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Classical Molecular Dynamics simulations for a one-component plasma are presented. Quantum effects are
included in the form of the Kelbg potential. Results for the dynamical structure factor are compared with the
Vlasov and random phase approximation theories. The influence of the coupling par&mdegeneracy
parameterpA S, and the form of the pair interaction on the optical plasmon dispersion is investigated. An
improved analytical approximation for the dispersion of Langmuir waves is presented.
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[. INTRODUCTION up to moderate degeneragyA3<5, which lets us expect
reliable results also for MD simulations, at least foA®

The model of a classical one-component pladi@&P =<1. It is the aim of this paper to explore this MD approach
has—due to its simplicity—been widely investigated bothwith the Kelbg potential in detail, especially for the analysis
theoretically and with various numerical and simulationof the optical(Langmuip plasmon dispersion.
methods, see e.gl1-3] and[4,5], respectively. Since the It is natural to start this analysis with OCP simulations
pioneering numerical work of Brush, Sahlin, and Te[le}, ~ because they have the advantage of the absence of a collapse
the thermodynamic and dynamic characteristics of the clas?f Oppositely charged particles at small distances. On the
sical OCP have been studied in detail. In particular, the de9ther hand, the existence of a homogeneous background of

pendence of the properties on the coupling paramEter oppo.sitely pharged particles leads to some additional techni-
cal difficulties compared to two-component systems, due to

=47e*/(rkgT), wherer=(3/4wp)1’3 is the mean interpar- oqyricted carrier rearrangement causing less effective screen-
ticle distance ang the density, have been m_vesngated up toing of the Coulomb interaction. One major problem of MD
very large values of [7,8]. Among the mostimportant ther- simylations of the dynamical properties is that the behavior
modynamic results is the prediction of crystallization at val-at small wave numbers is difficult to investigate. The reason
ues of " of the order of 172-1809-13. Furthermore, in- s that large box sizes are required which, for the analysis of
vestigations of the dynamic properties of strongly correlatedhigh density plasmas, translates into large particle numbers.
classical plasmas have indicated that the wave number dehe current increase of available computer power gives one
pendent plasmon dispersion changes from monotoniehe possibility to investigate size-dependent properties like
growth, common for weakly coupled plasmas, to a decreashe density-density correlatiodgg(0)p_(t)) for smallerk
ing dispersion aroundf ~3 [1]. vectors than before. In this paper, we are able to present
On the other hand, there is growing interest in the dy-accurate results for the dynamical properties of the OCP,
namic properties of densguantumplasmas, particularly in - such as the dynamical structure factor and the wave vector
astrophysics, laser plasmas, and condensed matter. While tigpersion of Langmuir oscillations. Our simulations for in-
case of strong degeneragstrong quantum limjtand weak  termediate values of the coupling parametBr1 .. .4,
coupling at very high densities is well described by the ranshow an interesting dispersion: the frequency increases up to
dom phase approximatiotRPA, see e.g.[14-1§), the a maximum and, for large wave numbers, decreases again.
properties atintermediate coupling and degeneramymain  Further, we investigate the role of quantum effects by com-
poorly explored. Especially, one is interested in the dynamigaring simulations with the Coulomb potential and an effec-
plasma behavior in cases where the average kinetic energytive quantum pair potentialKelbg potential[21]) for the
of the same order as the mean potential energy,li.e.1,  region of small and intermediate coupling. We found that
where collisionless theories such as the RPA fail, e.g.quantum diffraction effects have noticable influence on the
[15,16,19. For these situations, quantum molecular dynambehavior of the optical dispersion curves. Increase of the
ics (QMD) simulations[20] are the appropriate numerical degeneracy leads to a softening of the dispersi¢k), es-
approach which, however, is yet lacking the required effi-pecially at intermediate wave vectors.
ciency. For weakly degenerate plasmas, wittt<1, where
A is the DeBroglie wave lengtfsee below, it is expected
that one can perform much simpler classical MD simulations Il. DYNAMICAL PROPERTIES OF THE OCP
using effective quantum pair potentials, e.§3,21-23.
These potentials can be derived from the two-particle Slater
sum using Morita’s method. The Kelbg potential has recently A central quantity to determine the dynamic properties of
been successfully used for path integral Monte Carlo simucharged many-particle systems is the frequency-dependent
lations[24,25. There, it was found to give excellent results dielectric functione(k,w) which, for the OCP, is given by

