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Calculations of properties of screened He-like systems using correlated wave functions
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The purpose of the present study is twofold. First, the techniques of correlated wave functions for two-
electron systems have been extended to obtain resul®® éord D states in a screening environment, and in
particular for Debye screening. In these calculations, the satisfaction of both the quantum virial theorem and a
related sum rule has been enforced and found to provide a high degree of stability of the solutions. Second, in
order to facilitate the general use of correlated wave functions in combination with sum rule stability criteria,

a rather systematic computational approach to this notoriously cumbersome method has been developed and
thoroughly discussed here. Accurate calculations for few-electron systems are of interest to plasma diagnostics;
in particular, when inaccuracies in binding energies are drastically magnified as they occur in exponents of
Boltzmann factors.
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I. INTRODUCTION on the landmark article by Calais andwadin [5] in which
the authors give an analytic expression for nested triple inte-

Prompted by the renewed interest in experimental studiegrals of the type “exponential function times integer pow-
of highly charged ions, atomic systems with few electronsers” in all three arguments. Correlated wavefunctions have
have again become the focus of both theoretical and experbeen applied to screenefistates[12] and highly accurate
mental investigations. Helium-like systems, in particular, areesults for correlatedP-states have been given by Thakkar
once more centerstage in a variety of different researc@nd Smith[6] though not for screened interactions.
projects. Parallel to this development in ion physics runs a
complementary activity in the study of atomic processes in
plasmas. Here too multiply ionized few-electron systems are Il. PERIMETRIC COORDINATES

of interest because the relative simplicity of their spectra Correlated ¢ . hat d d licitl h
renders them useful for plasma diagnostics. Furthermore, orrelated wave functions that depend explicitly on the

negative ions—predominantly the negative hydrogen ioninterelectronic distance,, are not commonly used in calcu-

serve diagnostic purposes in astrophysical plasmas besid@'on.S Of the cor.re.latlon energy of two-particle systems, ex-
being an important agents of opacity. cept in high-precision calculations for small atomic systems.

The focus of much of modern atomic theory is on electronE&ry two-electron approaches of this type are given in the

correlation in various systems and processes. This interest kéi_”d”?ark publications by Hylleradg] and Pekerig8]. Ap-
shared by new developments in the physics of highly ionize ications to three-electron systems are muc.h more recent
systems, including clusters, and by studies of atomic syste .]. For standard prodgct wave funcnon;, the mtereleqtromc
in plasma environments. Two-electron systems, in particula ,|sta}ncer 12 enterg the mtegrgnds only via the electronic re-
play an important role in this research because of the relativBY/Sion term 17y, in the Hamiltonian and can be handled by
ease with which correlation effects can be identified and caltN® Leégendre expansion. The calculation of the integrals with
culated. New aspects such as the need to include relativistf/@v€ functions containing a correlation factor, i.e., a func-
effects in highly charged ions, for instance, or the direct in-10N Of 12, is @ more difficult task because rather compli-
clusion of screening potentials into atomic calculatiphg] ~ cated functions of 1, may occur and becausg, becomes
call for improved theoretical approaches. Correlated wav&@©W & dynamical variable. The present work is mainly in-

functions have the potential for such improvements. tended to provide tools to simplify the use of correlated wave
The Debye-Huakel theory—although first formulated in functions. , . _
the framework of the theory of electrolyte solutiof8—is The highlights of Calais and ledin’s systematic study

being widely used for the modeling of plasma screerjifig [5] of integrals containing functions of the radial coordinates

because it allows for an analytic treatment of the relevanf1."2 @s well as of the relative distaneg, as one of the
integrals. The main shortcoming of the Debye model is itdynamic integration vanaple; are briefly reviewed here for
limitation to static screening. completeness. We start with integrals of the type

