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Short wavelength spectrum and Hamiltonian stability of vortex rings

Uwe R. Fischer and Nils Schopohl
Eberhard-Karls-Universita¨t Tübingen, Institut fu¨r Theoretische Physik, Auf der Morgenstelle 14, D-72076 Tu¨bingen, Germany

~Received 6 December 2000; published 18 June 2001!

We compare dynamical and energetical stability criteria for vortex rings. It is argued that vortex rings will
be intrinsically unstable against perturbations with short wavelengths below a critical wavelength because the
canonical vortex Hamiltonian is unbounded from below for these modes. To explicitly demonstrate this
behavior, we derive the oscillation spectrum of vortex rings in incompressible, inviscid fluids within a geo-
metrical cutoff procedure for the core. The spectrum develops an anomalous branch of negative group velocity
and approaches the zero of energy for wavelengths that are about six times the core diameter. We show the
consequences of this dispersion relation for the thermodynamics of vortex rings in superfluid4He at low
temperatures.
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I. INTRODUCTION

The long wavelength oscillation spectrum of large vort
rings in incompressible, inviscid fluids is established sin
the pioneering work of Thomson~Lord Kelvin! @1#, Thom-
son@2#, and Pocklington@3#. The validity of that spectrum is
restricted to wave numbers much less than the inverse
size and rings that are large compared to the extension o
core. There are, however, processes for which it is desir
to know the large wave number properties of the spectr
for smaller rings: Vortex ring nucleation, reconnection
vortex filaments, and dissipation in the turbulent energy c
cade are believed to occur on very small length scales, re
ing down to a few times the vortex core size. Because a
vortex represents a string object, elasticity modes will
excited during the rapid movements executed by the st
on small length scales. A fluctuating line should have eq
librium states different from a nonfluctuating one becau
the quantum or classical statistical fluctuations renorma
the total free energy as compared to the undeformed rin

In what follows, we shall derive the collective, small am
plitude oscillation modes of a vortex ring in an incompre
ible, inviscid fluid. The dispersion relation is exact within th
geometrical cutoff procedure we employ and displays
maximum and an anomalous branch of negative group
locity. The critical wavelength for the spectrum to posses
positive excitation energy corresponds to one oscillation
line within a length about an order of magnitude above
geometrically defined core size. It will be argued that, due
the properties of this spectrum and the structure of the
nonical Hamiltonian, a vortex ring is potentially unstable
an intrinsic manner because the Hamiltonian is unboun
from below for short wavelengths. Physically, the energet
instability is caused by the fact that quantities playing
role of ‘‘mass’’ and ‘‘spring constant’’ in the Hamiltonian
simultaneously assume negative values. The energetica
stability, taking place for sufficiently large perturbations th
are of wavelengths less than the critical wavelength~of about
six times the core diameter in our core model!, occurs though
the ring is dynamically stable for nearly all wavelengt
down to the core size. The dynamical instability of a vort
ring, related to the occurrence of imaginary excitation f
1063-651X/2001/64~1!/016306~6!/$20.00 64 0163
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quencies, is only relevant for certain critical wavelengt
We will thus present in this paper an argument that the
evant stability criterion for a vortex should be that of ene
getical stability.

Below, in the section to follow, we will first introduce a
action principle that gives a transparent representation of
vortex dynamical behavior in incompressible, inviscid fluid
from which the canonical Hamiltonian for small perturb
tions in Sec. III, representing the vortex eigenmodes, na
rally follows. Section IV gives an account of the thermod
namics of vortex rings, related to the excitation spectrum
a quantized vortex in superfluid4He, where the conse
quences of the predictions made in this work should be p
ticularly clearly seen. We conclude with some remarks.

II. DERIVATION OF THE OSCILLATION MODES

A. Action principle

The peculiarity of the dynamical behavior of vortices
the incompressibility approximation, the fluid having a co
stant mass densityr0, consists in the fact that configuratio
space and phase space coincide@4,5#. The momenta are, in
this limit, generally expressible as functions of the c
ordinates and play no independent dynamical role. This
gives rise to the following action functional of the line co
figurationC, in terms of the positionsR of line elementsdR
with a constant velocity circulationG @6#,

S@C#5E
0

t

dtS 2
G

3
r0 R

C
^dR`R, ] tR&2H@C# D . ~1!

