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Electron-distribution-function cutoff mechanism in a low-pressure afterglow plasma
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A model is developed for self-consistent simulations of transient phenomena in a low-pressure afterglow
plasma. The model is based on the nonlocal approach which allows a kinetic description of the plasma decay
under nonquasistationary conditions. Such conditions arise when collisions~mainly electron-electron! are not
sufficient for the electron distribution function~EDF! to follow changes in the self-consistent electric fields and
the ion density once the power is turned off. As a result, collisions cannot provide the electron and ion particle
balance by allowing electrons to flow out of the potential well. A cutoff mechanism is suggested that provides
such a balance during the transient period—from the glow, stationary plasma to the quasistationary, afterglow
plasma. This mechanism is essential for determining correctly the self-consistent wall potential~and hence the
energy of ions impinging upon the wall surface! and other parameters, such as diffusion cooling, which is the
most important cooling mechanism at low pressures. These phenomena are modeled using the time-dependent
nonlocal electron Boltzmann equation with a nonlinear electron-electron collision operator. A numerical treat-
ment is made by extending Rockwood’s method for finite-difference discretization of this operator in the total
energy formulation. The model calculates self-consistently the temporal evolution of the nonlocal EDF and the
electric potentials in the plasma and the wall sheath. Strongly non-Maxwellian EDF’s are predicted and it is
observed that, depending on plasma conditions, the transient period maybe rather long, of order of the ambi-
polar diffusion time, lower pressures resulting in longer transient times. The proposed approach can be applied
to model self-consistently pulsed plasmas during both the power-on and power-off periods, including the
breakdown period.
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I. INTRODUCTION

The afterglow~postdischarge! plasma has attracted muc
attention in the past several decades. The recently incre
interest came about as a result of development of advan
pulsed plasma sources operating at low pressures. Muc
fort has been invested in comprehensive experimental in
tigation and theoretical modeling of such plasmas~e.g.,@1#!.
The global~e.g., @1#! and fluid ~e.g., @2#! models have been
most commonly used to describe power-modulated plasm
Simulations using the particle-in-cell with Monte Carlo co
lisions ~PIC-MCC! codes have also been reported~e.g.,
@3,4#!.

Since at low pressures the electron kinetics is essent
nonlocal and the electron distribution function~EDF! is
likely to be non-Maxwellian, the global and fluid mode
may fail to predict the plasma decay correctly, especially
the early afterglow~e.g.,@5#!. A kinetic treatment is therefore
necessary, taking into account the EDF nonlocality. Suc
treatment can be naturally performed using the PIC-M
codes. The PIC-MCC methods, however, are computat
ally costly and become even more so if electron-elect
(e-e) collisions are taken into account at considerable e
tron densities (ne*1010 cm23). As such, low plasma dens
ties are treated (ne&108– 109 cm23 @3,4#! ande-e collisions
are generally neglected in the PIC-MCC simulations. Sin
e-e collisions are essential in describing an afterglow plas
~e.g., Maxwellization!, they need to be included and treat
appropriately. Therefore, since the global and fluid mod
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are largely oversimplistic and the direct PIC-MCC metho
are computationally demanding, the appropriate approac
to use the electron kinetic equation. However, the solution
the time- and space-dependent kinetic equation with s
consistent electric fields is a complicated task. In the pres
paper, we employ simplifications based on the nonlocal
proach proposed by Bernstein and Holstein@6# and by Tsen-
din @7#. The correctness and effectiveness of this appro
has been demonstrated for various types of plasma disch
in the active phase~power-on period!; to cite just a few ex-
amples, in Ref.@8# for an inductively coupled plasma~ICP!,
in Ref. @9# for a positive column plasma~PCP!, and in Ref.
@10# for a capacitively coupled plasma~CCP!.

In Ref. @5#, a semianalytic method based on the nonlo
approach was proposed for self-consistent modeling o
low-pressure afterglow plasma under nonlocal conditio
The method consists in solving simplified, nonlocal kine
equations coupled with particle- and energy-balance eq
tions. The applicability of this method was validated by n
merical solution of the full time- and space-dependent
netic equation. The main assumption of this method is t
the EDF is quasistationary. This assumption is valid p
vided that collisions~mainly e-e, frequencyne) are frequent
enough for the EDF to adjust itself to changes in the s
consistent electric potential. Such changes take place o
time scale of order of the ambipolar diffusion timetamb and
the assumption of the EDF quasistationarity turns out to
valid at moderately low pressures. With further decrease
pressure, the following phenomena can become manifes
©2001 The American Physical Society01-1
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ARSLANBEKOV, KUDRYAVTSEV, AND TSENDIN PHYSICAL REVIEW E64 016401
was demonstrated in Ref.@5# that the particle and energ
balances are provided by particle and energy fluxes~in en-
ergy space! out of the potential well~which is determined by
the wall potential energyeFw), the characteristic time o
electron escape matching the time of ion ambipolar diffus
to the wall, tamb. These~positive! fluxes in their turncan
exist only due to e-e collisionswhich enable electrons to
escape from the potential well. Any other type of collisio
~inelastic, quasielastic, etc.! cannot generate such fluxe
since collisions other thane-e collisions result in fluxes of
electrons toward low energies~negative fluxes!. Clearly, dur-
ing the power-on period, these outflows of electrons are
to the electric field sustaining the plasma (e-e collisions be-
ing generally negligible!, which accelerates the electrons, a
lowing them to escape from the potential well. But once
input power has been turned off, an interesting situation
realized. Typically, the wall potential energyeFw is high
(eFw*e i , where e i is the ionization potential; i.e.,eFw
*20 eV for rare gases, such as He and Ar! during the
power-on period. As such, the frequency ofe-e collisions at
these high energies is low~provided that the electron densit
is not very high!, namely,ne(eFw),tamb

21 , and hencee-e
collisions cannot provide~positive! particle fluxes out of the
potential well. Under these circumstances, the wall poten
has to start to decrease fast enough in order to let elect
leave the potential well and escape quickly to the wall. Su
a fast decrease ofeFw causes portions of the EDF wit
energies close toeFw to be effectively cut off from the bulk
EDF, this representing the ‘‘cutoff’’ mechanism. The partic
loss due to the cutoff mechanism is accompanied by an
ergy loss which can be identified with a modified diffusio
cooling mechanism—the most important cooling mechan
at low pressures.

