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Electron-distribution-function cutoff mechanism in a low-pressure afterglow plasma
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A model is developed for self-consistent simulations of transient phenomena in a low-pressure afterglow
plasma. The model is based on the nonlocal approach which allows a kinetic description of the plasma decay
under nonquasistationary conditions. Such conditions arise when colligi@isly electron-electronare not
sufficient for the electron distribution functigiDF) to follow changes in the self-consistent electric fields and
the ion density once the power is turned off. As a result, collisions cannot provide the electron and ion particle
balance by allowing electrons to flow out of the potential well. A cutoff mechanism is suggested that provides
such a balance during the transient period—from the glow, stationary plasma to the quasistationary, afterglow
plasma. This mechanism is essential for determining correctly the self-consistent wall pdgerdiaknce the
energy of ions impinging upon the wall surfa@nd other parameters, such as diffusion cooling, which is the
most important cooling mechanism at low pressures. These phenomena are modeled using the time-dependent
nonlocal electron Boltzmann equation with a nonlinear electron-electron collision operator. A numerical treat-
ment is made by extending Rockwood’'s method for finite-difference discretization of this operator in the total
energy formulation. The model calculates self-consistently the temporal evolution of the nonlocal EDF and the
electric potentials in the plasma and the wall sheath. Strongly non-Maxwellian EDF’s are predicted and it is
observed that, depending on plasma conditions, the transient period maybe rather long, of order of the ambi-
polar diffusion time, lower pressures resulting in longer transient times. The proposed approach can be applied
to model self-consistently pulsed plasmas during both the power-on and power-off periods, including the
breakdown period.
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I. INTRODUCTION are largely oversimplistic and the direct PIC-MCC methods
are computationally demanding, the appropriate approach is

The afterglow(postdischargeplasma has attracted much to use the electron kinetic equation. However, the solution of
attention in the past several decades. The recently increaséite time- and space-dependent kinetic equation with self-
interest came about as a result of development of advancedonsistent electric fields is a complicated task. In the present
pulsed plasma sources operating at low pressures. Much gfaper, we employ simplifications based on the nonlocal ap-
fort has been invested in comprehensive experimental invegroach proposed by Bernstein and Holsf@hand by Tsen-
tigation and theoretical modeling of such plasn@sg.,[1]). din [7]. The correctness and effectiveness of this approach
The global(e.g.,[1]) and fluid (e.g.,[2]) models have been has been demonstrated for various types of plasma discharge
most commonly used to describe power-modulated plasma the active phaséyower-on periogl to cite just a few ex-
Simulations using the particle-in-cell with Monte Carlo col- amples, in Ref[8] for an inductively coupled plasm@CP),
lisions (PIC-MCC) codes have also been reportéelg., in Ref.[9] for a positive column plasméPCP, and in Ref.
[3,4]). [10] for a capacitively coupled plasm&CBP.

Since at low pressures the electron kinetics is essentially In Ref.[5], a semianalytic method based on the nonlocal
nonlocal and the electron distribution functiqEDF) is approach was proposed for self-consistent modeling of a
likely to be non-Maxwellian, the global and fluid models low-pressure afterglow plasma under nonlocal conditions.
may fail to predict the plasma decay correctly, especially inThe method consists in solving simplified, nonlocal kinetic
the early afterglowe.g.,[5]). A kinetic treatment is therefore equations coupled with particle- and energy-balance equa-
necessary, taking into account the EDF nonlocality. Such &ons. The applicability of this method was validated by nu-
treatment can be naturally performed using the PIC-MCGQmerical solution of the full time- and space-dependent ki-
codes. The PIC-MCC methods, however, are computationaetic equation. The main assumption of this method is that
ally costly and become even more so if electron-electrorthe EDF is quasistationary. This assumption is valid pro-
(e-e) collisions are taken into account at considerable elecvided that collisiongmainly e-e, frequencyr,) are frequent
tron densities f,=10'° cm™3). As such, low plasma densi- enough for the EDF to adjust itself to changes in the self-
ties are treatedn,<10°—10° cm 2 [3,4]) ande-e collisions  consistent electric potential. Such changes take place on a
are generally neglected in the PIC-MCC simulations. Sincg&ime scale of order of the ambipolar diffusion timg,, and
e-e collisions are essential in describing an afterglow plasmahe assumption of the EDF quasistationarity turns out to be
(e.g., Maxwellization, they need to be included and treatedvalid at moderately low pressures. With further decrease of
appropriately. Therefore, since the global and fluid modelgressure, the following phenomena can become manifest. It
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was demonstrated in Ref5] that the particle and energy quencyv), is smaller tham\, i.e., A< A; however, there are
balances are provided by particle and energy flukeen-  no limitations in principle for the model to be valid in a
ergy spacgout of the potential wellwhich is determined by collisionless regime. The model gas is a noble gas, Ar. We
the wall potential energed,), the characteristic time of adopt a one-dimensional cylindrical geometry, with the tube
electron escape matching the time of ion ambipolar diffusiorradius beingR (so thatA~R/2.4). The analysis, however,
to the wall, 7,,,. These(positive fluxes in their turncan  can be extended to a multidimensional cése.,[8]) since
exist only due to € collisionswhich enable electrons to the employed nonlocal kinetic equation in terms of the total
escape from the potential well. Any other type of collision energye does not depend explicitly on geometry. We do not
(inelastic, quasielastic, ejccannot generate such fluxes, specify the type of plasma generation in the active phase
since collisions other thae-e collisions result in fluxes of (power-on periodl It can be an ICP, CCP, or PCP. The type
electrons toward low energi¢segative fluxes Clearly, dur-  of discharge can be specified by discharge conditigeem-
ing the power-on period, these outflows of electrons are duetry, gas pressureand by the initial EDHelectron density,
to the electric field sustaining the plasne € collisions be-  mean energy, etc.Here we study the plasma decay from the
ing generally negligiblg which accelerates the electrons, al- moment when the power has been switched off. Hence, we
lowing them to escape from the potential well. But once theassume that at timee=0 there is no power going into the gas
input power has been turned off, an interesting situation ind there are no currents in the external circuit. However,
realized. Typically, the wall potential energ®,, is high  since the typical time scale of the mechanisms studied here is
(ed,=¢€;, Whereg; is the ionization potential; i.eed,  of order of a few tens of microseconds, a finite power fall
=20 eV for rare gases, such as He and Auring the time of a few microseconds can exist. We also assume that
power-on period. As such, the frequencyesé collisions at  all high-voltage sheaths, which may be present in the active
these high energies is logrovided that the electron density phase(e.g., in a CCPR, have collapsed in a short timef
is not very high, namely, Ve(e‘I’w)<T;r§by and hencee-e  order of the ion transit time across the sheatid the plasma
collisions cannot providépositive particle fluxes out of the ~consists only of a quasineutral region and nariéew De-
potential well. Under these circumstances, the wall potentiapye radii space-charge wall sheaths. In the quasineutral re-
has to start to decrease fast enough in order to let electrorg#on, the space-chargambipolay potential®(r) dominates
leave the potential well and escape quickly to the wall. Suckndn=n;=n, [wheren is the plasma density ant,(n;) is
a fast decrease oéd,, causes portions of the EDF with the electron(ion) density. In the wall sheaths, a steep
energies close ted,, to be effectively cut off from the bulk change(jump) A®,, in potential takes place, which is nec-
EDF, this representing the “cutoff” mechanism. The particle €ssary to confine most of the electrons and to balance total
loss due to the cutoff mechanism is accompanied by an erglectron and ion currents to thelielectric or conducting
ergy loss which can be identified with a modified diffusion wall, the total wall potential being,,=®(R)+A®,,. Spa-
cooling mechanism—the most important cooling mechanisniially resolving the narrow(mainly collisionless for both
at low pressures. electrons and ionsvall sheaths can be avoided by choosing

