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Traveling solitons in the parametrically driven nonlinear Schrodinger equation
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We show that th6undamped parametrically driven nonlinear Schiinger equation has wide classes of
traveling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and
moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast.
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I. INTRODUCTION In fact the existence of traveling solitons is a nontrivial
matter even in the absence of damping. The driving term
The parametrically driven damped nonlinear Scdimger  h¢* in
(NLS) equation,
Lt ot 2| g2 g— y=hy* 2
Lt dxxt 2|2 — g=hy* —iyy, (1)
breaks the Galilean invariance of the unperturbed nonlinear
was used to model the nonlinear Faraday resonance in a vegchralinger equation and hence one cannot obtain a moving
tically oscillating fluid layer[1,2] and the effect of phase- soliton simply by boosting a static one. However the Gal-
sensitive parametric amplifiers on solitons in optical fibresilean or Lorentz symmetry is not always a prerequisite for
[3]. The same equation describes an easy-plane ferromagrée existence of moving nonlinear waves. For example,
with a combination of a static and high frequency field in thereaction-diffusion equations do not possess any symmetries
easy plane[4,5]. It also serves as a continuum limit for of this kind but are well known to support stably propagating
small-amplitude excitations in the parametrically drivenfronts and pulse$whose velocities are fixed by parameters
Frenkel-Kontorova chair(an array of diffusively coupled of the model. In particular, traveling domain walls arise in
pendula [6]. The Frenkel-Kontorova system is regarded as ahe parametrically driven Ginsburg-Landau equati@wisere
fairly realistic model of a number of physical and biophysi- the motion is due to nongradient tenm8]. As far as soli-
cal systems and phenomena, including ladder networks abns in Hamiltonian systems are concerned, the example of
discrete Josephson junctions, charge-density wave condudark solitons in the nonlinear Sclinger equations suggests
tors, crystal dislocations in metals, DNA dynamics and pro-that they have even a greater mobility than dissipative fronts
ton conductivity in hydrogen-bonded chaipg. and pulses. Although in this case the Galilean invariance is
The second term in the right-hand side of Ef).accounts  broken by the presence of the nonzero background, the dark
for dissipative losses that occur in all physical systems busgolitons can propagate with arbitrary speeds bounded only by
are frequently ignored on short time intervals. To compenthe velocity of sound wave9-12].
sate for these losses, one has to pump the energy into the A number of nonstationary regimes were reported in the
system from outside. The first term in the right-hand side ofwater tank experiments, including the formation of oscillat-
Eqg. (1) represents one possible way of pumping the energyng soliton pairs[2], but no steadily moving solitons were
in, the parametric pumping. In the absence of the dampingletected so far. On the other hand, numerical simulations of
and pumping, the nonlinear Scliinger equation exhibits the undamped equatiof2) did exhibit traveling localized
soliton solutions that can travel with arbitrary velocities andobjects[13]. It has remained an open guestion whether these
transport physical characteristics such as mass, momentumoving objects preserve their speed and amplitude, or at-
and energy[For the sake of brevity, we are making use of tenuate and decay slowly due to the emission of the second-
the hydrodynamical interpretation of E(L) here] The dis-  harmonic radiation. The aim of the present paper is to study
sipation has two visible effects on the soliton: it attenuates itshe existence of steadily propagating solitons, and examine
speed and damps its amplitude. The parametric driving isheir stability. Here we are confining ourselves to the un-
well known to be capable of counterbalancing the dampinglamped situation relegating the analysis of the effect of
of the soliton’s amplitude; a natural question now is whetherdamping to future publications.
it can sustain its motion with a nonzero velocity. In addition to their role in transport phenomena, stably
moving solitons are also of interest as alternative attractors
that may compete witstatic or oscillatinggnonpropagating
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will identify oscillatory and translational instabilities of trav- L= IV it dhoct 22— p=hy*, 3
eling solitons and simulate their nonlinear evolution near the
transition curves. wherex=X—Vt. We will search for these static solutions by

The structure of the paper is as follows. In Sec. Il wesolving an ordinary differential equation
derive ana priori bound for the existence domain of travel- _ ) .
ing solitons and introduce the linearized eigenvalue problem =1Vt ot 2| "= p=hyp 4
for the|_r Stabl|!ty analysis. We.also dls_cuss some generaLImder the vanishing boundary conditiohs(x)|—0 as|x|
properties of eigenvalues and eigenfunctions and formulate a . o /
: o X . .~ —o. Hereh is always taken positive; negativeés can be
simple criterion for the onset of the nonoscillatory instabil-

ity: dP/dV=0, whereV is the velocity of the steadily mov- recoyered t_>y the phase trans_f ormalif . ' ,
: . . It is straightforward to notice that if the functiog(x)
ing soliton, andP the associated momentum.

In Sec. Ill we present several explicit quiescert=(0) describes a soliton traveling with the velociky the func-

: " o : . . i
solutions and then derive the necessary condition for a Stati;[((l;)c;?ts d’_(\);) ?rrr]i;/:a(for)é) ﬁﬁlﬁersc?ggn?urcct)i\gn%;;mz;gseﬁ\éi
solution to be continuable to nonzero velocities. This condi- oy ' ' W

.o - . : ;
tion requires that the motionless solution should either nofh ()= £ y(—x) (that is, one of the real and imaginary part

have any “free” parameters apart from the translationalgfléhseolsu?:gggna'sssg(\:/izrt-'egnv(\jmtk? ?hgtgzrm%r(ﬁgg“w?ﬁ ir;
shift, or, if there is an additional parametgrthe equation

JP/Jdz=0 should be satisfied. Hef is the momentum of making any difference between solutions that are different

the motionless localized solutiofwhich, contrary to one’s just in the overall sign.In the latter case the solutions will

! ibi * =+ — i
mechanical intuition, is not necessarily equal to zefdere ng;ﬁg?fdggﬁ;és(;g o;i;ip\gé’sxz/vﬁ)grgr\r/]::ryésvvsiiI;\I'":\gyai(i)ve
are three static solutions satisfying the above condition, twd P P - neg

of which being the well-known constant-phage and velocities will only be presented where this may help visu-
solitons, respectively, while the third solution looks like aahzmg how different branches of solutions are connected.

