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Multifilament structures in relativistic self-focusing
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A simple model is derived to prove the multifilament structure of relativistic self-focusing with ultraintense
lasers. Exact analytical solutions describing the transverse structure of waveguide channels with electron
cavitation, for which both the relativistic and ponderomotive nonlinearities are taken into account, are pre-
sented.
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[. INTRODUCTION can take plac@12]. However, as noticed ifil1,13, analyti-
cal descriptions led to the appearance of negative electron
Recent development in laser technology has opened u@ensities. This problem was solved by setting the channel
the possibility of exploring previously unattainable regimesPoundary positions exactly at the point where the electron

of laser-plasma interactiofi]. Intensities of the order of density became zero. Feit al. [7] showed that this proce-

10" W/cn? and higher can now be achieved, implying thatdure did not conserve the global charge and proposed includ-

oals like compact sources for x-ray lag2l, the fast ignitor ing the electron temperature effect, which, however, was not
9 mpa : y ! 9 self-consistently evaluatethe temperature was assumed to
concept for inertial confinement fusigiCF) [3], and laser-

; o be derived from experimental conditionsRecently, we
plasma based acceleratdrd might soon be within reach. 04 that for an overdense plasma a self-consistent descrip-

However, a major effort is still required both numerically (o of self-induced transparency is possible that automati-
and analytically in order to understand the nonlinear phezq)ly takes into account global charge conservation through
nomena that arise in the presence of such extremely higpgisson’s equatiofil4]. The strong analogies between one-
intensities of eIeCtromagnetiC radiation. Good analytical in'dimensionaK]_D) overdense and 2D underdense p|asmas al-
sight is also needed in order to make numerical simulationfow for an exact analysis of the stationary stage of electron
possible and to interpret their result. cavitation due to the joint effects of relativistic and striction
One of the problems that have received particular attennonlinearities in underdense plasmas. This analysis leads to
tion is the combined effect of relativistic and strictigmon-  an exact analytical description of the transverse structures
deromotive nonlinearities, which occur in the propagation generated by relativistic self-focusing and also demonstrates
of superintense laser pulses through underdense plasmias multiflament nature.
[i.e., plasmas witho,< w, wherewp:(47rnee2/me)1’2 is the Depending on the incident power and intensity distribu-
plasma frequency ana is the laser carrier frequenty6].  tion, several qualitatively different solutions may occur. Our
This problem is not fully understood yet and there is need o&im is to give an exact analytical description of the stationary
a self-consistent analytical description that does not violatstage of the fundamental configurations. We will show that,
global charge conservation and plasma quasineutrality wheif the incident power is relatively low and the intensity has
describing self-focusing and self-channelig. its maximum on axis, the plasma will react by generating a
A common feature in the above mentioned schemes istationary stage with a single channel acting as an optical
that transport of laser radiation over considerable distanceguide for the propagating radiation. If the incident power is
well beyond the diffraction limit, and without significant en- increased and the intensity instead has its minimum on axis
ergy losses is required. In achieving this goal, nonlinear selfta higher order laser moglethen the final stationary stage
focusing and self-channeling play an important role. Undemwill display two symmetric channels. Finally, for even
the action of an intense laser pulse, electrons tend to be réigher incident powers and maximum on-axis incident inten-
distributed in the transverse direction as an effect of the ponsities, three channels will be generated, and so on, with the
deromotive pressure, the self-channeling phenomenon. Theitical power for channel formation depending on the unper-
subsequent self-modification of the radial profile of the re-turbed plasma density and the wave number of the propagat-
fractive index is at the origin of the nonlinear self-focusinging radiation. Of particular interest is the fact that these
and filamentation of the laser pulse. Nonlinear self-focusingstructures can be interpreted as the final stationary stage of
and self-channeling offer a possibility for optical guiding of the filamentation instability, as shown by the numerical
laser pulses in underdense pulses such as, for instance, thienulations presented ir5].
underdense corona of an ICF target, through the formation of In this paper, we introduce in Sec. Il the model equations
“hollow channels” [8], as experimentally observed by sev- and the approximations we will use to describe electron cavi-
eral groupd9,10]. tation in a two-dimensional underdense plasma. The general
As was shown in[11], relativistic self-focusing shows is discussed in Sec. lll and our results for single- and multi-
qualitatively different features for ultraintense lasers. Thechannel structures in 2D planar geometry are presented in the
ponderomotive force of superstrong fields expels electrondpllowing sections, following a brief discussion of the physi-
thus producing “vacuum channels” that guide the radiation,cal mechanisms behind the generation of such structures. Fi-
and stable channeling with power higher than the critical onaally, some conclusions are summarized in Sec. VI.
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Il. THE MODEL The assumption made on the pulse duration implies that