The importance of the mechanisms described is eviderappropriate boundary conditions at the wall. Since the
for predicting correctly, among other things, the energy ofplasma studied is nonstationary, all plasma quantities are al-
various ion species impacting on a wall surface or on a solidowed to vary in time and so have explicit time dependence,
object (such as a waf@¢rimmersed in the plasma. Compre- such asb=d(t,r), ®,=®,(t), the EDFf,="fy(t,€), etc.;
hensive modeling can aid the development of methods ofor convenience, the argumentvill be dropped in most of
control over charged-species fluxes, which is one of the ulthe following formulas.
timate goals of low-pressure plasma processing. In this
complementary paper we extend the model proposed in Ref.
[5] by focusing attention mainly on the transient phenomena.
The paper is organized as follows. In Sec. II, the assumptions Generally, in order to find the EDF, a nonlingartegro-
and description of the physical model are given. In Sec. Il Adifferentia) time- and space-dependent kinetic equation has
the nonlocal electron Boltzmann equation is presented, to®0 be solved, which is a computer intensive task, especially
gether with thee-e collision operator. The particle- and in a self-consistent problem. In Reb], we solved such a
energy-balance equations are analyzed in Sec. 1l B. The niull kinetic equation and compared the results with solutions
merical scheme is detailed in Sec. Ill, and the simulatiorof & simplified nonlocal kinetic equation under the assump-
results and their discussion are given in Sec. IV. Finally, théion of EDF quasistationarity. Here we cannot make such an
summary and conclusions are outlined in Sec. V. assumption and hence use the nonlocal electron Boltzmann
equation directly.

At low pressures, the key simplification is to use the non-
local approach(see Refs[7,11,13 for detaily. This ap-

The plasma we are interested in is an afterglow plasmaProach can be applied provided thef>A. In the elastic
The gas pressune is considered to be low so that the elec- energy rangew<w*) \ ~\\v/(ve+ év) (for Maxwellian
tron energy relaxation lengtk, is larger than the character- electrons\ . ~\/+/8) and in the inelastic energy rangev (
istic discharge chamber dimensidn i.e.,A\.>A. Amainly  >w*) N\~ JA\*/3 (for small v,), where5=2m/M is the
collisional regime for electrons is considered, in which thefraction of electron energy lost in a single quasielastic
electron mean free path in collisions with atoms,(fre-  electron-atom €-a) collision and\* =v/v* andv* are, re-

A. Nonlocal electron Boltzmann equation

II. PHYSICAL MODEL
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spectively, the mean free path and frequency of inelasic  and the time dependence is assuntadjumentt dropped
collisions. Estimations show that for Ar in the energy rangefor  all  quantities: w=w(t,e,r)=e—ed(t,r), Jw

of interest nonlocal conditions with > A occur when the —\/W(t e), etc. Note thatr,, has implicit time dependence
- y ] . w

gas pressure is lower than a few Tdfor a 1-cm-radius . . _ ;
discharge Under nonlocal conditions, electrons transit radi- "' ’.“a'”'y the qepe.ndencéQ' .5.Q[G¢W(t)]' Since the
ambipolar potentiadb in the definition of the total energy

?I:yv\\//\lf:%u(tr?'?r?g:gamg;?ggfjnl2&2?;23:25{1:2%' eSr:)ergyiS time dependent, there is an additional term in the time
that e®>0), which becomes an approximate constant Ofdenvatlve of the EDH, in Eq. (2) (see, e.g., Ref.14]) with
motion and is hence a convenient independent variable to oD
replace the kinetic energw=3muv2. Two groups of elec- Vq)=e\/w e (4)
trons can be distinguished, namely, trappee<éd,,) and
free (e>ed,,) electrons. A trapped electron with a total en- _ -— — .
ergy e can only move within an accessible region determined1€7€: Vo =Va(t,€) and Vo W~ ed®/st, and so this term )
by e<ed(r) or r<r*(e), and a free electron quickly es- Is generally small compared with the collision term:

capes to the wall by free diffusiofcollisional regime,x  |€%/dt|<ww [see also the discussion of EG0) below].

