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Turbulence and passive scalar transport in a free-slip surface

Bruno Eckhardt and 3g Schumachér
Fachbereich Physik, PhilippsJniversita Marburg, D-35032 Marburg, Germany
(Received 6 December 2000; published 25 June 001

We consider the two-dimensionéD) flow in a flat free-slip surface that bounds a three-dimensi@3ia)
volume in which the flow is turbulent. The equations of motion for the two-dimensional flow in the surface are
neither compressible nor incompressible but strongly influenced by the 3D flow underneath the surface. The
velocity correlation functions in the 2D surface and in the 3D volume scale with the same exponents. In the
viscous subrange the amplitudes are the same, but in the inertial subrange the 2D one is reduced to 2/3 of the
3D amplitude. The surface flow is more strongly intermittent than the 3D volume flow. Geometric scaling
theory is used to derive a relation between the scaling of the velocity field and the density fluctuations of a
passive scalar advected on the surface.
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[. INTRODUCTION The experiments of Goldburgt al. [13] are close to a
laboratory realization of the kinds of flow that are investi-
We consider flows in a flat two-dimension@D) surface  gated here. A vertically oscillating grid in a tank of water is
that bounds a three-dimensior{8D) volume with turbulent ~used to produce turbulence. If the water surface is suffi-
fluid motion. The boundary condition is that of a free-slip ciently far away from the grid it remains essentially flat and
surface so that the normal velocity component vanishes bithe surface flow can be visualized with mushrooom spores.
the parallel components are not further constrained. To soméhe measured statistical properties of the flow are close to
extent, this is the situation of surface currents on a river othe ones that we will derive here. This opens the way to
the sea, if waves and ripples are absent or can be neglectdtrther experimental studies of the statistical properties of
Particles floating on the surface reflect the properties of thé&he velocity field and of the particle dynamics in this inter-
flow and provide an easy visualization. These flows have agsting flow.
obvious connection to oceanographic app”catith], but Finally, we should like to point out that the flows are also
they apparently have not been studied in further detail. Eveff interest from a theoretical point of view, since they can be
in the recent theoretical and experimental investigations othought of as flows with a symmetry plane. Let the surface
the statistical properties of the particle distribution by Ottbe z=0 and consider the reflection symmetry thatzas
and co-workerd3—6] the modeling was based on random —z the z component of the velocity field changes sign. This
dissipative maps and not on the underlying flow. Similarly,is @ symmetry of the Navier-Stokes equation, that is to say, if
Saichev and CO-WOI’kEI‘B?,S] based their investigation of initial conditions and driving preserve this symmetry so does
passive particle advection and cluster formation on Gaussiaifie time evolved flow.
random velocity fields, white in time. Thus, one of our aims It is our aim here to derive the equations of motion for
here is to analyze the properties of surface flows arising fronguch a flow(Sec. 11 A, to discuss the correlation function if
Navier-Stokes dynamics and to connect them to the statistid§e 3D flow is turbulent(Sec. 11B), to present numerical
of particles floating on the surface, along the lines of ourresults on the statistics of the velocity, vorticity, and diver-
previous work on passive scalars advected in twogence fields and on the boundary layer thicknesc. 1),
dimensional turbulent flowf9]. and to derive a relation between the fractal dimension and
The flow in the surface is two dimensional, but it hasthe velocity correlation function for the advection of scalars
properties that are different from those of the usual two-Within geometric scaling theorySec. IV). Concluding re-
dimensional incompressible Navier-Stokes turbulence. Obvimarks are given in Sec. V.
ously, the velocity field is not constrained by mass conser-
vation in the surface: there can be up- and downwelling Il. THE TWO-DIMENSIONAL FLOW IN A FREE-SLIP
motions in the(incompressible bulk which on the surface SURFACE

will r r nd sinks for the velocity field. Ve- . .
appear as sources and sinks for the velocity field, Ve In order to arrive at the properties of such a flow, two

locity and vorticity can be exchanged with the bulk flow h ible: i licit i
underneath, so that in the inviscid limit without forcing nei- approaches are possible. one refies on an explicit representa-

ther kinetic energy nor enstrophy are conserved. Such effec{%o n (:tf_] t?e f|<|)(w tf'eéd r\i/:/IIththproper Eoﬁnd?% (Ec‘ianndml‘trlogsthangD
of compressibility arise also in experiments in two- € oiher seeks lo derive the equations of motion 1ro e

dimensional turbulence in soap films and were discussed rdy2Vier-Stokes equation. They provide complementary infor-
cently[10-12. mation on the system.