Let us consider the propagation of electromaanetic radi the electron fluid has time to approach a quasi-steady-state
. propag gnetic radic 16]. Therefore, it is interesting to describe what kind of
tion in a homogeneous plasma. A complete description i

based on Maxwell's equations for the propadating laser ra_tationary state the system will reach, neglecting any tran-

diation plus a model dgscribin the IasF;napregs ongse For thseiem phenomena. This leads to further simplification, be-
pluS. X g the plasma resp ’ cause we can neglect the time dependence in(#gand,

problem of interest, an important simplification comes from _. .

. o ) sincev before the passage of the laser pulse must be zero, it
the physical context. Considering short pulses with length -~
h thate— 1< r< w1 the ion d . b lected follows from Egs.(3) and(4) that =0.

szc . ath e ST, .”e Ict)T) ynamics cgm 'tﬁ neglg(e(;eld In order to single out the fast optical time scale we adopt

[12]. urthermore, we will not be concerned with wake 1Ield v, q slowly varying envelope approximation, factorizing the

generatiorj13], since the pulse is long enough to allow us to normalized vector potential as

disregard longitudinal charge separatj@ Finally, all ther-

mal effects will be disregarded since, at these high intensi- eA

ties, electrons are driven to relativistic velocities in just a few ——=a, (r,)r, exdi(hz—wt)]+c.c. (7)

optical cycles and the electron pressure gradient is negligible mc?

compared to the ponderomotive pressirs.

These assumptions define the model we are using to dé:SSuming the paraxial approximatién <h, wherek, is the
scribe our plasma. The ions are considered as an immobifs@nsverse component of the laser wave numberaiscthe
neutralizing background and the electrons as a cold relatifroPagation constant, the parallel component of the vector
istic fluid. Our set of self-consistent equations derived fromPetential is negligible if compared to the transverse ones and
Maxwell's equations and the equation of motion for the electhe incident radiation may be assumed to be circularly polar-

tron component, assuming the Coulomb gauge, reads ized without loss of generality. In what follows, we will drop
the subscript denoting the perpendicular component of the

1 2A 14 4 various quantities. The resulting system of equations, after a
a . . . .
V?A— — ——=-—Vo+—Ney, (1)  few algebraic manipulations, is
C2 (9t2 c ot C
vZa+|1- a=o0 8
VZp=4me(N—Ny), ) a ~/2=0 ®
e VZ¢p=a(n—-1), 9
myv=—A+Vy, ©)
¢=vy—1 ifandonlyif n#0, (10
J
&—(t/l=e<p—mcz()/— 1), (4) y=v1+a’, (11)
where
V-A=0. (5)
No
Here y=1/\1—Vv?/c? is the relativistic factorN is the elec- = e (12)

tron density N is the equilibrium density;- e andm are the

electron charge and mass, respectivelyis the electromag- = /¢ is the vacuum wave number and we have introduced
netic yector potentlalgg is the electrostatic scalar potential the normalizationng=Ny/Ng, with N.,=mw?/(4me?), n
and is a scalar funqtlon that expresses thelelectron canoni=. N/Ng, ¢=ee/(m), r= k1= h%K?r, .

cal momentum. Details of the derivation of this model can be
found in[8]. Equationg3) and(4) imply that we are assum-
ing vortex-free motion of the electrons. Taking the diver-
gence of Eq(1) and using Eqs(2) and (5) we find that the Let us consider a two-dimensional geometry for a plasma
charge conservation law extending in thez direction, i.e., along the laser propagation
direction. We will restrict ourselves to a 1D transverse model
in order to emphasize the main features of multifilament
structures. In Eqs8)—(11) the propagation constahtplays

the role of a free parameter which, together with the back-
is automatically satisfied, i.e., the total charge is conservedyround plasma density,, defines what kind of filament
However, when dealing with necessarily simplified modelsstructures can be realized as a final state of the self-focusing
describing the stationary regime in the presence of electroavolution. In reality, it would depend on several parameters
cavitation phenomena, the condition of plasma quasineutraknd factors such as the laser power, the geometrical configu-
ity is not obviously conservefil1-13. This point must be ration(the angle of focusing, for instanceand the prehistory
carefully discussed when constructing solutions and it willof the process.

lead to the breaking of the Hamiltonian model, thus allowing The self-channeling we are interested in is realized only
for multifilament structures. when «>1, i.e., for underdense plasmas whepH/k

IIl. GENERAL ANALYSIS

N _
E+V~(Nv)—0 (6)
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>\1—nq and for overdense plasmas witlg>1 whenh/k
<1.