<A) and by scattering into the wall loss cofellisionless After some manipulations, the nonlineae collision op-

regime,\>A). erator in total-energyspatially averagedormulation can be
The nonlocal kinetic equation applies strictly only for the Writtén as

trapped electrons. The approach, however, can be extended, f

and the free electrons can also be described by the same Wee=Toe= Vol o+ De—o, (5)

equation by introducing a wall loss term with a characteristic de

wall | tim . P e -
af foss fime with the e-e dynamic friction and diffusion coefficients, re-

A% 1(R+N47m 1 L spectively,
=B, "2l N e v @ .
Ve:Veoj whq e )fo(e)de’, (63

where D,=%\?v is the electron free-diffusion coefficient 0
and 8Q~27[1— J(ed,—ed)/(e—ed)] is the wall loss 5
cone; this approach is valid fa?¥) <4, namely, for “al- _.° F 32 N ot 432 fw Nt
most trapped” electrons. In Ref9], by carrying out a de- De=veo o (¢')To(€)de"+ W e) . fo(e")de" ),
tailed comparison with Monte Carlo calculations, this ap- (6b)

proach was shown to be appropriate in a large electron ) o )
energy range of up to 100 eV for a dc positive columnWwhere ve=rvgn. /W is the e-e collision frequency with
plasma. Not only in the collisional regime\€A and\,  Veo=2v2me*In A/ym,. It can be seen that tree collision
>A) does this approach work, but also, surprisingly, in theoperator in kinetic energy formulatiofe.g.,[12,5)) and that
(neaj collisionless regimeX=A; see Ref[13] for detaily, ~ Of Egs.(5) and () in total-energy(spatially averagedfor-
where a significant anisotropy of the EDF is manifest andnulation have similar forms with the following substitutions:
hence the two-term spherical harmonic approximation isv— e, wY2—w¥2 andw?®?

32

—w??2 Thee-e collision opera-

strictly not valid. It can be expected that this approach willtor in Eq. (5) can be showrafter multiplying it byw_l’z and
be valid also for a nonstationary afterglow plasma since the. 12 5q then integrating over total enefdy conserve the

time of free radial diffusion/transit;~A2/D,+R/v is fast volume-averaged density and mean tofabt kinetio en-
compared with the slow time of variation of the ambipolarergy which implies that

(®) and wall @,,) potentials. However, since the nonlocal

kinetics is obtained by averaging over electrons’ radial tran- * ) Jee ce

37
sits, phenomena occurring on a time scale faster than o de de=0 and jo € e de=0. )
(typically, 77=0.1-1 us at low pressurgscannot be ad-
equately described. In Eq. (2) we have neglected quasielasticequencysv)

Thus, we can write the nonlocal kinetic equation for theand inelastiafrequencyr*) e-a collisions. These collisions
EDF fo(t,€) as can be treated in a straightforward manier.,[7,12,9):

quasielastic collisions can be cast into the Fokker-Planck
dfg Vo dfg 1 4 e fo form of Eq. (5) and for inelastic collisions only loss terms
EJF = 9e — de W‘]ee_T_’ 2 proportional tovfy, need be retained. For simplicity these
\/W \/W v types of collision are neglected here. This is reasonable for

quasielastic collisions since at low pressums<v, in the
Iyenergy range of interest. Inelastic collisions in their turn are
not important when the wall potentiédbove which the EDF
1 . falls off rapidly) does not significantly excees*, which is
X(€)= — ' (E)X(e,r)rdr, (3)  the case under the conditions studied. It turns out that, for the
R2/2J)0 physical mechanisms presently investigated, both elastic and

where a spatially averaged quantity in cylindrical geomet
is
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inelastic collisions are nonessenti@ fact, such collisions by the cutoff mechanism is an energy loss representing a
can even enhance these mechanjsamsl their possible im- cooling mechanism for the trapped electrons.

pact will be discussed in Sec. IV. The mathematical treatment proceeds by multiplying the
From the EDFf,(€), the electron density, can be cal- nonlocal kinetic equatiorf2) by w*? and e w? and then
culated as integrating over total energy from O ®®,,. It should be
. pointed out that the first moment of the nonlocal kinetic
ne(r):f \/Tq)(r)fo(e)de, (8) equation gives the evolution of _the_mean totgl (_ane(n'gy.
ed(r) volume-averaged valjienot the kinetic one. This is physi-

o cally clear and, as a consequence, g¢he collision operator
and so can the mean Kkinetic energyVe(r) conserves the mean totaiot kinetio energy[see Eq.(7)].
= [eoW¥*fode/n,. In the case of the Maxwell-Boltzmann Hereinafter, we denote quantities related to trapped electrons
EDF

by careted variabletsuch as,, etc) and volume-averaged
quantities by (---), where (X)=2[§X(r)rdr/R?. The
elT.) 9) particle-balance equation for the volume-averaged density of
e/

¢ 2 nNgo ”
M=—= —=;exp— H el

Jar T2 trapped electrongng)=J 5" \[wf,de, then reads as
whereng, is the central electron densitat the location of d<ﬁe>

®=0), an electron temperatufie= W, can be introduced. T =TZo(t) = Zo(t) — T 1), (10