The importance of the mechanisms described is evid
for predicting correctly, among other things, the energy
various ion species impacting on a wall surface or on a s
object ~such as a wafer! immersed in the plasma. Compre
hensive modeling can aid the development of methods
control over charged-species fluxes, which is one of the
timate goals of low-pressure plasma processing. In
complementary paper we extend the model proposed in
@5# by focusing attention mainly on the transient phenome
The paper is organized as follows. In Sec. II, the assumpt
and description of the physical model are given. In Sec. II
the nonlocal electron Boltzmann equation is presented,
gether with thee-e collision operator. The particle- an
energy-balance equations are analyzed in Sec. II B. The
merical scheme is detailed in Sec. III, and the simulat
results and their discussion are given in Sec. IV. Finally,
summary and conclusions are outlined in Sec. V.

II. PHYSICAL MODEL

The plasma we are interested in is an afterglow plas
The gas pressurep is considered to be low so that the ele
tron energy relaxation lengthle is larger than the characte
istic discharge chamber dimensionL, i.e., le.L. A mainly
collisional regime for electrons is considered, in which t
electron mean free path in collisions with atoms,l ~fre-
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quencyn), is smaller thanL, i.e.,l&L; however, there are
no limitations in principle for the model to be valid in
collisionless regime. The model gas is a noble gas, Ar.
adopt a one-dimensional cylindrical geometry, with the tu
radius beingR ~so thatL'R/2.4). The analysis, however
can be extended to a multidimensional case~e.g.,@8#! since
the employed nonlocal kinetic equation in terms of the to
energye does not depend explicitly on geometry. We do n
specify the type of plasma generation in the active ph
~power-on period!. It can be an ICP, CCP, or PCP. The typ
of discharge can be specified by discharge conditions~geom-
etry, gas pressure! and by the initial EDF~electron density,
mean energy, etc.!. Here we study the plasma decay from t
moment when the power has been switched off. Hence,
assume that at timet50 there is no power going into the ga
and there are no currents in the external circuit. Howev
since the typical time scale of the mechanisms studied he
of order of a few tens of microseconds, a finite power f
time of a few microseconds can exist. We also assume
all high-voltage sheaths, which may be present in the ac
phase~e.g., in a CCP!, have collapsed in a short time~of
order of the ion transit time across the sheath! and the plasma
consists only of a quasineutral region and narrow~few De-
bye radii! space-charge wall sheaths. In the quasineutral
gion, the space-charge~ambipolar! potentialF(r ) dominates
andn5ni5ne @wheren is the plasma density andne(ni) is
the electron~ion! density#. In the wall sheaths, a stee
change~jump! DFw in potential takes place, which is nec
essary to confine most of the electrons and to balance
electron and ion currents to the~dielectric or conducting!
wall, the total wall potential beingFw5F(R)1DFw . Spa-
tially resolving the narrow~mainly collisionless for both
electrons and ions! wall sheaths can be avoided by choosi
appropriate boundary conditions at the wall. Since
plasma studied is nonstationary, all plasma quantities are
lowed to vary in time and so have explicit time dependen
such asF5F(t,r ), Fw5Fw(t), the EDFf 05 f 0(t,e), etc.;
for convenience, the argumentt will be dropped in most of
the following formulas.

A. Nonlocal electron Boltzmann equation

Generally, in order to find the EDF, a nonlinear~integro-
differential! time- and space-dependent kinetic equation
to be solved, which is a computer intensive task, especi
in a self-consistent problem. In Ref.@5#, we solved such a
full kinetic equation and compared the results with solutio
of a simplified nonlocal kinetic equation under the assum
tion of EDF quasistationarity. Here we cannot make such
assumption and hence use the nonlocal electron Boltzm
equation directly.

At low pressures, the key simplification is to use the no
local approach~see Refs.@7,11,12# for details!. This ap-
proach can be applied provided thatle.L. In the elastic
energy range (w,w* ) le'lAn/(ne1dn) ~for Maxwellian
electrons,le'l/Ad) and in the inelastic energy range (w
.w* ) le'All* /3 ~for small ne), whered52m/M is the
fraction of electron energy lost in a single quasielas
electron-atom (e-a) collision andl* 5v/n* andn* are, re-
1-2
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ELECTRON-DISTRIBUTION-FUNCTION CUTOFF . . . PHYSICAL REVIEW E 64 016401
spectively, the mean free path and frequency of inelastice-a
collisions. Estimations show that for Ar in the energy ran
of interest nonlocal conditions withle.L occur when the
gas pressure is lower than a few Torr~for a 1-cm-radius
discharge!. Under nonlocal conditions, electrons transit ra
ally without significant changes in the so-called total ene
e5w1eF(r ) ~here, the electron chargee,0 andF,0, so
that eF.0), which becomes an approximate constant
motion and is hence a convenient independent variabl
replace the kinetic energyw5 1

2 mv2. Two groups of elec-
trons can be distinguished, namely, trapped (e<eFw) and
free (e.eFw) electrons. A trapped electron with a total e
ergye can only move within an accessible region determin
by e<eF(r ) or r<r * (e), and a free electron quickly es
capes to the wall by free diffusion~collisional regime,l
,L) and by scattering into the wall loss cone~collisionless
regime,l.L).