pulse with a bell-shaped modulus and twisted phase. Next, it is easy to show that solitons cannot travel faster

The most important results of this work are contained inthan a certain speed limit. '”de_efx' s 2, the soliton’s
Sec. IV where we report on the numerical continuation ofaSymptotic tail decays ag(x)~e"*, where
various branches of solutions and their stability analysis. In 2, 2=2_\/2+ \/(2—V2)2+4(h2— 1). (5)
agreement with the analytical predictions of the preceding
section, we find that each of the above static solutions admitsarge driving strengtht>1 are of little interest to us as in

the continuation to nonzery. The stability properties of this case the zero background(x)=0, is unstable with
traveling solitons result from an intricate interplay of two yegpect to continuous spectrum wayg% Therefore we are
types of instabilities, the oscillatory and translational insta-yot going to discuss this case here. In the complementary
bility. In accordance with the conclusions of Sec. Il, the nU-regionh< 1, the location ofc on the complex plane depends
merical analysis of the linearized eigenvalues shows that thg,, ihe value of the velocity. Whewi2<2— 21— hZ, there

transition curves of the translational instability satisfy . 2_ A2
. ) . It are four real exponents; for-22\/1—h?<V?<c?, where
dP/oV=0. One interesting conclusion of the stability analy- P

sis is that although quiescent solitons are unstable for driving \/72
strengths larger thah=0.064, there are stable moving soli- C=V2+2v1-h%,
tons for any Gsh=<1. We discuss in detail the soliton’'s
transformation as it is continued M, paying special atten-
tion to the dynamics of the associated linearized eigenvalu
on the complex plane. Two different scenarios of the tran
formation are identified, one occurring for smalland the
othgr one for larger driving strengths, and we aiso descrlb'«i',\s;sentially an exclusion principle ruling out a resonance be-
an interesting crossover from one to another. tween soiitons and linear waves

Section V is devoted to the direct numerical simulations '
of the full time-dependent nonlinear Schinger equation.
We show that the evolution of both types of the soliton in-
stabilities leads, as—, to the same asymptotic attractors. In this paper we solve the E) numerically and exam-

6

we have a quadruplet of complexs. Finally, for vV2>c? all

four exponents are imaginary. Consequently, there can be no
ponentially localized solitons traveling faster than

SF’hysically,c represents the minimum phase velocity of lin-

ear waves governed by E@l), and our conditionvV<c is

B. Linearized eigenvalue problem

Finally, Sec. VI summarizes conclusions of this study. ine the stability of the resulting solutions by studying the
associated eigenvalue problem. This eigenvalue problem
Il. STEADILY TRAVELING WAVES: EXISTENCE arises by a.SSUming a small perturbation of the form

AND STABILITY S, =y(x)eM,  y(x)=u(x)+idv(x).
A. Existence domain

. , , ) Substituting into Eq(3) gives
We will confine ourselves to localized traveling waves of

the simplest formyy(X,t) = (X—Vt). Transforming to the HY=2\JY, (7)
comoving frame, these correspond to time-independent soli-
ton solutions of the equation where the Hermitian operatdi has the form
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H=1(— 2+ 1)+ Vo, P(x)=e'(VP*A sechAx, (12)
2 2
N h—6u"—2v —4uv ® where A= \1-V?/4. Forh=0 and any|V|<2, the linear-
—4uv —h—6v2—2u?)’ ized operatorH has four zero eigenvalues associated with

two eigenvectors. One of these eigenvectors originates from
the matrixJ is given by the translation symmetry and the other one results from the
phase invariance of Eq4). The termhy* breaks the phase
0 -1 invariance and hence &ss increased from zero, one pair of
J= 1 0/ ©) eigenvalues X,—\) moves away from the origin on the
complex plane. A% andV are further varied, a pair of ei-
and the column vectoX(x)=(Rey,Imy)T=(du,év)". In  genvalues may return to the origin. If the solution of E4).

Eq. (8) | is the identity matrix, and we have decomposed theat the point of their return is a member of a family param-
stationary solution ag/(x) = u(x) +iv(x). etrized bytwo free parameters, we will have, again, four zero
For symmetric solutions satisfying* (x) = + ¢(—x), ei-  €igenvalues with two eigenfunctionéThe eigenfunctions
genvalues will always come il\(—\) pairs. This follows are simply derivatives of the solution with respect to the free
from the fact that for these solutions changing — x in the parameterss.Oyr analysis will not be applicable in this case,
operator(8) amounts to changing the sign of its off-diagonal @nd the equalityP/3V=0 does not have to be valid at the
elements, and hence [iBu(x),dv(x)]" is an eigenfunction return point.(We will come across this type of a situation in
associated with an eigenvalue, the column[su(—x),  Sec. IV C below. However, a more common situation is

—sv(—x)]" will serve as an eigenfunction associated withWhen the solution at the return point is a member ane
an eigenvalue- \. As far as a zero eigenvalue is concerned,Parameter family. We will show that in this case the relation

it will have a twin with the eigenfunctionfsu(—x), @P/dV=0 does have to be in place. _
—su(—x)]T unless its eigenfunctioy=du+idv satisfies Let us denote/. the velocity for which the eigenvalue of
the symmetryy* (x) = e “y(—x), wheree= const. the operator(7)—(8) vanishes. We can develop the solution

To complete the discussion of the spectrum structure, wé/(V:X) in powers ofe=V—V,
need to mention that there are two branches of the continu- _ )
ous spectrum lying on the imaginary axis of: A\ PViX) = tho(X) + €ha(X) + €4 (X) + -+,

=iwq oK), where .
’ where o= (V. ;x). Accordingly, the operatot{ expands

w1 AK)=Vk= \(k¥+1)2—h? as H="Ho+ eH,+ €*Hyo+ . ... If the eigenvaluex moves
’ ' from imaginary to the real axis, it is natural to assume that it

and — o <k<. (We are still assuming<1). In the region ~admits an expansion of the form
V2<c?, which is of interest to us, the continuous spectrum

