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Decompressive(cooling rarefaction) shock in optically thin radiative plasma
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It is shown that the decompressive shock, i.e., a shock where the pressure behind the front is smaller than the
pressure ahead of it, is possible in a radiative plasma; this is in contrast to the situation in classic gas dynamics.
An example of a steady state decompressive shock wave for a simple, but realistic model for radiative losses
is presented. It is shown that it satisfies the Landau stability criteria.
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I. INTRODUCTION Il. STABILITY

Let us write down a one dimensional system of equations

As itis shown in many articlegsee for examplél] and o0 00nds to the propagation of shock waves in a radiative
[2]) the presence of radiative impurities in a plasma not Onlyplasma'

influence the speed of waves and front propagation in opti-
cally thin radiative plasma, but also leads to phenomena that a9

do not exist in pure plasmas. ot T o () =0, (1)

It is well known that decompressive shock waves, in

which the pressure behind the froR4() is smaller than the P P
pressure ahead of i), are forbidden by thermodynamics m—(nv)+ —
laws in classical gas dynami¢8]. In contrast, we show in at X
this paper, that the existence of radiative impurities in a

24p-pu 2| =0 2
mno po|=0, (2

2 2
plasma can lead to the appearance of decompressive shocksﬁ(LJr mno ) i (Lp+ mh )U_ Kﬂ
(cooling rarefaction shock wavesThis change is due to two at\y—1 2 x|\ y—1 2 X
distinct factors: First, a radiative plasma is essentially an ~S-Q 3)

open system, therefore the law of increasing entropy cannot

be applied to it. Second, the impurities can change the speggheren is densityp is velocity, T is temperatureP=2nT is
of propagation and the damping of sound waves so Muche piasma pressurgve suppose, that the ion and electron

[4,5] that Landau stability criteria for shockthe speed of temperatures are equdl,=T,), m is main ion massy is

the shock front has to be larger than the speed of sound in viscosity, y is adiabatic index ¢=5/3), « is classical

unperturbed media and _onver than the speeo_l of sound_ iBlectron heat conductivityi = xo(T/To)¥2], andSandQ is
perturbed onecan be satisfied for decompressive waves Inheating and cooling functions, respectively, related to the

radiative plasma. presence of impurities in plasma. Functidhand Q will be

In Sec. II, the conditions are found under which impuri- .64 below. In Eqsi1)—(3) the space coordinate coin-
ties and thermal conductivity suppress the propagation Ogides with the direction of propagation of the shock.

short wavelength oscillations in front of the decompressive Let us find out the criteria for stability of decompressive

shock V\t/avel, andthcau;]e Ic;]ng kwavelength oscillations Qhock waves with the assumption that the time of shock
propagate slower than the shock wave. passing is sufficiently long to neglect effects related to the
In Sec. lll, the equation for a stationary shock wave, tak-,

- o S > . final impurity relaxation timg9]. After a simple calculation,
ing into account the radiative processes, is given. It is show purity ¢9] b

that the problem for decompressive shock waves is an eigeg\f_%g)t.the dispersion equation corresponding to the systems

value problem, the conditions for the existence of solutions
are also derived.

In Sec. IV, a numerical solution corresponding to a de-
compressive shock wave is found, and is shown to satisfy the +vrrtv,)=0, (4)
Landau stability criteria.

It has to be noted, that the existence of decompressivéherev,,= w/kvy is the dimensionless frequency (s fre-
thermal fronts has been predicted for collisionless plasmguency,k is wave number of perturbationsy=\2T/m is
with a tail of fast particle$6,7]. The existence of solutions ion thermal speed vg,=[(y—1)/2Tkv][d(Q—S)/dn],
corresponding to expansion of thermal fronts has also beergt=[(y—1)/2nkv+][d(Q—S)/IT], v,.=[(y—1)/2]
predicted in plasmas with strong heating by Ahlbom andX(«k/nvy) andv,=(k/mvn)u.