A. Flow with reflectional symmetry

*Present address: P.O. Box 208284, Yale University, New Haven, We begin with the equations of motion and the effects of
CT 06520-8284. symmetry. Letu, v, andw be thex, y, andz components of
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CFD\/Q\C_@ Won+1= _(axu2n+ayU2n)/(2n+1)- (7)
d W @D C/> Similarly, the pressure has to be determined from the 3D
® relationAp=—V-[(u-V)u]. With the power series expan-
i@@@ sion from above this becomes to leading orderin
zA O -
w Apo(X,Y) +2pa(X,y) = 2[(dxUg) (dyv ) = (dyUg) (dxv0) ]
YT v\T_> — 2(dlo+ dyvo)?. ®
u

o Equationg5), (6), and(8) are the equations of motion for the
FIG. 1. Flow geometry. The surface flow exists in the shadedg,iface flow. Note that besides the surface velocity field
surface above a turbulent bulk flow.andy are the coordinates in (ug,vo) and the surface pressupg there are additional con-
the surface andis the one normal to it. In the numerical simulation ) yions from higher order terms in the power seriein
the flow is driven by a shear flow in thedirection with variations . - .
inz the viscous driving termsu, and vv, from shear effects in
the normal direction and a contributiod) p, to the pres-
the velocity field(Fig. 1) and letp be the pressure field. The Sure, also resulting from pressure variations in the wall nor-
surface flow can be realized as flow in a symmetry planemal direction. From the point of view of the flow in the
e.g., the plang=0 if the velocity field is invariant under the Surface, these terms are externally given and can hence be
expanding the velocity components in power series inith ~ Now the driving is no longer confined to large scales, as
only odd powers fow, and only even ones far, v, andp,  @ssumed in the usual scaling analysis. With all unspecified
terms absorbed into effective volume fordgsandf,, the
equations of motion fouy andv become finally

©

UX,Y,z,t) = D Usn(X,y,1)Z2", (1)
n=0 A A ~ ~
atU0+(U0'V)U0:_aXp0+ VAUO+fu, (9)
V(Y20 = 2 van(xy 02" @ dwot(lo- V)ve=—dypo+ vhvo+T,, (10
w0 The equations are completed by Ef) with p,=0 for the

(3  Pressure.

These equations have unusual properties. For instance,
dotting withu and integrating over a 2D volume, the energy
is not conserved in the Eulerian limit where viscosity and
driving are absent. With the local energy density

W(Xayyzat) = nZO W2n+l(X=yvt)22n+l=

and

_ 2n
p(X,y,Z,t)_nZO pZn(X1y1t)Z . (4) E(X,y,t):(ug+vg)/2, (11)

Substitution into the Navier-Stokes equation and orderingand using Eq(7) for n=0 the global energy balance reads
with respect to powers o gives for the two main compo-
nents of interestg(x,y,t) anduvg(x,y,t), the equations I(E(X,Y,1))s= —(Wi (XY, D[E(X,Y, 1) + Po(X'y,t)Ds(le)

Ol (Uo: V)Up==dxPot vAUp+21p t 1y, (5) where (-)g denotes the average over the surf&eThus

~ = - energy is permanently put in and taken out according to the
9ot (Uo- V)vo=—dypot+ vAve+2vu,+f,.  (6)  gradients of the component ofu and the pressure fluctua-
tions. Over large time intervals one can expect that a flow
equilibrium with constant average energy is established and
that the time average of the right hand side of B@) van-

The carets on position vectoxsandR, on the velocity field
u, on the gradien¥, and on the Laplace operatArindicate

:Eat the}y are_ltthastrclic'_te_d to tfhtehcotm%orlleNMQy tha:;[ I:edlnb ishes. It seems that the lack of energy conservation for short
€ surface. The driving ot the turbulence Is modeled by g;,qq gives rise to larger fluctuations and larger intermit-

volume force with components,, f,, andf,,; as usual we ; - ; ;
o 1 v ’ s tency correctiongsee below andi13]). A similar discussion
expect that the statistical properties of the flow will depend y § ¢13)