The nonlocal kinetic equation applies strictly only for th
trapped electrons. The approach, however, can be exten
and the free electrons can also be described by the s
equation by introducing a wall loss term with a characteris
wall loss time

tw5
L2

Dr
1

1

2 S R1l

l D 4p

dV

1

n
, ~1!

where Dr5
1
3 l2n is the electron free-diffusion coefficien

and dV'2p@12A(eFw2eF)/(e2eF)# is the wall loss
cone; this approach is valid fordV!4p, namely, for ‘‘al-
most trapped’’ electrons. In Ref.@9#, by carrying out a de-
tailed comparison with Monte Carlo calculations, this a
proach was shown to be appropriate in a large elec
energy range of up to 100 eV for a dc positive colum
plasma. Not only in the collisional regime (l&L and le
.L) does this approach work, but also, surprisingly, in t
~near! collisionless regime (l*L; see Ref.@13# for details!,
where a significant anisotropy of the EDF is manifest a
hence the two-term spherical harmonic approximation
strictly not valid. It can be expected that this approach w
be valid also for a nonstationary afterglow plasma since
time of free radial diffusion/transitt f;L2/Dr1R/v is fast
compared with the slow time of variation of the ambipo
(F) and wall (Fw) potentials. However, since the nonloc
kinetics is obtained by averaging over electrons’ radial tr
sits, phenomena occurring on a time scale faster thant f
~typically, t f&0.1– 1 ms at low pressures! cannot be ad-
equately described.

Thus, we can write the nonlocal kinetic equation for t
EDF f 0(t,e) as

] f 0

]t
1

VF

Aw

] f 0

]e
5

1

Aw

]

]e
AwJee2

f 0

tw
, ~2!

where a spatially averaged quantity in cylindrical geome
is

X̄~e!5
1

R2/2
E

0

r* (e)
X~e,r !rdr , ~3!
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and the time dependence is assumed~argumentt dropped!

for all quantities: w5w(t,e,r )5e2eF(t,r ), Aw

5Aw(t,e), etc. Note thattw has implicit time dependenc
via mainly the dependencedV5dV@eFw(t)#. Since the
ambipolar potentialF in the definition of the total energye
is time dependent, there is an additional term in the ti
derivative of the EDFf 0 in Eq. ~2! ~see, e.g., Ref.@14#! with

VF5eAw
]F

]t
. ~4!

Here,VF5VF(t,e) andVF /Aw;e]F̄/]t, and so this term
is generally small compared with the collision term
ue]F̄/]tu!wne @see also the discussion of Eq.~10! below#.

After some manipulations, the nonlineare-e collision op-
erator in total-energy~spatially averaged! formulation can be
written as

AwJee[Jee5Vef 01De

] f 0

]e
, ~5!

with the e-e dynamic friction and diffusion coefficients, re
spectively,

Ve5ne0E
0

e

w1/2~e8! f 0~e8!de8, ~6a!

De5ne0

2

3 S E
0

e

w3/2~e8! f 0~e8!de81w3/2~e!E
e

`

f 0~e8!de8D ,

~6b!

where ne5ne0ne /w3/2 is the e-e collision frequency with
ne052A2pe4 ln L/Ame. It can be seen that thee-e collision
operator in kinetic energy formulation~e.g.,@12,5#! and that
of Eqs. ~5! and ~6! in total-energy~spatially averaged! for-
mulation have similar forms with the following substitution
w→e, w1/2→w1/2, andw3/2→w3/2. Thee-e collision opera-
tor in Eq. ~5! can be shown~after multiplying it byw1/2 and
e w1/2 and then integrating over total energy! to conserve the
volume-averaged density and mean total~not kinetic! en-
ergy, which implies that

E
0

`]Jee

]e
de50 and E

0

`

e
]Jee

]e
de50. ~7!

In Eq. ~2! we have neglected quasielastic~frequencydn)
and inelastic~frequencyn* ) e-a collisions. These collisions
can be treated in a straightforward manner~e.g., @7,12,9#!:
quasielastic collisions can be cast into the Fokker-Pla
form of Eq. ~5! and for inelastic collisions only loss term
proportional ton f 0 need be retained. For simplicity thes
types of collision are neglected here. This is reasonable
quasielastic collisions since at low pressuresdn!ne in the
energy range of interest. Inelastic collisions in their turn a
not important when the wall potential~above which the EDF
falls off rapidly! does not significantly exceedw* , which is
the case under the conditions studied. It turns out that, for
physical mechanisms presently investigated, both elastic
1-3
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inelastic collisions are nonessential~in fact, such collisions
can even enhance these mechanisms! and their possible im-
pact will be discussed in Sec. IV.

From the EDFf 0(e), the electron densityne can be cal-
culated as

ne~r !5E
eF(r )

`
Ae2eF~r ! f 0~e!de, ~8!

and so can the mean kinetic energyWe(r )
5*eF(r )

` w3/2f 0de/ne . In the case of the Maxwell-Boltzman
EDF

f M5
2

Ap

ne0

Te
3/2

exp~2e/Te!, ~9!

wherene0 is the central electron density~at the location of
F50), an electron temperatureTe5 2

3 We can be introduced

B. Electron density and mean total energy-balance equations

In this section, we derive and analyze the particle- a
energy-balance equations. It can be argued that since
solve the kinetic equation there is no need to derive the
ance equations. Nonetheless, in order to gain insight into
governing mechanisms, it is instructive to consider and a
lyze these equations; moreover, the particle-balance equa
will be necessary to calculate the wall potential. Since un
nonlocal conditions two distinct, almost independent grou
of electrons~namely, trapped and free! exist, it is more ap-
propriate physically to analyze the corresponding bala
equations for the trapped electrons, those for all electr
(eP@0,̀ #) being unhelpful~e.g., in the energy balance of a
electrons,e-e collisions are absent, which can lead to inco
rect results; see Ref.@15#!.

Before proceeding with the mathematical treatment, le
consider the physical picture. Under nonlocal conditions,
trapped electrons represent a ‘‘reservoir’’~formed by the po-
tential well! of particles and energy. As the plasma deca
particle and energy fluxes~in energy space! flow out of this
reservoir via an ‘‘orifice’’ ate5eFw . Once these fluxes in
energy space have left the potential well, they quickly tra
form into fluxes in configuration space~see Ref.@5#; see also
Ref. @15#!. The particle flux out of the potential well is nec
essary in order to balance the ion flux in the plasma an
the wall. Those electrons with energies close to the poten
well energy~orifice! can gain energy in collisions with othe
electrons and thereby escape out.~Note thate-a collisions,
which were neglected here, cannot result in particle outflo
see also the discussion in Sec. IV.! If, however, the fre-
quency ofe-e collisions is not high enough~which is likely
the case at high energies!, the ~energy! level of this orifice
will have to be lowered gradually to let the electrons lea
the reservoir. This is the essence of the cutoff mechan
when the trapping potential energy decreases fast eno
effectively cutting off high-energy electrons from the bul
trapped EDF~which itself does not have time to react to su
changes!. These electrons become free and thus carry
electron current. Associated with this particle loss induc
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by the cutoff mechanism is an energy loss representin
cooling mechanism for the trapped electrons.