The factor 1
3 in the kinematical term reflects our choice

cartesian co-ordinates in what follows and corresponds
~co-ordinate! gauge for the vortex momentum@7#. The vor-
tex kinetic energy is given by the Biot-Savart expression

H@C#5
G2

2
r0 R

C
R

C

1

4p

^dR,dR8&

uR2R8u
, ~2!

where the shorthand notationR5R(f,t) andR85R(f8,t) is
used. This relation for the energy yields the usual asympt
logarithmic dependence of the stationary vortex energy
©2001 The American Physical Society06-1



x

de

an

t
a-

s

e

nd

io

pt

n
wo

r
g
it
ce
y

l
or

ing
n,

all

for

m-
s

UWE R. FISCHER AND NILS SCHOPOHL PHYSICAL REVIEW E64 016306
the infrared cutoffL ~system size, distance to the next vorte
or radius of a vortex ring! and the ultraviolet cutoffjc ~the
core size! in the form ln@L/(Cjc)#, whereC is a core model
dependent constant. Stationarity of the action for first-or
variation of the action~1! after R leads to the local velocity
of a line element being perpendicular to the line element,
given by the Biot-Savart nonlocal induction law,

dR`S ] tR2
G

4p R
C
dR8`

RÀR8

uR2R8u3
D 50. ~3!

The above proves that the action~1! leads to the correc
equations of motion familiar from the fluid dynamics liter
ture @8#.

Let R (f,t), for 0<f<2p, describe the instantaneou
shape of a moving vortex ring at timet, fluctuating with
amplitude u(f,t) around its circular equilibrium shap
R0 (f,t), so thatR (f,t)5R0 (f,t)1u(f,t). Then, we pa-
rametrize line element position, equilibrium position, a
small perturbations around this equilibrium as follows

R~f,t !5R'~f,t !~ êx cosf1 êy sinf!1êzRi~f,t !

R'5r 01u'~f,t !, Ri5v0t1u i~f,t !. ~4!

From this choice of co-ordinates and the form of the act
~1!, the phase space variables for small oscillationsu(f,t)
are concluded to be

q~f,t !5ui~f,t !

p~f,t !5~Gr0r 0!u'~f,t !. ~5!

These phase space variables are employed for the descri
of the vortex eigenmodes, which follows.

B. The spectrum

The fundamental cutoff to be introduced for the co
tinuum description to be valid is that the separation of t
line elements should always exceed a lengthjc ,

uR2R8u.jc . ~6!

The lengthjc is thus defined as thecutoff diameterof the
vortex core. The above prescription is the simplest exact p
cedure to ensure that the Biot-Savart integrals remain re
lar. If the Biot-Savart description is refined by, e.g., a dens
profile in the core, smoothly increasing within a distan
jc/2 to the constantr0, instead of being cut off to be exactl
zero atjc/2, this will effectively yield a different ultraviolet
cutoff, that is, a different core constantC of order unity,
multiplying a ~fixed! value of jc . However, the dynamica
behavior of the vortex line on a scale well outside the c
domain will not be affected by the core model.

To leading order in the fluctuations, the condition~6! is
equivalent to

Usin
f2f8

2 U. jc

2r 01u'1u'8
. ~7!
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Introducing the above condition in the integrals determin
the velocity in Eq.~3! by means of a Heaviside step functio
we obtain the equilibrium velocity of the ring,

v05
G

4p

1

4r 0
E

d

2p2d
df9

1

sin
f9

2

5
G

4pr 0
lnS 2r 012Ar 0

22jc
2

jc
D

5
G

4pr 0
ln@cot~d/4!#, ~8!

where the cutoff angle is determined by the parameter

d52 arcsin
jc

2r 0
. ~9!

To obtain the ring oscillation modes, we expand the sm
quantities ui and u' in a Fourier series, u'(f,t)
5(nu',n(t) einf, ui(f,t)5(nui ,n(t) einf, and use the
above described cutoff procedure of Eqs.~6! and~7!, respec-
tively. We then obtain the linearized equations of motion
parallel and perpendicular oscillations of the filament,

] tui ,n5bn u',n ,

] tu',n52an ui ,n . ~10!