. . . o applies to the vorticity, and will be given in Sec. 111 B below.
only weakly(through intermittencyon the kind of driving as PP y g
long as it is confined to large scalesis the kinematic vis-

cosity of the fluid. B. Direct representation of a stress-free surface

For the full 3D velocity field mass conservatid u=0 The alternative approach mentioned above starts from an
connects the normal and tangential components, ¥jw= explicit representation of the 3D velocity field that takes the
—dyu—dyv or, on the levels of the componenitsf. Egs.  boundary conditions into account. Consider the Fourier ex-
(1)-(3)], pansion of the velocity field,
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100.0F T T T T
u(x,y,zt)=2 ug a(DexpiK-xcognmz), (13 E ABulk (20=1/2)
K,n [ ©Surface (z,=0, 1)
v(X,y,z,t)= 2, vg o(DexpiK -x)cognmz), (14
Kin 10.0¢
N{ 3
W(x,y,z,t)=z Wi n(Dexp(iK-x)sin(n7z), (15 3
K,n E:;
where the summation extends over all 2D wave vecfors 1ok
=(Kx,Ky) in the surface and all integers The sine and T
cosine terms take into account the stress-free boundary con
ditions at the top and bottom surfaces, .
- 10 100
dju=duv=w=0 for z=0 and z=1. (16 o R/7
. L TR R AT | L Lol n TR R )
Incompressibility requires that 1 10 100 1000

R/7

_ o - FIG. 2. Second order structure functioB§(R,z,)/v? for Re,
One advantage of this representation is that it quickly leads- 99 normalized withy = (ev)** and e from Eq. (20). Data from

to a prediction for the two-point correlation functions. In the the surfaces az,=0 andz,=1 are indicated by diamonds and
3D case Kolmogorov scaling without intermittency gives for connected by continuous lines. Data in the bulk were takery, at
the inertial regime a decay of amplitudéﬂ&n|2oc|r(2 =1/2 and are indicated by triangles and dashed lines. The inset
+(n77)2|’11’3 [14]. In the surface, the 2D amplitudes are shows the local scaling exponents from an extended self-similarity
obtained by summation am This brings in a factor oK that (ESS analysis. Estimates between the vertical dashed lines, where

compensates the one missing from the volume elementl€ €xponents are reasonably constant, give mean scaling exponents
which is K dK in 2D rather thark?dk as in 3D. As a net ©f 0.69 in the bulk and 0.71 in the surface. These values are indi-

result scaling of the correlation function does not changeSated by horizontal dashed lines.

However, the absence of the third component of the velocity . B 12
field reduces the amplitude to two-thirds of its three-and time scales,=(v/¢) ™ are calculated from the 3D en-

dimensional value. For the second order structure function‘,argy dissipation rate in the surface, i.e.,

IKyUg n T iKyvg o+ nmwg ,=0. 17

defined as 2
= iU st v{((d3uz)?)s, 20
SZ(R)=<|U(X+R)—U(X)|2>, (18) € ViJzzl (9, ) )s+((d3uz)%)s (20)
we expect in the inertial regime where indices 1, 2, and 3 correspondxtoy, andz, respec-

tively. For Rg=99 this dissipation rate in the surface is
§2(R)= zSZ(R)~R2/3 (19) about 40% of the value in the bulk.
3 )

) o ) A. Structure functions of the velocity field
where again the caret distinguishes the 2D surface from the , )
3D bulk structure function. Form factors in the middle of the cell and on the surface

are determined from 114 statistically independent snapshots
of the turbulent flow. We focus on the scaling of théh
order longitudinal structure functions, defined as
The numerical simulations are based on a nearly homoge- Al a R A A
neous turbulent shear flow bounded by stress-free surfaces at ~ Sn(R,20) =(|[u(X+R,z0) —u(x,25)]-R/R|").  (21)
z=0 andz=1 as given in Eq(16). The velocity field is . . . .
decomposed as in Eq$13)—(15) and the Navier-Stokes In the bulk and Wltho_ut |r_1term|ttency corrections the second
equations are integrated using a pseudospectral meth@jder structure function is gxpecte‘?' to scale IR€in the
[15,16. The simulations were done for Taylor Reynolds ViScous subrange and lie?” in the inertial subranggl4]. _
numbers Re=59, 79, and 99, calculated from the stream-A comparison between bulk and surface structure fur_lctlons
wise velocity component, i.e., Rs{:urzms/[«axu)z)l’zv] is _shqwn in Fig. Zfor Re=99. The two st_ructulre func.tlons.
with root mean square velocity,.=(u2)"2 The properties coincide in the viscous sqbrange b.ut dlffer in the memal
of the 3D bulk flow are included here only to the extent thatSUbrangE."' This d|ff¢rence IS predommqntly n Fhe amplltude
they are needed for the comparison between bulk and sufnd not in the scaling exponents, and is consistent VY'th Eqg.
face; they are further analyzed [ih6]. (19). A local scaling exponent can be defined &R)
Kolmogorov length 7= (v% €)Y velocity v,=(ev)¥4 ~ =dIn$(Rz)/dIn R Unfortunately, the two structure func-