B. Electron density and mean total energy-balance equations Wherefe= Jod e=ed,) is the particle flux out of the poten-

In this section, we derive and analyze the particle- andig| well due toe-e collisions @, v,) and
energy-balance equations. It can be argued that since we
solve the kinetic equation there is no need to derive the bal- R _ ded
ance equations. Nonetheless, in order to gain insight into the Z4= —Vq,f0|5=e¢w and Z,,=— \/Wfo|5=e¢wd—w.
governing mechanismes, it is instructive to consider and ana- t (11)
lyze these equations; moreover, the particle-balance equation
will be necessary to calculate the wall potential. Since under A . . :
nonlocal conditions two distinct, almost independent groups!€r€Za is due to time varyingb: Z,>®/Jt>0. The third
of electrons(namely, trapped and frgexist, it is more ap- termZg, on the right-hand sidéhs) of Eq. (10) represents a
propriate physically to analyze the corresponding balanc@article loss due to the cutoff mechanism, proportional to the
equations for the trapped electrons, those for all electrone®,, decay rate and the EDF amplitude et ed,,. (Note
(e€[02°]) being unhelpfule.g., in the energy balance of all that Z, is mainly determined by the slope of the EDF et
electronsg-e collisions are absent, which can lead to incor-=e®,,.) Clearly, since the wall potential varies with time
rect results; see Reff15)). much faster than the ambipolar potential doése.,
Before proceeding with the mathematical treatment, let USd( D )/dt|~ |d(W,)/dt|<|dd,,/dt]), typically, Zop<Te.
consider the physical picture. Under nonlocal conditions, the anajogously, the balance equation for tHgolume-

trapped electrons represent a “reservofférmed by the po- -
tential wel) of particles and energy. As the plasma decays,‘rjwerage;d mean total energy of trapped electrons,

particle and energy fluxe@n energy spadeflow out of this :fglwe Wwiode, reads as

reservoir via an “orifice” ate=e®,,. Once these fluxes in

energy space have left the potential well, they quickly trans- dé, . A A

form into fluxes in configuration spacsee Ref[5]; see also gt~ Ha() = He(t) = Hedb), (12

Ref.[15]). The particle flux out of the potential well is nec-
essary in order to balance the ion flux in the plasma and at r_ 5 edy, .
the wall. Those electrons with energies close to the potentiavlvhere Hq’_e?wjfl’+f9 foVede 'f’ due t? .the same
well energy(orifice) can gain energy in collisions with other mechanism agg,, i.e., HoxdP/ot; H.=ed, L. is the en-
electrons and thereby escape diXote thate-a collisions, ~ ergy flux out of the potential well due ®-e collisions; and
which were neglected here, cannot result in particle outflowsH = ed,, Z., stands for an energy loss due to the cutoff

see also the discussion in Sec. )I\f, however, the fre- mechanism. Typically, as is the case in the particle balance,
quency ofe-e collisions is not high enougtwhich is likely 7y <7 In Eq. (12), we have neglected the term repre-
the case at high energieshe (energy level of this orifice senting cooling in collisions with free electronsy,

will have to be lowered gradually to let the electrons Ieave:fw T.de, since the number of free electrons is small
the reservoir. This is the essence of the cutoff mechanism * e®w~ €€ ™

when the trapping potential energy decreases fast enougtfee Ref.[5]). However, in a late afterglow, wheif,
effectively cutting off high-energy electrons from the bulk, <0.1-0.3 eV,H; can represent an efficieheatingmecha-
trapped EDRwhich itself does not have time to react to suchnism in collisions with superthermal electrongs T,) pro-
changes These electrons become free and thus carry theluced in reactions with participation of metastable atoms
electron current. Associated with this particle loss induced16] (see also Ref15]).
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It is clear that the cooling mechanisrftg, and H,, ac-  in the wall sheatiA ®,, or the total wall potentiadb,,. Now,
company the particle losses due ¢ee collisions and the @ can be found from Eq.(8) with a known n;(r)
cutoff mechanism, respectively. In a quasistationary plasmas=n [ ®(r)] and given EDFy(¢€). In order to find®,,, one
the particle outflow due te-e collisions was associated with can take into account thakng)/dt=d(n;)/dt=—2I";,,/R,
diffusion cooling [5]—the most important cooling mecha- with I';,, being the ion flux at the wall. This gives, using Eq.
nism (with a rate larger than the cooling rate éa colli- (13),
siong at low pressures. Here, however, an additional particle
and energy loss mechanism emerges, and the diffusion cool- Zow=2T",/R. (15

g can_ be |dAent|f|Aed with tt'e sum of these two COOIIngThis equation will be used in our numerical scheme to cal-
mechanisms, He+ Heo= Py (Zet+ I ~ePy Ty, (see be-  cyjated,, (see Sec. Il Alternatively, as mentioned in Sec.
low). ~ 1B, &, can be found from the particle balance of trapped
Finally, with the particle-balance equatig¢hO) for (n,)  electrons in Eq(10). In what follows, we shall find an ap-

being derived and with a given EDIp(¢€) [calculated from  proximate expression fab,, using that equation.

Eqg. (2)], it is possible to find the decay rate @f,), which It turns out that, under conditions of strong departure from
will be needed to derive an equation féx, (see Sec. Il quasistationarity £,—0) and fast removal of free electrons
However, it appears that for this purpose it is more approprito the wall (,—0), it is possible to derive a simple expres-
ate numerically to use the particle-balance equation of alkjon for ®,,, which closely approximates the numerical re-

electrons directly, which yields in its turn sults. Under these circumstances, the EDF of trapped elec-
a(n) . trons experiences no energy relaxation, ifg(t,e)=fq(t
n © — _ < ; :
© T (t)=— Ww-2de, (13 0,e) for e<ed,,, and that of Tre? electrons is zero, i.e.,
dt eb,  Tw fo(t,€)=0 for e>ed,,. Then, withZ,;>7,,Z (the cutoff

mechanism is dominaptthe particle balance of trapped
with 7,, representing the flux of free electrons to the wall. gjectrons in Eq.(10), together withd(ng)/dt~— 2I";,, /R,
Clearly, ng~n,, the number of free electrons being small. gives

Moreover,IW~f6+ico, which means that the “source” of q

free electrons igtrapped electrons escaped from the poten- N ed W ot

. R . X Wf0| e=ed 2F,W/R (16)
tial well and which also establishes a connection between the wo dt

fluxes in energy spadée., 7, andZ,) and those in configu-
ration spacedi.e.,Z,). Note that in the particle balance of all
electrons, the term due to time varyidy(i.e., Zy) does not
appear since such variation cannot modify the total numb
of electrons.