A. Statistical approach
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e(lz,w)= 1— UC(IZ)H(IZ,w). (1) B. Molecular dynamics approach to the dynamical properties

The dielectric and dynamical properties of an interacting
many-particle system are easily accessible from the density-

HereUc(lZ) is the spatial Fourier transform of the Coulomb density correlation function that is defined as

potential,U (k) = 4me%/k?, andII(k,®) is the longitudinal
polarization function. Thus, many-body effects enter the di- - 1

electric function viall. There exist many approximations for Ak, =5 {pc()p-(0)), (5
the latter function—the simplest are mean-field theories that

neglect short-range correlation effects, i.e., collisions be: - . R ; )
tween the particles. For the classical OCP, the mean-fielé\/:ﬁéﬁt'\lc;? ttf:]: Sg:]s?;r of particlep(t) is the Fourier com
result is the Vlasov polarization: '

N
d3 K oF(v) o Pﬁ(t):zl elkni®, (6)
. 1=
2w w—kv+id dv

R 1
Myjasod K, @) = — EJ’

which is computed from the trajectoriégt) of all particles.
Here 6— +0, indicating the retarde@causal character of The dynamical structure factor is just the Fourier transform
the polarization and the dielectric function. Furtheris the  of the density-density correlation functigb),
distribution function. The Vlasov polarization applies only to
classical plasmas, where the wave character of the particles R 1 (+> R
can be neglected. Quantum effects are important if the inter- S(k,w)= Z_J dte'Ak,t). (7)
particle distance or the Debye radius become comparable to T
the DeBroglie wavelengthA =h/\2mmkgT. Therefore, i i
quantum diffraction effects should show up in the dielectricEduation(7) can be directly compared to formuld) and,
properties at large wave numbers. The quantum generalizéhus- allows for a comparison of the simulation results with

tion of the Vlasov polarization is the RPA polarization func- the statistical theories. Furthermore, E@) allows to inves-
tion, given by tigate the influence of quantum effects on the dynamical

properties and plasmon dispersion of the OCP. Variations of
the interaction potentialsee below directly affect the par-

Mo (B o)= — d°p f(p)—f(p—#k) ticle trajectories and, via Eq$5)—(7), the dynamical struc-
reaki@) = (27h)3 P2 (p+hk)2 ture factor.
hot ——————+ib
2m 2m
(3) lll. DETAILS OF THE MD SIMULATIONS

) ) ) o The simulations have been performed in a cube of length
In this paper we consider only plasmas in equilibriumFso | containingN interacting electrons on a uniform positive
andf are the Maxwell and Fermi function, respectively.*Onebackground_ For this system, we solved Newton'’s equations
readily confirms that, in the limit of long wavelengthls, of motion containing all pair interactions that are derived
—0, indeed the RPA resu(B) goes over to the Vlasov po- from a total potentialJ(r), see below. As an algorithm of
larization function(2). An important quantity which follows motion we used a second-order scheme in form of the Swope
from the dielectric functioril) via the fluctuation-dissipation algorithm [26]. Since our simulations are performed in the
theorem is the dynamical structure facﬁ(ﬂz,w) microcanonical ensemble, the mean kinetic energy may
change. Therefore, to maintain the chosen value of tempera-
ture andI’, we applied scalingrenormalization of all ve-
kgT m 1 @ locities at every second step.
7Uc(K)o ¢k, w)’ A central goal of our simulations was to study the influ-
ence of quantum effects. We, therefore, performed several
: ) . simulations that used either a Coulomb potential or an effec-
which shows the frtiquency spectrum of density fluctuationsg;,,o quantum pair potentidsee below: To permit flexibility
for a given value ok. in the use of the potential) was divided into a short-range
As mentioned above, the mean-field expressi@sand  and a long-range part)=US+U", where quantum effects
(3) neglect short-range correlations and are, therefore, valighfluence onlyUs, whereas the behavior at large distances,
only for weakly coupled plasmas;<1. There exist many ' is dominated by the long-range Coulomb interaction. Let

theoretical concepts to go beyond the RPA that are based qf first describe the treatment of the long-range term.
guantum kinetic theory, density functional theory, and other

approaches. This is beyond the scope of this paper, see e.g.,
Refs.[15,16,19 and references therein. Here, we consider

the alternative approach to the OCP at finite coupling that is The long-range interaction was computed in standard way
based on molecular dynamics simulations. using periodic boundary conditions and the Ewald summa-