IIl. NUMERICAL SIMULATIONS
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0.1 - . ' . ] =D, 3(R,zp) —n/3 from classical Kolmogorov scalingl4]
o o () 1 for ordersn=2 to n=6 for differentz,. The planezy=1/2
L O00BAOOOOG - G- -0 = defines the middle between both free surfaces. Data sets for
0.0 ] two different Taylor-Reynolds numbers Re99 (a) and 79
L R Ao pe A (b) are shown. The transition from bulk to surface behavior
T LA n=4 ] can be used to define a surface layer, as discussed further in
S RL R Sec. III D.
Cnl ém i ] The increase in intermittency seems to be connected with
S -02% >(<><><>o<><><.,,.><.~a~_><é~><---">< ----- g an increase in fluctuations due to lack of incompressibility
PN h ] and lack of energy conservation. It is in line with results for

: ] passive scalar transport in models with compressible Gauss-
-0.3X Ry=99 4 ian random flows that aré correlated in timg18,19 and
3 l . l ‘ with direct numerical simulation20,21] of isotropic super-

. . sonic turbulence. Interestingly, in the latter case the authors
heo (b) also noted a strong difference from incompressible turbu-
B T SRR TR SRERORRL R lence near the crossover to the viscous subrange. In their
case vortex filaments of high intensity and narrow regions of
R R T R Y. strong negative divergence, due to small scale supersonic

=4 shocks, appeared. In our situation it is the fluctuations due to
Hoo0 oo normal shear and normal velocity components below the sur-
face that have a strong effect near the crossover to the vis-
: "><~»><~6><--><~><-~><-»><.x cous subrange.
B In the viscous subrange the amplitudes of the structure
functions agree, but in the inertial subrange the surface struc-
Ry=79 3 ture function is smaller by a factor of 2/3. In the previous
o section we explained the reduction in amplitude in the iner-
0.3 04 05 tial range by the reduction in the number of active degrees of
7,/ d freedom or Fourier modes. In the viscous subrange this ar-
gument does not apply, since we absorbed many additional

FIG. 3. Deviations of the local ESS scaling exponent from thecgontributions to the equations of motion into the volume
classical Kolmogorov scaling for different heigizgof the averag-  griving force. The amplitude is larger since these extra con-
ing plane and for different orders=2 to n=6. Part(a) for Re,  {ripytions also have to be dissipated, but it should not exceed
=99, averaged over 228 samples. The deviadpg(R,zo) are the 4t of a 3D structure function since they originally come
mean obtained for scalébetween 14 and 41y, as indicated by 513 5 3D flow. So in the viscous subrange the reduction in

vertical lines in the inset of Fig. 2. Pat) for Re, =79, averaged i angionality is not noticeable and the structure functions
over 254 samples. Here the exponents are obtained for sRales coincide

between 1@ and 27. The vertical lines indicate the surface layer
that is analyzed further in Sec. Il D.

60, 35=D,3—n/3

B. Structure function of the vorticity field

tions do not show an algebraic scaling behavior at interme- Another quantity of interest in 2D flows is the vorticity
diate scales between the viscous and the forcing scale range= g, —ayu and its structure function

for the values of Reachieved here. Therefore, we apply the

extended self-similaritfESS analysis[17] to the data. A QR =(|o(x+R)—w(x)]?). (23
local ESS scaling exponent can be calculated by relating

local scaling exponents of second and third order structurén 2D incompressible turbulence squared vorticity is an ad-

functions, ditional inviscid invariant and gives rise to an inverse cas-
cade of energy. In 3D a vortex stretching term-V)u is
R d In[ASE(IA?,zo)] present that prevents a conservation of enstrophy. In 2D and
D23iRzo)= ——=—— (22 for the normal component of the vorticity this reduces to a
dIn[S3(R.zo)] normal gradient of the velocity field which by incompress-

. ibility is connected to the divergence of the flow field in the
The distance vectoR is taken in planes of fixedo. As  surface. Thus, for the 2D free surface flow the vorticity trans-
shown in the inset in Fig. 2 the bulk data give a local scalingport equation reads
exponent of about 0.69, in agreement with other observa-
tions, but in the surface the local slope is larger, about 0.71. G0+ (0-Vo=—w(V-0)+vAo+T,, (24)
This difference is small but statistically significant. Local
exponents, based on averages over planes parallel to the sand the nonvanishing divergence of the surface flow pro-
face, show almost no variation in the center of the cell but asides a kind of additional vorticity forcing in 2D. Conse-
clear trend when approaching the surface. This is demorguently, squared vorticity cannot be an inviscid invariant,
strated in Fig. 3 for the deviationséD, 3(R,zp) and no inverse cascade develops.

