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Resonant effects in periodic gratings comprising a finite number of grooves in each period
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We give numerical evidence of a kind of resonance that appears in infinite perfectly conducting gratings
comprising a finite number of grooves in each period when illuminated by a normally incidentp-polarized
plane wave. This phenomenon is intimately connected with the particular distribution of the phase of the
electromagnetic field inside the cavities, which is automatically generated by waves of certain resonant wave-
lengths. The resonances appear as sharp peaks in the specularly reflected efficiency and are accompanied by a
significant intensification of the interior field. We study the particular case of rectangular cavities and consider
configurations with different numbers of grooves per period. The diffraction problem is solved fors and p
polarization by using the modal method, which proves to be especially suitable for this profile.

DOI: 10.1103/PhysRevE.64.016605 PACS number~s!: 42.25.2p
be
th
rs
iv

ce
e
h

b
e

er
o

ed

as
fe

e
re

fa
e
e
h

on
an
t
ffi

he
ti
e
e
h
a
th

by
f

ap-
of

ws
cal
,

ddi-
that
per-

n
ch
tha
ar
d
f the
are
is

vi-
nite

pe-
par-
e
r re-
uld

s fil-

ne
ing
the
nse,
rat-
on-
in
the

the
I. INTRODUCTION

The scattering from structures comprising a finite num
of elements has been recently studied in connection with
superdirective property@1–6#. In these references the autho
consider different structures formed by an array of pass
elements such as slotted cylinders@5# or rectangular cavities
@6#, to be used as superdirective antennas. The occurren
superdirectivity can be attributed to the excitation of mod
inducing a phase reversal in the adjacent scatterers. It
been found that, when the structure is illuminated
p-polarized waves~magnetic field perpendicular to the plan
of incidence! of certain resonant frequencies, there is a v
high level of stored electromagnetic energy in the interior
the array elements@5,6#. This enhancement is associat
with the excitation of high-Q resonances in the system@2#,
and is accompanied by a particular distribution of the ph
of the field in the structure. In such a case, the phase dif
ence between adjacent cavities is 0 orp rad.

It is well known that the efficiency reflected by infinit
periodic gratings can exhibit anomalies of a different natu
When a metallic grating is illuminated byp-polarized light, a
surface plasmon polariton can be excited along the sur
@7,8#. This excitation is accompanied by a significant pow
absorption@9,10#, and consequently it produces a sudd
change in the efficiency curves of the reflected orders. T
phenomenon is particularly important when the corrugati
are shallow. Rayleigh anomalies, caused by the appear
or disappearance of a diffracted order, are also presen
infinite gratings and produce sudden variations in the e
ciency response of the grating@9#. The efficiency curves of
periodic gratings can also be significantly modified by t
surface shape resonances that occur when the corruga
are deep, particularly if the cavities are multivalued. Und
certain conditions, the eigenmodes of the cavities are
cited, and this generates interesting resonant effects suc
field enhancement inside the corrugations. Unlike the surf
plasmon excitations, these resonances are associated wi
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particular shape of each groove and can be excited
s-polarized light~electric field perpendicular to the plane o
incidence! @11–16#.

In this paper we investigate a kind of resonance that
pears in infinite gratings comprising a finite number
grooves in each period~compound gratings!. In particular,
we consider cavities of rectangular shape. This profile allo
us to investigate the influence of the different geometri
parameters of the grating~width and depth of the grooves
distance between them, and period! on the reflection re-
sponse, particularly on the resonant phenomenon. In a
tion, since this shape is easy to manufacture, we believe
experiments confirming these resonances could be
formed.

The formalism used to solve the problem of diffractio
from an infinite periodic grating with several grooves in ea
period is an extension of that presented by Andrewar
et al. for a perfectly conducting grating with rectangul
grooves@11#. This is a rather simple and efficient metho
that also allows us to understand the resonant character o
grating in terms of the eigenmodes of the grooves, which
known to play an important role in the generation of th
phenomenon.