The complete mathematical analogy between the present
model and the one introduced ii7] suggests that our
plasma will react to the laser action with the formation of
regions depleted of electrons, where the laser electromag-
netic radiation is trapped, a consequence of the well known
phenomenon of electron cavitation and channeling. Electrons
tend to be expelled from the focal spot by the laser pondero-
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a=14
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Electron density

motive force and, at the same time, under such extreme con- -4 =2 0 2 4
ditions, they acquire relativistic quiver velocities. These ef-
fects both contribute to a self-induced modification of the
radial profile of the refractive index and a consequent non- FIG. 1. Plasma-field structurdgashed lingand electron den-
linear trapping of the laser radiation in finite plasma regionssity distribution(continuous lingfor the case of a single filament in
This modification is the basic mechanism in the optical guid-an underdense plasma, for a fixed valuexoless then 1.5. In this
ing of laser pulses in plasmas. It is possible to give an exaatasea=1.4. The power needed to generate a single-filament struc-
analytical description of the asymptotic stationary plasmadure is shown in the inset as a function of the parametar « less
field structures generated in the transverse direction for difthen 1.5. All quantities are dimensionless.

ferent values ofr. As we will see, these structures consist of

one or more channels, depending on the corresponding inci-

dent power. The most delicate point in the analysis will bethe interval I—2ny/3=h/k>\1—n,, we have solutions
the determination of such structures complying with 9|0ba|expressed by the continuous functici$) and (16).
charge conservation. _ o The field and density structures and the corresponding
Equations(8)—(11) were analyzed in detail if13] and  power related to the propagation constant are presented in
also in[18] with respect to both underdense and overdensgig. 1. It should be emphasized that, fe1.5, since the
plasmas and solutions were found in the form of continuoussystem is fully described by the Hamiltoni&h3), there are
functions. Fundamental to those analysis _is the Hamiltoniapg other structures except this single-filament one. The im-
structure of the set of equatio8)—(11), which reads portant question is what will happen for higher incident pow-
ers or, in other words, foe>>1.5. The procedure for con-
structing a solution followed ifi11,12,15, which consisted
in assuming the electron density to vanish within the interval
where the solution for the densif{l6) is negative, led to
gonconservation of the global charge. However, what is hap-
pening is that the ponderomotive force is pushing electrons
away from the central axis, while the force due to charge
separation acts in the opposite direction. Thus, when an equi-
librium is reached, we have the formation of a stationary
structure consisting of a channel emptied of its electrons.
This means that the global structure of the solution consists
of two parts, the first one described by the Hamilton(a8),

1

1
He=——a’'?— = (2a\1+a%*—a?), 13
= 1t ad) 5 ) (13

where the prime denotes the derivative with respect to th
transverse coordinate. As n(x)—1 and botha(x) and
a’(x) vanish forx—oo, the integral of motion equals

HE: HEOE — Q. (14)

It follows that there is an exact solitonlike analytical solution

given by while the second, describing the depletion regions where the
" o electron density vanishes, has the typical vacuum Hamil-
Amcosh |eo YA x—x)] tonian:
- 12 (15
a cost[ |eo|YAx—x@)]— gl
. 1
where eg=1—« and the parametex(?) defines the peak HV:E(a’2+ a?). (17

position of the function(15), which is given by A,
=2[a(a—1)]*2 Once this solution is known, we also have
a description for the electron density through Poisson’s equ

tion (9) and the equation of motiofi0): & Fig. 2 the phase portrait of the full system is presented for

the single-filament case with=2 while in Fig. 3 the same

> phase portrait is shown for a more complicated multifilament

a (He—a?). (1) ~ case witha=2.

a The continuous solitonlike solution described by ELp)

corresponds here to the separatrix trajectory and its starting

The minimum electron density in a cavity is given by, and final point isa=0, a’=0. As pointed out, this solution