016314-4
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FIG. 4. Vorticity structure functiorQ(R)/r;2 for the surface
flow at Rg =99. The data base is the same as for Fig. 2. FIG. 5. Probability density functiofppr) of the surface vortic-

ity component for the flow field of Fig. 2. For comparison a Gauss-

The vorticity structure function for the data underlying ian por fitted to the central part of the distribution is indicated as
Fig. 2 is shown in Fig. 4. It saturates for larger separations tavell (dashed ling
a nonvanishing value. Nonvanishing vorticity fluctuations
were also observed in experimdiB] and interpreted as an Vvelocity gradient. For the surface flow and using only the
indication that the observed features are not connected witielocity components in the surface, this becomes
turbulent surface waveg22]. Note that in incompressible .
stationary turbulence the second order velocity and the sec- ((V-u)?)
ond order vorticity structure function are connected by an ISP (26)
exact relationQ)(R)=2e/v—AS,(R) [23,24. This holds (Ivul%
true in two and three dimensions, but has additional terms if
the flows are not incompressible.

The strong intermittency of the flow is also reflected in
the probability density function. Figure 5 shows that the
probability density function of the vorticity deviates from a
Gaussian distribution and has the exponentially stretched
tails that are typical for intermittent quantities.

n our simulations for Re=99 we find C~1/2, in good

agreement with the experiments of Goldbetcal. [13]. The

relation of the denominator in E@26) to the energy dissi-
pation rate(20) is given by

= o[{| VU2t ((V- 1)) s]= (| V0P g(1+0). (27)

The mean extension of regions with similar divergence

C. Divergence of the surface flow can be determined from the correlation function
The property that distinguishes surface flows from incom- . o m A
pressible 2D flows most clearly is the divergence of the flow, Caiv(R)=([V-u(x)J[V-u(x+R)]). (28

which does not vanish for the surface flow. Snapshots of the

flow field, such as in Fig. 6, clearly show the presence of! his correlation function is shown in Fig. 8. The first zero of
sources and sinks. A vertical slice across the flow underneatBai,(R) defines a decorrelation length scalg, ; in units of

the surface allows one to connect them to up- and downthe Kolmogorov scalé g4;,~25. This scale fits rather well
welling motions below the surface. The corresponding conwith the size of the largest patches in Fig. 7. As a conse-
tour plot of the divergence of the surface flgiig. 7) shows — quence, the term in Eq24) that contains the divergence of
randomly fluctuating patches of sources and sinks. In théhe velocity field describes a driving force that can be ex-

mean the flow is divergence fre(s(Vl])):O but the root Pected to be confined to the smaller scales in the flow.
mean square value does not vanish. Formally one can define

a compressibility factof18] D. Fluctuations of the vertical velocity component
V.u)? In Sec. lll A we already mentioned the variations of the
<( u > , (25) statistical properties with distance from the surface. They
<|Vu|2> allow us to identify a surface layer in which the transition

from bulk to surface behavior takes place. This layer is dif-
which relates the mean square divergence to the mean squdezent from the ones near rigid walls and is not connected to
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1 O T . T T T
08f 1
0.6F 1
0
(-‘)6 0.4 j -
02F | | :
|‘div
0.0 N ———— 1
L PR : PRI | I . 1 PR n
RANN — 0 50 100 150 200
e i ) R/
FIG. 8. Radially averaged correlation function of the divergence
field for Rg =99. The decorrelation lengthy;, is indicated by the

vertical dotted line.

In both cases the size of the velocity field is estimated by the
FIG. 6. A turbulent velocity field in the free-slip surface flow for root mean square average of the wall-normal velocity fluc-
Re,=99. The upper panel shows a vector plot of the components tuations,w,,,s. Equating the two expressions gives
andv in the surface at/d=0. The lower panel shows a vertical cut
through the box at the horizontal ling/d= 7) marked in the upper 0~ vIWyns (31
panel. Regions of rising fluid and sinking fluid in the lower panel
can be connected to sources and sinks near the solid line in th@s an estimate of the thickness. This is compared with nu-
upper panel. merical data in Fig. 9 where theprofiles of the wall-normal
fluctuationsw, s for two values of Taylor Reynolds number

friction but rather to the suppression of velocity fluctuationsare shown. The boundary layer becomes smaller with in-
in the wall-normal direction. Dimensional arguments allow creasing Re, as expected. The absolute values for the thick-
us to determine the layer thickneSgrom a balance between Ness of the boundary layer can be read off from the data by

the turbulent transport of wall-normal fluctuations into thelinear extrapolations of the profile slopes at the surfaces. The
boundary, intersections of these straight lines with the corresponding

maximum values ofv,,s were used to define the boundary

[(u-V)ul=~wi,d 4, (29
075 T T T T T T T T
and the viscous dissipation of such fluctuations,
(30) 050 / [
E NG
o~
€
0.25F P Re,=59 .
Re,=99
0.00 i i ; ! ! | | L ! I
0.0 0.5 1.0
z/d