The purpose of this paper is to address numerical e
dence of the resonant phenomenon that takes place in infi
gratings comprising a finite number of grooves in each
riod. These resonances are intimately connected with the
ticular distribution of the electromagnetic field inside th
corrugations, and appear as sharp peaks in the specula
flectance of the grating. Therefore, this phenomenon co
be used in devices involving selective processes such a
ters and polarizers.

This paper is organized as follows. In Sec. II we outli
the modal method applied to a perfectly conducting grat
with several rectangular grooves in each period. To study
influence of the number of grooves on the resonant respo
we give and discuss the numerical results obtained for g
ings comprising one to seven grooves per period. We c
sider gratings comprising up to 19 grooves per period
order to analyze the effect of the occupancy rate between
corrugation and the planar zone. We show curves of
©2001 The American Physical Society05-1
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specular efficiency and of the amplitude and phase of
field inside the cavities as a function of the spatial frequen
We also show the magnetic field distribution in the ne
region for certain significant wavelengths. These results
given in Sec. III. Finally, concluding remarks are given
Sec. IV.

II. THEORY

A. Modal approach

We consider the problem of diffraction by a perfect
conducting one-dimensional grating illuminated by a mon
chromatic plane wave of frequencyv. Each period of the
grating consists ofN equally spaced rectangular grooves a
a planar zone, as shown in Fig. 1. The structure and the fi
are invariant in thez direction; thus the problem is reduced
a two-dimensional one. All theN grooves have widtha and
heighth, and are separated by a distanceb. The period of the
grating isd.

We consider the two fundamental modes of linear po
ization: s ~electric field parallel to thez direction! and p
~magnetic field parallel to thez direction!. Assuming an
exp(2jvt) time dependence for both electric and magne
fields, and using the Maxwell equations, it is possible
represent the fields by a scalar functionf that must satisfy the
differential equation@17#

@¹21k2# f ~x,y!50, ~1!

wherek5v/c andc is the speed of light in vacuum.f rep-
resents thez component of the electric field (Ez) in the
s-polarization case, and thez component of the magneti
field (Hz) in thep-polarization case. Thex andy components
of the fields can be obtained fromf @17#.

To solve the problem we consider three regions~see Fig.
1!: in region 1 (y>0) there is vacuum; region 2 (2h<y
<0) is the modulated zone; and region 3 (y<2h) corre-
sponds to the perfect conductor, where the fields are null.
denote the functionf in the regionj as f j .

Region 1. The functionf 1 is a solution of the differentia
equation~1! and must satisfy the radiation condition and t
property of pseudoperiodicity of the fields. It can be e
pressed as the sum of the incident and the diffracted fi
@18#:

FIG. 1. Configuration of the problem.
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f 1~x,y!5ej (a0x2b0y)1 (
n52`

`

Rnej (anx1bny), ~2!

where

a05k sinu0 , ~3!

b05k cosu0 , ~4!

an5a01
2pn

d
, ~5!

bn5Ak22an
2, ~6!

u0 is the incidence angle, andRn is the unknown Rayleigh
amplitude of the diffracted ordern.

Region 2. In this region the fields must be null inside th
perfect conductor, whereas inside the groovesf 2 must satisfy
the differential equation~1! and the corresponding bounda
conditions on the walls of each groove. Since the bound

FIG. 2. Specular efficiency versuskh for a grating witha/h
50.3 andd/h56, for both cases of polarization:~a! N51 ~simple
grating!; ~b! N53 ~compound grating with three grooves in th
period andb/h50.2).
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RESONANT EFFECTS IN PERIODIC GRATINGS . . . PHYSICAL REVIEW E 64 016605
conditions do not couple the variablesx,y, it is possible to
express the functionf 2 in the nth groove@ f 2n(x,y)# by its
modal expansion:

f 2n~x,y!5(
m

Cnm
q gnm

q ~x!hm
q ~y!,

q5s,p for s or p polarization, respectively, ~7!

where

gnm
q ~x!5H cos$~mp/a!@x2~n21!~a1b!#%, q5p

sin$~mp/a!@x2~n21!~a1b!#%, q5s,
~8!

hm
q ~y!5H cos@mm~y1h!#, q5p

sin@mm~y1h!#, q5s,
~9!

and

mm5Ak22~mp/a!2. ~10!