Liese[8]; however, the stability of such systems has not been Let us present the solutions to the dispersion equddpn
examined. for a few limiting cases.

ivprl (Vo= %) = V(v t vrD) 1= (vRat v,) = (Var= 1) (v,
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In the long wavelength limitvg,,>1, |vg|>1, Eq.(4) Vi

has three rootf4,5]. The first, K,~ oy (13
=—i +v.tv,), 5 o
Fph (VRrt vt ) ® cannot propagate. lkv>v;, the MHD approximation
corresponds to an aperiodic damping|>1); the other fails. Under these conditions the ion sound is also damped by
two, Landau damping.
If
_ (4 VRn 1/2 i )
Vph_ B VRT+ VK+ Vp, " Z(VRT+ Vk+ V,u,) -7 kR> kM ’ (14)

then for all k, either the viscosity is high or the radiative
®  losses are high, e.g., eitheg,>1, |vgy/>1 orv,>1. In

this case, only the modified sonic oscillatid$ correspond-
correspond to modified sonic oscillationls/§,|<1). Since ing to small values ok and|vy,/>1 may propagate in the
v, andv, are always positiveygr>0 is sufficient for damp-  plasma.

VRn

- v, (v, TtV
VRTT Vet vy, '“( « T VRT)

ing of long wavelength sonic oscillations. For the existence of decompressive shock waves it is nec-
If vgr and vg, are close to unity, then all modes are essary that sonic oscillations in front of the shock are either
highly damped. strongly damped, or they propagate slower than the shock

For shorter wavelengths, the sound wave dispersion tendgave, otherwise the shock wave will disperse.
to be dominated by viscosity and thermal conductivity rather It easy to see that if in a “warm” plasma, in front of the
than the radiative losses. If the wave veckgrthat makes shock, conditiong13) and(14) are met in addition to
vrt and vg, close to unity is much smaller than the wave

vectork, , which bringsy, close to unity, VRTT V> VR, (15
_y=14Q-9) v 1 « only modified sound6) may propagate. Therefore, the speed
R™2Tv; on <k.= 2 noy’ (") of the shock waveg, must be greater than the speed of the

modified sound®) in front of the shock wave:
then there exists a set of valueslof

2 VRI']
ke<k<k, 8 ce>1-—. (16)
VRT
such thatvg,<1, |vg7<1, andv,<1, simultaneously. In

this case the dispersion equati@h has three roots: the first N deriving (16), we neglected the influence of viscosity

and conductivity on the speed of the modified so)d|t is
i worth noting that, even if condition€l3) and (14) are not
Vpn=", (VRn™ VR V.0) (9 fulfilled, short wavelength oscillations may still be highly
damped due to anomalous viscosity caused by plasma turbu-
corresponds to the radiative condensation mogg,<€1) lence.
while the other two solutions Next, we will show that for acceptable parameters condi-
tions when all types of sound, with the exception of modified
sound(6), do not propagate through plasma do actually exist,
even in a classical turbulence free plasma without anomalous
) N viscosity. As an example, let us consider a plasma with tem-
correspond to slightly modified sound waves. The case OfJeratureTm 100 eV, £€=0.2, adiabatic indexy=5/3, Q

i
Vph=* Y_Z[VRML yv,+(y=1)(vgrrtrv,)] (10)

very short wave length ~10"1° erg sni/s, andd In(Q)/d In(T)~2 (see Sec. IYthen
2n the ratio ofkg=[(y—1)/2nkv1](dQ/JT) andk,=v;; vy is
vT . . . . M
- <k (11) approximately 0.3, satisfying the desired criterion.
k(y=1) Behind the decompressive shock wave, the temperature

and density are considerably lower than in front of it. There-

corresponds to isothermic sonic oscillations: g -
P fore, condition(7) may be met, so modified sour#l0), be-

VRt v, (y=D+v (vt gy hind the front of the shock wave, may propagate faster than
=+|1— —
vph==* |1 2 vt vt o) 2(vrrt vt v,) the shock wave.
kv
—1—i 4VT. (12) Ill. RADIATION LOSS MODEL
ii

Let us choose the following model of radiative Id%s:
Expression(12) takes into account that ion-ion collisions are

determined byu=0.961 Tk v;; (where; is the frequency Q=n?¢L(T), 17)
of ion-ion collisions. Obviously, the isothermic sound for
very short waves S=const, (18
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whereL(T) is the temperature dependent function of plasma
cooling due to the presence of impurities &id the relative

concentration of impurities in the plasma. Since, the gradi-
ents of the fluxes of particle momentum, and energy must be

zero on both sides of the sho¢B], the temperature and
density of the plasma in Eql)—(3) atx= * o must be such
thatS—Q=0,

S—n2_ . L(Ty_..)=0.

