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Decompressive„cooling rarefaction… shock in optically thin radiative plasma
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It is shown that the decompressive shock, i.e., a shock where the pressure behind the front is smaller than the
pressure ahead of it, is possible in a radiative plasma; this is in contrast to the situation in classic gas dynamics.
An example of a steady state decompressive shock wave for a simple, but realistic model for radiative losses
is presented. It is shown that it satisfies the Landau stability criteria.
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I. INTRODUCTION

As it is shown in many articles~see for example@1# and
@2#! the presence of radiative impurities in a plasma not o
influence the speed of waves and front propagation in o
cally thin radiative plasma, but also leads to phenomena
do not exist in pure plasmas.

It is well known that decompressive shock waves,
which the pressure behind the front (P1) is smaller than the
pressure ahead of it (P2), are forbidden by thermodynamic
laws in classical gas dynamics@3#. In contrast, we show in
this paper, that the existence of radiative impurities in
plasma can lead to the appearance of decompressive sh
~cooling rarefaction shock waves!. This change is due to two
distinct factors: First, a radiative plasma is essentially
open system, therefore the law of increasing entropy can
be applied to it. Second, the impurities can change the sp
of propagation and the damping of sound waves so m
@4,5# that Landau stability criteria for shocks~the speed of
the shock front has to be larger than the speed of soun
unperturbed media and lower than the speed of soun
perturbed one! can be satisfied for decompressive waves
radiative plasma.

In Sec. II, the conditions are found under which impu
ties and thermal conductivity suppress the propagation
short wavelength oscillations in front of the decompress
shock wave, and cause long wavelength oscillations
propagate slower than the shock wave.

In Sec. III, the equation for a stationary shock wave, ta
ing into account the radiative processes, is given. It is sho
that the problem for decompressive shock waves is an e
value problem, the conditions for the existence of solutio
are also derived.

In Sec. IV, a numerical solution corresponding to a d
compressive shock wave is found, and is shown to satisfy
Landau stability criteria.

It has to be noted, that the existence of decompres
thermal fronts has been predicted for collisionless plas
with a tail of fast particles@6,7#. The existence of solution
corresponding to expansion of thermal fronts has also b
predicted in plasmas with strong heating by Ahlbom a
Liese@8#; however, the stability of such systems has not be
examined.
1063-651X/2001/64~1!/016416~5!/$20.00 64 0164
y
ti-
at

a
cks

n
ot
ed
h

in
in
n

of
e
to

-
n
en
s

-
e

ve
a

en
d
n

II. STABILITY

Let us write down a one dimensional system of equatio
corresponds to the propagation of shock waves in a radia
plasma:

]n

]t
1

]

]x
~nv !50, ~1!

m
]

]t
~nv !1

]

]x S mnv21P2m
]v
]xD50, ~2!

]

]t S P

g21
1

mnv2

2 D1
]

]x F S g

g21
P1

mnv2

2 D v2k
]T

]xG
5S2Q, ~3!

wheren is density,v is velocity,T is temperature,P52nT is
the plasma pressure~we suppose, that the ion and electro
temperatures are equal,Te5Ti), m is main ion mass,m is
ion viscosity,g is adiabatic index (g55/3), k is classical
electron heat conductivity@k5k0(T/T0)5/2#, andS andQ is
heating and cooling functions, respectively, related to
presence of impurities in plasma. FunctionsS andQ will be
defined below. In Eqs.~1!–~3! the space coordinatex coin-
cides with the direction of propagation of the shock.

Let us find out the criteria for stability of decompressi
shock waves with the assumption that the time of sho
passing is sufficiently long to neglect effects related to
final impurity relaxation time@9#. After a simple calculation,
we get the dispersion equation corresponding to the syst
~1!–~3!:

inph@~nph
2 2g!2nm~nk1nRT!#2~nRn1nm!2~nph

2 21!~nk

1nRT1nm!50, ~4!

wherenph5v/kvT is the dimensionless frequency (v is fre-
quency,k is wave number of perturbations,vT5A2T/m is
ion thermal speed!, nRn5@(g21)/2TkvT#@](Q2S)/]n#,
nRT5@(g21)/2nkvT#@](Q2S)/]T#, nk5@(g21)/2#
3(kk/nvT) andnm5(k/mvTn)m.