The mathematical treatment proceeds by multiplying
nonlocal kinetic equation~2! by w1/2 and e w1/2 and then
integrating over total energy from 0 toeFw . It should be
pointed out that the first moment of the nonlocal kine
equation gives the evolution of the mean total energy~its
volume-averaged value!, not the kinetic one. This is physi
cally clear and, as a consequence, thee-e collision operator
conserves the mean total~not kinetic! energy@see Eq.~7!#.
Hereinafter, we denote quantities related to trapped elect
by careted variables~such asn̂e , etc.! and volume-averaged
quantities by ^•••&, where ^X&52*0

RX(r )rdr /R2. The
particle-balance equation for the volume-averaged densit

trapped electrons,̂n̂e&5*0
eFwAw f0de, then reads as

d^n̂e&
dt

5ÎF~ t !2Îe~ t !2Îco~ t !, ~10!

whereÎe5Jee(e5eFw) is the particle flux out of the poten
tial well due toe-e collisions (Îe}ne) and

ÎF52VF f 0ue5eFw
and Îco52Aw f0ue5eFw

deFw

dt
.

~11!

Here,ÎF is due to time varyingF: IF}]F/]t.0. The third
term Îco on the right-hand side~rhs! of Eq. ~10! represents a
particle loss due to the cutoff mechanism, proportional to
eFw decay rate and the EDF amplitude ate5eFw . ~Note
that Îe is mainly determined by the slope of the EDF ate
5eFw .) Clearly, since the wall potential varies with tim
much faster than the ambipolar potential does~i.e.,
ud^F&/dtu;ud^We&/dtu!udFw /dtu!, typically, ÎF!Îco.

Analogously, the balance equation for the~volume-
averaged! mean total energy of trapped electrons,Êe

5*0
eFwe Aw f0de, reads as

dÊe

dt
5ĤF~ t !2Ĥe~ t !2Ĥco~ t !, ~12!

where ĤF5eFwÎF1*0
eFwf 0VFde is due to the same

mechanism asÎF , i.e., ĤF}]F/]t; Ĥe5eFw Îe is the en-
ergy flux out of the potential well due toe-e collisions; and
Ĥco5eFw Îco stands for an energy loss due to the cut
mechanism. Typically, as is the case in the particle balan
ĤF!Ĥco. In Eq. ~12!, we have neglected the term repr
senting cooling in collisions with free electrons,Ĥf

5*eFw

` Jeede, since the number of free electrons is sm

~see Ref. @5#!. However, in a late afterglow, whenTe

,0.1– 0.3 eV,Ĥf can represent an efficientheatingmecha-
nism in collisions with superthermal electrons (w@Te) pro-
duced in reactions with participation of metastable ato
@16# ~see also Ref.@15#!.
1-4
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ELECTRON-DISTRIBUTION-FUNCTION CUTOFF . . . PHYSICAL REVIEW E 64 016401
It is clear that the cooling mechanismsĤe and Ĥco ac-
company the particle losses due toe-e collisions and the
cutoff mechanism, respectively. In a quasistationary plas
the particle outflow due toe-e collisions was associated wit
diffusion cooling @5#—the most important cooling mecha
nism ~with a rate larger than the cooling rate ine-a colli-
sions! at low pressures. Here, however, an additional part
and energy loss mechanism emerges, and the diffusion c
ing can be identified with the sum of these two cooli
mechanisms,Ĥe1Ĥco5eFw(Îe1Îco)'eFw Iw ~see be-
low!.

Finally, with the particle-balance equation~10! for ^n̂e&
being derived and with a given EDFf 0(e) @calculated from
Eq. ~2!#, it is possible to find the decay rate of^ne&, which
will be needed to derive an equation forFw ~see Sec. II D!.
However, it appears that for this purpose it is more appro
ate numerically to use the particle-balance equation of
electrons directly, which yields in its turn

d^ne&
dt

52Iw~ t !52E
eFw

`
Aw

f 0

tw
de, ~13!

with Iw representing the flux of free electrons to the wa
Clearly, ne'n̂e , the number of free electrons being sma
Moreover,Iw'Îe1Îco, which means that the ‘‘source’’ o
free electrons is~trapped! electrons escaped from the pote
tial well and which also establishes a connection between
fluxes in energy space~i.e., Îe andÎco) and those in configu-
ration space~i.e.,Iw). Note that in the particle balance of a
electrons, the term due to time varyingF ~i.e., IF) does not
appear since such variation cannot modify the total num
of electrons.

C. Description of the ions

In order to calculate the ambipolar and wall potentia
one needs to describe the ions~recall that only positive ions
are treated here!. Generally, the description of the ions
straightforward by solving a relatively simple ion continui
equation. This equation can be approximated by an amb
lar diffusion equation in a collision-dominated regime. F
the present purposes, a treatment describing only the ge
trends of ion behavior is sufficient. Hence, we assume
the ion density profile does not change in time and the de
of its volume-averaged valuêni& is simply described by
d^ni&/dt52^ni&/tamb, where tamb5L2/Damb, Damb
5Di(112^We&/3Ta), Di is the ion diffusion coefficient,
andTa the atom~gas! temperature. This gives the time-spa
evolution of the ion density as

ni~ t,r !5ni~ t50,r !expF2E
0

t

dt8/tamb~ t8!G . ~14!

D. Calculation of the ambipolar and wall potentials

Having derived the model equations for the ions and
particle-balance equations for the electrons, one can find
ambipolar potentialF in the plasma and the potential jum
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in the wall sheathDFw or the total wall potentialFw . Now,
F can be found from Eq.~8! with a known ni(r )
5ne@F(r )# and given EDFf 0(e). In order to findFw , one
can take into account thatd^ne&/dt5d^ni&/dt522G iw /R,
with G iw being the ion flux at the wall. This gives, using E
~13!,

Iw52G iw /R. ~15!