_ _1/2 3/2 5/2

has a gapwy(K)>wg, ws(K)<—wp, Where wg>0. This A=€T N T e NGt e NgH (12)

gap can harbor discrete eigenvalues representing stable os- . ) L

cillation modes. The associated eigenfunction is then developed as
Y(X)=Yo(X)+ €2Y (X)+ €Y p(X)+ -+ . (13

C. Nonoscillatory instabilities

The aim of this subsection is to demonstrate that a pair owhene=0, we haveH,Y,=0, i.e.,Y, is a null eigenvector
pure imaginary eigenvalues can collide a0 and move at the bifurcation poin¥=V,. Since we have assumed that
onto the real axis only at the velocity satisfyia®/dV=0,  (V,,x) is a member of a one-parameter family of solutions,
where the operatofH, has only one null eigenvector, and we have

i to identify Yo=Y ((x). Here W, is a column vector formed
- _ * o * by the real and imaginary part of the solitosy: ¥
i Zf (g ™) (19 =(ug,vo)". The prime indicates differentiation with respect

to x.
is the conserved momentum. This criterion is known in the Next, setting the coefficient o2 to zero yields

context of dark solitons of the undriven nonlinear Sehro

dinger equations; sefl0-12. Here we simply adapt the HoY1=N1JY,.
proof given in[11] to the case of the equation with the para-

metric forcing. An important assumption that we make herecomparing this to the equation

is that the solution whose stability is being examined, does

not have any free parameters apart from the trivial translation P
paramete,. HOW =—JV,,
First of all we need to make a remark on the integrable V=V,

caseh=0. In this case solutions of the ordinary differential
equation(4) can be obtained from a quiescent soliton of Eq.which arises from the differentiation of E4) with respect
(2) by a Galilei transformation, to V, we get
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oV The stationary equatiofd) can be regarded as a condition
Yi(X)= Mgy : that the energy15) be stationary under the fixeet (5E)p
V=Ve =0 or, equivalently, S(E-VP)=0, where V is the
) 3 T . 1 Lagrange multiplier. The relatioAE=V SP implies that the
[In the above equation¥ =(u,v)".] The coefficient ofe functions E(V) and P(V) have extrema at the same point
produces V=V, and so there are two values Bfcorresponding to the
HY =AY — HY sameP. In other Wo_rds, to_each va_llue of the momentum
0727 A1 T AR R0 there correspond solitons with two different energies. There-
. . . . S fore, the instability of one of the two branches of solitons
mglggngfltso lzr(])gnndue”d e?goélrjl?/ggts O:fdtfhe right-hand side is Or_separated by the poiM, with dP/dV =0, can be interpreted
o as the instability against the decay into a soliton of the other
branch and a symmetric radiatigwhich takes away the en-

Mj YOJYldx—f YoH,Yodx=0. (14 ergy difference but does not affect the momenjum.
The second term in Eq14) is readily shown to vanish— ll. QUIESCENT SOLUTIONS AND CONTINUATION
one only needs to expand the identi’' =0 in €. (The TO V#0

coefficient of ! gives H,Wy=—"H,W;. Taking the scalar

In order to continue iV we need to have some ‘“startin
product withW | yields the required ¥ (H, ¥ dx=0.) On g

points” atV=0. Two such quiescent solutions of Ed) are

the other hand, the first term in Edq14) is equal t0 | a| known:

(A%/Z)&P/av. Consequently, Eq(14) gives eitherdP/oV

=0 orA;=0. If we assume that;=0, we will not be able Y (X)=A. secliA,x), (169
to conclude thawP/9dV=0 at this order of the expansion.

However, the ordee? will then give us)\S&P/aV:O, which ¥ (X)=iA_ secliA_x), (16b)

implies eitherdP/dV=0 or A\,=0. Proceeding by a similar

tOken we will eVentua”y arl’ive at the equatl@ﬁ’/&V=0 at WhereAa =1+h. The So|iton¢7 is unstab|e with respect to
some ordee" wheren is such thak,# 0. (Alternatively, we 5 nonoscillatory mode for ah while the ¢, is stable forh

will have to conclude that alk,=0 and hence we are deal- - —0.063596 and develops an oscillatory instabilityhas
ing with a symmetry eigenvalue that is equal to zeroddr s jncreased beyonld, [5]. In this section we will show that

V) ) ) ) ) both ¢, and _ are continuable t&/# 0, and identify an-
Thus a pair of real or pure imaginary eigenvalues of theyiher continuable solution.

same magnitude and opposite sign, can only collide for the
value of V that satisfiessP/9V=0. Here we wish to re-
emphasize that we have obtained this conclusion under the
assumption that the geometric multiplicity of the zero eigen- Writing ¢y=u+iv, the stationary equatiof#) transforms
value isnot increased at the point of collision. A simple into the system

example when this assumption is not valid, is furnished by

A. The “twist” soliton

the casen=0. In this case the momentum corresponding to Uxy— U—hu+2u(u?+0v?)=0, (17)
the soliton(11) is given byP=V1—V?%/4. AlthoughP has S
a maximum forV= 2, the stability properties of the un- Uxx— v +ho+20(u+0v%)=0. (18

driven soliton do not change at this point. The reason is that ) ) )
for eachV the operator has two null eigenvectors in this 1he systen(17) and(18) appeared previously in connection
case, and hence we cannot make the identification with light pulses in a birefringent optical fibre. Using Hiro-
— . (Instead,Y, will be a linear combination ofwo zero ta’'s approach, Tratnik and Sipé4] obtained the following

modes). Consequently, the above proof becomes invalid. ~€Xact solution to Eqs4),(17) and (18):

Finally, one can easily check that the above result does .
not really depend on how the eigenvaluexpands in pow- Y=z x)=utiv, (193
ers of e. We assumed that the expansiti?) starts with o1 200~ )
terms of ordere”2. This assumption is natural and supported u=2A,e"D “(1+e”"1 "), (19
by the numerical evidence; however, even if we had postu-
lated the expansion starting with terms of ord&f, /3 or v=2A_e"D }(1-eX%"A), (199
say, €, we would have still arrived at theamenecessary
condition for the zero crossingP/dV=0. where