Let us present the solutions to the dispersion equation~4!
for a few limiting cases.
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In the long wavelength limit:nRn ,@1, unRTu@1, Eq. ~4!
has three roots@4,5#. The first,

nph52 i ~nRT1nk1nm!, ~5!

corresponds to an aperiodic damping (unphu@1); the other
two,

nph56S 12
nRn

nRT1nk1nm
D 1/2

1
i

2~nRT1nk1nm! F12g

2
nRn

nRT1nk1nm
2nm~nk1nRT!G ~6!

correspond to modified sonic oscillations (unphu<1). Since
nk andnm are always positive,nRT.0 is sufficient for damp-
ing of long wavelength sonic oscillations.

If nRT and nRn are close to unity, then all modes a
highly damped.

For shorter wavelengths, the sound wave dispersion te
to be dominated by viscosity and thermal conductivity rat
than the radiative losses. If the wave vectorkR that makes
nRT and nRn close to unity is much smaller than the wa
vectorkk , which bringsnk close to unity,

kR5
g21

2TvT

]~Q2S!

]n
!kk5

g21

2

k

nvT
, ~7!

then there exists a set of values ofk:

kR!k!kk ~8!

such thatnRn!1, unRTu!1, andnk!1, simultaneously. In
this case the dispersion equation~4! has three roots: the firs

nph5
i

g
~nRn2nRT2nk! ~9!

corresponds to the radiative condensation mode (nph!1)
while the other two solutions

nph56Ag2
i

2g
@nRn1gnm1~g21!~nRT1nk!# ~10!

correspond to slightly modified sound waves. The case
very short wave length

2nvT

k~g21!
!k ~11!

corresponds to isothermic sonic oscillations:

nph56F12
nRn1nm

2~nRT1nk1nm!G2 i
~g21!1nm~nk1nRT!

2~nRT1nk1nm!

.612 i
kvT

4n i i
. ~12!

Expression~12! takes into account that ion-ion collisions a
determined bym50.96nTk/n i i ~wheren i i is the frequency
of ion-ion collisions!. Obviously, the isothermic sound fo
very short waves
01641
ds
r

of

km;
n i i

vT
, ~13!

cannot propagate. IfkvT@n i i , the MHD approximation
fails. Under these conditions the ion sound is also damped
Landau damping.

If

kR@km , ~14!

then for all k, either the viscosity is high or the radiativ
losses are high, e.g., eithernRn@1, unRTu@1 or nm@1. In
this case, only the modified sonic oscillations~6! correspond-
ing to small values ofk and unphu@1 may propagate in the
plasma.

For the existence of decompressive shock waves it is n
essary that sonic oscillations in front of the shock are eit
strongly damped, or they propagate slower than the sh
wave, otherwise the shock wave will disperse.

It easy to see that if in a ‘‘warm’’ plasma, in front of th
shock, conditions~13! and ~14! are met in addition to

nRT1nk.nRn , ~15!

only modified sound~6! may propagate. Therefore, the spe
of the shock wave,c, must be greater than the speed of t
modified sound~6! in front of the shock wave:

c2.12
nRn

nRT
. ~16!

In deriving ~16!, we neglected the influence of viscosi
and conductivity on the speed of the modified sound~6!. It is
worth noting that, even if conditions~13! and ~14! are not
fulfilled, short wavelength oscillations may still be high
damped due to anomalous viscosity caused by plasma tu
lence.

Next, we will show that for acceptable parameters con
tions when all types of sound, with the exception of modifi
sound~6!, do not propagate through plasma do actually ex
even in a classical turbulence free plasma without anoma
viscosity. As an example, let us consider a plasma with te
perature T'100 eV, j50.2, adiabatic indexg55/3, Q
'10219 erg sm3/s, andd ln(Q)/d ln(T)'2 ~see Sec. IV! then
the ratio ofkR5@(g21)/2nkvT#(]Q/]T) andkm5n i i /vT is
approximately 0.3, satisfying the desired criterion.

Behind the decompressive shock wave, the tempera
and density are considerably lower than in front of it. The
fore, condition~7! may be met, so modified sound~10!, be-
hind the front of the shock wave, may propagate faster t
the shock wave.

III. RADIATION LOSS MODEL

Let us choose the following model of radiative loss@5#:

Q5n2jL~T!, ~17!