S(K, )= —

A. Long-range interaction
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tion procedureg28,29. As a result, the long-range potential where A\=A/\27. As a consequence of quantum effects,
is given by the Coulomb interaction in the main box and allthis potential differs from the Coulomb potential at small
image cells: distances <\ and is finite ar = 0. Further, it is temperature
dependent via the thermal DeBroglie wavelength. The Kelbg

N

o . potential can be regarded as the proper quantum pair poten-

U(ry=4me .E#, VewadTij), ®  fal following from the two-particle Slater sur, without

exchange effects:
Ve iy et (AL L] Ureng
)= Fn - 2

Ewal n=0 Ir+nL| NS, kr oI -

= ZS r [ - -
Ny Ny .n,=5n?<27 exp(— mn2)cog 2anr/L) It treats quantum diffraction effects exactly, up to first order

+

in I'. Frequently other quantum pair potentials have been
used, including the Deutsch potenti&0], which has the
same value at=0 but differs from the Kelbg potential at
U €) intermediate distances. As was mentioned by Hari8ah
symmetry effects do not have a big influence on the dynami-
cal propertiegalthough they give a major contribution to the
static properties, especially for the light mass components

length of the simulation ceII,_ and .is a vector of imeger. Using the Kelbg potentidll0), we can immediately separate
numbers that labels the periodic images of the simulation, . short-range part of the interaction

box. In this expression, the first term corresponds to a poten-
tial of particles with Gaussian broadened charge distribution —exp(—r2/\?) \/;
around the electrons with a width afz, the second one uUs(r,T)=4me? + —erfa(r/N) |,
corresponds to the compensating Gaussian distributions, and A
the last one accounts for the influence of the homogeneous (12
background. It turns out that the second_term in &8y.can that has been calculated together with the first sum of &q.
be reduced to two loop®ne over the particles and one over using the interpolation table.
the vectorsn in the reciprocal spageand is not very time The Kelbg potential contains just the lowest order quan-
consuming. The more complicated part is the first term thagym correctionglowest order ine?) and is, thus, accurate at
contains three loops. In case of a two-component plasma, gmall coupling,['<1. Nevertheless, we expect that it cor-
proper choice of the width of the Gaussian distribution andrectly reproduces the influence of quantum effects also at
use of periodic boundary conditions greatly simplifies thisintermediate couplingl'<5, that is also motivated by its
term due to cancellations. In contrast, for an OCP, the backsccessful use in guantum Monte Carlo calculati@#25),
ground cancels the interactions onIy. partially, “statically.” see above. Further improvements are straightforward, e.g.,
As a result, convergence of the sum is worse, and one neeq,§, including exchange effects or by evaluating the full two-
to take into account all first neighboring image céttstal of  particle Slater sum. We note that the described numerical
26) at every time step. The contribution of all neighboring procedure applies to such improved quantum pair potentials
cells except for the main one €0gn|<\/3) was computed, as well, even if they are not given analytically.
before the start of the simulations and stored in three-
dimensional tables for the potential and forces. During the
simulations, we used 3D-bilinear interpolation at every step ) ] . ]
to obtain the values of the potential and forces for interme- Solving Newton's equations with forces derived from the
diate distances. We found that 100 grid points in every difotal potentialUs+ u", we computed thermodynamic and
rection are adequate, so the total size of the table wis 1(tatic quantities, such as total energy and pair distribution
elements. The particle interactions inside the meﬁn:()) function in usual manner. The results will pe presented in the
cell were evaluated directly at every time step without minj-NEXt section. Here we discuss some details on the computa-
mum image convention. tion of the dynamlca'l properties, as they require much_ more
effort and computation time in order to achieve sufficient
accuracy.
B. Short-range interaction: Quantum effects To obtain useful results for the dynamical structure factor,