=1—4(a—1)?, which implies that, fo> 1.5, this solution  breaks down for higher values of and we indicate on the

leads to the unphysical result of a negative electron densityphase portrait the curve beyond which the electron density

Therefore, ifa<1.5, i.e., for propagation constants lying in (16) formally becomes negative.

n=3(1+a%+2
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~ FIG. 2. Phase portrait for a system that develops a single- g 4. plasma-field structurdgashed ling and electron den-
filament structure. The thick line represent§ the trajectory followedsity distribution (continuous ling for the case of a single channel
by the system, starting from the separatrixaat0, a'=0, then  {o 5 fixed value ofa=2. All quantities are dimensionless.
moving on along the vacuum trajectory to finally come back to the
starting point along the separatrix again, which represents the sym-
metrical plasma region. The corresponding plasma-field structures IV. SINGLE-FILAMENT SOLUTIONS
are illustrated in Fig. 4 below.
Let us consider a localized solution with one peak for the
intensity. Its structure is defined by the closed trajectory

Beyond the limit curve for the electron density we have to(.o'l'l, -0) .showr) in Fig. 2. We will treat this kind of solu-
introduce the “vacuum” part of the solution. Our system hastion as a s_mgle-f!lame,nt solut|_on. .
left the separatrix and has started to move along the vacuur%m.tegr"’mng Poisson’s equation over the whole interval we
trajectory. The boundary position up to which the electronPtain
are displaced is determined by the equilibrium condition be-

tween the two forces acting on them, as described by the 1 agag
equation of motion a \1+a3
L whereay is the field amplitude at the boundary positiog.
¢’ =y (18 At the same time, we have to match the field in the vacuum
channel
and by the conservation of the total charge, which means a(x)= Ay COSX (20)

that, in order to conserve the total charge, the boundary po-

sitions can now be determined by inserting the equilibriumgng its first derivative to the field and its first derivative in
condition(18) into Poisson’s equation and integrating it.  the plasma region, that is,

Aj=aj+a,’ (21)
6
and
4
ag
2 Xq= —arctan —|. (22
aq
s 0
Given the integral of motiorH{= — «, from the two equa-
-2 tions for x4 we obtain a transcendental equation for the
4 boundary amplitudey,
-6

-6 -4 -2 0 2 4 6

: r( ag[2a(\1+a3—1)—a3]*?
al

a

Ner

. . . ) +aj

. FIG. 3. Phasg por.tralt for a more complllcated case with multiple - d [2a( \/1+—a§— 1)— a§]1/2, (23)
filaments. The thick line represents the trajectory in the case of four aq

filaments. Solid lines represent trajectories relative to electron lay-

ers while dashed lines are relative to depletion regions and the longhich can be solved numerically, so that now we know ev-
dashed lines separate regions with positive and negative electr@rything about the structures generated in this ¢ase Fig.
density, as follows from Eq.16). 4). It is important to be careful when solving this equation
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2 2.5 3 3.5 4 FIG. 6. Double-channel structure for a plasma with a fixed
a =2 and maximum possible intensi&é at the last boundarycon-

tinuous ling and electron density distributiofdotted ling. All

FIG. 5. Total power(continuous ling and channel widthw quantities are dimensionless.
=2xq4 (inse} for the single-flament case. For comparison, the
dashed line shows the total power calculated according to the com-
monly used model, without taking into account global charge constate will present a multiple channel structure which can
servation. All quantities are dimensionless. again be analytically described. It is important to note that

some of these structures cannot be considered as purely
higher order eigenstates of the initial equations and therefore
since it has multiple solutions, but we have to choose the firstheir existence and nature is not obvious. The power neces-
that satisfies the condition of charge conservation. sary for generating each of these structures can be exactly