The present research originated from previous work to
include realistic, time-dependent screening potentials into
atomic calculationdrom the beginningand, by doing so,
calculate line broadening and the lowering of the continuum f f(rg(ra)h(ridv,dvz, @
threshold simultaneously and on the same footing. While the
time-dependent aspect is not our focus here, the need for
screened wave functions of non-zero angular momenta fovheref and g are spherically symmetric, and we treat the
helium-like ions stimulated the present study which buildsgeneral case latéEq. (8)]. Then we write
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The next step is the transformation of the integrands to pericomputationally, this formula—whenever it can be

metric coordinates defined by the following relations:

p=—r1+r2+|’12, I’1=1/4(20'+7'),

o=r{—ry+rp or r,=142p+7),
T=2(r+ry=rpp), rp=U2p+o), 3
drqdr,dri,=1/8dpdodr. (4
With the following choice of functions:
f(ry=e Ar, g(r)=e®/r, h(r)y=e Ir, (5

the basic integral Eq.) is easily evaluated in the new co-
ordinates because the limits of the three integrals become
independent of each other. Compared to the direct calcula-
tion of the integrals this substitution brings a considerable
simplification in that all integral limits extend from zero to

infinity. The basic integral then becomes

ri+ro

o] oo
87r2f e‘Arldr1J e‘B’2dr2f e Cradrg,
0 0 Iry=ral

:ﬂ_zJ e—l/Zp(B-%—C)dpf e~ 120(A+C)
0 0

Xf e VAr(A+B)g ..
0

B 167
- (A+B)(A+C)(B+C)’ ©

More general integrals, containing various integer powers of
r{, r,, andrq, can be obtained from this basic integral by
taking appropriate derivatives with respect to the parameters

A, B, andC.

applied—is advantageous over, for instance, the Gauss-
Laguerre quadrature approach that has been presented earlier
[10] by the present authors. In more general cases of interest,
however, such a numerical formula can be useful by provid-
ing substantial convenience for programming. Furthermore,
it can also be applied when the integrands contain functions
which do not allow for analytic results. In these cases the
numerical quadrature will no longer be exact but still of a
high degree of accuracy.

Paraphrasing Calais andWwdin [5] further, we turn now
to the general atomic integral of the type

f f fF(r)Yim(Qh(rg(ra)Yy . (Qz)dv,do,

=2m(=1)"0m, - 6,1 Q({), 8
where a functiorQ,(¢) has been defined as
Q0= | “truriar, | “awarar, [ "hirs
X P|(c0s645)Sin01,d645, 9

which, different from Calais and lvedin, has been estab-
lished with an index{ to distinguish between different
choices for the function§ g, andh as they are used in the
tables of the later sections.

Using the notation for more general integrands

(K,L,M)=j f(rl)rfdrlf g(ry)ridr,
0 0

xfrl rzlh(rlz)r'iﬂzdrﬁ’ (10

f1=ra

the first three of the quantitied,({) can be expressed as
Q0(§)=(1,1,1), (11)

Ql(g) = %{(2!011) + (01211) - (01013)}1

Q2(§) = %{(31_ 111) + ( - 1!311) + ( - 11_ 115) + %(11111)

(12

The general analytic result for integer power functions of

r{, ro, andr, is given by

-2(1,-1,3-2(—-1,1,3}. (13
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[Note: The factos in front of the fourth term ofQ,(¢) has TABLE I. Functions used in Eq20).
all the time been missing in Calais andwain’s original
work [5].] ¢ f(x) 9(x) h(x)
The angular functions in Ed9) are transformed into in- 1 e (ata)x o (b+b/)x o (cHe)x
teger powers of the radial variables using the law of cosines , , ,
2 Xef(a+b )x Xef(a +b)x ef(c+c )x
r§+r§_ri2 3 Xef(a’+b)x Xef(a+b’)x ef(c+c’)x
CoSbp=—F——, (14 4 o= (b+b")x x2e—(a+a)x e (c+c')x

2rqro

the repeated application of which leads to the notoriously
tedious expressions to calculate. The main goal of the IV. P-STATE CALCULATIONS
present paper is to provide a set of tables with the help of

. ! ; As computations o8& states of screened two-electron sys-
which this procedure can be systematized to some degree b y

tems with correlated wave functions of the same type have
been reported relatively recentf], the present paper will
lIl. THEORETICAL FOUNDATIONS focus on higher angular momentum statBsandD).