This equation simply states that the electron flux to the wall
is formed by electrons cut off from the bulk EDF and it can
be solved for a given EDFy(€). Then assuming, for sim-
e;5Iicity, the initially Maxwellian EDF of Eq.(9) for trapped
(unperturbed) electronghis equation yields

C. Description of the ions b, ~—T.leIn(C+t/1y), (17)

In order to calculate the ambipolar and wall potentials, hare c=exp(—ed. /T.) and 7..— led_JT. with
one needs to describe the iofiecall that only positive ions 4, —ed (tp=(0) wo/Te) Too™ TambVETwo! Te
WA w .

are treated heje Generally, the description of the ions is This expression forb,, can then be contrasted with the
straightforward by solving a relatively simple ion continuity familiar expression fo\;Vd) =AD,+D(R)=~AD, (with
equation. This equation can be approximated by an ambip%)(R)Kmq) 1), where W W W

W ’

lar diffusion equation in a collision-dominated regime. For

the present purposes, a treatment describing only the general AD,=TJ2eIn(M/27m), (18)
trends of ion behavior is sufficient. Hence, we assume that

the ion density profile does not change in time and the decagbtained assuming a Maxwellian EDF fall electronsand
of its volume-averaged valuén;) is simply described by Bohm’sion flux at the wal[17]. The “Maxwellian” expres-
d(njy/dt=—(n)/ 7amp, Where 74 =A%Damy,  Damp  Sion for®,~Ad,, in Eq. (18) (Ad,~4.7T./e for Ar), be-
=D;(1+2(Wg)/3T,), D; is the ion diffusion coefficient, ing qualitatively different from that in Eq17), will be seen
andT, the atom(ga9 temperature. This gives the time-spaceto reproduce the numerical results incorre¢tige Sec. IV.
evolution of the ion density as The condition of fast removal of free electrons to the wall
(i.e., 7,—0) used to obtain Eq17) can be relaxed by taking
into account a finiter,,. This gives(for v,—0) an improved
expression for the EDF,

ni(t,r):ni(tzo,r)ex;{—ftdt’lramb(t’)} (14
0

(19

t
D. Calculation of the ambipolar and wall potentials fo(t,e)= fo(t=0,€)exl{ - fodt’/Tw(t' /€)

Having derived the model equations for the ions and the
particle-balance equations for the electrons, one can find tr{avherer\,_vl=0 for e<sed (t)], that can then be used to find
ambipolar potentiafb in the plasma and the potential jump ®,, and be compared with numerical resultslote that in
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the case where-a inelastic collisions are important the sub- merical scheme may be considered in order to reduce nu-
stitution 7,,*— 7,,*+ v* allows them to be accounted fpr.  merical noise and speed up calculations, such as one employ-
ing a higher-order Runge-Kutta scheme for stepping in time
and subcycling(updating the ion and ambipolar potential
. NUMERICAL SCHEME profiles less frequently than the EDHR-or the present pur-

. oses, however, the scheme employed proved to be ad-
The present problem was solved on the radms—totalp ployed p

energy grid. The nonlocal kinetic equati@® was finite dif- equate.

f d on the total id and on the radial arid nei Finally, we mention the following on the method of solu-
erenced on ne tota-energy grid and on the radial grid Nely,, ot the nonlocal kinetic equation with the nonlineae

Lher f|nll'Feddl;ferentlatlofnﬂr]lor bound_arytcondltldo_?fs n_eededdto ollision operator(see also Ref[18] for an approximate
(e apSp 1€ I Q:ecRaLas.,el 0 t.elapprtl)xtlma € 1on-di uts,lotn Lno €method of inclusion of this operator in steady-state calcula-
See Sec. th a Ial s{_pa |afr$hso u Iot? W?s |mptor f.ml’ 0‘;\."' tions). Due to the presence of this operator and the impor-
ever, since the evolution ot the ambipolar potential prolii€,, ,.o e g collisions, small time steps need to be used
®(r) was self-consistently calculated on the radial grid an ) . o

. I At~v, “(€emin) ], higher electron densities and lower ener-
was found to be rather critical for predicting correctly such*” s . .

gies requiring smalleAt. As such, simulations of a late af-

parameters a®,,. Due to the importance of the nonlinear erglow (t> 7. can necessitate long computer times. Such
e-e collision operator, its careful treatment is essential. Sucﬁ. glow (> Tam ) g comp = .
. . simulations can be carried out by using the semianalytic
a treatment must ensure that the finite-differeneezlopera- . S
- . " ... method proposed in Ref5], which is based on the assump-
tor satisfies the three basic conditions, namely, the condition N . .
jon of the EDF quasistationarity. To tackle this problem

of conservation of density and mean total energy and the - . ;
condition of convergence toward a Maxwellian EDF. Thev.\”thln the framework of th_e pr_esent aPPrO_a@D'V'r_‘g the
time-dependent nonlocal kinetic equalipit is possible to

finite-difference discretization method for tieee collision oo - e :
X . implify the e-e collision operator by writing it in a linear
operator in total-energy formulation was therefore develope .
orm that depends parametrically on the mean endayy

as detailed in the Appendix. In order to solve the time- . ”
dependent kinetic equatid®), we used a simple, first-order -Le)' Trt"s mean egelrgy Cazn t.hen bgffognd fromr;[h(_e condition
time-advance scheme. Thee collision operator was im- that the energy balancd?) is satisfied at each time step
C . I - recall that a lineae-e collision operator does not conserve
plicitly inverted (|_n_ prmuple an _uncor_ldltl_onally stable énergy. This method can be apglied when the EDF at low
Isocvcgg]?egjtglgr elel‘lrnl(tae&cri];fée::;ij|sgrl(?t|z§';|020rrt1§;??geal— energies is close to a Maxwellian and its advantage is that it
h % blg d th lati Ve 6{[“'.?3’t. P allows long time steps, which can dramatically reduce the
scheme was stable an € relative contribution o computation time. Such a method represents an analog of the
terg in the energy balance of all electrong was s.mal.ler thaﬂwethod developed in Reff5] (coupling the nonlocal kinetic
10 * for typical time steps 0f0.1 us. (This contribution, equation with the energy-balance equatidor a quasista-