The coefficients in this linearized version of Eq.~3!,

an5
G

4p

1

r 0
2 Fn2 ln cot

d

4
2I i ,nG , ~11!

bn5
G

4p

1

r 0
2 F 11cos~nd!

2 cos
d

2

2~12n2!ln cot
d

4
2I',nG ,

are given in terms of integrals containing, due to our para
etrization~4! of the ring oscillations, trigonometric function
only,

I',n5
1

8Ed

2p2d
dfUsin

f

2U
23F $12cos~nf!%

1

2
~11cosf!

2n sin~nf!sinf1n2~12cosf!G

52
1

2F nsin~nd!

sinS d

2D 2

sin2S n
d

2D cosS d

2D
sin2S d

2D G
1S 2n22

1

2D (
j 51

n cosF S j 2
1

2D dG
2 j 21

,
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I i ,n5I',n2
1

8Ed

2p2d
df

12cos~nf!

sin
f

2

5I',n2(
j 51

n cosF S j 2
1

2D dG
2 j 21

. ~12!

In Fig. 1, the coefficientsan and bn for r 0 /jc57.5 are
shown.

According to Eq.~10!, the frequencies of oscillation of
vortex ring are evaluated from

vn
25anbn . ~13!

We scale the coefficientsan ,bn in Figs. 1 and 2 and frequen
ciesvn in Fig. 3 below in units of the fundamental cyclotro
frequency of the vortex core,

vc5
4uGu

pjc
2

, ~14!

FIG. 1. The coefficientsan ~stars! andbn ~boxes! in the equa-
tions of motion~10! in units of vc , defined in Eq.~14!, for r 0 /jc

57.5 up ton512. There occurs a dynamically unstable mode
imaginary frequency forn58.

FIG. 2. The coefficientsan given in Eq.~11! up to n52pd21

.2pr 0 /jc for r 0 /jc560 in units ofvc defined in Eq.~14!. For
these small values ofd, an andbn are indistinguishable within the
figure’s resolution. The dotted curve is the asymptotic result fod
→0 in Eq. ~15!.
01630
the frequency with which a point on the core revolves arou
the line designated byR(f,t) ~the name stemming in the
magnetic analogy from the role ofG as a flux!.

The frequencies~13! are exactly zero for bothn50 and
n51 to any order ind. In the first case,a050 and b0

5(G/4pr 0
2)@cos(d/2)#212v0 /r 0 whereas in the latter case

a15v0 /r 0 and b150. The first case of symmetry corre
sponds tou',05const, and tells us that the radius of the rin
as a function ofd is determined up to the~constant! value of
u',0 . In the second case, in turn,ui ,1 is a constant. The
resulting line deformation resembles, ford→0, a translation
of the ring as a whole. Except for radiir 0 that are just about
an order of magnitude abovejc , the coefficientsan andbn
are practically the same over the range of allowed value
n, so that ford!1 the frequency squaredvn

2 is essentially
equal to eitheran

2 or bn
2 and the waves around the ring a

circularly polarized, like for ordinary Kelvin waves. How
ever, for r 0 getting closer tojc , an becomes increasingly
different from bn and the waves become elliptically pola
ized, the absolute ratio of amplitudes in the ring plane a
out of the plane being given byuu',n /ui ,nu5Auan /bnu. A
small ring thus oscillates more in the ring plane than out
the ring plane. Let us also stress that for the calculation
the oscillation modes, the nonlocality in the Biot-Savart
tegrals of Eqs.~2! and ~3! is fully taken into account.

For direct comparison with the dispersion of Kelv
waves on rings, we consider, for fixedn, the limesd→0 in
Eqs.~11! and ~12! to obtain

an5
G

4p

1

r 0
2 H n2S lnF4r 0

jc
G22Sn1

1

2D1
3

2
SnJ ,

bn5
G

4p

1

r 0
2 H ~n221!S lnF4r 0

jc
G22Sn1

1

2D2
3

2
~Sn21!J

~n!1/2d! ~15!