The most basic integrals to be calculated are the elements
of the overlap matrix. With the use of Eq8)—(13), they are
easily obtainedsee Appendix A

The nonrelativistic Hamiltonian for a two-electron atomic
system with both electron-electron and electron-nucleus in
teractions screened is given by

.1 z z 1 , 87
H=— _(V§+V§)_ —e /P —g 2Dy — g r12/D Sa’b’c’,abc:T[Q0(1)+Q0(4)]
2 51 Iz 12
The denominatob’ in the exponent of the last term facili- TS5 [Q1(2)+Qu(3)]- (20
tates the possibility of a different screening of the electron-
electron interaction if the physical plasma model warrantsraple | represents different choices of the functidis),
this, although this option has not been used in the preserf(x), andh(x) in Q,(¢).
study. _ _ _ The calculation of the elements of the Hamiltonian matrix
The eigenfunctions|¥) are defined in a state space for screened interactions, E.5), requires more effort. The
spanned by a set of correlated and properly symmetrizeghree potential-energy terms are readily obtained by a slight
functions|abc) as modification of Table 1, replacing the functioh(x) by
f(x)exp(—x/D)/x,

[W)=2 fapdabo). (16)
abc Z
<a’b’c’ ——e /P abc>
As an example, the following functional form has been cho- M1
sen forP-state calculations: 8772
==Z—[Qo(1)+Qo(4)]

labc)=(r,e” 217 P"2cosf; + S, r 6272 P cosh,)e 12,

(17 8m?
| ~SZ 5 [QU@+Qu3)]. (@2
while
|abc)=[rfe 21 Pr2P,(cosb,) Similarly, the other parts can be calculated by replacing
g(x) with g(x)exp(—=xD)/x and h(x) with h(x)exp
2,-ar,—b - . o .
+Spnrze 2 PPy(coshy)]e 2 (18)  (—yD')/x in the original Table I, respectively.
is the choicg fqu—statg calculations, Wher(_e the sign param-  taglE I Table | values modified for (a’b'c’|
eterSy,=1 indicates singlet states andl triplet states. —(ZIrp)e"2/P|abc).
Since the set of correlated basis functidgaisc is neither
.orth.ogonal nor normalized, the eigenvalue problem to solve f(x) new g(x) h(x)
is given by
1 x2e~(at+a’)x ;e—[b-%—b’-%—(l/D)]x e (cte)x
gc fabc(Ha’b’c',abc_Esal’b’c’,abc):o (19 2 e~ (@b o-[a’ +b+ (1D)Ix o (e+e)x
3 Xef(a’ +b)x ef[aJr b’ +(1/D)]x ef(c+ c’)x
(for all combinations a’'b’c’), where S,picr apc 4 o (b+b)x xe-[a+a’+(1D)]x e (c+c)x

=(a’b’c’|abc) andH /¢ anc=(a’b’c’|A|abc).
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As an example of such a modification of the original
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TABLE lll. Three functions used in Eq23).

table, we turn to the matrix element(a’b’c’|
—(ZIr,)e "2'Plabc), and show the modified table, Table ¢

f(X)e—(a+a')x

g(x)e—(b+b’)x

h(x)e—(c+c’)x

The final expression to compute is given by : 2 a,2+b,2+c,2_4_a' 1 1
X
Z 2 —2b'x? 1/x 1
I/l — A—ToID
<a b'c r2e 2 abc> 3 —c'x?(6-a'x) 1 1K
5 4 b'c’'x? X 1/x
:_Z8L[Q (1)+Qu(4)] 5 —b'c'x* 1/x 1/x
3 0 0 6 —a’'c'x X2 1/x
872 7 b'c'x? 1/x X
~SoZ 3 [Qu2)+Qu3)]. (22 8 a’c'x 1 x
9 2c'x X 1/x
To evaluateQ,(¢), the functionsf(x), g(x), andh(x) now ¢ g(x)e@+a)x f(x)e-®EX  p(x)e(ete)x

have to be chosen from thigh row of the modified table.