Wh'%h t?nds toAzlero_ aAIt_—_>IO, can hdence b?} |dent|f|e((jj as & tionary plasma, and its implementation and testing are under-
residual erroj. Also implicitly treated was the second term \,a" o \uich 'a separate report is envisaged.

on the lhs of the kinetic equatiai2).
The general numerical scheme was as follows. Starting
with some initialf,(€) andn;(r), first, the EDFf, in Eq. (2) IV. SIMULATION RESULTS AND DISCUSSION
is advanced in time, then the ambipolar potentg]r) is
found from Eq.(8) with a givenn;(r) andfy(e) and the wall
potential ®,, from Eg. (15), and finally the(approximatg
ion-diffusion equatior(14) is advanced to obtain;(r). This
procedure is then repeated to advance further in time. Bot,, andp=5 mTorr, both at room temperaturg, =300 K.

radial and total-energy grids were equidistant and typicallyrpege cases will be compared and contrasted. Case 1 is typi-
50 radial and 200 total-energy points were used. The use Qfy| for 5 cCP(with an electrode separation 6f7 cm, e.g.,

an equidistant total-energy grids(=const, see the Appen- (- see also Ref4]). Case 2 is typical for an ICP in which
d|x)'allo.ws one to avoid the explicit dependence of the dIS'the plasma reactor is relatively large and the gas pressure is
cretization coefficients offie [see EQ(A3)]; however, atlow |4y (e . [1,8]). It is clear that experimental geometry is
mean energiesi.e., in a late aftergloly a grid with an in- oyer purely cylindrical, but the main phenomena can be
creasing number of points toward low energies may be Nuaynected to be captured for geometries other than cylindrical
merllcally more advantageous. A typlcaI_S|muIat|on+)50 with similar characteristic dimensions (recall that the non-

ps into the afterglow took about 10 min on a moderate-joc| kinetic equation does not depend explicitly on geom-

performance workstation. etry). The collision cross sections required were taken as in

It should be mentioned that the present time-advanc%{ef_ [9] and D, =40/p cn?/s was usedwith p in Torr). It is

scheme was found to result in somewhat noisy t|meA derivag,iqent that at a given pressure and geometry the studied

tivesd®,,/dt (and also related quantities, suichds, Zo,  mechanisms will be more pronounced for lowy(ed,,),
He.o, Hq) OVer one time stepht(<0.1 us). This was not a which corresponds to relatively moderate electron densities
significant problem since over longer time intervals this de{n,<5x10'° cm~3) and/or large electron energie3 &3
pendence was found to be rather smoo#tall that the time  eV). We considered here moderatg, namely,ng(t=0)
scale ofd,, variation>At). However, a more elaborate nu- =5x10° cm 2 in case 1 and 18 cm 2 in case 2; this

We considered two cases and chpsand R such that in
both cases the initiak,y,, (*xpR?) is about 50us and a
collision-dominated regimeN=R) is realized for electrons.
n case 1R=5 cm andp=50 mTorr and in case R=15
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case 1 andb) case 2. The solid lines correspond to the numerical
results, the dotted lines are calculations according to the approxi-
) ) ) mate theoretical estimate in E(L7), and the dashed lines are cal-

FIG. 1. EDF'sfo(t,€) at different instants in the afterglow:(a)  ¢ylations using expressid8) (assumption of a Maxwellian EDF
case 1 andb) case 2. The arrows indicate the values of the wall Ao shown are the time evolutions of the wall potenéid,, (long-
potential energy=ed,,. dashed lines

corresponds tdv.(ed,q)) 1~200 us and 100us, respec- bution, its low-energy part being driven Maxwelligwith

tively (whered,,q is the initial wall potential. The initial ion  lower T,’s) by e-e collisions. Another important feature con-
density profilen;(t=0y) [see Eq.(14); recall thatnj=n,]  cerns the EDF of free electrons. One can see that, in case 1
was chosen to be parabolic with the boundary-to-central derisee Fig. 1a)], this EDF falls with increasing energy mark-
sity ratio of 1/3. In order to separate the studied mechanismedly faster than in case[8ee Fig. 1b)]. Clearly, this behav-
from other possible effects, the initial EDig(t=0,e) was ior is determined by the rate of escape to the wall, namely,
chosen to be the Maxwell-Boltzmarfg(€) of Eq. (9) with by 7, in Eq. (1), which in turn has two contributions. The
T.=3 eV (i.e., the initialW,=4.5 eV and is spatially uni- first term in 7,,, which defines the free-diffusion time, is
form). A distribution close to a Maxwelliafiat least at low proportional topR? and so is approximately the same in case
energiep can be observed during the power-on period inl and case 2. Although the regime(igarly) collision domi-
both an ICP and a CCP. Since the complete collision  nated, the second term, which defines the free-flight escape
operator was included in the calculations, the evolution otime (approximately=p~'), comes into play in case 2 be-
any other initial EDF can be treated appropriately, togethecause of the lower pressure. Thereforg,s larger in case 2
with mechanisms such as Maxwellization. Simulations werghan in case 1, i.e., free electrons escape to the wall more
carried out over the first 5Qus into the afterglow during quickly in case 1 than in case 2. This fact has important
which the mean energy of electrons decreases by a factor ebnsequences on the density and energy balances of trapped
4-6. electrons(see discussion of Figs. 4 and 5 bejow