The calculation of the total power for this single-channelcalculated as well. As we will show, this allows for the defi-
configuration as a function okx is straightforward,P  nition of a threshold power for the generation of multifila-
=[**a%(x)dx, and the result is presented in Fig. 5. For ment structures.
comparison, we present here also the total power calculated Let us start with the case of an intensity distribution with
within the previous model, when the boundary positign  a minimum on the symmetry axis. An example of the trajec-
was assumed to be the one where the electron density vatery in the phase space for the double-channel case is given
ished. In this case, the total charge not being conserved, theie Fig. 3, indicated as (0-2-23’-3-0). To construct the
was an excess of positive charge, which led to a much highdfeld structure we can start from inside the plasma region at
power required in order to overcome the restoring force du&— + o, where we know the integral of motion and the ex-
to this charge excess. Consequently, the power needed fwession for the decaying field and the electron derjsige
generate such structures was overestimated. It is also inteEgs. (15 and (16), respectively. When we come to the
esting to see how, for increasing values @fand conse- depletion region there is a certain freedom in the choice of
guently increasing values of the required power, the width othe boundary amplituda,, as we are going backward from
the central vacuum channel becomes larger, but, after thihe last plasma region toward the central axis. The only re-
initial rapid growth, its increase becomes slowsee the quirement foray is that the electron density must not be
inset in Fig. 5. negative; therefore we can fix the boundary amplit(aied

It is interesting to note that analogous structures can béherefore the boundary positie as wel) to any value up to
found in a cylindrical geometry, although with the help of a maximum for which the density at the boundary vanishes.
numerical computations. As this work is focused on clarify-This means that for a fixed the two-peak solution is not
ing the role of plasma neutrality when constructing structuresinique and there is a certain power range for generating such
generated by the interplay of ponderomotive and relativistica structure. For a giveay the field in the vacuum region,
nonlinearity, the extension of these same structures to a more
realistic and important axisymmetrical configuration, requir-
ing more attention to the complications due to higher dimen- a(x)=Ay cogx—¢), (24)
sionality, will be presented separately.

is completely determined from the matching conditions, but
now the vacuum channel extends from theto a certainx,

V. MULTIEILAMENT STRUCTURES (see Fig. & which. is to be determined taking into account
charge conservation.

It is evident from our analysis that, due to the require- In order to construct a structure with only one degree of
ments of global charge conservation and to the symmetrgomplexity more than for the single channel, we stop at the
imposed with respect to theaxis, for a fixede the single- next plasma layer, which will be centered on the symmetry
filament configuration and the power necessary to generatxis. An analytical expression for the field in this central
this structure are uniquely determined. If this power is ex-plasma layer can be derived by solving the equation for the
ceeded, the incident electromagnetic radiation is strongector potential. Now the solution is not localized as before,
enough to spread along the transverse direction of the plasnand therefore the boundary conditions and the Hamiltonian
channel over a distance larger than in the previous case, blz=Hg,> — «a are not known. The solution is expressed in
still finite. For a sufficiently strong power, the final stationary terms of two-parameter elliptic functions as
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2qer &7 4(x—xM)]
2+[(g%+1)"?=1]sr e} (x—x)]’
2qsn{[(g4+1)%2— &?1Y3(x—xD)/2}
o2 =sr{[(e1+1)%— a?]Ax—xD)/2}’

_Q<HE1<C¥

o)

~
<

<z
Il

(29

He1> «a,

where g,= (e?+1+2Hg) Y2 q=[(e,+a)?—1]¥2 andq sity such that Eq(26) still has a solution depends anand
=[(e1+a+1)/(e1+a—1)]"2 while  k={[a®—(&; also find a solution of this equation and calculate To
—1)2)/4¢,]¥? and ?:{[(81_1)2_az]/(81+1)2_a2)}1/2 finally obtain a complete description of the central plasma

are the moduli of the elliptic integrals of the first kind, re- 12Yer we only have to apply the boundary conditions ato

spectively, for the two cases. These solutions were present 1t)ermi_ne the parameters _th_at are Sti_” unknot; and
in [14] for the problem of self-induced transparency of anX - While the symmetry axis is determined as the symmetry

overdense plasma. Imposing the conservation of the totdxis of the elliptic function. In Fig. 6 a double-channel struc-
charge by integrating Poisson’s equation from0 to x ture is shown for fixedr and for maximum amplitude at the

— with the equilibrium condition defined by the equation last boundary(so that the electron density at this boundary

of motion[see Eq(18)], we obtain a transcendental equationvanisheiz It shquld be noted.that, for a fixed value of the
for the quantityé=x,—Xq boundary amplitude,, the width of the vacuum channels

and the peak intensity in these channels increase with

£=9(&€)—g(0), (26)  Furthermore, the maximum possible boundary amplitude it-
self is an increasing function ef and, for any given value of
where this parameter, such a maximum amplitude determines the
5 maximum power we can deliver to the plasma in order to
 AysSIN2(§+&o)] B ay generate a double-channel structure. Exceeding this maxi-
9(&)= 2a[1+A\2, co(é+ 50)]1’2' §o= —arcta a_d ' mum power will force the system to generate a structure with