Let us now discuss the short-range potential. As has beei¢quires simulation results in a sufficiently broad range of
shown by Kelbg and co-worker21,27], quantum effects Wave numbers and frequencies. Natural units of the wave
can be treated efficiently by an effective pair potential, thenumber and frequency arerland the plasma frequency
Kelbg potential: wp= Jame?p/m, respectively, which will be used in the fol-

lowing. The minimum wave numbdx,,;,, depends on the size
2 1—exp(—r?/\?) +ﬁ o\ L of the simulation box and thus, for a given density or
r A erfar/n) |, coupling parameter, on the number of particlds One
(10)  readily verifies thaky,,=27/L=2m(p/N)** or, using di-

n%0 mn?L

where erfc is the complementary error functitns the side

r

C. Thermodynamic and dynamical quantities

UKe|bg(r ,T) =47e
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TABLE |. Parameters of the molecular dynamics simulations with the Kelbg potential. Numbers in
parentheses refer to the runs with Coulomb potential.

r pA®  p(cm™d) T (K) wp (f8)™" rpir N Keninl Run time (T))
05 0.1 9.1x10* 1.126x10° 5.387 0.816 50@50 0.4910.619 515341)
05 05 22%10° 3.292x10° 26.940 400250 0.5290.619 429429
1.0 01 1.1&10%* 2.228<10 1.905 0.577 250 0.619 20827
1.0 05 2.8x%10% 8.23x10% 9.524 250 0.619 68832
1.0 1.0 114102 1.31x10° 19.048 250 0.619 477
40 01 1.7%10° 1.76x10° 0.238 0.289 250 0.619 57227
40 1.0 17%10% 8.17x10° 2.381 250 0.619 716

mensionless wave nUMbersg,n= kminr_=(67-r2/N)1’3. grow systematically. The Kelbg pair distributions practically
Clearly, to reducek,, requires an essential increase of thecoincide with the Coulomb functions for>0.6r but deviate
number of particles in the simulation. from the latter at small distances of the order of the thermal

The simulation accuracy can be further increased by takpeBroigle wavelengtl\ where quantum effects are impor-
ing advantage of the isotropy of the plasma in wave vectogy e Clearly, with increasing degeneracy, the ratiy in-

space. Indeed, in eq_uilibrium, the density-density correlatio reases, and the deviations extend to larger distances and
function and dynamical structure factor should only depen row in magnitude. With increasing, the deviations be-

on th? absqlute vr_:tlue Of. the wave vector. On the otr_]er han ome smaller since Coulomb effects dominate the behavior
the simulations yield slightly different results for different at small distances

directions of the wave vector. Averaging over all results cor- Let us now turn to the dynamical properties. In case of an

responding to the same absolute valugafilows to reduce  ocp, charge and mass fluctuations are identical because of
the statistical error. For examplg, the minimum wave numbefpg rigid opposite charge background. In our simulations, we
Kmin COrresponds to directions &falong either thex, y, orz  have calculated the density-density correlation functisn
axis, cf. Eq.(6), so we can use the average of the three. Theand, by numerical Fourier transformation, obtained the dy-
next larger value is/2 k., corresponding to the diagonals namical structure factos(q,®) for several(from 6 to 10,
in the x-y, x-z, andy-z planes. The third valuey3ky,,  depending on the simulatipwave numbers, the values of
corresponds to the space diagonal and is not degenerate; comhich are determined by the size of the simulation box L
sequently it carries the largest statistical error. This is thésee above The value of the smallest wave number is given
main reason for the fluctuations of the numerical results foin Table I. The frequency dependenceS§f), w) for several
the wave vector dispersion, see for example Fig. 5. wave vectors is presented in Figs. 2—4 for the Coulomb and
Finally, to resolve the collective plasma oscillations, theKelbg potentials. Also, the results of the mean-field models
duration of the simulations has to be much larger than there shown. The peak of the structure factor is related to the
plasma period. Also, increased simulation times leads to aptical plasmonLangmuir modg of the electrons, its posi-
reduction of the noise. We found that times of the order oftion shows the plasmon frequendy(k), its width—the