S5const, ~18!
6-2
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whereL(T) is the temperature dependent function of plas
cooling due to the presence of impurities andj is the relative
concentration of impurities in the plasma. Since, the gra
ents of the fluxes of particle momentum, and energy mus
zero on both sides of the shock@3#, the temperature and
density of the plasma in Eqs.~1!–~3! at x56` must be such
that S2Q50,

S2nx56`
2 L~Tx56`!50. ~19!

We will be considering a decompression shock wa
moving from the right to the left, sox52` corresponds to
an undisturbed plasma~with high temperature and density!,
and x51` corresponds to plasma behind the front~with
lower temperature and density!. In accordance with this con
dition, the inequality~9! at x52` has the form

d ln~L !

d ln~T!
U

x52`

.2. ~20!

In accordance with Eq.~16!, we get the following condition
on the speed of the decompressive shock wave:

c2.12
2

d ln~L !

d ln~T!
U

x52`

. ~21!

Combining inequalities~20! and ~21! we get

2

12c2
.

d ln~L !

d ln~T!
U

x52`

.2. ~22!

IV. STATIONARY FRONT EQUATIONS

In the coordinate system moving along with the sho
wave, the shock wave is described by the following stati
ary system of equations:

nv5G15const, ~23!

mvG11P2m
dv
dx

5G25const, ~24!

d

dx F S g

g21
P1

mnv2

2 D v2k
dT

dxG5S2Q. ~25!

The system of Eqs.~23!–~25! is reduced from the system o
Eqs. ~1!–~3! by discarding the time dependent terms, an
subsequent integration of Eqs.~1! and~2!. The constantsG1
and G2 are determined through the plasma parametersx
52`:

G15an0A2T0

m
, G252n0T0~11a2!, ~26!

wheren0 , v0 , T0 are the density, speed, and temperature
the plasma in front of the shock wave, anda
5Amv0

2/(2T0) is the speed of the decompressive sho
wave. In terms of the dimensionless variables
01641
a

i-
e

e

k
-

a

f

k

ñ5
n

n0
, T̃5

T

T0
, ṽ5

v
v0

, z52
x

l
, ~27!

wherel 5k/G1, we get the following system of equations:

d

dz
S dT̃7/2

dz
1

2g

g21
T̃1a2ṽ2D 5Q̃2S̃, ~28!

a2ṽ22~11a2!ṽ1T̃2
mv0ṽ
2T0l

dṽ
dz

50. ~29!

If we neglect viscosity in Eq.~29!, it becomes a quadratic
with solution

ṽ~ T̃!5
11a26A~11a2!224a2T̃

2a2
. ~30!

The graph of the functionṽ(T̃) is shown in Fig. 1. Substi-
tuting Eq. ~30! into Eq. ~28! we get the equation that coin
cides completely with the equation for motion of a Newto
ian particle in a given field with friction:

d2y

dz2
1l~y!

dy

dz
52

dU

dz
, ~31!

y5T̃7/2, l~y!5
4g

7~g21!
y25/712a2ṽ~y!

dṽ
dy

,

U~y!5E ~S̃2Q̃!dy.

The1 sign in Eq.~30! corresponds to plasma in front of th
shock wave, and the2 sign to plasma behind the shoc
wave. Equation~31! is useful for a qualitative analysis o
possible solutions for different radiative impurity models.
is worth while to note that the coefficient of frictionl has a
singularity at the point of maximum allowed temperatu
T̃max5(11a2)2/(4a2). However, it does not mean, that E
~28! should also have the same singularity. In the neighb
hood of the critical pointT̃5T̃max, like in the theory of

FIG. 1. The dimensionless velocityṽ vs the dimensionless tem

peratureT̃. The solid line corresponds to undisturbed plasma~in
front of the shock wave!, and the dashed corresponds to the d
turbed plasma~behind the shock wave!. The point corresponds to
the equilibrium state.
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classical shock waves, it is necessary to take viscosity
account. From Eq.~29! it is easy to see that at this poin
dṽ/dz50 and dT̃/dz50. So, in the neighborhood of th
critical point the temperature equation~28! becomes

d2T̃7/2

dz2
5Q̃2S̃. ~32!