FIG. 3. ~a! Relative amplitude of the fundamental mode vers
kh; ~b! phase difference between the fundamental modes of a
cent grooves. The parameters of the grating areN53, a/h50.3,
b/h50.2, andd/h56, andp-polarized illumination.
01660
Then

f 2~x,y!5 (
n51

N

f 2n~x,y!rect$@x2~n21!~a1b!#/a%.

~11!

Owing to the pseudoperiodicity of the fields, the bounda
conditions aty50 can be imposed in a single period onl
The tangential component of the electric field must be c
tinuous in the whole period (0<x<d) and the tangentia
component of the magnetic field must be continuous only
the interval n(a1b)<x<n(a1b)1a, n51,2, . . . ,N21.
Thus we obtain a system of two equations for each polar
tion, where the unknowns are the Rayleigh coefficients (Rn)
and the modal amplitudes (Cnm

q ). By projecting these equa
tions in appropriate bases, we obtain the following equati
for s polarization:

Rl
sd52d0ld1 (

m51

`

(
n51

N

Cnm
s sin~mmh!

3exp@2 j a l~a1b!~n21!#Jml* , ~12!

a

2
Cnm

s mm cos~mmh!5 j (
t52`

`

b t exp@ j a t~a1b!

3~n21!#Jmt~Rt
s2d t0!, ~13!

where

s
a-

FIG. 4. Relative magnetic field intensity distribution for th
same grating as in Fig. 3 andp polarization: ~a! resonant wave-
length (kh51.355);~b! nonresonant wavelength (kh'1.2).
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FIG. 5. Specular efficiency versuskh for a grating witha/h50.3, b/h50.2, andd/h56, for p polarization:~a! N54; ~b! N55; ~c!
N56; ~d! N57.
Jml5H 2~mp/a!@~21!mej a l a21#/@~mp/a!22a l
2#

if ~mp/a!2Þa l
2

I 5

j a l@~21!mej a l a21#/@~mp/a!22a l
2#

if ~mp/a!2Þa l
2

~17!

eri-
to

ese
h in
6a/~2 j ! if 6mp/a5a l .
~14!

For p polarization we get

b lRl
pd5b ld0ld1 (

m50

`

(
n51

N

j mmCnm
p sin~mmh!

3exp@2 j a l~a1b!~n21!#I ml* , ~15!

a

2
~11dm0!Cnm

p cos~mmh!5 (
t52`

`

exp@ j a t~a1b!

3~n21!#I mt ~Rt
p1d t0!,

~16!

where
01660
ml 5 a/2 if ~mp/a!25a l
2Þ0

a if ~mp/a!25a l
250.

By solving the system of equations~12! and ~13! for s po-
larization, and the system of equations~15! and ~16! for p
polarization, we find the unknown Rayleigh coefficients (Rn

q)
or the modal amplitudesCnm

q .

B. Numerical considerations

The formalism presented above was implemented num
cally as aFORTRAN program. The series were truncated
satisfy the matching conditions aty50. We used 61 terms in
the Rayleigh expansion to guarantee the fulfillment of th
conditions, and 10 terms in the modal series were enoug
all cases presented here.
5-4
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FIG. 6. Relative magnetic field intensity distribution inside and outside the cavities, for the same gratings as in Fig. 5 andp polarization,
for the p resonance:~a! N54; ~b! N55; ~c! N56; ~d! N57.
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The matrix inversion is performed by standard numeri
techniques. The inversion process was also under contro
that the error was always less than 10211. The control coef-
ficients are defined as

c15(
mn

~AA21!mn2I mn , ~18!

c25(
mn

~A21A!mn2I mn , ~19!

whereA is the matrix inverted to solve the problem andI is
the identity matrix.