The conditiondP/dV=0 admits a simple interpretation in
terms of two integrals of motion. In addition to the momen- D=1+e*"1+e?2+ et 0272,
tum, Eq.(3) conserves the energy,

0,=A_(Xx—2), 0,=A (X+2);

E:Ref(|</fx|2+|l//|2—|¢|4+h¢2)dx- 19 e constant
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1.5 , - ' It is useful to notice a simple relation between two solu-
(a) h=0.7 tions of the form(19)—one with the parameter value={¢
z=+10 + ¢ and the other one with=¢— &:
1t ]
ux) YL+ E—y)=9* (L~ Enty). (2D)
————— v(x
0.5 ( ). Here { and  are defined by the driving strengkh
__B2 ! 0 22
o (=—5\a A, < (22)
\ / and
-0.5¢ \\/I
40 20 0 20 40 ALt (23
X Tm2\AC T AL
15 while ¢ andy can take arbitrary values. The relati¢2l)
(b) h=0.7 implies that the solutiori19) with z={¢ is symmetric about
A 2=-0.237] the pointx= 7,
UEX)) P(Em=y)=¢*(nty). (24)
---- VX
0.5f T That is, the real part of this solution is even and imaginary

part odd with respect tg= 7,

0 { U(n=y)=u(z+y), ov(7-y)==-v(n+y).

/ [See Fig. 1b).] This particular representative of the family
0.5 v ] (19) will play a special role in what follows. Similarly to the
-40 20 0 20 40 solitons¢, and_ , the modulus of the symmetric solution
X is bell shaped, but, unlike the constant phase ofitheand
15 . . . ¢_, its phase changes by asx varies fromx=—o to X
=, The solution looks like a pulse twisted by 180° in the
(©) :foé (u,v) plane. For this reason we will be referring to solution

Al ] (19) with z={¢ as the “twist” soliton.
Forh= £ the “twist” acquires a particularly simple form.
In this case Eq(22) gives {=—(1/8)+/5/2 In 3. Substitut-

0.5 A ] ing in Egs.(19) and shifting the resulting solution by,
F =3z, we get
/ \
o . 6 - 6 -
Ur= gsecﬁ X; vr==*\/gsechx tanhx, (25)
u(x)
————— v(x) ~ 13 . .
-0.5 . . ‘ ] wherex= \/;x. [The soliton(25) can also be obtained by a
-40 -20 0 20 x 40 more direct method15].]

FIG. 1. Solution(19) for variousz. (a) z=10; (b) z= ¢ with { as

. . . . B. The moving soliton bifurcation
in Eqg. (22) (the twist soliton; (c) z=—10. Solid curve: real part;

dashed line: imaginary part. Suppose the equatio@) has a one-parameter family of
quiescent solutiong(z;x). Herez can be any nontrivial pa-
1 (A +A_ rameter; the only requirement is thashould not be just an
B= Eln(m) 0; (200  overall shift inx. One such family is given by Eq19) and
+ -

there can also be other families for whighis not available
explicitly. We will show in this section that in order for a
solution with somez=z, to be continuable to nonzekq the
@orresponding momentum integral should satisfy

the amplitude#\.. are as in Eq(16): A.=+1*=h, andzis a
real parameter that can take arbitrary values. The solutio
(19) with z=10 and— 10 is plotted in Figs. ()—1(c). As is

clear from the figure, for sufficiently largl| the solution JP
represents a complex of two solitong, and_, with the %z =0. (26)
separation equal to approximatelyzp z=7,

016603-5



. V. BARASHENKOV, E. V. ZEMLYANAYA, AND M. BA R

Let us assume that E¢4) with V#0 has a solution/(x),
and that this solution is an analytic function @fin some
neighborhood o/ =0. Then we can expand it in the Taylor
series

P(X) = Po(X) + Vi (X) + V2ifrp(X) +- -+, (27)

where ¢o(X) = (zg;X) =Ugtivg iS Some representative of

the family of “motionless” solutionsy(z;x) with the pa-

rameter valuez,. Substituting Eq.(27) into Eq. (4) and

equating coefficients of like powers ¥f we get, at the order
Uo

L el

Hereu;+iv,= 4 and the operatot is given by Eq.(8).
Equation(28) is solvable in the class of square integrable
functions if the vector in the right-hand side is orthogonal to
all homogeneous solutions, i.e., to all null eigenvectors of th
operatorH. Since there is a family of “motionless” solu-
tions parametrized by and by an arbitrary spatial shik
(which we have disregarded so fathe operatof{ has two
zero modes. One is the translation modgy,=d,(ug
+ivg); the corresponding solvability condition is trivially
satisfied,

B 29)

U1 0

Uo
f &X(UO,Uo)JaX Vo dx=0.

The other zero mode is given by the derivatigr,= d,ug
+id,vo. The associated solvability condition reads

109P

Uo
O=f (azuo,azvo)JaX(vo)dx:—z o7
where P is the momentum integral10). Consequently, a
solution with nonzeroV can only detach from th&/=0
branch at the point wher&P/3z=0.

Coming back to our explicit solutions, thé, and ¢ _
solitons do not have any free parameters apart from th
trivial position shift. Consequently, both solutions are con-
tinuable to nonzerd/. Next, we have a family of solitonic
complexes(19) with a nontrivial parametee. As one can
easily check, the momentum of the compl@®) as a func-
tion of z has a single minimum for some finite=z, and
tends to zero ag— *+ . To find z,, we notice that the rela-
tion (21) implies

P(+&=P((—§).

This means that the functidd(z) is even with respect to the
point z=¢ and therefore{ is the point of the minimumz,
={. Thus, the only representative of the family of the two-
soliton complexe$19) that can be continued to nonzevpis
our twist soliton,(Z;x). [To be more precise, there amgo
twist solutions, one with positive and the other one with
negative momentum. This is related to the fact that wien
=0, we can generate new solutions to the syst&m and
(18) by changing the sign of just one componanr v.]

e
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2.0

FIG. 2. The momentum of th¢, and_ solitons as a function
of their velocities. Solid, dashed lines depict stable, unstable solu-
tions, respectively. Decimal fractions attached to branches mark the
corresponding values d¢f, with the superscripts- and — indicat-
ing the s, and _ solutions.(For example, 0.2802 marks the
branch of they, with h=0.2802) Note that ash— 0, the stability
domain of they_ tends toy2<V<2 and that of they, to O<V
<,/2. The whole of theh=0 branch is stable.

