATION m12=x—\/%E1(—X§X§X2+X§X4X5—4X2)/X3,
In this appendix, we present the full bare calculations.

Substituting the ansatz

X
Myg=—=[1— Eq(— X3— 2X4X,X X5+ X4X2— 4X2

f=f,+f_ (B1) V2
+XgXoXPIX3],
where
X1 3
m14:EX2X3E1( = XoX4+ Xs),
(t=X)? X, )
ft(t,Z):Xl exp — T+I 7(tiX2)
3 X,
mys= — EXgEl( —X2X4+ Xs),
TiXs(t+X,)+iXg (B2)
Xt

M=
in the NLSE (1) with losses and gain, and projecting the

resulting equation in the direction &f*/9X, yields the CV
equations in the following matrix form:

22

—BX3X,X4X5)/X3],

[X]=[M]"'[F], (B3) 2

Mp3= —

2\2
where the matricegM] and[F] are explicitly given by
my; My Mz My My 0
Mip My Mpz Myy My Myg X2
1
Mz My Mgz 0 Mg Mg Myy=——=
[M]= : 442
My My 0 My M5 My
M5 Mys Mzs Mys Mgz Msg
0 my Mz Myg Mgg Mgg
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X3

—3XEXEAX, X2+ XEXX3) /X3,

—4XgXsXEXH)EL],

+ 2XAXEX X g — AXEX 4 X+ 2X3X3X3

[(4X5+ XEXG+AXEXE) X3+ E1(X5XGXE—X5X3

+ XEXIXZ— 2XBX3X X5+ 16X35— 4X5+ 8X3X3X2

E1(16X3— 4X,X5+ 4X3X 4 XsX5— 4X,X2X5

+ 3X5XEX,— 3XEX X5 — XEXIX3 + 3XEX3X3X s

[ —X3X5+ X3(—8XsX5+ 8X X3+ 2X5X5
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2

X
Mps= — — [ X3X 4+ Xa( — X X3+ X3XIXZ+ X XIX2
2\2
— AXgXo+ AX X5 — 2X3X5X,Xs5) E4 ],
Mye= — \/EXEX3X5,
X2
Mag= ﬁ[sxg/x% E1(XEXEXG+XEXE - 6X5X3X?

— BXSX2+3X5— 8XaX3+ 8X5X2XS— 16X3X 4, XsX5
+8XEXEX 5+ 16X5+ 12X5X X 4 X5 — 4XEX3X3X s
+BXEXEXEXE— 4XEX X, X3)IX3],

Mas=—mE1(3X3X, X, — 3X5X5— X3XEX3 + 3X5XsX5X3

X
22
— BXAXEX X 4+ XGXE— AX X3+ AX:X3),

Mae= — 2y/2XEX,E1 (= XoX4+ Xs),

Xi 5 8y 4y 4 8y/4 B2y 2
m44=ﬁ[3x3+ X3(XEX5X 3+ X5X2— 6X5X3X35
+ 12X5X X g X5 — BXIXE+ 3X3+ 8X3X5X3— 8X5X3
— 16X3X X5 X3+ 8X3XEX 3+ 16X5— 4XEX3X3Xs
+BXEXEXEXE— 4XEX X XD E, ],

2

X
Mys= — — =X X5E 1 (— X2+ XAXZX2— 2X4X, X X5+ X4X2

442

2
mm:ﬁ[xg— Xa( — X3— 2X3XX 4 Xs+ X4X2— 4X3
+ X3XEXAE, ],
X2
o= X+ Xal ~ X5+ XEXEXG~ 2X4X X X5+ XXE

22

+4X3)E4],
Mge= — \/EXiXZX3El,
Mes= V2X{X3(1+Ey),

F11=F2=F3=0,

X

F =
12 2\/5

X5(4X3X2+ 12+ 3X3X3)/ X5,
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XE 3 2 4
Fis= E[ — 2X,4+ E1(16XsX3— 12X5XsX,— 2X3X,4
— BXEXEXEX2+ XEXIX X2+ 16X3XX5X 3
— BXEXEX 4 X5+ 3XEXIX3X 5 — 16X, X5+ 5X5X3X3
— XEXGX5+ 20X35X X3 — 8X5X3IX3— TXEXaX,Xs
+2X§XEXa)/X3],
X% 4 8y2 6v/2 3
FlFﬁ[( — 4X5+3XEXE+ 4X5X2)IX3
+ E1(—4X3— 6XIXEX5+ 16X5X,X X5 — 8X5X3X2
— BAX5— AX XX XE+ 12XAOEX ;X5 — BXAOXEXE
+AXEXIXG— 1EXEX3X3X s+ 6X52XGXEXE
— AXEIAGX3X 5+ 20XEXEXEXE — 8XEX X 4 X2 — 4X5X3
+ 16XEXEX5+ 64X5X5+ 3X3X5— 16X5X5X5
+ XFEXE+ XXX X3,

2

X
5=~ [ 2X3XgXs + By (XEXGXEX, + 8XAXEXG+ XEXIX
2\2
— BXEXEX,— 8X3X5X5X 4+ 2X5X 4 X5 — 2XEX3X s X3
—12X35X,+ 16X3)/X3],
X3
Fie= — —=[(—X3XG—aX3— 4X3X3)/X3+ E1(XEX3X2

2\2
— X524+ XEXIX5— 2XEX3X X5+ 16X5— 4X3
+ 8X3XEX5— 8X3X X4 X5)/X3],

Foo=[(2X]X,X5X,— 3XIX3X5)C+ (— 2X1X,S
E
+ 1/2XX X3S X6 — 112X TX,S &xg)]x—z — X1X3Xs
— 2XTEX5X5+ 2XTE X X5X 4,

Foa=[(—2XX X5+ 2XIX2X 1) C+ 4X5X]SIX3]E4
— 2XJXoX5E 4+ 2X5XIX4E 4,

Foa= (24XTX3X5+ 2X XXX 4 X5 — XTXEXE+ 2X X3
— XIX3X3X3) CE5/8+ (XIX3— 2XX3X3X35
+AXIXIX X 4 X5— 2XIXIXE+ 8X X X3)E6/16
+ (XIX3I8+ XX 3X3) Ep+ X5X3/16,
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Fos= — 2X7E,X3X5— 3XiX3X,CEs— XX 3X,Eq
— XIX3S XX 4E5/2+ XIX3S XE /2,
Fog=4X1X3CEg+ XX3Eg+ 2XIE X3+ X1X3,

Fa1= V2X,X3(1+Ey),

2

1
Fszzﬁ(xgx‘lxs— X3XGXo—4X,/1X3)Ey,
X 2
[l + ( 1 + 2X3X2X4X5_

F Eg—
33 \/5

— X3XZXPE4],

X2X2+ 4X5/X3

XX, X3

2
(Xs—=XoX4)E1,
2

4= =

X%

. X2
35— /—

(X2Xq—Xs)Ey,

with

C=cog X5X4— XXs),
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S=sin(X5X,— X,Xs),

-1
E,= exp[ E(xg‘xgxi{— 2X3XoX 4 X5+ XEXE+4X3) |,
3

E2: exﬁ{

-1
— (12X5+ X3X5X5— 2X5X X4 X5+ X3X3) |,
3

2
—4X5

X3

’

E;=exp

E,=exp X—( AXZ— XAXEX2+ 2XEX X 4 X5— X3X)
3

E5: ex%

+X3XE—4X3) |,

Eg= ex;{

X% —1 a2 4
3

2
XS

2
2 X2X2X 2+ 2X2X X X5 — X2X2

3
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