In the s case, we can freely choose whether to solve
problem for the Rayleigh coefficientsRl

s ~in which case the
matrix has dimensionL3L, whereL is the number of terms
retained in the Rayleigh expansion! or for the modal ampli-
tudes Cnm

s @in which case the dimension of the matrix
(NM)3(NM), whereM is the number of terms retained i
the modal series#. In thep case, the modal series includes t
term m50. Sincem05k and the zone of the spectrum w
want to focus on includes the value ofkh5p/2, we have
cosm0h50 for a certain wavelength. Therefore, we substit
Eq. ~15! in Eq. ~16!, and obtain a matrix equation of dimen
sion @N(M11)#3@N(M11)# for the unknown modal am
plitudesCnm

p .
We also verified that in all cases the sum of the diffrac

efficiencies is 1, within an error of 10214.
01660
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III. NUMERICAL RESULTS

In this section we present some of the results obtained
gratings with different numbers of grooves per period wh
the grating is normally illuminated by a plane wave. In F
2~a! we show the specular efficiency as a function ofkh for
a simple grating (N51) with a/h50.3 andd/h56, for both
polarization cases. The range ofl used in all the examples
was specifically chosen so that there were only three pro
gating orders, i.e.,l/dP@0.5,1#. This interval includes the
value ofl that makeskh5p/2, in the vicinity of which we
expect the resonance for compound gratings, and it exclu
any other anomalies caused by the appearance or disap
ance of a propagating order. As can be observed, sim
gratings do not present resonances associated with phas
ferences of 0 orp between adjacent grooves for eithers or p
polarization. This behavior was expected since each pe
has a single groove and, consequently, every groove
equivalent to its neighbor, and so is the interior electrom
netic field. This fact establishes that the phases of the inte
field must be equal in all grooves. Due to the symme
imposed by the normal incidence, the same argument ca
applied to a grating with two grooves per period. This fa
has been numerically verified.

However, in gratings comprising three or more groov
per period, a resonant phenomenon like that described in@6#
for finite structures is expected. In this paper we demonst
this effect numerically and illustrate the resonant pheno
enon in infinite gratings in the following figures. In Fig. 2~b!
we plot the efficiency curve for a grating formed by thr
5-5
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FIG. 7. ~a! Relative amplitude of the fundamental mode versuskh for a grating withN55; ~b! same as~a! for N56; ~c! phase difference
between the fundamental modes of adjacent grooves, for the same configuration as in~a!; ~d! same as~c! for N56. The other parameters o
the grating are:a/h50.3, b/h50.2, andd/h56, andp-polarized illumination.
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rectangular equally spaced grooves witha/h50.3, b/h
50.2, andd/h56. Note that in this case the corrugated zo
occupies 25% of the period. It can be observed that there
peak in the case ofp polarization, whereas no peak is prese
in the s case.

As explained in Sec. II, the interior field is expressed
terms of the eigenmodes of the cavities. In the examp
studied here, we found that the amplitude of the fundame
mode is at least 106 times greater than the other amplitude
Therefore, in a first approximation, we can evaluate the
havior of the field inside the cavities by considering the fu
damental mode only. In Fig. 3 we plot the fundamental a
plitude of each cavity relative to the amplitude of th
incident plane wave@Fig. 3~a!# and the phase difference be
tween the fundamental modes of adjacent grooves@Fig. 3~b!#
vs kh, for the same structure considered in Fig. 2. Owing
the symmetry imposed by the normal incidence, we expec
the fields in the extreme grooves to be equal. This can
observed in Fig. 3. It should be noted that when the ph
difference is6p the specular efficiency has a maximu
@Fig. 2~b!#. In the inset in Fig. 3~b! we schematized the reso
01660
e
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nant configuration as follows. The first groove was arbitrar
assigned a plus sign. Then we consider the phase differe
between one groove and the preceding one. If the differe
is 0, the sign will be the same as that of the preceding o
But if the difference isp the groove will have the opposit
sign. This procedure is repeated for each groove. For
stance, the resonant configuration is@121# for three
grooves.