FIG. 9. Fluctuations of the normal velocity component as a
function of the position between the surfaces. The fluctuations are
normalized in units of the square root of the mean turbulent kinetic
energyq?=(u?y+(v?)y+(w?),. A linear extrapolation from the
~ surface up to the value in the middle gives a boundary layer thick-

FIG. 7. DivergenceV~ﬁ of the surface flow in units of the nessé=0.2 for Rg=59 andé=0.1 for Rg=99. This is about a
Kolmogorov timer, . Data are the same as for Fig. 6. factor of 10 larger than the values estimated from 64).
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layer thicknesgsee Fig. 9. This gives values fob that are  where the scale resolved veIocimb(I)~u,,(I/77)1’3 in Kol-
about a factor of 10 larger than the dimensional estimate, bunogorov theory. The next term in E(B3) contains the di-
consistent with its scaling behavior. This estimate for thevergence of the 2D surface flow and acts like a source or sink
thickness of a surface layer agrees with the interval ovefor the scalar. Its time scale is denotegl,(l). The com-
which the scaling exponents (frig. 3) change from bulk to  pressibility factor relates the divergence of the flow field to
surface values. the root mean square velocity gradi¢eee Eq.(25)] which

is connected with the energy dissipation ratand thus the
Kolmogorov time 7,,. Numerical simulations and experi-
ment [13] indicate 74;,(1)~ 7, /C*% whereC is the com-
pressibility factor(26) with a value of about 1/2. The effi-
A. Time scales ciency of diffusion clearly depends dn so that the time

scale 74¢¢(1) for diffusive smearing isrg;;(1)~12/D. Fi-

Experimental and numerical studies show that the par I have the forcing time. /f hich o
ticles floating on the surface of a fluid cluster in regions withnally, we have the forcing timey = ¢ms/t,, which again is

downwelling and avoid regions with upwelling moti5,6]. mdlepender_]t of spatial rl?lsoluttir(])n. les. th ith th
The patterns that appear have huge density variations that ar N any given range ol length scaies, e process wi €

best described by fractal scaling exponents. As an approx? ortest time scale can be expected to dominate. So starting

mation to the dynamics of particles we can study the advech o the smallest scales we expect for an incompressible

tion of a scalar density on the surface: it differs from trueﬂmd.ﬁrSt a diffusion d_ominated _regime, th_en an ad\{ection
particles in that it has no inertighe importance of which can dominated one, and finally the Input dor_nlnated_ regime. A
be reduced in experiments by sufficiently small and IightB.atchelor regime for the scalar is found if the.dlffuswe re-
particles; see, howevef25,26) and that it can develop gime extends b_eyond the Komogorov_lengt_h,_ ez Er In
larger gradients. an |nc.ompre_sS|bIe flowC=0 and Tdiv 1S infinite, so that
Allowing for the compressibility of the flow field, the there is no influence from_ the dlve_rg(_ence. In the syrface
equations for the scalar density are thus flows studied here, the estimate fﬁnndlcates_ thatrdiv_ is
very short, of the order of the Kolmogorov time. This im-
< (04— A plies that the advective regime is suppressed and that the
Kp+V-(UP)=DAS+T,, (32 statistics of the divergence dominates. This, finally, explains
) ) o why the properties of the hydrodynamic flow do not seem to
whereD is the passive scalar diffusivity. The Prandtl numbermatter too much in the analysis of the particle distribution on
is Pr=»/D. The following discussion will be confined to the free surfaces and why O#t al. could explain the experi-

two-dimensional flow, so that all gradient, divergence, andnents using random magp3—6).
Laplace operators act on the two coordinateandy only;
the carets will henceforth be omitted. Expanding the second
term in the above expression then gives the evolution equa-
tion for the scalar, In order to connect the scaling of the velocity field to the
scaling properties of the scalar, we use geometric measure
dip=—(Uu-V)¢p—(V-u)p+DAG+f,. (33  theory[27] and the scaling ideas developed by Constantin
and co-workerg28-30. A further extension of their work
allowed for a scale resolved and Prandtl number dependent
analysig 31,9]. The basic idea of the approach is to relate the
factal dimensions®) of the passive scalar concentration,