IV. BIFURCATION DIAGRAM

We used a predictor-corrector continuation algorithm with
a fourth-order Newtonian solver to continue solutions of Eq.
(4) in V. Since derivatives of the momentum integfaD)
determine stability and branching properties of solutions, the
momentum was our natural choice for the bifurcation mea-
sure. Equatiori4) was solved under the vanishing boundary
conditions(=L/2)=0. We usedL =200 (except in cases
where we had to extend the interval to account for slow
decay of solutions and the discretization step siz&x
=0.005. The eigenvalue proble(d) was solved on the in-
terval (—50,50). Here we utilized the Fourier method, typi-
cally with 600 harmonics.

A. The traveling #_ soliton

€ We start our description with the branch departing from

the quiescent solitogs_ . For everyh this branch continues
all the way toV=c, wherec is the minimum phase velocity
of linear waves given by Ed6). As V—c, the decay rate of
(x) decreases and the soliton merges with the zero solution,
with the momentumP tending to zero.See Fig. 2 For
technical reasons we could not connect the cun¥) to
zero although we were able to approach the valsec as
close as the fourth digit after the decimal poithe prob-
lem is that since the decay rate of the solution decreases, one
has to increase the length of the integration interval—and
this cannot be done indefinitelyThe only curve that is con-
nected to zero in Fig. 2, is the one for the undriven dase
=0. In this case we enjoy an explicit soluti¢hl) with the
momentumP =V/1—V?/4.

For eachh the momentum of the soliton has a single
maximum on this branch, &=V (Fig. 2). To the left ofV,
the linearized operatai7) and (8) has a pair of real eigen-
values=\ and consequently, the solita_, which is well
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known to be unstable fo=0 [5], remains unstable for replaced by the nonoscillatory one. Xds increased further,
small nonzero velocities. AY approached/., the two ei- one pair of the newly born real eigenvalues grows in abso-
genvalues converge at the origin on the complex plane, witute value whereas the other pair decreases in magnitude. At
the associated eigenfunctions tending to the translation modéee pointV=V, whereP(V) reaches its maximum, the latter
W(x). IncreasingV pastV,, the eigenvalues move onto the pair converges at the origin and moves onto the imaginary
imaginary axis and hence thle_ soliton becomes stable for axis. (This does not render the soliton stable though, as the
sufficiently large velocitie$wheredP/9V<0). This change other pair remains on the real ayifhis scenario is exem-

of stability properties is in exact agreement with the scenaridlified by the curveh=0.27" in Fig. 2.

described in Sec. Il C. Itis also fitting to note that for a given ~ Next, leth be greater than 0.28. For thebethe branch
value of the momentum, solutions on the stable branch havB(V) emanating from the origin, turns back at sorde

lower energies than solitons on the unstable brafwhere  =Vnax (Fig. 2), with the derivativesP/dV remaining strictly
dPIaV>0). positive for allV<V,.,. Below we will describe the trans-
formation this solution undergoes when continued beyond
B. The . soliton; h<0.25 the “turning point,” while here we only wish to emphasize

Unlike th b h the final duct of th i that no new zero eigenvalues can appear at this point. The
hlike the ¢_-branch, the final product of the continua- reason is thaV =V, is a bifurcation point of solutions of

tlog 208f thhef 30|'t?”r‘f+ dlgpendg on _tlhe Valrl:e d: r::or h the ordinary differential equation(4) but not of thepartial
<0.28 the fate of the so itotk, Is similar to that of t e’é—' differential equationg1)—(3). (In other words)V is an “in-

A.S V—¢, the SOI't.OH dev_elops oscillations on its tails; theternal” parameter characterizing the solution and not an
width of Fhe resulting oscnlatqry wave packet grows and “external” control parametej.Indeed, the soliton is a mem-
the amplitude decreases, until the solution becomes equal B)er of a two-parameterx, and V) fémily of solutions of
zero everywhere. The momentuR(V) tends to zero as Egs.(1)—(3) and hence foany Vthere are two zero eigen-

Vrgcegir;ds Z?iha S'nsggﬁtglaggmé? dac:nsevrg;r\\/ dscr.issst?nballllllgr values in the spectrum of the linearized operatbrConse-
tphar? 0.064 Iiese/getween 0 024 and 0.25, or is greater tha%uemly’ despite being a turning point for the OD#, the
' ’ ' e 9 valueV=V,,.is no special as far as the POBH—(3) and its

0.25. . A _
. . . . linearization are concerned. No changes of the soliton’s sta-
Let, first, 0.064h=<0.25. In this case th¢, soliton with pility properties occur at this velocity.

e 0oV " o does cne ypeof benaviorof he us),occur
1€ Spec - . P ) > IMp ring for h>0.28, replace the other one, arising fox0.28?
cillatory instability. AsV is increased, both imaginary and We scanned the interval 0.28000<0.280 20 and discov-
real parts of the “unstable” eigenvalues decay, with the real ' X

. ered a tiny region of transitional behavior, around
parts decaying faster. Eventually, fofequal to someVs, h=0.280 05. For thi$, P(V) grows until it reaches a maxi-
the eigenvalues-\,*=\* converge, pairwise, on the imagi- ' ' '

. . - o mum atV,=1.051 and then starts decreasing, as in the case
nary axis and the soliton stabilizes. Increasingtill further,
ST . . of h<<0.28. However, the curve does not decay all the way to
two of the resulting imaginary eigenvalugsand —\, start

. P=0 as would be the case ftn<0.28, but reaches a mini-
approaching each other. At=V. where JP/9V=0, they - '
collide and move onto the real axis. The soliton loses itg " a;VCCRll'OEi%:g; rttr?at, the@m\c;m?ntumbstalzts _grciw—
stability once again—this time to a nonoscillatory mode. The:irL%' f?)? h,>a0 2““8""'*?'_0 ot a;1 : deérflcj);VhO\(/v gml;rlrtshisav(\:/iraéﬁ of
unstable real eigenvalue persists in the spectrum foWall transitional .be.havigr is it suffices to sav that fér
>V, i.e., in the whole region where the slop®/JV re- ’ Y

. . - =0.28000 the momentuniP(V) decays to 0 asv—c,
mains negative(Note that theys_ was unstable fopositive
IPIoV) gl'his scenario isedlexemplified by thpe curves whereas foih as close as 0.280 10, the curl?¢V) already
h=0 1'+ andh=0.15" in Fig. 2 has a “turning point,” withP continuing to increase all the

The smaller theh € (0.064,0.25), the smaller is the value time.