250 plasma periods are adequate. damping of the mode. In the limk—0, (k) — w, for all
models. For increasing the wave numbers, the width of the
IV. NUMERICAL RESULTS peak grows steadily, and it merges with the continuum of

. ] ) _single-particle excitations, e.d16,18, therefore, no results

values ofl’ _andpA3, using the Coulomb and Kelbg poten-  consider now the results for the plasmon dispersion more
tial. Also, time step and particle number have been variegy detail, cf. Fig. 5. First, we discuss the mean-field results
until a satisfactory compromise between accuracy and simyy) that are calculated using the Vlasov and RPA polariza-
lation efficiency has been achieved. The parameters of thgons, Egs.(2) and (3), respectively. The Vlasov result was
runs chosen for the figures below are summarized in Table Eomputed using the formulas given in the review of Kugler
We mention that kinetic energy conservation in all ruifis [32], and for the RPA, a code was developed that accurately
velocity scaling was turned offdid not exceed 0.1%. Also, eyaluates the pole integration in E®), [33]. Both approxi-
the results for the total energyot shown, in case of the mations show the same general trend for small and interme-
Coulomb potential, agree very well with data from the litera- giate wave numbers: with increasing wave number, the plas-
ture. mon frequency and the damping increase. At laggehe

We first consider the pair distribution functiag(r) for  gdispersion exhibits a maximum and decreases again. In all
varying interaction potentials and parameter values. Figure 3jtyations, the RPA yields a slightly smaller frequency than
showsg(r) for three values of the coupling paramet€r,  the Viasov result, whereas the damping values are very close
=0.5,1,4. As expected, the Coulomb pair distribution func-tg each other.
tion is close to the Debye-Htiel limit for small coupling, Let us now turn to the simulation results. The Coulomb
with increasingl’, the deviations, especially around-=r, and Kelbg simulations have been performed for exactly the
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FIG. 1. Pair distribution functions far = 0.5 (upper figure, I
= 1.0(middle figure, 4.0 (lower figure, andpA3=0.1, 0.5, 1.0 for
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FIG. 2. Dynamical structure factor for an OCP lat1 and
pA3=0.1 from MD simulations with Coulomb and Kelbg poten-
tials. In addition, Vlasov and RPA results are shown. The wave

numbers are shown in the figures in units?g)i.e., q=k?

>27/A, which is about an order of magnitude larger than the
wave numbers shown in Fig. 2. There, the plasmon peak has
already a width of the order of the frequency and no longer
describes a well-defined collective excitation.

It is now interesting to compare the simulation results to
the theoretical approximations. The first observation is that
the simulation peaks are significantly broader, cf. Fig. 2. This
is obvious since the simulations fully include interparticle
correlations missing in the mean-field results. Consequently,
the plasmon damping contains collisional damping in addi-
tion to the Landau dampingwhich is the only damping
mechanism in the mean-field model€orrespondingly, the
plasmon peaks in the simulations are shifted to smaller fre-
quencies. This effect grows with increasing wave number as
well as with increasing couplin¢see also Fig. b We note
that, in our simulations, this shift is observed for all wave
numbers, which is in contrast to the result of Hangsee
Fig. 9 of Ref.[31] for g=0.6187. In other words, the plas-
mon dispersion curves from the MD simulations are lower

systems with Coulomb and Kelbg potential. Further, the Debyethan the mean-field result for all wave vectdrswhich is

Huckel limit is shown(solid line). Line styles are the same in all Seen

three figures The inset in the middle figure shows the influence of
the degeneracy at small distances. The resultsIfer4.0, pAS
=0.1 with Kelbg potential are not distinguishable from the Cou-
lomb result and are not plotted.

same parameters, except fdrand run time(cf. Table ).
(Notice that, in contrast to the Kelbg case, the Coulomb
simulations depend only oh that can be achieved by vari-
ous combinations of density and temperatuf@omparison

of the two simulations shows, cf. Fig. 2, that the results for
the structure factors are very similar in case of srhalPeak
positions and widths as well as the low and high frequency

tails are very close to each other. The reason is obvious:

S(q.w)

0.4

0.32
0.24
0.16
0.08

--—— MD (Kelbg )
— Vlasov
=== RPA

0.24
0.18
0.12
0.06

0.5

0.75

1.0 1.25 15 1.75 2.0
w (units of wy)

since the potentialéand pair distributions, cf. Fig.)1differ
only at a small interparticle distances of the order /of
differences in the structure factor would show up onlyjkat particle numbers, cf. Table I.