The calculation of the kinetic energy elements of thelO NP -y 1 1
Hamiltonian matrix, variable transformation leads to a more xa+b+e T
involved expression, 11 —2p’'x2 1x 1
Pt 12, o2 12 —c'x*(6—a'x) 1 1K
(a’b’'c’[-3(Vi+V3)|abe) 13 b/e/? N i
a2l 8 17 14 —b’c’x* 1/x 1/x
== 3| 2 Q(O+Qu9+ 2 Qu(H)+Qu(18)| 15 —a'c'x X Lk
=1 (=10 16 b'c'x? 1/x X
42 26 17 a'c’'x 1 X
=3 Spn 52219 Q1()+Qq(27) 18 2c'x X 1/x
a5 e f(x)ef(a“rb)x g(x)ef(aer’)x h(x)ef(wc’)x
+ 2, Qi) +Qo(36) |, 23 19 aar X 1
(=28 X a’2+b’2+20’2—7
where the three functions are defined in Table IIl. The tableg0 —2b'x 1 1
for the functions used to calculate the overlap and Hamil21 —c'x(6—a’'x) X 1/x
tonian matrices as well as Eq8)—(13) provide the basis for 22 b'c’'x X2 1/x
a systematic way of computing the rest of the integralsp3 —b'c’'x8 1 1K
needed to describ states. 24 —a'c X3 1/x
24 b'c'x 1 X
V. D-STATE CALCULATIONS 26 a’c’ X X
’ 2
The elements of the overlap matrix are 21 x X x
3 2 Ie g(x)ef(a’er)x f(x)ef(aer’)x h(x)ef(wc’)x
v
Sa'b’c’,abc:?[Q0(1)+Q0(4)] 28 4a’ X 1
x|a'?+b'?+2c?— —
8?2 x
+Si g [Q(D+Q)]. (24 29 ~2b'x L L
30 —c'x(6—a’x) X 1/x
H : ; 31 b’c’'x X2 1/x
ere the functiong(x), g(x), andh(x) in Egs.(8)—(13) S,
are defined in Table IV, 32 —b ex 13 1k
Similar to calculations oP states, we get 33 -ac X i
34 b'c'x 1 X
B A 35 a'c’ X X
a'b’c —ae 1"Plabce 36 2! 2 1x
82
=—Z—[Qo(1)+Qo(4)]
where the three functions are almost the same as those in
8m? Table IV, except that the functiori(x) is replaced by
—Spnz?[Q2(2)+Q2(3)], (25 f(x)exp(—x/D)/x,
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TABLE IV. Functions used in Eq24). TABLE V. Three functions used in Eq28).
¢ f(x) g(x) h(x) ' f(x)e (ata’x g(x)e®FbIx  p(x)e-(erex
1 X4ef(a+a')x e—(b+b’)>< e—(c+c’)>< 1 , 1 1
2 x2e~(atb)x 2~ (@' +b)x o (c+e)x XA a’2+b'2+2c’2—7
3 x2e~(a'+b)x x2e~(a+b")x g (crex 2 —2b'x* 1/ 1
4 e (b+b)x x4~ (ata’)x e (cte)x 3 —c'x*(8—a’x) 1 1K
4 b’c'x* X 1/x
5 —b’c’'x8 1/x 1/x
a'b’c’ _Ee*rz/D abc 6 —a'c'x® x2 1/x
rs 7 b’c'x* 1/x X
82 8 a'c’x® 1 X
ar 13
=—Z—-[Qo(1)+Qu(4)] 9 ac’x x i
6.2 14 g(x)e—(a+a’)x f(X)e—(b+b’)x h(x)e—(c+c’)x
a
—SpnZ = [Q2(2) +Q2(3)], (26) 10 6a’ 1 1
5 X4 a/2+b,2+2C,2*7
where the three functions are almost the same as those in —2ob'x4 1% 1
Table 1V, except that the functiog(x) is replaced by 1o —c'x4(8—a’'x) 1 1k
g(x)exp(—=x/D)/x, 13 b’ e’ x* X 1x
1 14 —b'c’'x® 1 1
<a’b’c’ e M2/’ abc> 15 —a'c'x® x2 1/x
M2 16 b’c'x* 1/x X
82 82 17 a'c’x® 1 X
= [Qu(D)+Qu(#]+Sy - [Qu2)+Qu(3)] 18 4cxC x 1x
(27) é’ f(x)ef(a“rb)x g(x)ef(a+b’)x h(x)ef(wc’)x
with the functionh(x) replaced byh(x)exp(—x/D")/x, 19 2 a’2+b’2+2c’2—6—a, x? 1
X
2, g2
(a’b’c’|—%(Vl+V2)|abc> 20 by « 1
472 8 17 21 —c'x?(8—a’'x) X2 1/x
I Aly2 3
=—T[E Qo)+ Qu(9)+ Qo(§)+Q1(18)} 22 b'c’x x Lix
=1 ¢{=10 23 —b’c'x* X 1/x
472 26 35 24 —a’c'x x4 1/x
I~ y2
—?spn[ 2 QO+ Q2D+ 2, Qu(0) 25 bre’x x x
(=19 (=28 26 a’'c’x X2 X
27 4c'x x3 1
+Q1(36) ) (28) e g(x)ef(a%b)x f(x)ef(aer’)x h(x)ef(wc’)x
. . . , 2
where the three functions are defined in Table V. 28 2 a,2+b,2+20,2_6i X 1
X
VI. SUM RULES 29 —2b'x? X 1
A2 Al 2
Sum rules have been introduced as stationarity condition30 ¢ )t(ﬂ(s: 2a X) X3 ijx
and goodness criteria into resonance calculations based on b(’: X . x 1/X
expansion of dilatationally transformed Hamiltonians B ,C ,X )2 X
[12,13. This technique is also called complex scaling and>3 Tacx X 1
serves the purpose of determining complex variational wavé4 b ,C ,X X2 X
functions when the usual criterion of energy minimization is3° a C/ X X3 X
not applicable. In the context of the present work which36 4c’x X 1ix