R ) : What happens to the . soliton withh>0.28 (more pre-
of the stabilization velocity/. Forh=<0.064 the oscillatory . . . .
instability does not arise at afl.e., V.=0), and the entire cisely, withh=0.28010) as we continue it beyond the turn-

. I - ing point? Figure 3 shows the momentum as a functiow.of
rz";mge G<V<V_ is stable.(See then=0.05" curve in Fig. The point of intersection with the vertical axi&=0 corre-

sponds to the twist solutidrEq. (19) with z= ¢ given by Eq.

(22).] In Fig. 3, it is marked ag/r. Since theV=0 twist is

a representative of a two-parameter family of stationary so-
Let now 0.25<h<0.28, and assume we are moving alonglutions of Eq.(3), there should be four zero eigenvalues in

the ¢, branch in the direction of largev. For smallV we  the spectrum of the operat®f in this case, with two linearly

have a quadruplet of complex eigenvalues, =\* imply- independent eigenfunctions given b%¥(z;x)|,-, and

ing the oscillatory instability. A%/ is increased, both imagi- ,%(z;x)|,—,. [Here ¥(z;x) is a two-component vector

nary and real parts decay—as in tre0.25 case. However, formed by the real and imaginary parts of E§9).] Numeri-

this time the imaginary parts decay faster than the real partsally, we observed that as we approach ¥eO twist from

and the two pairs of eigenvalues converge onré axis.  the direction of positiveV, a pair of opposite eigenvalues

For velocities above this point the oscillatory instability is converges at the origin on the complex plane. The curve

C. The ¢, soliton; h>0.25
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FIG._3. The_full bifurcation diagram foh=0.7. AII_ branch_es FIG. 4. Stability diagram for they, and ¢ solitons on the
shown in this figure are unstablé-or h=0.7 the solitony_ is ; 4 "
stable at large velocities but the region of stability lies beyond the(h’v) plane. In the region marked “stable” one of the two one-
frame of thig figure—see Fi )2Mogre solution br);nches é,an be soliton solutions is stable whereas the other one is not. Across the
. 9 . 9- solid line, the corresponding soliton loses its stability to an oscilla-
obtained by the reflectio — -V, P— —P. . . . L
tory or monotonically growing mode. No solitons exist in the

) ) ) dashed region.
P(V) does not have an extremum at this point and this may

seem to be in contradiction with predictions of Sec. Il C. Theeigenvalues first diverge from the origin but then reverse

paradox is resolved as soon as one recalls that the extremalny at/=0 move back onto the imaginary axis. For larger
ity condition 9P/9V=0 was derived under the assumption j, (e’.g. h=0.'7) whereV,<0, the pattern is different. For

that there is onlyone eigenvector associated with the zero {neseh the two imaginary eigenvalues become real not at the

e?genvalue W_hereas we hateo linearly independent null point V, but at V=0. Subsequently, as we continue the

eigenvectors in the case at hand. _ _ branch to negative velocities, another pair of imaginary ei-
As we continue further into the regioi<0, the twist  genyajues detaches from the continuum and at the point

gives_rise to a.variety of multisolit_on complexes; we sha}ll<0 two (imaginary or real eigenvalues pass through the
describe them in the next subsection. Here we will restncbrigin

ourselves to the regiol>0 where this branch can still be Figure 4 shows the stability diagram of tije, and ¢_

regarded as a branch of one-soliton solutions. Although thes§olitons on thelf, V) plane. For they . soliton, the range of

solutions undergo similar transformations for allin the - -
) . X ities approachessW¥ <2 ash—0, while the
interval (0.28,1), there are a few differences with regard toStable veloc PP V2 -

the trajectories of eigenvalues on the complex plane. On(Sata.b”'ty range OW’* ten_ds to\/§<_V<2. F_mally, the do-
. N g main of stability in theh=0 case is the union of the above

difference worth mentioning is that for the driving strength two ranges: BV<2

h=0.3 and largeh, the quadruplet of complex persists on ' '

the entire upper branch (V) (i.e., for allvV>0). Thisis in

contrast to the case of 0.251<0.28, where the complex D. Other branches; h>0.28

quadruplet converges on the real axis. Near the left end of As we continue it to negative velocities, the twiste are

the interval 0.2&h<1 (e.g., forh=0.2802), we have an using this name here far+0 deformations of the quiescent

intermediate pattern. Similarly to the case0.28, here the twist solution gradually transforms into a complex of two

complex quadruplet converges on the real axis somewhetsvists [plotted in Fig. %a)]. A further continuation of this

on the lower branch oP(V) (i.e., before the turning point  branch takes us, via several “turning points,” to a solution

but as we move onto the upper branch, the two emerging reahat can be interpreted as an association of the twist and two

pairs reunite quickly and the complex quadruplet reappears)_ solitons of opposite polaritiegdenotedy_r_)). This

Next, as we know, there are only two points where a pairsolution is depicted in Fig.(5).

of eigenvalues can pass from the real onto the imaginary Another branch emanating from the origin in Fig. 3, is a

axis, or vice versa. One point =V, where JP/9V=0,  bound state of two solitong, . This solution wasot ob-

and the other one i¥=0. Therefore the dynamics of eigen- tained by the continuation frodd=0 as Fig. 3 may seem to

values depends on which of the two points comes first, orbe suggesting. Instead, we fixed a nonzérand continued

equivalently, whether the upper branch B{V) has the in hfrom the valueh=0.05 where the compley, ., arises

maximum for positive or negativié. For smaller values di  from the V-continuation of the twist solitofsee Sec. IV E

in the interval (0.28,1)(e.g., h=0.3), whereV.>0, two  Omitting details of this procedure, we start the description of

imaginary eigenvalues move to the real axis\&tV.. the resulting branch at some poin¥,P) away from the