FIG. 3. Same as Fig. 2, but fd#=0.5 andpA®=0.1. The
values of the wave numbers differ from Fig. 1 due to the different
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FIG. 4. Same as Fig. 3, but farA® = 0.5. ° Lo 4;-,;2«’0-*"—3—-0—-\ RN
E . s \\'%_.._&'\.
. . = ‘M
more clearly in Fig. 5. As expected the MD curves for the = 1.0 f---~ 9 oo Couomd R !
structure factor are much closer to the RPA than to the Vla-& — RRAL A =05
sov result 3 08 ey
In Fig. 5 we plot the optical plasmon dispersion curves for 05 10 15 20
three values of the coupling parameter for the Vlasov and 1.6 '
RPA dispersions together with the simulation results. We~ ) S
further show the well-known analytical approximation to the 3 r=05 7
Langmuir dispersion, S 14 ‘,;,8;:——'*%- “
£ 5 \
=) .7
2\ 1/2 2 12 /,’" \‘\
w(q)= wpl( 1+ T) (13 C L S g os
¥ ol - hay
Clearly, this predicts a monotonically increasing dispersion. 04 .0.8 . 1.2 1.6
However, this approximation is valid only fdr<1/rp and q (units of 1/7)

for '<1. Let us now consider the simulation results that do
not have this limitation. In Fig. 5 we show the MD results for
a Coulomb potential and for the Kelbg potential for three

3_
values of the degeneracy parameje, _0'1’(.)'5’1'9' O.ne approximations, and of the analytical approximation of ELB).
qlearly sees that, for these parameters, the dispersion is PO$E T—40 andpA®=0.1 (upper graphthe MD simulations with
tive, dw(q)/dg>0, up to wave numbers of the order of one Kelbg potential and the RPA curve are not shown since they almost

over the mean interparticle distance. For largethe disper-  ¢qincide with the Coulomb simulation and the Vlasov curve, re-
sion changes its sign. This general trend is observed for thg,ectively.

Coulomb and the Kelbg potential. On the other hand, with
increasing quantum effectsA %, the deviations between the
two potentials are growing, that becomes more pronounce
asI" increases, cf. the curves fbr=1 andl'=4: the disper-
sion in case of the Kelbg potential shows a softer increase
with increasing wave number and reaches a lower maximum 71+ 32 C2P—32
approximately at the same wave number as in the Coulomb o(K)= g—ge '
case. We mention that this sign change of the dispersion has K
not been reported by Hansgh]. Comparing the simulations
with the mean-field results, we again see that the MD disperwherex=krp is the dimensionless wave number in units of
sions proceed lower than the mean-field results, and this ethe inverse the Debye radiug, given in Table |. Formula
fect grows with increasing’ and increasing wave number. (14) is derived under the condition that the damping is much
Once more, we confirm that the RPA dispersion is muchsmaller than the frequendys(q)<w(q)], and is limited to
closer to the MD result than the Vlasov dispersion, at leassmall wave numberg<1. As expected, the damping given
for I'=0.5. (As mentioned above, the simulation results forby formula (14) that is only Landau damping, is much
the dispersion show certain statistical fluctuations due to themaller than the damping found in the simulations, as the
varying accuracy of the results for the different wave num-atter contain the full collisional damping also. Obviously,
bers) for small coupling and smaly, Eq. (14) shows the correct
Let us now consider the plasmon damping more in detailtrend. However, deviations increase rapidly with growing
Figure 6, shows the dampir{tull width at half maximum of  coupling parameter. Furthermore, the simulations that are not
the plasmon peak of the structure fagtas a function of limited to small wave numbers, show a qualitatively different

FIG. 5. Optical plasmon dispersion for various coupling and
degeneracy parameters from MD simulations with Coulomb and
guantum potentials. Also shown are results of the Vlasov and RPA

ave number. It is interesting to compare with the familiar
nalytical expression from the Vlasov theory, d34],