deals only with bound states and real-valued eigenvalues the
use of sum rules is motivated rather by the need of optimiz-

ing a large number of exponents in the correlated basis fundions for excited states. In the present work, the number of
tions. This nonlinear search is an addition to the usual lineanonlinear parameters is at least 56. This is prohibitively large

optimization by the Ritz variational procedure and providesfor a full optimization. Instead, we scale three groups con-

an alternative for the optimization of variational wave func- sisting of six parameters each independently. From these we
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form the required combinations.

The simultaneous satisfaction of the sum rules here, as in ;
. ex|
the complex case, enforces relevant properties that a mean- D ETP

PHYSICAL REVIEW E64 016408

TABLE VI. (a) Triplet P states andb) singletP states.

theor
El

ingful wave function should exhibit. The first-order term of (a.u) (a.u) (a.u) S S Se

the energy expansiofmot really a sum ruleis the quantum
virial theorem, while the second-order term has the typical

o . 2x10°
form of the sum occurring in perturbation theory of second
order, and so on. The sum rule of the second order provides

a stability condition.

We are studying He-like systems that experience screen-

ing modeled by Debye potentials

Z Z 1 ,
V:__e—rllD__e—rz/D+_e—r12/D . (29)
M I M2

Eigenfunctiong¥) are assumed in the form given in EG6)

with the correlated basis functions fé¥ states as given in

Eq. (17).