IV. PASSIVE SCALAR TRANSPORT IN THE FREE-SLIP
SURFACE

B. Application of geometric scaling theory

The inputf , in scalar density is needed in order to compen-
sate the diffusive losses. Since the equation for the scalar
linear, the natural amplitude scale far is set by its root . : : )
mean square valus, .= ( $2) 72 After dividing by ¢y all i.e., the scaling exponerttvith respect toR) of the Haus

; 2
terms have dimensions of inverse time and the time scale orff volume (g of the passive scalar grapﬁ;(B%))
involved can be used to characterize the different processe?.{(x’(‘g’))|XE Br’, ¢#=¢(x)} taken over a two-dimensional
Several of these processes also depend on the lengthlscald@!l Br™ of radiusR, to scaling properties of the underlying
over which they are studied and so we introduce length scai!roulent flow that mixes the scalar. The following discus-
resolved characteristic times. All terms can be made dimersion will focus on the additional terms relevant to the current
sionless using the inner scales of the turbulent velocity fieldroblem; more details can be found in the above mentioned
in the surface, as discussed above Ef). Different esti- reference$28-31 and our previous work9]. .
mates ofe bring in factors of order Isee, e.g., relatiof27) The ba5|c_ quantity to be calculated within geometric mea-
and the remarks below E¢0)]. Again, we use the energy Sure theory is the relative Hausdorff volume of a surface of

dissipation rate that is given by E€0) to composen, v,,,  the normalized scalar density= ¢/ pms, as given by

andr,.
n
The advection termy- V) ¢ in Eq. (33) is characterized H(G(BY) _Ri?-a \/1+ 1 VoIdPx (3
by the advective time scale V(B®) ¢ s - B@' $|*d*x, (35

(_) 2/3:7_ ('_) 28 (34 Where V(B®)=7R? is the volume of a two-dimensional
7

7aao(D=17u(l) = E, 7 ball with radiusR. The scaling exponent of the first order
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scalar structure function and fractal dimensions can be rewith

lated by inequalities, which for the analysis are assumed to

be shard29]. Using the relationpA ¢=A ¢?/2— |V ¢|? and

the equation of motiori33), the gradient under the integral (U-V) 2=V - (Up?) — $2(V -u) (37
can be replaced by

¢

d’¢ ) the first term on the right hand side can be expressed as a

D drms sum of two divergences. When substituted under the integral
(36 in Eq. (35 the Hausdorff volume becomes

V= (U V) B STV )+ AT

H(G(BY)
V(B(z))

¢¢

dx. 38
D dume 8

\/ f&)l —[~V-(up?)— AV -u)+DAG? ]+ ——

The four integrals are denotdd throughl, and analyzed \hereR=R/7 is the radius of the disk in units of the Kol-
separately. The analysis of the three integtalsls, andl,  mogorov length. Using Gauss’s theorem and Green’s for-

proceeds as in the previous applications to two-dimensionahula it can be showf9] that the third term is subdominant
scalar advectiorf9]. In particular, application of Gauss's compared to the fourth,

theorem and the Cauchy-Schwartz inequality connects the
first integral to the longitudinal structure function of the sur- |3s2\/ﬂo<~R, (42)
face velocity fieldS;(R),
and hence can be omitted in the following.
JE Finally, we come to the ternh,, which contains the di-
|1<—¢R S;(R). (39)  Vergence of the velocity field. Application of the Cauchy-
D Schwartz inequality gives

F, is the flatness of the passive scalar, (2)3,2(v -u)d?x

|2: B 27D BR
Fs=(dN(d%)?=(d*). (40) \/ \/ (V. u)2
fB(Z)V( B(2) JB(Z)V( B(Z))

If the correlations of¢p decay rapidly this is essentially the
volume averagé®™*),/( $%)2 . For a Gaussian velocity field, B \/F_ (VU2
F,=3. Experiments and numerical simulations indicate 2D
strong ramp and cliff structures in the scalar field and thus
some deviation from the Gaussian distribut[@2—35, im- \/_PrR2 212
plying a scale dependence 6f,. However, we here restrict <(V )T (43)

ourselves to first and second order correlations where inter-

mittency corrections to the classical Kolmogorov-Obukhov-where the root mean square of the divergence is measured in