whereSn5( j 51
n (2 j 21)21. There is an important differenc

between the dispersion relation~13! ~which is exact within
our hollow core model!, with an andbn from Eqs.~11! and
the usually quoted asymptotic results of Lord Kelvin@1#,
Thomson@2#, and Grant@9,10# ~also cf. the work of Pismen
and Nepomnyashchy@12#, who found the same result a
Grant, but within a much simpler scheme similar to our!.
These results correspond to the relations~15! for the coeffi-
cientsan and bn in the limit of d→0 for fixed n ~save for
different core structure constants!. The important difference
consists in the fact that the geometric cutoff prescription~6!,
which ensures that a core of diameterjc is always excluded
in the evaluation of Eq.~3!, is taken care of in relations~11!
exactly for any admissible value of the ratio of ring radi
and core diameterr 0 /jc , such thatnd;O(1) can be con-
sistently realized. The anomalous branch also occurs, sh
to smaller mode numbers, as a consequence of relations~15!.
However, the minimum resides at values ofn;d21 that are
beyond the applicability of Eqs.~15!. We have depicted the
difference between the exact and asymptotic results in Fi
for the whole range ofn up to the valuen52pd21

f
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UWE R. FISCHER AND NILS SCHOPOHL PHYSICAL REVIEW E64 016306
.2pr0 /jc corresponding tok.2p/jc (l.jc). For the value
r 0 /jc560 used, the coefficientbn is essentially identical to
an within the resolution of the figure~cf. Fig. 1, which has
r 0 /jc57.5 and where the difference betweenan and bn is
clearly discernible!.

For completeness, we state the solution of the equat
of motion ~10!. If the vortex ring undergoes at timet50 a
deformation represented by

ui~f,0!5Re(
n

ui ,n
0 einf,

u'~f,0!5Re(
n

u',n
0 einf, ~16!

the solution at a later timet takes the form

ui~f,t !5Re(
n

Fui ,n
0 cos~vnt !1u',n

0 bn

vn
sin~vnt !Geinf,

u'~f,t !5Re(
n

Fu',n
0 cos~vnt !2ui ,n

0 an

vn
sin~vnt !Geinf,

~17!

wherevn5Aanbn.

III. HAMILTONIAN

The Hamiltonian corresponding to the equations of m
tion ~10! assumes the form

H5E01 (
2<n<nc

Gr0r 0

2
@anui ,n

2 1bnu',n
2 #, ~18!

where the stationary energy of the ring is given by

E05
G2r0r 0

2 S lnFcotS d

4D G22 cosFd2G D . ~19!

FIG. 3. Stable oscillation frequencies of a vortex ring in units
the cyclotron frequencyvc as a function of the mode numbern for
the ratior 0 /jc560.d21, up to nc.p/(3d). For this ratio of ra-
dius and core diameter, the exact value isnc563. The maximum is,
essentially independent of the value ofd, situated at max@vn#
.0.011vc with n.nc/2.
01630
ns

-

The ~constant! variablesu',0 and ui ,1 do not appear in Eq.
~18! because of our choice of parametrization~4!, which cor-
responds to a transformation to the rest frame of a ring
radiusr 0 moving with velocityv0. The above expression fo
H then represents the rest frame Hamiltonian of the vort
The phase space variables may, for example, be chose
be qn5ui ,n and pn5Gr0r 0u',n , like in ~5!, so that the
mass Mn5Gr0r 0 /bn and elasticity ~spring! constant
Dn5Gr0r 0an . Equally well, we may choose the optio
qn5u',n and pn52Gr0r 0ui ,n , which reverses the role o
mass and elasticity coefficients in conventional Hamilton
language~replacesan by bn and bn by an in Mn and Dn).
The identity of phase space and configuration space@4–7#
implies that both options are viable.

From the Hamiltonian~18!, we gather that stable oscilla
tion modes are those that havean andbn bothpositive. They
contribute positive energy to the Hamiltonian. Energetica
unstable, though giving a real frequency, are the modes
havean andbn both negative, because they contribute ne
tive energy to the Hamiltonian. A different sign ofan andbn
leads to dynamically unstable modes, which have imagin
frequencies and amplitudesu exponentially growing~or de-
caying! in time. For mode numbers above

n5nc.
p

3d
~20!

and up ton.5d21, both an and bn become negative suc
that the energy contribution corresponding to these mode
negative. To quadratic order in the oscillation amplitude, o
cillations with wave lengths smaller thanl;6jc thus imply
that vortex modes of such small wave number are unsta
Hence, the stable spectrum is restricted to mode number
magnitude less thannc.d21, by definition the last mode
number for which the oscillation energy is positive semide
nite, before entering the negative energy domain seen in
2. We have plotted the dispersion relation of the sta
modes in Fig. 3, forr 0 /jc560.