The satisfaction of the sum rules is expressed by the va
ishing of the coefficients of the perturbation expansion. Ex-

plicitly, the first two conditions are the virial theorem

<x1r 2T+'((9V>
I —
9], .

and the sum rule of the second order

‘If> =0, (30)

<bm- a4 >
i|— n
2T _} (92_V — 7 0=0 =0
mo2196%),_, 67 Ep—En ’
(31
where
oV Ze—l’llD Ze—rZ/D e—rlle’ Ze—l’llD
—| =i + - +
0] ,_, I ry roy rio D
Ze "2/D efrlle’
+ 5 o7 (32
and
92V 27 "1/D  27a7T2/D  9g=T12/D’
= +
|, . D D D’
Ze "1/D 7 r2/D e*flz/D’
+ + -
s Iz 12
ZrlefrllD Zrzefrle rlzefrlle’
DZ T pz T p=?
(33

VIl. NUMERICAL RESULTS

(@

—2.133330 —2.133083 1.11 1.665 5.03

200 —2.118159 1.11 1.665 5.03

20 —1.990202 1.11 1.665 4.83

2 —1.158562 1.02 1.52 4.84
(b)

2x10°F  —2.124002 -2.123531 0.90 1.431 5.22

200 —2.108613 0.90 1.431 5.22

20 —1.981216 0.91 1.447 5.215

2 —1.157886 1.02 1.622 5.207

the quantum virial theorenisee, e.g., Ref[11], p. 78 is

"hiven as

([A,F]-)=0 (35)

with
. h
F:i_(r_I‘Vl"‘r_E'Vz)- (36)

Thus the application to the screened system corresponding to
Eq. (15) leads to the virial theorem of the form

r r
J’__ J—
1 D

V(rﬁ—k(l%—ti V(r,)

24Ty = —<

2
=7

+
D

1+

W(F12)>- (37

Representative numerical results with wave functions of 56
terms are summarized in the following tabl&., S,, and

S; are the dimensionless factors by which the constanibs
andc in the wave functions of Eq$17) and(18) have been
scaled, respectively.

Note that the Debye screening potential converges toward
the Coulomb potential in the limit of weak screening, i.e.,
very large values ob. Tables VI(a) and VI(b) show that the
numerical results reflect this fact well. For the lowéxt
states, our results compare well to highly accurate calcula-
tions by Thakkar and Vedend4] (their values are
—2.133164 a.u. for the triplet anet2.123 843 a.u. for the
singlet P states, respectivelyas well as to experimental re-
sults[14] containing, naturally, all relativistic effects which
are not included in the theoretical values. In the limit of
strong screening, our results indicate that the energy levels of
2P and 2P tend to become closer. This is a reasonable
result considering that with decreasing values fthe
atomic system expands spatiallg], i.e., the two electrons

For a general two-electron atomic system describedtay further apart on the averag&ee Table VII S, S,

by the Hamiltonian

H=T1+ T+ V(r) +V(r) +W(r ), (34)

andS; are the dimensionless factors by which the constants
a, b, andc in the wave functions of Eq$17) and(18) have
been scaled, respectively.
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TABLE VII. (a) Triplet D states andb) singletD states. TABLE IX. This table is an example of a modification of an
above given table, namely Table I, with the aim of accomodating a
D ES Etheor screening factor in one of the given functions. He) of Table
(a.u) (a.u) (a.u) Sa Sy Se | is modified by the factok exp(—x/D) to represent a new function
frew(X)-
€Y
2x10°  -2.055808 -2.055432 10 20 3831 fooulX) 9(x) h(x)
200 —2.040578 1.0 2.0 3.830
50 -1.997669 1.0 20 3829 1 x3g lara’+ (D) g (brbx g™ (erex
20 -1.918472 1.0 20 3.805 2 x2g [a+tb’+(1D)]x xe~ (@' +b)x e (cFex
10 -1.804013 1.0 20 3.688 3 x2e~[a' +b+(1D)Ix xe~(@+b)x e (cre)x
(b) 4 Xef[b+b’+(1/D)]>< Xzef(a+ a’)x ef(c+ c’)x
2x10° —-2.055793 —-2.055418 1.0 2.0 3.835
200 —-2.040566 1.0 2.0 3.835 oD )
50 -1.997650 1.0 2.0 3.830 Zrie 't Z 8w
P |——\r )= — — 1)+ 4
20 -1.918423 1.0 20 3.79 < D? p? 3 [Qu(L)*+Qu(d)
10 —1.803940 10 2.0 3.681