(14)
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FIG. 6. Damping of Langmuir waves from MD simulations with 3 / \\‘
the Kelbg potential for various values BfandpA 2. Solid lines are 1.0 3 ﬁ
the analytical small damping limit of the Vlasov theory, Ef4). = A Kelbg; PA3 =01 |
\§ (] Kelbg; pA” = 0.5 [
® Kelbg; pA*=1.0
behavior at largeg: a monotonic increase of the damping. 0.8 - fit, PA3=0-1
Interesingly, with increasing’ the damping is reduced, cf. : = - fit, pA =05
Figs. Ga) and Gb). --- fit, pA"=1.0
Finally, we try to extend the analytical result for the plas- 0.4 0.8 12 1.6 2.0
mon dispersion, Eq13), to largerl” and to include quantum q (units of 1/ f)

effects. To this end, we used the MD data with the Kelbg
potential to construct an improved fit of the form(q)

FIG. 7. Dispersion of Langmuir oscillations from MD simula-

= wp(1+ag?+bg*)2 The result is shown in Fig. 7 for tions with the Kelbg potential for various values of the coupling and

I'=1 andI"=4. Due to the large fluctuations in the disper- degeneracy. Symbols are MD results, lines the best fits to the low

sion data and the increasing damping for large wave numgave number part<1/r), the fit formula, and parameters are

bers, we used a weighted fit where the smaltpgalues had

given in Table 1.

the largest weight and the statistical errors of the individual

TABLE Il Fit parameters of the Langmuir dispersion curves noints have been taken into account. Table Il contains the
shown on Fig. 7. The fit equation was taken in the form of

o(q)/ 0y =(1+ag?+bg*) ¥ Parameters of the fit fof = 1 and

pA3 = 0.1 are less reliable, because of the absence of data for big) 1T in agreement with Eq(13), but with increasingl

wave vectors, cf. Table I.

resulting fit parameters.
etersa andb depend o’

atic influence of quantu

r pA3 a b

1.0 0.1 1.0130.031 —0.260+0.023
1.0 0.5 1.0740.041 —0.288+0.013
1.0 1.0 0.97%0.055 —0.259+0.018
4.0 0.1 0.1650.015 —0.034+0.006
4.0 1.0 0.12%0.007 —0.025:0.003

degeneracy leads to a

second fit parameter allows to qualitatively reproduce the
e dispersion. The overall agreement
numbers up to the inverse mean in-
terparticle distance up to which the plasmons are compara-

change of the sign of th
is satisfactory for wave

tively weakly damped.
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According to this data both param-

andpAS. The parametea is close

deviations are growing, compare Table Il. We see no system-

m effects on the parametdor I

=1. Noticeable effects show up fér=4, where increased

reduction of the coefficianfThe
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V. DISCUSSION erties of a weakly degenerate plasma also for intermediate

. . values ofl". The main advantage of using the Kelbg potential
We have presented extensive classical molecular dynam- : . . .
. . . . : . is that it correctly treats close collisions, i.e. the two-particle
ics simulations of the dielectric properties of a one-

component plasma at intermediate coupling and degeneracscattering at interparticle distances smaller than the DeBro-
I'=4 andpA3=1. While classical MD simulations can be ¥ne wavelength. This is of even higher importance in the

. I case of two-component plasmas where the Kelbg potential
extended to arbitrary large values bf they have limited . allows to avoid the collapse of oppositely charged particles.

guantum pair potential, the Kelbg potential that rigorouslyjlﬂj:gf\?vrgr’ktgi ?Vzis_gggngﬁzz?aﬁg;: ;SO uld be important for
describes quantum diffraction effects in an equilibrium P P '

plasma for small". On the other hand, the Kelbg potential is

only the first term of d" expansion for an effective quantum ACKNOWLEDGMENTS

pair potential, and fof" >1 the account of higher order cor-

rections to the quantum diffraction effects may become im- V.G. and M.B. acknowledge fruitful discussions with
portant. Work on this subject is in progress. Nevertheless, wl.H. Kwong. This work has been supported by the Deutsche
found that the plasmon dispersion is rather weakly influ-ForschungsgemeinschafSchwerpunkt “Laserfelder” and
enced by the details of the pair potential, so we expect thabrant BO-1366/2and by a grant for CPU time at the NIC
the Kelbg potential correctly reproduces the dynamic propdJuich.