We start by presenting in Fig. 1 the EDFfg(t,e) at The time evolution of the sheath potential juryd,, as
different momentg into the afterglow(including the initial ~ predicted by the simulations is plotted in Fig. 2 for the two
Maxwellian EDB for the two cases studied. One can see thatases studied and the corresponding time-space evolution of
in both cases, during the firstds, the high-energy tail of the the ambipolar potentiab is shown in Fig. 3. One can see in
EDF (corresponding to free electronflls off dramatically,  Fig. 2 that|Ad,| decreases quickly during the first 16,
the wall potential energg®,, (indicated by arrowsdecreas- and later on the decrease rate is slower. In contrast, inspec-
ing by a factor of 2(see also Fig. 2 belowAt later times  tion of Fig. 3 reveals that the ambipolar potential evolves
(t=5 us), a slower evolution of the EDF with time takes slowly with time, which is consistent with the slow evolution
place. An important feature is that the overall EDF quickly of the mean electron energy. Also plotted in Fig. 2 is the
becomes non-Maxwellian and remains so even at later timegMaxwellian” A®,, according to Eq(18) using the numeri-
when the mean kinetic energy has decreased significamly cal T,=%(W,). One can see that, even though the Maxwell-
to six times; see Figs. 4 and 5 belpworeover, fort<30 ian and numericah®,, are close at the initial momerit
us in case 1 and<20 us in case 2, the EDF of trapped =0 (at which the EDF is taken to be Maxwelligrihrough-
electrons €<ed,) shows little variation with timei.e., it~ out most of the simulation period the Maxwelligh®,,| is
remains closely Maxwellian witff,=3 eV), which suggests larger than the numerical one by about a factor ofNote
that at these times the EDF does have time to respond tilnat the “T.” used here represents the mean energy of elec-
changes in the electric potential/field and thus a strong detrons; taking ‘T.” as the slope of the Maxwellian part of
parture from quasistationarity occurs. At later times, the EDRhe EDF will result in even larger disagreement because such
of trapped electrons starts to deviate from the initial distri-*“ T,” remains nearly unchanged fdar=20—-30 us; see Fig.
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FIG. 3. Ambipolar-potential radial profiles at different instants
in the afterglow:(a) case 1 andb) case 2.

1.) The fact that Eq(18) significantly overestimate\®,,|

is common(see also Ref5]), and it can lead to a significant
overestimation of the energy of ions impinging on the wall
surface and also of the rate of diffusion coolingg®,,). By
contrast, the approximate theoretical estimateAdf,, ac-
cording to Eq.(17) [using numericakb(t,R)] is seen to be
very close to the numerical resulfsee Fig. 2, deviations
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FIG. 4. Time evolution of different contributions in the density
(a) and energyb) balances of trapped electrofsee Eqs(10) and
(12)] in case 17, andH,, (solid lines; Z, and H, (short-dashed
lines); Zy, andHg (dashed lines Also plotted on the rhs axes are
the time evolutions of the volume-averaged densgity) (a) and
mean kinetic energyW,) (b).

times, particle losses due &e collisions become more sig-
nificant. The same can be said regarding the energy balance

take place when the EDF of trapped electrons starts to dev[;See Fig. 40)]. One can note the unimportance of figand

ate from the initial distribution t=20-30 us; see Fig. L
Also, calculations using the EDf(t,€) of Eq. (19) instead
of that calculated from the kinetic equati@) showed good
agreement with the numerical results fe£20—30us.

The time evolutions of different contributions in the den-
sity and energy balances of trapped electri@ee Eqs(10)
and (12)] are plotted in Fig. 4 for case 1 and in Fig. 5 for
case 2. Also plotted are the time evolutions of the volume-
averaged densityn,) and mean kinetic energ{W,). One
can see thafn,) decreases with time by a factor of2 in
both cases, where#®V,) decreases by a factor 64 in case
1 and ~6 in case 2. An important observation is that the
initial decrease of W,) at t<20-30 us takes place at an
almost unperturbed EDF of trapped electrgimsparticular,
the EDF slope, or the “Maxwellian’T,, does not change;
see Fig. 1, which implies the significance of the cutoff
mechanism. The spatial profile of the me&metic) energy
of electronsWc(r), is nearly parabolic throughout the simu-
lation period with the central-to-boundary ratio increasing
from 1 att=0 up to~1.4 att~20-30us and then slowly
decreasing[Recall that in these calculations the ion density
profile is assumed to be parabolic with its volume-averaged
value being calculated; see Ed4) and Figs. 4 and 5.

As far as the balance equations are concerned the follow-
ing can be observed. One can see in Fig) #hat in case 1
during the first 2Qus the particle loss of trapped electrons is

dominated by the cutoff mechanistie., Z.,>7Z,); at later
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He terms in both case 1 and casg¢ske Figs. 4 and]5As
expected, in both cases studied, cooling in collisions with
free electrons(term H;, not plotted in Figs. 4 and)5is
negligible, being smaller by at least a factor of 10 compared

[\

density balance (1014cm_3s'1)
T

" @

P I
“

Lol
~

) (logcm'3)

[

f L
w2

[\S] [#%] <

[
L

energy balance (lolscm'3eVs'1)

(=]

20 30 40 50
time, # (us)

FIG. 5. Same as Fig. 4, but for case 2.
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with the other mechanisms. In contrast to case 1, in case 2 V. SUMMARY AND CONCLUSIONS

(see Fig. 5 the CUtOff. mec.hanlsm. IS morée |mporta_nt In this paper, we develop a model for self-consistent ki-

throughout most of the §|muli31t|on pianodAln both the partlclenetic description of a low-pressure afterglow plasma. The
and energy balancése., Z.,>Z, andH.,>H,) even though  model is applied to simulate the transient phenomena taking
the electron density is higher in case 2 than in casanl  place under conditions where the EDF is not quasistationary.
TampS are almost the sameTwo factors may contribute to In particular, a cutoff mechanism is brought forward and

this. First, since the removal rate to the wall is lowey, (s shown to be important for the particle and energy balances of
largen in case 2 than in case(see discussion of Fig)lthe trapped electrons. This mechanism is essential for predicting

EDF ate=ed,, (and hencel,, and 7t..) is larger and its correctly the self-consistent wall potential and the rate of

A ~ . . diffusion cooling. The time-dependent nonlocal kinetic equa-
slope(henceZ, andH,) is smaller in case 2 than in case 1. . - . .
tion is solved and the-e collision operator is taken into