+55nQ1(2) +5,nQ1(3) 1, (38)

whereg(x) andh(x) are the same as those in Table I, while

Enforcing the satisfaction of the virial theorem for an ex- f(x) is modified to account for the extra temexp(—x/D)
cited state provides an optimization criterion for the adjustr,pje 1x represents such modifications, and

ment of the nonlinear parametefsee Sec. VIIi. This is

shown in Table VIII, wherek indicates the particular state fou(X)=f(x)xe P, (39)
chosen for optimization. Note that only théh state is opti- ne
mized but not the lower states. To evaluateQy(1) [see Eq.(11)], functionsf(x), g(x),

Again, S;, S, andS; are the dimensionless factors by 5nqh(x) from the first row are chosen. Since the first func-
which the constants, b, andc in the wave functions of EQs. tion has now three extra powers ®f(i.e., of ry) without
(17) and (18) have been scaled, respectively. changes in the powers of or r ;,, the integral1, 1, 1) then

becomed4, 1, 1] with A=a+a’+1/D, B=b+b’, andC
=c+c’. The termQq(4) is computed similarly by picking

VIIl. AN EXAMPLE FOR THE USE OF THE TABLES functions from the fourth row. In this case, the integrbl 1,

1) is modified into[2, 3, 1] with A=b+b’+1/D, B=a

In this section we demonstrate via an example how & a’, andC=c+c'. To evaluateQ,(2) [see Eq(12)] three

moderately complicated mtegrql can'be calculated using th8ifferent integrals have to be evaluated using the functions
tables presented above. Following this scheme, the computgy ., the second row. Integrd®, 0, ) becomeg4, 1, 1,
tion of a large variety of integrals with various powers of integral(0, 2, 1 is transformed int¢2, 3, 1, and integral0,
rp, andryp, as well as with different exponents, can beq 3) changes t¢2, 1, 3. All three integrals have the expo-
significantly simplified. nential coefficientsA=a+b’+1/D, B=a’'+b, andC=c
We chose the integrg¥’|(Zr,e”"1/°/D?)| W) which is  +¢’. The same approach is used to evalu@ié3), choos-
one of the integrals necessary for the evaluation of the surnhg functionsf(x), g(x), andh(x) from the third row. Then
rules. First we notice that, aside from a constant faZ{@?, integral (2, 0, 1) becomesg4, 1, 1] integral (0, 2, 1) changes
the integrand can be obtained by multiplying the integrand oto [2, 3, 1], and(0, 0, 3 is now|[2, 1, 3. All three integrals
the overlap matrix by ;e "/, Therefore Table | with some in this case have the same coefficieAtsa’ +b+1/D, B
modifications can be used for the calculation of this particu=a-+b’, andC=c+c’. Integrals of the typ€K, L, M] with
lar integral. known coefficientd\, B, andC can be easily computed using
Using Egs.(8)—(13) we obtain the quadrature approach.

TABLE VIII. Different triplet D states withD =2x10° a.u.