(19

We will be considering a decompression shock wave

moving from the right to the left, sg= —o corresponds to
an undisturbed plasm@vith high temperature and density
and x= +o corresponds to plasma behind the frgnith
lower temperature and densityn accordance with this con-
dition, the inequality(9) at x=— has the form

din(L)

W(T) - >2. (20

In accordance with Eq16), we get the following condition
on the speed of the decompressive shock wave:

2>1— —2 21
¢ din(L) 21)
din(T)| _
Combining inequalitie$20) and (21) we get
2 din(L) , .
“edin(m| " 22

IV. STATIONARY FRONT EQUATIONS

FIG. 1. The dimensionless velocityvs the dimensionless tem-
peratureT. The solid line corresponds to undisturbed plasiima
front of the shock wave and the dashed corresponds to the dis-
turbed plasmgbehind the shock wayeThe point corresponds to
the equilibrium state.

(27)

R=l

wherel = k/T";, we get the following system of equations:

d [dT"? 2y _ - -

Bl e 2| 7

47\ "z + - 1T+a v Q-S, (28

azvz—(1+a2)~+’T——'uv°; dv (29

v v 2T, dz

If we neglect viscosity in Eq(29), it becomes a quadratic
with solution

e~ 14+a?+\(1+a®)2-4a7T

v(T)= . (30)

2a?

In the coordinate system moving along with the shock
wave, the shock wave is described by the following station-The graph of the functiom (T) is shown in Fig. 1. Substi-

ary system of equations:

nv=1";=const, (23

dv
va1+P—,u&=F2=const, (24)
d vy b mno? daT s oE
ax|ly=1PF 2 TS @

The system of Eq923)—(25) is reduced from the system of
Egs. (1)—(3) by discarding the time dependent terms, and a

subsequent integration of Eq4) and(2). The constant$';

andI’, are determined through the plasma parameters at

(26)

2Ty )
F1=an0 W, F2=2n0T0(1+a ),

tuting Eq. (30) into Eqg. (28) we get the equation that coin-
cides completely with the equation for motion of a Newton-
ian particle in a given field with friction:

d?y N dy  du a1
d_22+ (V)E— FEL (31
~ 4y v
_F7/2 517 2
y=T" My).ny_ny ZaUW)d

U<y>=f (S—-Q)dy

The + sign in Eq.(30) corresponds to plasma in front of the
shock wave, and the- sign to plasma behind the shock
wave. Equation(31) is useful for a qualitative analysis of

possible solutions for different radiative impurity models. It
is worth While to note that the coefficient of frictionhas a

the plasma in front of the shock wave, and

Tma= (1+ a?)?/(4a?). However, it does not mean, that Eq.

= ~/mv02/(2T0) is the speed of the decompressive shock(28) should also have the same singularity. In the neighbor-

wave. In terms of the dimensionless variables

hood of the critical poinfT=T 4. like in the theory of
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classical shock waves, it is necessary to take viscosity into 1000

account. From EQq(29) it is easy to see that at this point
dv/dz=0 and dT/dz=0. So, in the neighborhood of the 100
critical point the temperature equati¢28) becomes "

d2’:'|—7/2 o
=Q-S. 32 1
172 Q (32)

0.1

At T=T . the second derivative of temperature with re-
spect toz is negative due to the sign €—S (see below.