This equation will be used in our numerical scheme to c
culateFw ~see Sec. III!. Alternatively, as mentioned in Sec
II B, Fw can be found from the particle balance of trapp
electrons in Eq.~10!. In what follows, we shall find an ap
proximate expression forFw using that equation.

It turns out that, under conditions of strong departure fro
quasistationarity (ne→0) and fast removal of free electron
to the wall (tw→0), it is possible to derive a simple expre
sion for Fw , which closely approximates the numerical r
sults. Under these circumstances, the EDF of trapped e
trons experiences no energy relaxation, i.e.,f 0(t,e)5 f 0(t
50,e) for e<eFw , and that of free electrons is zero, i.e
f 0(t,e)50 for e.eFw . Then, withÎco@Îe ,ÎF ~the cutoff
mechanism is dominant!, the particle balance of trappe
electrons in Eq.~10!, together withd^n̂e&/dt'22G iw /R,
gives

2Aw f0ue5eFw

deFw

dt
'2G iw /R. ~16!

This equation simply states that the electron flux to the w
is formed by electrons cut off from the bulk EDF and it ca
be solved for a given EDFf 0(e). Then assuming, for sim
plicity, the initially Maxwellian EDF of Eq.~9! for trapped
(unperturbed) electrons, this equation yields

Fw'2Te /eln~C1t/tco!, ~17!

where C5exp(2eFw0 /Te) and tco5tambAeFw0 /Te with
eFw05eFw(t50).

This expression forFw can then be contrasted with th
familiar expression for Fw5DFw1F(R)'DFw ~with
uF(R)u!uDFwu), where

DFw5Te/2e ln~M /2pm!, ~18!

obtained assuming a Maxwellian EDF forall electronsand
Bohm’s ion flux at the wall@17#. The ‘‘Maxwellian’’ expres-
sion for Fw'DFw in Eq. ~18! (DFw'4.7Te /e for Ar!, be-
ing qualitatively different from that in Eq.~17!, will be seen
to reproduce the numerical results incorrectly~see Sec. IV!.

The condition of fast removal of free electrons to the w
~i.e.,tw→0) used to obtain Eq.~17! can be relaxed by taking
into account a finitetw . This gives~for ne→0! an improved
expression for the EDF,

f 0~ t,e!5 f 0~ t50,e!expF2E
0

t

dt8/tw~ t8,e!G ~19!

@wheretw
2150 for e<eFw(t)#, that can then be used to fin

Fw and be compared with numerical results.~Note that in
1-5
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the case wheree-a inelastic collisions are important the su
stitution tw

21→tw
211n* allows them to be accounted for.!

III. NUMERICAL SCHEME

The present problem was solved on the radius–to
energy grid. The nonlocal kinetic equation~2! was finite dif-
ferenced on the total-energy grid and on the radial grid n
ther finite differentiation nor boundary conditions needed
be applied because of the approximate ion-diffusion mo
~see Sec. II C!. Radial spatial resolution was important, how
ever, since the evolution of the ambipolar potential pro
F(r ) was self-consistently calculated on the radial grid a
was found to be rather critical for predicting correctly su
parameters asFw . Due to the importance of the nonlinea
e-e collision operator, its careful treatment is essential. S
a treatment must ensure that the finite-differencede-e opera-
tor satisfies the three basic conditions, namely, the condit
of conservation of density and mean total energy and
condition of convergence toward a Maxwellian EDF. T
finite-difference discretization method for thee-e collision
operator in total-energy formulation was therefore develo
as detailed in the Appendix. In order to solve the tim
dependent kinetic equation~2!, we used a simple, first-orde
time-advance scheme. Thee-e collision operator was im-
plicitly inverted ~in principle an unconditionally stable
scheme! and the finite-difference discretization method
lowed relatively large time stepsDt;ne

21(emin), so that the
scheme was stable and the relative contribution of thee-e
term in the energy balance of all electrons was smaller t
1023 for typical time steps of&0.1 ms. ~This contribution,
which tends to zero asDt→0, can hence be identified as
residual error.! Also implicitly treated was the second ter
on the lhs of the kinetic equation~2!.

The general numerical scheme was as follows. Star
with some initialf 0(e) andni(r ), first, the EDFf 0 in Eq. ~2!
is advanced in time, then the ambipolar potentialF(r ) is
found from Eq.~8! with a givenni(r ) and f 0(e) and the wall
potential Fw from Eq. ~15!, and finally the~approximate!
ion-diffusion equation~14! is advanced to obtainni(r ). This
procedure is then repeated to advance further in time. B
radial and total-energy grids were equidistant and typica
50 radial and 200 total-energy points were used. The us
an equidistant total-energy grid (v i5const, see the Appen
dix! allows one to avoid the explicit dependence of the d
cretization coefficients onTe @see Eq.~A3!#; however, at low
mean energies~i.e., in a late afterglow!, a grid with an in-
creasing number of points toward low energies may be
merically more advantageous. A typical simulation of;50
ms into the afterglow took about 10 min on a modera
performance workstation.

It should be mentioned that the present time-adva
scheme was found to result in somewhat noisy time der
tives dFw /dt ~and also related quantities, such asÎco, ÎF ,
Ĥco, ĤF) over one time stepDt(&0.1 ms!. This was not a
significant problem since over longer time intervals this d
pendence was found to be rather smooth~recall that the time
scale ofFw variation@Dt). However, a more elaborate nu
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merical scheme may be considered in order to reduce
merical noise and speed up calculations, such as one emp
ing a higher-order Runge-Kutta scheme for stepping in ti
and subcycling~updating the ion and ambipolar potenti
profiles less frequently than the EDF!. For the present pur-
poses, however, the scheme employed proved to be
equate.