E, E, = E, =

k S Sy Se (a.u) (a.u) (a.u) (a.u) (a.u)

1 1.0 2.0 3.831 —2.05543

2 1.0 2.0 3.7475 —2.05520 —2.02965

3 1.0 2.0 3.873 —2.05551 —2.03054 —2.01775

4 1.0 2.0 3.9315 —2.05557 —-2.03074 —2.01823 —2.01110

5 1.0 2.0 3.68211 —2.05492 —2.02891 —2.01383 —2.00003 —1.97754
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IX. SUMMARY and
Motivated by the importance of two-electron atoms and f _a—(b+b)ry _ a(ata)rpy 2
. . . . T . (ry)=e . g(rp)=e rs,
ions for plasma diagnostics, our main objective for this study
was the development of a systematic approach for the use of h(r@:e,(ﬁcqru’ (A4b)

correlated wave functions. This approach has been success-
fU”y developed, applied, and described in detail and is tthspective|y_ |ntegra|s$2 and 83 are of the type Ql

major emphasis of this paper. While the present applications- 1/2{(2,0,1)+(0,2,1)-(0,0,3)} with functions
comprise the calculation of bourRlandD state energies of

the helium atom in a screening environment and are chosen f(ry)=e @i, = g(r,)=e @ *brzr,
to demonstrate the use of the quantum virial theorem and
sum rule in second order, the numerical applications can be h(rlz):e*“*c')’lz (A5a)

extended to include other heliumlike ions as well as the com-
putation of other properties such as oscillator strengths angnd
radial one-electron densitig®]. The computation of ener-

gies and lifetimes of autoionizing states, done so far only for
the pure Coulomb potentigll5], requires the analytic con- _—(c+chyr
tinuation onto the complex plane and has been the main mo- h(ri=e 2 (ASb)

tivation for the development of the sum rule criteria. The egpectively. Thus the simplified form of the overlap matrix
present studies will be extended into that area in the negg

f(ry)=e” @ *Prry,  g(ry)=e (*"Prery,

future.
‘ 812
APPENDIX A Sabca b ¢= Z:l Sh="3[Qo(1)+Qo(4)]
The overlap matrix folP states 82
+S,—— 2)+0Q4(3)], A6
Sa’b’c’,abc:<a,blcl|abc> (Al) pn 3 [Ql( ) Ql( )] ( )
can be divided into four parts where S, representst for singlet and triplet states and
numbers 1 through 4 represent different choices of functions
Sarbrerabc= 1t S+ S3+ Sy, (A2)  in the integrals.
where APPENDIX B
_ 20— (a+a’)r1a—(b+b")rpm—(c+c )y . One of the authorgP.W,) would like to correct a long-
St f f i€ € € cos’ 6;dridr, standing faulty formula: Eq25) of Ref.[16] should read as
follows:
= if f rirpe” (a0 rg= (@ +birpg=(e+ehry a’+b?+2c®> a—-2 b-2 2c+1 ry
Ho=| — + + + —ac—
R 2 i Iz l12 2ryp
X €0s#, cosh,diidry,
2 2
r r r r r
L , , —bc=>—bcr2—ac=—2+bc——+ac-—
83: if f rlrze_(a +b )rle_(a+b )rZe_(C+C )r12 2I’12 2I’2 2r1 2r2r12 2I’1I’12
—_— a’+b%?+2c> b-2
X c0sf, cosh,dridry, X e 21~ brag=Cria+| — 5 T r
1
_ 2, —(a+a’)ria—(b+b')ryn—(c+cr a—2 2c+1 r r r
S j j rz¢ e 2e 1 + + c——ac—>—ac——=
) iz 2ryp 25 2r;
X cog 0,dr;dr>. (A3) 2 5
_bcﬁ_’_ac 1 +bc M2 @ brig—arpg—crip
It is easy to show tha$, andS, can be represented by an 2ry 21,65 2rqrp '
integral of a typeQ,=[0,0,0] with functions (B1)
f(ry)=e @"@rrf, g(ry)=e P+, Herea, b, cstand for the corresponding Greek letters3, y
, in the earlier reference. The results of REE6] were ob-
h(r)=e (€*¢rz (Ad4a)  tained using the correct expressions.
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