In Fig. 4 we show contour plots of the magnetic fie
relative to the incident field in the vicinity of the structur
Figure 4~a! corresponds to the resonant wavelength (kh
51.355) whereas Fig. 4~b! corresponds to a nonresona
wavelength (kh'1.2). We have used the same gray scale
all the contour plots presented here. The black zones in
maps correspond to relative intensities larger than a cer
value. A strong enhancement of the interior field is found
the resonant case~the field is nine times larger than for an
other frequency out of the resonant region!, whereas in the
region above the grating the field has similar values in b
cases. The phase of the magnetic field inside each groov
a constant, and in resonant conditions the phase differe
5-6
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RESONANT EFFECTS IN PERIODIC GRATINGS . . . PHYSICAL REVIEW E 64 016605
between the field in adjacent grooves isp. For any other
incident wavelength the phase difference takes values di
ent fromp.

We now turn to consider gratings with an increasing nu
ber of grooves per period. The geometrical parameters
kept the same as in Fig. 2~b!. In Fig. 5 we plot the specula
efficiency versuskh for structures with four, five, six, and
seven cavities. The insets in each figure represent the r
nant modes of the structure. For symmetry reasons, we
pected the number of resonances in the cases of four
three grooves to be the same. This can be observed by c
paring Figs. 2~b! and 5~a!, where there is only one resonanc
In the case of four grooves, the fields inside both cen
grooves must be equal~same amplitude and phase!, and
there can only be a phase difference ofp between the fields
of the external and the central grooves. Therefore, the o
possible resonant configuration is@1221#. In the case of
an even number of grooves, we call this kind of resonancp
resonance, although the phase difference between the ce
grooves is 0 and notp. Since the phase is the same in bo
central grooves, the resonant peak is wider and the qu
factor of this resonance is smaller than that of the thr
groove case.

If we add one more cavity to the period (N55), we ob-
serve that there is a new peak in the efficiency curve@Fig.
5~b!#. For five grooves, a phase difference ofp between
every pair of adjacent grooves is allowed, and the peak
responding to thep resonance becomes thinner than in t
previous cases. Consequently, we get a better quality r
nance and a stronger intensification of the field inside
cavities@see Fig. 6~b!#. Thep resonance corresponds to th
value ofkh that is closer top/2. For six grooves per period
@Fig. 5~c!#, we observe a behavior similar to that of the fou
groove structure: the number of resonances remains the s
as in the five-groove case, but the peaks get wider and t
quality decreases@Fig. 6~c!#. In Fig. 5~d! we show the specu
lar efficiency for a grating with seven grooves in the perio
A new peak appears and thep resonance is now closer t
p/2 and is slightly wider than that corresponding to the fiv
groove case. Notice that in this case the corrugation co
more than half a period.

We have stated that when thep resonance is sharper th
intensification of the field inside the cavities is stronger. T
feature can be observed in Fig. 6: the interior field is mu
stronger for an odd number of grooves@Figs. 6~b! and 6~d!#
than for an even number@Figs. 6~a! and 6~c!#. It should be
mentioned that the maximum value of the relative inter
field in Fig. 6~b! is about four times larger than the one
Fig. 6~a!. In addition, as the number of grooves is increas
the coupling between them competes with the edge eff
and this produces a narrowing of the zone between two z
of the external field. In Figs. 7~a! and 7~b! we compare the
relative fundamental amplitudes of the field in the cavit
where it is more intense forN55 andN56, respectively.
We chose the vertical scale to be the same in both figure
order to show that in the case of an odd number of groo
@Fig. 7~a!# the amplitude is almost three times as large as
the even case@Fig. 7~b!#. It can also be noted that in bot
cases thep resonance is dominant, and the second resona
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has an amplitude that is about a quarter of the amplitude
the p resonance. In Figs. 7~c! and 7~d! we show the phase
differences for the same cases, and we observe that the r
most resonance corresponds to thep resonance: forN55
the configuration is@12121# and for N56 it is @12
1121#.