i 712 — F_7F ~ ~
The condition thatl T"7/dz=0 atT =Ty allows us to con- FIG. 2. Radiative losse® (solid line) and the heat sourcs
nect together the solutions corresponding to the two branchqaashed lingvs T
of oscillations[see Eq(30)]. In our calculations we used the '
integro-differential equation:

noted that not for every double humped functiofil) that

dT 2y . ., (7o - satisfies conditior(22), there exists a decompressive shock
4 +ﬁT+a v =fO(Q—S)dX+COHSt, (33 wave solution.
As was noted abovél =1 is the equilibrium point, that
which is equivalent to Eq29). It is easy to see that E@3)  corresponds to undisturbed plasma in front of the shock
. . . =, ; . This point is located on the growing branch in Fig. 1
does not have a singularity solution at point T, even if wave. .
We use expressiof0), instead of Eq(29) for 3(T). Soz (solid line). As the distance from the shock decreases, the

. plasma speed grows with the growth of temperature in ac-
<0 corresponds to the plasmq in front of the shock Waveeordance with the solid curve in Fig. 1. After crossing the
andz>0 to the plasma behind if10]

Let id hat t be the f f the funci shock front the plasma speed must increase with decrease in
L Te' us consic erlv(\)/ a mhus Ee 33e orrlr:jc;] € unlc Iontemperature in accordance with the dashed curve in Fig. 1. If
.( ). in expressior(10), so that q_( ) would have a solu- the solution of Eq(33) does not switch to the other branch,
tion in the form of a decom~presswe shock wave and at th%ne recovers the well recognized “cooling wavésee for
same time in the vicinity off=1 would satisfy Eq.(22).  examplg12]). For numerical solution of Eq33), we started

Since aﬁ'=1 the derivatived In(L)/dIn("T') must be greater from the point 7z=0 Corresponding to :‘rmax:(l

than 2[see Eq(20)], and at the same timé=1 must be a +a?)?/(4a?). We used this to choose the integration con-
point of equilibrium(corresponding to the plasma in front of stant in Eq.(33). Integration for positive and negatizevas

the shock wavkethe functionL (T) must be double humped. conducted independently. o
The negative sign of the derivative of the functiQqT) at ~In Fig. 3 we display the temperatufsolid line) and den-
F=1 is insured by a decrease in the plasma density wit ity (dashed ling profile from the numerical solution of Eq.

o _ . 33). The shock wave propagates from the right to the left.
decrease of temperature. The condition thatl is an equi-  The temperature profile, as is apparent from Fig. 3, is very
librium point has the form

asymmetric. The temperature slowly falls for negathand
suddenly drops for positive. It is easy to check that the

2 >d In(L) (34) speed of the sonic wave propagation behind the shock front
1-a? dIn(T) 3 ' is greater thamne—the speed of this decompressive shock
max wave, which corresponds to the shock wave stability criteria

It is easy to see that inequalit@4) is equivalent to inequal- ©f Landau.

ity (21). The form of the functiorL(T) corresponds to the

radiative loss of different impurities in the coronal Hydrogen 1.6

plasma with Maxwellian electron distributiqd1]. By addi- 14F

tion of different impurities it is possible to obtain the re- 1.2}

quired profile of the functiorL(T) so that Eq.(33) has a 1.0

solution in the form of a decompressive shock wave. From a 08}

mathematical point of view the eigenvalues of E83) with o6k

the fulfillment of condition(22) at T=1 correspond to a 04t x

decompressive shock wave. 0.2 . . . ,

-100 -80 -60 -40 -20 0 20

A. Shock solution z

In this section we give an example of a decompressive FiG. 3. The temperature profife (solid line) and density profile
shock wave found by numerically solving EG@2) for the 5 (gashed lingin the shock waver is the dimensionless space
function L(T) shown in Fig. 2, andx=0.5. It should be coordinate. The wave runs from the right to the left.
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V. CONCLUSION Thus, the Landau stability criterion may be satisfied. The

. . . . eigenfunction and eigenvalue problem has been solved nu-
It is shown that the decompressirefaction shock is merically for a simple but realistic radiation model. The tem-

ggﬁ]silgsl,e :? irsdmtwt_a plasmas in contrast to F:Iassmal gf”ls.dgﬁerature shock profile is presented.

. possible for two reasons. First, a radiativ
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