These imaginary eigenvalues have detached from the comrigin. As we approach the origin from this point, the sepa-

tinuous spectrum somewhere before the turning ppiet,  ration between the solitong, in the complexy.. . rapidly

on the lower branch oP(V).] The two newly born real increases so that the field values between the two solitons
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(@ | | 'h=0 .7

o 0 0 10 20
X
FIG. 5. (@) The rr) complex.(b) The _t_y solution.(c) A
complex of two twist solitons arising from the continuation of the
¥+ +, bound state[Note the difference from the other two-twist
complex shown ir(a).] Solid line: real part; dashed line: imaginary
part.

become exponentially small. For example, for0.7, the
(numerically calculatedseparation at the poinY=0 was
equal toz=~21. The value ofy| at the point on the axis,
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FIG. 6. The full bifurcation diagram fdn= 0.05. Thick and thin
lines depict stable and unstable branches, respectively. Note a re-
gion of stability of the complexy . 1. Additional branches can be
generated by employing the reflection symmetfy-—V, P—

-P.

our numerical algorithm (10'%, we were unable to distin-
guish between a genuine bound state and a linear superposi-
tion of two distant solitons. Weonjecturethat the complex
¥+ +) exists all the way t&/=0 but asvV—0, the intersoli-

ton separatiorz—oo. Another indication to this effect is that
asV—0, the imaginary part of the solution tends to zero,
rapidly and uniformly. Since the only pure real solution that
exists forV=0 is the(single soliton ¢, , theV—0 limit of

the ¢, 1) complex should be an infinitely separated pair of
the ¢, ’s.

If we, conversely, continue our solution away from the
origin, the curveP(V) turns left at somé/ and the complex
¥+ +) transforms into what can be interpreted as a bound
state of two twistgdenotedyr, in Fig. 3) This solution is
depicted in Fig. &c). As V—0, the momentum of this bound
state tends to zerd-ig. 3). Unfortunately, we were only able
to obtain this solution away from some small neighborhood
of V=0. (For h=0.7, the smallest value of the velocity for
which we were still able to find the solution in question, was
V=0.000 283. Whether this branch can be continued\fo
=0, remains an open question.

E. Other branches; h<0.28

As we have mentioned, fan<0.28 the branch/, ex-
tends all the way tov=c where it merges with the zero
solution. No other solutions can be obtained from the
soliton. However, in this case we can obtain new branches
by continuing the(quiescent twist soliton, Eq.(19) with z
=Z.

The resulting bifurcation diagram is shown in Fig. 6. It is
convenient to start its description with the motionless twist
solution with thenegativemomentum. As we move in the
direction of positiveV, the twist gradually transforms into a

equally distanced from the left and right soliton, was of orderbound state of twa), solitons. At somé&/=V ,,,the branch

10 8. Consequently, the nonlinear term in the E4) be-

turns back, shortly after which, at the pomtV,, the mo-

comes negligible away from the solitons’ core and, in spitementum reaches its maximum and starts decreasing. Adja-
of an extremely small value of the residual that we used ircent to the turning point is a small range of velocitMg
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=V=V,.xWhere we have twatablesolutions corresponding WX, 0) =)
to each V. If we continue the branch with positive- h=01
momentum twist solution, also in the direction of positie V=005
the solution gradually transforms into a complex of two

solitons. The momentum reaches its maximum, starts de-

creasing, then the branch turns backrand we find our-
selves approaching the origin on thé, P) plane(Fig. 6). As
we move towards the origin along thg, ) or along the

Y ¥

A \\ A\
\ CoA N@A\‘\‘ N
\\"“\5‘,‘\‘::"";“}}\ N e
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NSRS X
R N

- -y branch, the separation between two solitons constitut- 0 AITRA s
ing the corresponding complex grows while the imaginary 40 \Aﬂ‘f‘%\}"‘“")““‘ 1000
part of the solution tends to zero. Similarly to what we had “N@Wﬁ \
for largerh (Sec. IV D), we conjecture that the separation @ X 20 =

becomes infinite a=0 in both cases. —40

Similarly to the case of largk (Fig. 3), the energy of the
stable branch o#_ is lower than the energy of the unstable
branch. The bound states on the staiple— ¢, ) branch
also have lower energies than their counterparts with the
sameP and smaller|V|. However, in the case of the
solitons we have an interesting reverse of fortunes: out of the
two branches with the sanf® the stable branch is the one
with the higher energy.

V. NONLINEAR STAGE OF INSTABILITY

In this section we present results of our numerical simu-
lations of the full time-dependent nonlinear Sdfirmer
equation(2). The objective was to study the nonlinear stage FIG. 7. The two types of asymptotic attractors resulting from the
of the development of instabilities reported in the previousdecay of the unstable steadily traveling solito(®: the decaying
section and to identify the attractors emergingas~. We  and (b) the growing breather(a) corresponds thh=0.1 and the
utilized a split-step pseudospectral method, witf=22048 initial condition in the form of thay, soliton withV=0.05. In(b),
modes on the intervals 40<X=<40 and—80<X=<80, and h=0.05 and the initial condition was chosen as ¢ghesoliton with
with 2%2=4096 modes on the interval —60,60). The V=0.05. In both plots the emerging breather changes, spontane-
method imposes periodic boundary conditiongL/2t) ously, its dire_ction of motion(Note that this happ_em_nt as a result
= W(—LI21), du(LI21) = thy(—LI2}). o_f _the reflet_:tlon from the boundary, as the periodic boundary con-