Second, the higher electron density in caf,e 2 m?y result "Becount by extending Rockwood’s discretization scheme in
stronger Maxwellization and hence in loweg and . (re-  total-energy formulation. Strongly non-Maxwellian EDF’s
call that for a purely Maxwellian EDF,=H,=0). Accord-  are predicted and it is observed that, depending on plasma
ingly, one can observésee Fig. 5 that the rateée andﬂe conditions,_the transient pe_riod may be rather long, of_ ord_er
decrease with time fot=10—15 us. These facts suggest of the ambipolar diffusion time, lower pressures resulting in

that, without solving the complete problem, it would be dif- longer transient times. A method is suggested for possible

ficult to predict beforehand whether or not the cutoff mecha—fs’peeding up of the calculation under conditions of strereg

nism will be important for a given set of plasma conditions.!meraCtion at low(therma) energies. Itis likely that the stud-

) A bed phenomena manifest themselves in molecular gases, even
Only as a first approximation, its importance can be expecte . o :
- when the EDF is quasistationary. The cutoff mechanism may
whenve(ed,) < 7imp-

: ) o .also be important in a high-density electronegative plasma
Let us now briefly discuss the possible impact of quasiyyhere the electron density is lovi.e., lower than the ion
elastic and inelastie-a collisions. It is clear that, as far as density during the power-on period and an ion-ion plasma

the particle balance of trapped electrons is concerned, SU@yn form during the power-offafterglow period[19]. This
collisions prevent electrons from escaping from the potentials because the presence of negative ions requires a higher
well, generating particle inflowsegative fluxes Thus, pro-  rate of electron loss than in an electropositive plasma, this
vided thate-a collisions are frequent ane-e collisions are  process becoming increasingly more important as the plasma
rare at high energies, the cutoff mechanism has to providdecays. Since there is increasing evidence of the effective-
large particle outflows, which overcome the inflows gener-ness of the nonlocal approach for various types of steady-
ated ine-a collisions. The presence efa collisions, there-  state plasmas at low pressufesy.,[8—10), it is possible to
fore, can in factenhancethe cutoff mechanism. In a noble extent the proposed method for self-consistent kinetic mod-
gas(such as Ay at low pressures, quasielastic collisions are€ling of low-pressure pulsed plasmas during both the
generally negligible, whereas inelastic collisions can be im{Power-on and power-off periods, including the breakdown
portant only when the wall potential energ,, greatly ex-  Period. An extension to multidimensional geometry can also
ceeds the threshold of inelastic collisions. It is then likely ~ P€ made(e.g.,[8]).
that such types of collisions can be more important in a
molecular gas, in which they are often approximated as
quasielastic with a characteristic frequenéy,v,,. When
SmVm>> Ve at high energies, the situation can be quite differ-
ent from that in a noble gas. Indeed, due to the high fre- The method of discretization of treee collision operator
quency of electron-molecule collision,v,,, the EDF can in Kinetic energy formulation was proposed by Rockwood
be quasistationary(but nonlocal, such that ,~\\v/5,v, [20] and extended in Ref21] for a nonequidistant energy
> A), and the cutoff mechanism will still have to provide the mesh. Here we develop the corresponding scheme for the
necessary particle outflows unéib,, drops to a value low €-€ collision operator in total-energy formulatiggiven by
enough so that= 8,,v, ate~ed,,. These interesting phe- Eds.(5) and(6)] by following the notation and methodology
nomena in molecular gases will be explored in future work.0f Ref. [21]. We define the total-energy grid as
Finally, we say a few words on comparison with experi-(€1,€2, . . . ,en) With bj=¢;+ 3 w; andb;_;=¢€;~ 3 ; be-
ment. Comprehensive probe measurements of the EDF ari@d the upper and lower bounds of the interval centereg| at
of the plasma potential®,,) are necessary over the first With j € [1,N]. The flux derivatives a¢ = ¢; are calculated as
50—100us into the afterglow in order to be able to identify dJce/ d€=[Tedbj) — Ted(bj-1) 1/ w;, where the flux itself at
the mechanisms predicted here. Such measurements couderb; is  represented  as Jedbj)=—a;fo(¢))
not be found in the literature. Generally, the electron tem-+ B+ 1fo(€j+1). The integrals in Eq(6) are represented as
perature is found from logarithmic slopes of proéd char-  sums, which gives
acteristics at low energies. Obviously, such an “electron
temperature” describes only the Maxwellian part of the
EDF, which is likely to be non-Maxwellian at higher ener- _ ) _ )
gies in a Iow-pressﬁre afterglow plasma. ’ “i 2k Aifole) and 4, ; Bifo(e). (A

APPENDIX: FINITE-DIFFERENCE REPRESENTATION
OF THE e-e COLLISION OPERATOR
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The three basic conditions that tkee collision operator ~ ek (ek—€x—1)— (€41~ €j)
must satisfy are used in order to establish the relationship Ajk_ . e T Ax-1j+1-
between the matriceA and B and between the elements of A € (A3)

these matrices themselves. The conditions of density and
mean total-energy conservatigeee Eq.(7)] require that,

respectively Ay;=By=0 for anyl e[1N] and The coefficientsA;, are then calculated using the same

(€541~ €)AK=(ex— 1By, (A2) approximatio_ns as in Ref21]: a functionf aljd its total-
energy derivative ate=b, are, respectively, f(b))
and the third condition of convergence toward a Maxwellian=[ w,;1f(€)+ o f(€;+ 1)1/ (w+ w1 1) and dflde
distribution[ «exp(—€/Ty)] implies =[f(e,1)—T(€)]/ (51— ¢). This gives
|
19 2 — 11—
veo | — 3 W5 Wew; | for j=k
€j+17 €j
_ w32 .
Ve°3 (b)€1+1 g for j<k.
(A4b)

Following Ref.[21], Eq. (A4a) is used to definé\; for j>k, Eq. (A4b) to defineA,_ 4, and the rest oA is found from
Eq. (A3). The matrixB is then calculated from EqA2).
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