(27) one more filament and therefore we can talk about a thresh-
old power for the generation of multi-filament structures.
The solution of this equation gives a complete description of In Fig. 7 we showP+4 calculated for varyingr and for
the vacuum layer since; is already determined. A necessary aq fixed to its maximum possible value. In the inset is shown
condition for this equation to have a nontrivial solution is instead how the total power varies with the intensity at the

thatg'(é=—¢&p)>1, i.e., last boundary. The apparently anomalous behavior for low
boundary intensities is due to the fact that the left branch
, A\Z, corresponds to a different kind of two-filament solution
9'(=—¢o)= N (28 whose phase portrait and field structures are presented in
a(1+AY) .
Figs. 8 and 9.

which cannot be satisfied unless=1.5. This leads to the  AS can be seen following the trajectory (0-2-2'-3-0),

conclusion that ifx< 1.5, that is, if the propagation constant in this case the field amplitude, once it leaves the separatrix,
of the wave vectoh is not large enough, our system will NEVer crosses the zero point unt_ll it r_eaches_ the separatrix
never reach a stationary state and it will display only a dy-2gain. For those periodic trajectories lying inside the separa-
namical behavior with the electromagnetic perturbation
propagating along the transverse direction. Otherwise, we

can numerically calculate how the minimum boundary inten-

32 2
§27 s 0
&

22

-2
177 .. -
15 16 17 18 19 2
a a

FIG. 7. Total power required to generate a double-channel struc- FIG. 8. Phase portrait for a system that develops a double-
ture versusx for the case of maximum possible intensity at the lastfilament structure. In this case the field amplitude never vanishes
boundary andinse) as a function of the boundary intensity for except at=« on the separatrix. The corresponding plasma-field
fixed a=2. structures are illustrated in Fig. 9.
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FIG. 9. Plasma-field structures for a higher order mode solution 5 10. Six-channel structure for a plasma with fixed 2 and
where the field amplitude never vanishes except at. maximum possible intensity at the last boundégntinuous ling

) ) . . ] and electron density distributiofdotted ling. All quantities are
trix, the HamiltonianHg, is less than—« and the field so- dimensionless.
lutions for the electron layers assume a different form and

are now described in terms of elliptic functions as filament distribution whole periodic cycles, i.e., even num-

e — 11— (e 2 W12 bers of filaments,'by jumping to co_nsecutive vacuum trajec-
X):(a g1~ {1 (e17e)smex(x—x) ]} , tories at the pointb’ or repeating the same vacuum
1-2(g;la+e,—1)srf[ex(x—xM)] trajectories. This is shown in Fig. 10 where a six-filament
(290 structure is presented, which corresponds to the trajectory
(0-2-2'-b"-a’-a-b-3'-3-0), with two cycles along the peri-
odic trajectoryb’-a’-a-b. Again, it is important to note that
the modulus of the elliptic integral of the first kind ls ! J b gain, 11 18 imp

12 ; > this structure, completely symmetric, is peculiar to a planar
=gy Te,. The procedure to define the electron Ca"'tat'ongeometry.

boundaries is the same as the one followed previously 10 \ye can also add to the single-filament configuration an
build the structures presented in Fig. 6. _odd number of filaments, considering trajectories corre-
The solution we have constructed and the correspondmgponding to a certain number of cycles plus half a cycle.
choice of a closed one-cycle trajectory in the phase space §onsider, for example, the trajectory (0-2-8'-b-4-4'-0),
not unique. We can pass a depletion region not only at,thﬁvhere the points 4/4are symmetrical with 2,2, respec-
point 3’ to form a one cycle trajectory, but also at the pointyyely, which corresponds to a three-filament structure. The
b’ in order to create a periodic trajectory suchbash-a-a’,  |asult is shown for a fixed value @f in Fig. 11.
(see Fig. 3 Following this trajectory means that we will Finally, in Fig. 12, we present on the same graph the
have a new structure with new channels and plasma layergg|cyjated maximum powers as functions@ffor three of
which were not present in the double-channel structure pregq gifferent cases we have analyzed, single, double, and
viously described. , o triple channels. The same procedure that we have described
We would like to underline the fact that the periodic tra- may also be applied to the case presented in Fig. 8, where an
jectory shown in Fig. 3 corresponds to a particular configuinieger number of filaments can be added since a full cycle

ration as the point®’, a’, a, b are related by a complete . yrs within a half space of the phase portrait. Therefore, by
symmetry. It is possible to see what this means by looking at

the field structures described by such a trajecieee Fig.