Corrsin scaling are expected to be small and work with ainits of the Kolmogorov timer,. The derivatives in the

constantF ;. divergence term can be estimated from above using
Exploiting the statistical stationarity of the passive scalar(V -u)?)<(|Vul|?) [see Eq(25)]. In the following calcula-

dynamics the fourth term, which contains the driving of thetion this bound is not needed and the divergence fluctuations

passive scalar, can be expressed as in Eq. (43) can be taken directly from the numerical simula-
tions.
1 t.% Combining Egs«(38), (39), and (41) we arrive at an in-
l,=— ¢ 2y equality for the fractal d|men5|06 of the passive scalar
7J8E'D brms graph and thus via{" = s’ —1 [29] at a fractal dimension

for the constant Ievel setdy= od(x),

d
sW—1<——Inh(R), 44
9 dnE (R) (44)

,
=Pr—R?, (41 .
Tt with
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2
R)—\/1+\/_PrR\/"_ —\/F_PrR (V-2 Pr” R (45)

5 =sh/v2 is the longitudinal second order structure function [N the experiments of Sommert] a fractal dimension

in units of i i i 8 petween 1.28 and 1.48enoted,) was found. We find

in units of the Kolmogorov velocity. Obviously, if the last 9g : : 2 :

two terms under the integral dominate, thefR)~R and these values only in the transitional region, before the inertial
581):2’ implying a surface filling distribution of the scalar. 2Nge i developed. The observations are consistent with Eq.

For sufficiently large scaleR or large Prandtl numbers this (45) since it provides only an upper bound and the observed

is always the case. On the other hand, if the second term wnKalueS are indeed smaller. Further comparisons between ex-
periment and theory, using, e.g., measured velocity correla-
the velocity structure function dominates, sgy~R?, then

tion functions in Eq.(45), would be more than welcome.
8{D=3/2+ yl4. Thus for the usual Kolmogorov scali  Some experiments are in preparat(ds].
R and s{N=5/3.

The Prandtl number dependence of the fractal dimension
can be studied using as input the velocity correlation func-
tions from our numerical simulations. Both Pr and the pref- ) ) .
actorr,/7¢, a measure of the strength of the scalar driving, The surface flows studied here are intermediate between
are free parameters in EG15). The results for two different two- and three-dimensional flows. They are confined to a
values ofr, /7¢ are shown in Fig. 10. For many values of Pr surface, but their statistical properties are strongly influ-
a fractal d|men5|or6§)<2 is observed. If the termr, /7 enced, even dominated, by the 3D volume turbulence. The
becomes large, either because of a smallstrong drlvmg flow field in the surface can exchange energy and vorticity
or a larger, (weak transport to smaller scaleshe fractal ~ Wwith the bulk, so that neither energy nor enstrophy are con-
dimension approaches that of a space filling fracteld~ 2 served quantities in the Eulerian, undriven limit. Moreover,
in addition to large scale forces that maintain the 3D flow the

V. SUMMARY

5ok surface flow is driven by small scale perturbations that come
' from transverse pressure variations and local gradients in
normal velocity. As a result the scaling properties of the flow
are essentially those of 3D turbulence, with an energy cas-
. cade in the inertial regime. The scaling exponents of the
£ 15 L Pr=107 velocity structure function are slightly larger than those of
¥ Pr=10" bulk 3D turbulent flows, indicating larger intermittency ef-
o Pr=10° fects. We also observed a 2/3 difference in the amplitude of
éEZ 1 8: the structure functions between surface and bulk in the iner-
tial regime. Several of the observed characteristics of the
1.0 i , surface flow are in agreement with the measurements of
10 100 Goldburget al.[13].
We have also discussed the scaling properties of a scalar
2.0k advected by the surface flow and have identified different
----- scaling regimes. It seems that very often the dynamics in-
duced by the divergence of the flow field is the fastest pro-
R cess, and that the advective properties of the flow are sub-
. a=10 . dominant. This might explain why random mappings could
Y 1 5 ; gz ] 8-‘ suc_cessfully be applied to the mo_deling of the_ particle distri-
OPr=10° butions [3—6], but a more detailed comparison between
APr=10! theory and experiment is clearly needed.
OPr=10 An important characteristic quantity of the surface flows
is the compressibility facto€. The numerical simulations
1.0 , . and the experimenitl3] using a vertically oscillating grid
10 100 both indicateC~1/2. With a stable stratification of the fluid

R/7

below the surface that reduces vertical fluctuations it might
be possible to achieve smaller value<CofThis should open

FIG. 10. Fractal dimension{") for passively advected scalars UP the possibility of studying the effects of compressibility
for different values of the parameter=r7,/7; and the Prandtl over a larger range af, in connection both with the inter-
number Pr. The underlying turbulent velocity field is the surfacemittency contributions to the scaling exponents and with the
flow for Re, =99 as shown in Fig. 2 anfl,=3. scalar dynamics in surface flows.
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