Finally, we mention the following on the method of solu
tion of the nonlocal kinetic equation with the nonlineare-e
collision operator~see also Ref.@18# for an approximate
method of inclusion of this operator in steady-state calcu
tions!. Due to the presence of this operator and the imp
tance ofe-e collisions, small time steps need to be us
@Dt;ne

21(emin)#, higher electron densities and lower ene
gies requiring smallerDt. As such, simulations of a late af
terglow (t@tamb) can necessitate long computer times. Su
simulations can be carried out by using the semianal
method proposed in Ref.@5#, which is based on the assump
tion of the EDF quasistationarity. To tackle this proble
within the framework of the present approach~solving the
time-dependent nonlocal kinetic equation!, it is possible to
simplify the e-e collision operator by writing it in a linear
form that depends parametrically on the mean energy~or
Te). This mean energy can then be found from the condit
that the energy balance~12! is satisfied at each time ste
~recall that a lineare-e collision operator does not conserv
energy!. This method can be applied when the EDF at lo
energies is close to a Maxwellian and its advantage is th
allows long time steps, which can dramatically reduce
computation time. Such a method represents an analog o
method developed in Ref.@5# ~coupling the nonlocal kinetic
equation with the energy-balance equation! for a quasista-
tionary plasma, and its implementation and testing are un
way, on which a separate report is envisaged.

IV. SIMULATION RESULTS AND DISCUSSION

We considered two cases and chosep andR such that in
both cases the initialtamb (}pR2) is about 50ms and a
collision-dominated regime (l&R) is realized for electrons
In case 1,R55 cm andp550 mTorr and in case 2,R515
cm andp55 mTorr, both at room temperature,Ta5300 K.
These cases will be compared and contrasted. Case 1 is
cal for a CCP~with an electrode separation of;7 cm, e.g.,
@10#; see also Ref.@4#!. Case 2 is typical for an ICP in which
the plasma reactor is relatively large and the gas pressu
low ~e.g., @1,8#!. It is clear that experimental geometry
never purely cylindrical, but the main phenomena can
expected to be captured for geometries other than cylindr
with similar characteristic dimensionsL ~recall that the non-
local kinetic equation does not depend explicitly on geo
etry!. The collision cross sections required were taken as
Ref. @9# andDi540/p cm2/s was used~with p in Torr!. It is
evident that at a given pressure and geometry the stu
mechanisms will be more pronounced for lowne(eFw),
which corresponds to relatively moderate electron densi
(ne&531010 cm23) and/or large electron energies (Te*3
eV!. We considered here moderatene , namely,ne0(t50)
553109 cm23 in case 1 and 1010 cm23 in case 2; this
1-6



e
sm

in

o
he
er

r

ha

s
ly

m

d

d
d
D
tri

-
se 1
-

ely,
e
s
se

ape
-

ore
ant
pped

o
n of
n

pec-
es
n
he

ll-

ec-
f
uch

al

cal
oxi-
l-

ELECTRON-DISTRIBUTION-FUNCTION CUTOFF . . . PHYSICAL REVIEW E 64 016401
corresponds tône(eFw0)&21;200 ms and 100ms, respec-
tively ~whereFw0 is the initial wall potential!. The initial ion
density profileni(t50,r ) @see Eq.~14!; recall thatni5ne#
was chosen to be parabolic with the boundary-to-central d
sity ratio of 1/3. In order to separate the studied mechani
from other possible effects, the initial EDFf 0(t50,e) was
chosen to be the Maxwell-Boltzmannf M(e) of Eq. ~9! with
Te53 eV ~i.e., the initialWe54.5 eV and is spatially uni-
form!. A distribution close to a Maxwellian~at least at low
energies! can be observed during the power-on period
both an ICP and a CCP. Since the completee-e collision
operator was included in the calculations, the evolution
any other initial EDF can be treated appropriately, toget
with mechanisms such as Maxwellization. Simulations w
carried out over the first 50ms into the afterglow during
which the mean energy of electrons decreases by a facto
4–6.

We start by presenting in Fig. 1 the EDF’sf 0(t,e) at
different momentst into the afterglow~including the initial
Maxwellian EDF! for the two cases studied. One can see t
in both cases, during the first 5ms, the high-energy tail of the
EDF ~corresponding to free electrons! falls off dramatically,
the wall potential energyeFw ~indicated by arrows! decreas-
ing by a factor of 2~see also Fig. 2 below!. At later times
(t*5 ms!, a slower evolution of the EDF with time take
place. An important feature is that the overall EDF quick
becomes non-Maxwellian and remains so even at later ti
when the mean kinetic energy has decreased significantly~up
to six times; see Figs. 4 and 5 below!. Moreover, fort&30
ms in case 1 andt&20 ms in case 2, the EDF of trappe
electrons (e<eFw) shows little variation with time~i.e., it
remains closely Maxwellian withTe53 eV!, which suggests
that at these times the EDF does have time to respon
changes in the electric potential/field and thus a strong
parture from quasistationarity occurs. At later times, the E
of trapped electrons starts to deviate from the initial dis

FIG. 1. EDF’sf 0(t,e) at different instantst in the afterglow:~a!
case 1 and~b! case 2. The arrows indicate the values of the w
potential energye5eFw .
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bution, its low-energy part being driven Maxwellian~with
lowerTe’s! by e-e collisions. Another important feature con
cerns the EDF of free electrons. One can see that, in ca
@see Fig. 1~a!#, this EDF falls with increasing energy mark
edly faster than in case 2@see Fig. 1~b!#. Clearly, this behav-
ior is determined by the rate of escape to the wall, nam
by tw in Eq. ~1!, which in turn has two contributions. Th
first term in tw , which defines the free-diffusion time, i
proportional topR2 and so is approximately the same in ca
1 and case 2. Although the regime is~nearly! collision domi-
nated, the second term, which defines the free-flight esc
time ~approximately}p21), comes into play in case 2 be
cause of the lower pressure. Therefore,tw is larger in case 2
than in case 1, i.e., free electrons escape to the wall m
quickly in case 1 than in case 2. This fact has import
consequences on the density and energy balances of tra
electrons~see discussion of Figs. 4 and 5 below!.