We have simulated the evolution of moving solitons un-ditions are imposeg.
stable against an oscillatory mode and those with a positive,
nonoscillatory, eigenvalue in their linearized spectrum. Onecent unstable soliton and gave rise to a quiescent breather,
of our conclusions here is that both types of instabilities givethe breather emerging from a traveling soliton has a nonzero
rise to the same asymptotic attractdfBhis is in agreement speed.
with earlier simulations of motionless solitofk3].) One may naturally wonder whether the speed of the
breather will decay to zero or approach a nonzero constant
value ast increases. Our simulations seem to support the
latter hypothesis. In one run, the speed of the breather evolv-

Depending on the value of the driving strength, the initialing out of the soliton traveling with the initial velocity of
conditions and the choice of the parameters of the numerical =0.05, was seen to slowly grow and gradually approach
scheme, we observed one of the two scenarios. In the firshe constant value of 0.1. This simulation was repeated, with
scenario the soliton transforms into a bell-shaped structurehe same parameters of the numerical scheme and an initial
with a small amplitude and large spatial width, oscillating condition that was only different from the previous one due
approximately asy~e'“!, with negativew. This localized to interpolation errors of order I6. In this run the breather
solution was previously encountered in numerical simulawas first seen to slow down, stop but then start moving in the
tions of Ref.[13] where it was termetireather The ampli-  opposite direction with the velocity close t60.2; see Fig.
tude of the breather slowly decays with time and the width7(a). (This remarkable sensitivity to the initial data deserves
slowly grows. a separate comment; see belpWhe velocity of the breather

We have detected this scenario for the driving strengtlevolving out of theV=0.8 soliton, was tending to approxi-
h=0.1, with the initial condition in the form of the¢/, soli-  mately 2.1. However, for largethe unambiguous interpre-
ton traveling with the velocity=0.05 and withV=0.8. tation of the numerical data is hindered by the growth of the
(For both values of the velocity thg_ soliton is unstable amplitude of the radiation background. The radiation waves
against an oscillatory modeUnlike earlier simulation$13] emitted by the oscillating breather reenter the interval via the
that started with the initial condition in the form of a quies- periodic boundary conditions and at a certain stage their am-

A. The decaying breather
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plitudes become comparable with the amplitude of the VI. CONCLUSIONS
breather. Consequently, the constant-velocity motion of the

breather may have been induced by the interacton with thg,q it 0%t EaT 0 0 B e sallions of the
background radiations. 9

(undampejl parametrically driven nonlinear Scluimger
equation. We established the necessary conditions under
which motionless solitons can be continued to nonzero ve-
The decaying breather was detected in simulations on thiecities, and, in cases where these conditions were met, were
interval (—40,40) with N=2! modes. However, for the indeed able to carry out the numerical continuation. As op-
same value of the control parametér=0.1) and thesame posed to the case of the solitgn , which undergoes similar
initial conditions Y=0.05 andvV=0.8), changing just the transformations for any, the result of the continuation of
parameters of the numerical scheme produced an entirelpe ¢, has turned out to be sensitive to the value of the
different scenario. driving strength. We have identified two different transfor-
Namely, we increased the number of the Fourier modes tmation scenarios, one occurring for small and the other one
N=2%2and the length of the interval first to=120 and then for largerh.
to 160. As in the case df =80 andN=2 in simulations A special attention was paid to the stability of arising
with the new values ol andL the unstable traveling soliton solutions. We have identified three stable branches. First, the
¥, was seen to transform into a bell-shaped structure, oscilquiescent soliton_ , which is known to be unstable for all
lating roughly asy ~e'“'. However, this time the emerging h [5], was shown to stabilize when traveling faster than a
breather has @ositive frequencyw; its amplitude is large certain critical velocity. In a similar way the solitor,
and continues to slowly grow, while the width is narrow and (which is known to be unstable fdr>0.064 while at rest
keeps on decreasirfig. 7(b)]. [5]), may stabilize when traveling above a certain speed. The
This attractor was also observed previouslyi8]. It was  stability region on thelf,V) plane is shown in Fig. 4. For
found there that the decaying and growing breather coexisgmall driving strengths, stable nonpropagating and moving
Whether the evolution of the same unstable soliton settles tgolitons are seen to coexist while strongly forced solitons can
one or the other asymptotic attractor, was found to depend oonly be stable when moving sufficiently fast. No matter how
the choice of the phase of a small perturbation applied to thetrong is the drivefas long ash<1), it can always support
initial condition. In our present simulations, the perturbationone or two windows of stable velocities. The bound state
is modified simply by changing the parameters of the nu+/, ;) also displays a region of stability for smdi#—see
merical scheme. Fig. 6. Finally, we were distinguishing between oscillatory
We also examined initial conditions in the form of trans- and translational instabilities. The onset values of the trans-
lationally unstable solitons, including the, soliton with  lational instabilities, obtained numerically, were shown to
V=1.4 for the driving strengtth=0.1 and they_ soliton  verify the relationgP/dV=0 predicted by our theoretical
with initial velocities V=0.05 andV=1.4, for the driving analysis.
strengthh=0.05. For each of the above three situations the
simulations were repeated with*’2modes on the interval
—40<X=<40, and with 2? modes on the intervals
(—60,60) and (- 80,80). In all nine runs the unstable soliton ~ We thank Dmitry Pelinovsky for drawing our attention to
was seen to evolve into the growing breatlidlevertheless, Ref.[14] and solution(19) presented therein. Useful conver-
it is possible that some other choices of the numerical pasations with Yuri Gaididei are also gratefully acknowledged.
rameters may give rise to the decaying breather instead. Special thanks go to Nora Alexeeva for providing us with a
The velocity of the growing breather may vary during its code for the time-dependent NLS equation and helping with
evolution. It can even wander erratically, changing the direcnhumerics. One of the authoft&B.) is grateful to Professor
tion of its motion several times, but eventually, for10* or 1. V. Puzynin of the LCTA-JINR for his strong administra-
even earlier, the speed of the breather locks on to some cotive support of this project during that author’s visit to
stant value. Since the amplitudes of radiation waves are conbubna. I.B. was supported by the NRF of South Africa and
parable with the amplitude of the breather at that stage, thisRC of the University of Cape Town. E.Z. was supported by
effect can be induced by the breather-radiation interactionsan RFBR Grant No.0001-00617.

B. The growing breather
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