[1] J. P. Hansen, Phys. Rev. & 3096 (1973. [17] M. Bonitz et al, J. Phys.: Condens. Matt8f 6057 (1996
[2] J. M. Calllol, D. Levesque, J. J. Weis, and J. P. Hansen, J. Staf18] M. Bonitz, Quantum Kinetic Theory(Teubner, Stuttgart,
Phys.28, 325(1982. 1998.
[3] J. Ortner, F. Schautz, and W. Ebeling, Phys. Re®6F4665  [19] N. Hang Kwong, and M. Bonitz, Phys. Rev. Le@4, 1768
(1997. (2000.
[4] R. K. Moudgil, P. K. Ahluwalia, and K. Tankeshwar, Phys. [20] See e.g. D. Klakow, C. Toepffer, and P.-G. Reinhard, Phys.
Rev. B54, 8809(1996. Lett. A 192 55(1994; V. S. Filinov, J. Mol. Phys88, 1517
[5] W. Schikke, K. Hoppner, and A. Kaprolat, Phys. Rev. B, (1996; 88, 1529(1996
17 464(1996. [21] G. Kelbg, Ann. Phys.(Leipzig) 12, 219 (1963; 13, 354
[6] S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. PHhi5;. (1964); 14, 394 (1964).
2102(1966. [22] G. Zwicknagel, Ph.D. thesis, University of Erlangen, 1994.
[7] W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev. A [23] M. Bonitz et al,, Contrib. Plasma Phyg1, 155(2000).
26, 2255(1982. [24] V. S. Filinov, M. Bonitz, and V. E. Fortov, Pis’'ma Zh kEp.
[8] S. Ogata, S. Ichimaru, Phys. Rev.38, 5451(1987. Teor. Fiz.72, 361 (2000 [JETP Lett.72, 245(2000].
[9] R. T. Farouki, and S. Hamaguchi, Phys. Rev.4E 4330 [25] V. S. Filinov, V. E. Fortov, M. Bonitz, and D. Kremp, Phys.
(1993. Lett. A 274, 228(2000.
[10] S. Ichimaru, Statistical Plasma PhysicsAddison-Wesley, [26] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson,
Reading, MA, 1994 Vol. II; G. S. Stringfellow, H. E. DeWitt, J. Chem. Phys76, 637 (1982.
and W. L. Slattery, Phys. Rev. Al, 1105(1990. [27] W. Ebeling, H. J. Hoffmann, and G. Kelbg, Contrib. Plasma
[11] M. D. Jones, and D. M. Ceperley, Phys. Rev. L&, 4572 Phys.7, 233(1967.
(1996. [28] B. R. A. Nijboer, and F. W. De Wette, Physi¢Amsterdam
[12] A. Filinov, Yu. Lozovik, and M. Bonitz, Phys. Status Solidi B 23, 309 (1957.
221, 231(2000. [29] M. J. L. Sangster, and M. Dixon, Adv. Phy&5, 247 (1976.
[13] A. Filinov, M. Bonitz, and Yu. Lozovik, Phys. Rev. LetB6, [30] C. Deutsch, Phys. Lett. &0, 317 (1977.
3851(200). [31] J. P. Hansen, I. R. McDonald, and E. L. Pollock, Phys. Rev. A
[14] D. Pines, and Ph. NoziereShe Theory of Quantum Liquids 11, 1025(1975.
(Benjamin, New York, 1966 [32] A. A. Kugler, J. Stat. Phys3, 107 (1973.
[15] G. D. Mahan,Many-Particle Physics(Plenum Press, New [33] M. Bonitz, J.-F. Lampin, F.-X. Camescasse, and A. Alexan-
York, 1990. drou, Phys. Rev. B52, 15 724(2000.
[16] W. D. Kraeft, D. Kremp, W. Ebeling, and G."Rke, Quantum  [34] A. F. Aleksandrov, L. S. Bogdankievich, A. A. Rukhadze,
Statistics of Charged Particle SystentBlenum, London, Principles of Plasma Electrodynami¢Springer, New York,
1986. 1984).

016409-8