The time evolution of the sheath potential jumpDFw as
predicted by the simulations is plotted in Fig. 2 for the tw
cases studied and the corresponding time-space evolutio
the ambipolar potentialF is shown in Fig. 3. One can see i
Fig. 2 thatuDFwu decreases quickly during the first 10ms,
and later on the decrease rate is slower. In contrast, ins
tion of Fig. 3 reveals that the ambipolar potential evolv
slowly with time, which is consistent with the slow evolutio
of the mean electron energy. Also plotted in Fig. 2 is t
‘‘Maxwellian’’ DFw according to Eq.~18! using the numeri-
cal Te5 2

3 ^We&. One can see that, even though the Maxwe
ian and numericalDFw are close at the initial momentt
50 ~at which the EDF is taken to be Maxwellian!, through-
out most of the simulation period the MaxwellianuDFwu is
larger than the numerical one by about a factor of 2.~Note
that the ‘‘Te’’ used here represents the mean energy of el
trons; taking ‘‘Te’’ as the slope of the Maxwellian part o
the EDF will result in even larger disagreement because s
‘‘ Te’’ remains nearly unchanged fort&20– 30ms; see Fig.

l

FIG. 2. Time evolution of the sheath potential jumpDFw : ~a!
case 1 and~b! case 2. The solid lines correspond to the numeri
results, the dotted lines are calculations according to the appr
mate theoretical estimate in Eq.~17!, and the dashed lines are ca
culations using expression~18! ~assumption of a Maxwellian EDF!.
Also shown are the time evolutions of the wall potentialeFw ~long-
dashed lines!.
1-7
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ARSLANBEKOV, KUDRYAVTSEV, AND TSENDIN PHYSICAL REVIEW E64 016401
1.! The fact that Eq.~18! significantly overestimatesuDFwu
is common~see also Ref.@5#!, and it can lead to a significan
overestimation of the energy of ions impinging on the w
surface and also of the rate of diffusion cooling (}eFw). By
contrast, the approximate theoretical estimate ofDFw ac-
cording to Eq.~17! @using numericalF(t,R)# is seen to be
very close to the numerical results~see Fig. 2!; deviations
take place when the EDF of trapped electrons starts to d
ate from the initial distribution (t*20– 30ms; see Fig. 1!.
Also, calculations using the EDFf 0(t,e) of Eq. ~19! instead
of that calculated from the kinetic equation~2! showed good
agreement with the numerical results fort&20– 30ms.

The time evolutions of different contributions in the de
sity and energy balances of trapped electrons@see Eqs.~10!
and ~12!# are plotted in Fig. 4 for case 1 and in Fig. 5 f
case 2. Also plotted are the time evolutions of the volum
averaged densitŷne& and mean kinetic energŷWe&. One
can see that̂ne& decreases with time by a factor of;2 in
both cases, whereas^We& decreases by a factor of;4 in case
1 and ;6 in case 2. An important observation is that t
initial decrease of̂ We& at t&20– 30 ms takes place at an
almost unperturbed EDF of trapped electrons~in particular,
the EDF slope, or the ‘‘Maxwellian’’Te , does not change
see Fig. 1!, which implies the significance of the cuto
mechanism. The spatial profile of the mean~kinetic! energy
of electrons,We(r ), is nearly parabolic throughout the simu
lation period with the central-to-boundary ratio increasi
from 1 at t50 up to;1.4 at t;20– 30ms and then slowly
decreasing.@Recall that in these calculations the ion dens
profile is assumed to be parabolic with its volume-avera
value being calculated; see Eq.~14! and Figs. 4 and 5.#

As far as the balance equations are concerned the fol
ing can be observed. One can see in Fig. 4~a! that in case 1
during the first 20ms the particle loss of trapped electrons
dominated by the cutoff mechanism~i.e., Îco.Îe); at later

FIG. 3. Ambipolar-potential radial profiles at different instantt
in the afterglow:~a! case 1 and~b! case 2.
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times, particle losses due toe-e collisions become more sig
nificant. The same can be said regarding the energy bala
@see Fig. 4~b!#. One can note the unimportance of theÎF and
ĤF terms in both case 1 and case 2@see Figs. 4 and 5#. As
expected, in both cases studied, cooling in collisions w
free electrons~term Ĥf , not plotted in Figs. 4 and 5! is
negligible, being smaller by at least a factor of 10 compa

FIG. 4. Time evolution of different contributions in the densi
~a! and energy~b! balances of trapped electrons@see Eqs.~10! and

~12!# in case 1:Îco andĤco ~solid lines!; Îe andĤe ~short-dashed

lines!; ÎF andĤF ~dashed lines!. Also plotted on the rhs axes ar
the time evolutions of the volume-averaged density^ne& ~a! and
mean kinetic energŷWe& ~b!.

FIG. 5. Same as Fig. 4, but for case 2.
1-8
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ELECTRON-DISTRIBUTION-FUNCTION CUTOFF . . . PHYSICAL REVIEW E 64 016401
with the other mechanisms. In contrast to case 1, in cas
~see Fig. 5!, the cutoff mechanism is more importa
throughout most of the simulation period in both the parti

and energy balances~i.e., Îco.Îe andĤco.Ĥe) even though
the electron density is higher in case 2 than in case 1~and
tamb’s are almost the same!. Two factors may contribute to
this. First, since the removal rate to the wall is lower (tw is
larger! in case 2 than in case 1~see discussion of Fig. 1!, the

EDF at e5eFw ~and henceÎco and Ĥco) is larger and its

slope~henceÎe andĤe) is smaller in case 2 than in case
Second, the higher electron density in case 2 may resu

stronger Maxwellization and hence in lowerÎe and Ĥe ~re-

call that for a purely Maxwellian EDFÎe5Ĥe50). Accord-

ingly, one can observe~see Fig. 5! that the ratesÎe andĤe

decrease with time fort*10– 15 ms. These facts sugges
that, without solving the complete problem, it would be d
ficult to predict beforehand whether or not the cutoff mec
nism will be important for a given set of plasma condition
Only as a first approximation, its importance can be expec
whenne(eFw),tamb