At T̃5T̃max, the second derivative of temperature with r
spect toz is negative due to the sign ofQ̃2S̃ ~see below!.
The condition thatdT̃7/2/dz50 at T̃5T̃max allows us to con-
nect together the solutions corresponding to the two branc
of oscillations@see Eq.~30!#. In our calculations we used th
integro-differential equation:

dT̃7/2

dz
1

2g

g21
T̃1a2ṽ25E

0

z

~Q̃2S̃!dx1const, ~33!

which is equivalent to Eq.~28!. It is easy to see that Eq.~33!

does not have a singularity solution at pointT̃5T̃max even if
we use expression~30!, instead of Eq.~29! for ṽ(T̃). So z
,0 corresponds to the plasma in front of the shock wa
andz.0 to the plasma behind it.@10#

Let us consider what must be the form of the functi
L(T) in expression~10!, so that Eq.~33! would have a solu-
tion in the form of a decompressive shock wave and at
same time in the vicinity ofT̃51 would satisfy Eq.~22!.
Since atT̃51 the derivatived ln(L)/d ln(T̃) must be greater
than 2 @see Eq.~20!#, and at the same timeT̃51 must be a
point of equilibrium~corresponding to the plasma in front o
the shock wave! the functionL(T̃) must be double humped
The negative sign of the derivative of the functionQ(T) at
T̃51 is insured by a decrease in the plasma density w
decrease of temperature. The condition thatT̃51 is an equi-
librium point has the form

2

12a2
.

d ln~L !

d ln~ T̃!
U

T̃max

. ~34!

It is easy to see that inequality~34! is equivalent to inequal-
ity ~21!. The form of the functionL(T̃) corresponds to the
radiative loss of different impurities in the coronal Hydrog
plasma with Maxwellian electron distribution@11#. By addi-
tion of different impurities it is possible to obtain the r
quired profile of the functionL(T̃) so that Eq.~33! has a
solution in the form of a decompressive shock wave. From
mathematical point of view the eigenvalues of Eq.~33! with
the fulfillment of condition~22! at T̃51 correspond to a
decompressive shock wave.

A. Shock solution

In this section we give an example of a decompress
shock wave found by numerically solving Eq.~32! for the
function L̃(T̃) shown in Fig. 2, anda50.5. It should be
01641
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noted that not for every double humped functionL̃(T̃) that
satisfies condition~22!, there exists a decompressive sho
wave solution.

As was noted above,T̃51 is the equilibrium point, that
corresponds to undisturbed plasma in front of the sh
wave. This point is located on the growing branch in Fig
~solid line!. As the distance from the shock decreases,
plasma speed grows with the growth of temperature in
cordance with the solid curve in Fig. 1. After crossing t
shock front the plasma speed must increase with decrea
temperature in accordance with the dashed curve in Fig.
the solution of Eq.~33! does not switch to the other branc
one recovers the well recognized ‘‘cooling wave’’~see for
example@12#!. For numerical solution of Eq.~33!, we started
from the point z50 corresponding to T̃max5(1
1a2)2/(4a2). We used this to choose the integration co
stant in Eq.~33!. Integration for positive and negativez was
conducted independently.

In Fig. 3 we display the temperature~solid line! and den-
sity ~dashed line! profile from the numerical solution of Eq
~33!. The shock wave propagates from the right to the le
The temperature profile, as is apparent from Fig. 3, is v
asymmetric. The temperature slowly falls for negativez and
suddenly drops for positivez. It is easy to check that the
speed of the sonic wave propagation behind the shock f
is greater thana—the speed of this decompressive sho
wave, which corresponds to the shock wave stability crite
of Landau.

FIG. 2. Radiative lossesQ̃ ~solid line! and the heat sourceS̃

~dashed line! vs T̃.

FIG. 3. The temperature profileT̃ ~solid line! and density profile

ñ ~dashed line! in the shock wavez is the dimensionless spac
coordinate. The wave runs from the right to the left.
6-4
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V. CONCLUSION

It is shown that the decompressive~rarefaction! shock is
possible in radiative plasmas in contrast to classical gas
namics. It is possible for two reasons. First, a radiat
plasma is an open system, and the entropy production
be arbitrary. Second, the usual sound may be damped i
unperturbed hot plasma, and only the slow modified so
may propagate. Simultaneously, the usual sound may pr
gate in a cool perturbed plasma. The shock front speed
be faster than the sound speed in unperturbed hot plasma
slower than the sound speed in the perturbed cool plas
lu

01641
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Thus, the Landau stability criterion may be satisfied. T
eigenfunction and eigenvalue problem has been solved
merically for a simple but realistic radiation model. The tem
perature shock profile is presented.
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