10): The central channels are completely symmetric; at each
boundary we have the same intensity. It is again the neces-
sity for global charge conservation that leads, by integrating
Poisson’s equation, to a transcendental equation for the field
at the boundary of the new plasma layer:

t r(ad[ZHEl+ 2ay\/1+a%—a2]12
a

where g,=(a?+1+Hg) Y2 e,=[a’—(e,—1)?]/2, and

a=2.

Intensity

o

Electron Density

Vi+aZ
= [ 2He +2a1+a2—a2]Y2  (30)
d
X
This equation iS similar to E({_23) but now the Hamiltonian FIG. 11. Three-channel structure for a plasma with fixed2
valueHg=Hg, is the one defined for the new electron layer. and maximum possible intensity at the last bound@gntinuous

In the case of a single-peak field distribution, this equationine) and electron density distributiofdotted ling. All quantities
had a unique solution; consequently we can add to the twaare dimensionless.
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80 to a certain part of the trajectory followed by the system in
the phase space, each part with its own Hamiltonian value, as
shown in Fig. 2. Concerning the definition of a threshold

60 power, it is interesting to see how filament structures with
3 . regions depleted of electrons can be generated by the inter-
f 40 N action if the parametet is greater than 1.5. Far<1.5 we
e - have only single-filament field structures, with no depletion
201 - =" regions. As soon aa exceeds 1.5 there are plasma regions

;// that are emptied of their electrons and the number of fila-

ments thus generated increases with increasing incident
1.6 18 2 power. We can therefore define the maximum power incident
a on a plasma witha=1.5 as the real threshold power for
generating non-single-filament structureee Fig. 1 The
FIG. 12. Total power as a function af for the three different same construction procedure followed for the single-filament
cases: single channétontinuous ling double channeldashed  splution can then be easily extended to a more realistic axi-
line), and triple channeldotted ling. In each case, the amplitude at symmetrical case to obtain the analogs of Figs. 4, 6, and 9,
the last boundary was chosen as the maximum possible one. while a real 2D transverse approach is needed for the mul-
) ) . tifilament structure problem, especially for the case pre-
using this procedure, we can construct multifilament soluxanted in Fig. 10, where a number of equal filaments have
tions that exist only fore>1.5 and represent plasma chan- heen added to the fundamental structure. To extend such a
nels with electron cavitation. They differ from each other y, itifilament structure to a cylindrical geometry requires
because of the laser power transported along these channglsicyar attention and the inclusion of an azimuthal vortex-
and, as there is a minimum laser power required for excitingiye dependence to take into account the complication due to
such structures, we can define the power thresholds for crsigher dimensionality. Therefore it is not possible to simply

ating non-single-filament structures. think of this generalization in terms of multiple ring configu-
rations because the axial symmetry that holds for the sim-
VI. CONCLUDING REMARKS plest single-filament structures can be broken for more com-

Oq;licated cases. We would also like to note that it is

In conclusion, we have presented an exact analysis reasonable to expect these structures to be fairly stable on the
self-channeling structures generated as a consequence p ) . Y e .
time scale considered, since in channels emptied of their

relativistic self-focusing due to the interaction of ultraintense lect further f ) R i etabili tak
laser radiation with an underdense plasma. In this analysig, €¢trons no furtheriocusing orkaman Instabiliies can take

the plasma quasineutrality condition is accurately taken int(glace' The extreme robustngss O.f the funqamgntal structures
consideration and this quantitatively affects some results o as been shown by numerical investigations; see, for ex-
channeling laser power. This analysis allows us to prove thgmple, Refs[7], [11], and[12].

multiflament nature of the relativistic self-focusing and to
calculate the threshold power for exciting multifilament
structures. Such a result is not achievable in media with a This work was partly supported by INTASSrant No.
local nonlinearity, like the Kerr one, because the governing6-339. One of the author$F.C) would like to acknowl-
equation has an overall Hamiltonian structure. In the case wedge support from the European Commun(BMR pro-
have analyzed, each electron cavitation channel correspondsam under Contract No. ERBFMBICT972428.
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