21 .
Let us now briefly discuss the possible impact of qua

elastic and inelastice-a collisions. It is clear that, as far a
the particle balance of trapped electrons is concerned, s
collisions prevent electrons from escaping from the poten
well, generating particle inflows~negative fluxes!. Thus, pro-
vided thate-a collisions are frequent ande-e collisions are
rare at high energies, the cutoff mechanism has to prov
large particle outflows, which overcome the inflows gen
ated ine-a collisions. The presence ofe-a collisions, there-
fore, can in factenhancethe cutoff mechanism. In a nobl
gas~such as Ar! at low pressures, quasielastic collisions a
generally negligible, whereas inelastic collisions can be
portant only when the wall potential energyeFw greatly ex-
ceeds the threshold of inelastic collisionsw* . It is then likely
that such types of collisions can be more important in
molecular gas, in which they are often approximated
quasielastic with a characteristic frequencydmnm . When
dmnm.ne at high energies, the situation can be quite diff
ent from that in a noble gas. Indeed, due to the high
quency of electron-molecule collisionsdmnm , the EDF can
be quasistationary~but nonlocal, such thatle'lAn/dmnm
.L!, and the cutoff mechanism will still have to provide th
necessary particle outflows untileFw drops to a value low
enough so thatne*dmnm at e;eFw . These interesting phe
nomena in molecular gases will be explored in future wo

Finally, we say a few words on comparison with expe
ment. Comprehensive probe measurements of the EDF
of the plasma potential (;Fw) are necessary over the fir
50–100ms into the afterglow in order to be able to identi
the mechanisms predicted here. Such measurements c
not be found in the literature. Generally, the electron te
perature is found from logarithmic slopes of probeV-I char-
acteristics at low energies. Obviously, such an ‘‘electr
temperature’’ describes only the Maxwellian part of t
EDF, which is likely to be non-Maxwellian at higher ene
gies in a low-pressure afterglow plasma.
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V. SUMMARY AND CONCLUSIONS

In this paper, we develop a model for self-consistent
netic description of a low-pressure afterglow plasma. T
model is applied to simulate the transient phenomena tak
place under conditions where the EDF is not quasistation
In particular, a cutoff mechanism is brought forward a
shown to be important for the particle and energy balance
trapped electrons. This mechanism is essential for predic
correctly the self-consistent wall potential and the rate
diffusion cooling. The time-dependent nonlocal kinetic equ
tion is solved and thee-e collision operator is taken into
account by extending Rockwood’s discretization scheme
total-energy formulation. Strongly non-Maxwellian EDF
are predicted and it is observed that, depending on pla
conditions, the transient period may be rather long, of or
of the ambipolar diffusion time, lower pressures resulting
longer transient times. A method is suggested for poss
speeding up of the calculation under conditions of stronge-e
interaction at low~thermal! energies. It is likely that the stud
ied phenomena manifest themselves in molecular gases,
when the EDF is quasistationary. The cutoff mechanism m
also be important in a high-density electronegative plas
where the electron density is low~i.e., lower than the ion
density! during the power-on period and an ion-ion plasm
can form during the power-off~afterglow! period @19#. This
is because the presence of negative ions requires a hi
rate of electron loss than in an electropositive plasma,
process becoming increasingly more important as the pla
decays. Since there is increasing evidence of the effect
ness of the nonlocal approach for various types of stea
state plasmas at low pressures~e.g.,@8–10#!, it is possible to
extent the proposed method for self-consistent kinetic m
eling of low-pressure pulsed plasmas during both
power-on and power-off periods, including the breakdo
period. An extension to multidimensional geometry can a
be made~e.g.,@8#!.

APPENDIX: FINITE-DIFFERENCE REPRESENTATION
OF THE e-e COLLISION OPERATOR

The method of discretization of thee-e collision operator
in kinetic energy formulation was proposed by Rockwo
@20# and extended in Ref.@21# for a nonequidistant energ
mesh. Here we develop the corresponding scheme for
e-e collision operator in total-energy formulation@given by
Eqs.~5! and~6!# by following the notation and methodolog
of Ref. @21#. We define the total-energy grid a
(e1 ,e2 , . . . ,eN) with bj5e j1

1
2 v j and bj 215e j2

1
2 v j be-

ing the upper and lower bounds of the interval centered ae j
with j P@1,N#. The flux derivatives ate5e j are calculated as
]Jee/]e5@Jee(bj )2Jee(bj 21)#/v j , where the flux itself at
e5bj is represented as Jee(bj )52a j f 0(e j )
1b j 11f 0(e j 11). The integrals in Eq.~6! are represented a
sums, which gives

a j5(
k

Ajk f 0~ek! and b j5(
k

Bjk f 0~ek!. ~A1!
1-9
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The three basic conditions that thee-e collision operator
must satisfy are used in order to establish the relations
between the matricesA andB and between the elements
these matrices themselves. The conditions of density
mean total-energy conservation@see Eq.~7!# require that,
respectively,ANl5B1l50 for any l P@1,N# and

~e j 112e j !Ajk5~ek2ek21!Bk j , ~A2!

and the third condition of convergence toward a Maxwell
distribution @}exp(2e/Te)# implies
no

J

ma

rce

01640
ip

nd

Ajk5
ek2ek21

e j 112e j
expS ~ek2ek21!2~e j 112e j !

Te
DAk21 j 11 .

~A3!

The coefficientsAjk are then calculated using the sam
approximations as in Ref.@21#: a function f and its total-
energy derivative at e5bl are, respectively, f (bl)
5@v l 11f (e l)1v l f (e l 11)#/(v l1v l 11) and ] f /]e
5@ f (e l 11)2 f (e l)#/(e l 112e l). This gives
Ajk5H ne0

vk

e j 112e j
S 2

2

3
w3/2~ek!1

1

2
w1/2~ek!v j D for j >k

2ne0

2

3
w3/2~bj !

vk

e j 112e j
for j ,k.

~A4a!

~A4b!

Following Ref.@21#, Eq. ~A4a! is used to defineAjk for j .k, Eq. ~A4b! to defineAk21k , and the rest ofA is found from
Eq. ~A3!. The matrixB is then calculated from Eq.~A2!.
.

.
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