The evolution of thekh value corresponding to thep
resonance with the number of grooves fora/h50.2, b/h
50.1, andd/h56 is shown in Fig. 8. Notice that in this
configuration whenN520 we have a simple grating ofd/h
50.5, and consequently the maximumN allowed is Nmax
519. It can be observed that the position of thep resonance
converges to a limit value, which is the same for odd a
even numbers of grooves. The dependence of this limit va
on the geometrical parameters of the structure is being s
ied. For the same configuration, in Fig. 8~b! we show the
maximum relative magnetic field intensity at thep reso-
nance, which is registered at the bottom of the central gro
for an oddN, whereas for an evenN the maximum intensity
is found at the bottom of other cavities different from th
central ones. It can be observed that the field intensity in
p resonance increases with increasingN up toN59 for odd

FIG. 8. ~a! kh value corresponding to thep resonance versusN;
~b! maximum relative magnetic field intensity inside the caviti
versusN. The parameters of the grating area/h50.2, b/h50.1,
andd/h56.
5-7
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FANTINO, GROSZ, AND SKIGIN PHYSICAL REVIEW E64 016605
values and up toN510 for even values. In both odd an
even cases,N59 and N510 are the integers closest
Nmax/2. From this value upward, the field intensity d
creases, and the same effect can be observed in the exa
of Fig. 6. The position of this maximum can be explained
follows. When we start to fill the period with cavities, th
behavior of the structure departs from that of a simple g
ing, which has no resonance@see Fig. 2~a!#. The behavior
remains like that up to a certain value ofN where the total
length of the corrugated zone occupies half of the peri
From there onward, if we increase the number of cavities,
structure becomes more and more like a simple grating w
a period (a1b). The width of thep resonance efficiency
peak increases and therefore its quality decreases and a
intense interior field is produced.

Each period of the composed grating can be considere
a resonant system. It is well known that the lowest mode
a resonant system is that in which all the elements are
phase. As the number of pairs of adjacent elements in co
terphase increases, so does the energy of the mode. The
energetic mode of the system is that in which the fields
adjacent elements are in counterphase. Therefore, the
energetic mode can occur only for an oddN, due to the
symmetry imposed by the normal incidence@see Figs. 7~a!
and 7~c!#. On the other hand, the higher mode allowed for
even N is that in which there is only one pair of adjace
elements in phase@see Figs. 7~b! and 7~d!#. Consequently,
even configurations are less energetic than odd ones.
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IV. CONCLUSION

In this work we give numerical evidence for a resona
phenomenon that occurs in infinite gratings when the per
is composed of several cavities. The diffraction problem w
solved for the two basic polarization modes, in the particu
case of rectangular grooves. We used the modal appro
which has proved to be particularly suitable for this geo
etry. The results show that when the incident field isp po-
larized significant resonances occur. These resonances
not allowed in simple infinite gratings. The resonant wav
lengths are larger than those corresponding to the finite st
ture, which are slightly bigger than 4h. For such incident
wavelengths, all the power is reflected specularly, and
electromagnetic field inside the cavities is enhanced. T
best quality resonance~thep resonance! is the one in which
the phases of the magnetic field in adjacent grooves are
versed. Therefore, for an odd number of grooves in the
riod we get a greater intensification than is obtained for
even number. For a given set of geometrical parameters
best qualityp resonance occurs when the corrugated zo
occupies half a period. The dependence of this phenome
on geometrical parameters such as width and distance
tween cavities is being studied, and will be the subject
future work.
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@14# T. López-Rios, D. Mendoza, F. J. Garcı´a-Vidal, J. Sa´nchez-

Dehesa, and B. Pannetier, Phys. Rev. Lett.81, 665 ~1998!.
@15# R. A. Depine and D. C. Skigin, Phys. Rev. E61, 4479~2000!.
@16# D. C. Skigin and R. A. Depine, Phys. Rev. E63, 046608

~2001!.
@17# J. D. Jackson,Classical Electrodynamics, 2nd. ed. ~Wiley,

New York, 1975!.
@18# R. Petit, Electromagnetic Theory of Gratings~Springer-

Verlag, New York, 1980!.
5-8