With regard to the validity of the assumption of an incom
pressible fluid, we note that the frequency at the maximum
Fig. 3, situated atn.nc/2.(2d)21 for all values ofr 0 /jc
not too close to unity, scales asvn.0.011vc , with the cy-
clotron frequencyvc defined in Eq.~14! @vc;1012 sec21 in
superfluid 4He ~helium II!#. Oscillation velocities thus re-
main, for moderate oscillation amplitudes of the order o
few jc , well below the speed of sound even in the superfl
helium II, where jc is of atomic size andcsjc;G
5pvc(jc/2)2, so that the incompressibility approximatio
holds. This is more questionable for the second, much lar
frequency maximum atn.3d21, corresponding to the
maximum negative value of the coefficientan in Fig. 2 given
by an.20.18vc .

Consider, for a physical interpretation of the energeti
instability aroundn5nc , Fig. 4 where we show the shape
deformation of the vortex core for a small wavelength
order lc.6jc , corresponding to the crossover to the u
stable oscillations regime. We may infer that the negat
oscillation energy, occurring at a smaller wavelength th
that shown in Fig. 4, is due to a volume exclusion effect. T

f
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SHORT WAVELENGTH SPECTRUM AND HAMILTONIAN . . . PHYSICAL REVIEW E64 016306
excluded core volume kinetic energy is large enough s
that there is only small energetical cost of exciting a pert
bation on the filament for the stable modes with mode nu
bers slightly belownc , and an energetical gain for the un
stable ones. In the Hamiltonian~18!, we neglect the tail of
positive excitation energies corresponding to positive val
of an ,bn seen in Fig. 2 because it is very close to the limit
core elements touching themselves, at which point our c
model certainly becomes invalid because it is then mean
less to speak about helical oscillations of a hollow tor
That the coefficientsan andbn , and thus the excitation en
ergy, do increase again aftern.3d21, can be traced back to
the fact that line elements having like circulation approa
each other closely if we further compress the spiral of Fig
along its axis. The volume energy exclusion effect we j
described is then counterbalanced for these very short w
lengths by the resulting strong repulsion of adjacent elem
of the same circulation.

The frequency~13! is imaginary ifan andbn have differ-
ent signs and adynamical instability results@11,12#. We
stress, however, that the unboundedness of the Hamilto
~18! from below leads to the energetical instability of th
ring for mode numbers beyondnc . This instability will exist
for any value ofd respectively ofr 0 /jc . The change in-
duced by choosing some different, more regular and dif
entiable core structure than our prescription~6! is the nu-
merical value of the slope of the negative group veloc
branch within a number of order unity, and the mode num
for which the excitation energy becomes negative. The
that aroundnc dynamical instabilities can take place has a
been recognized in@12#, where the dynamical instability wa
investigated using the Gross-Pitaevskiıˇ model of a superfluid
and it was indeed found thatncjc /r 05O(1). However, what
has been missed in this work~and others in the conventiona
fluid mechanical framework@8,11#!, is that an energetica

FIG. 4. Shape of wave traveling along the ring for mode nu
bers near the critical mode numbernc showing the helical vortex
core displacement.
01630
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instability will take place right after we have crossed t
dynamical instability region, independent of the prec
value of the criticalnc as a function ofr 0 /jc . It is apparent
from Fig. 4 that the instability will persist for any~regular-
izing! model taken of the core region as long as the ene
density of the core is significantly less than that of the s
rounding bulk fluid, i.e., as long as it is still significantl
reduced compared to the bulk if we, for example, turn
interactions~take into account compressibility! inside the
core. For smaller energy density differences between c
and bulk, the value ofnc will be shifted upwards~for a given
value ofr 0 /jc) but the energetical instability will still exist

IV. LOW TEMPERATURE THERMODYNAMICS
OF VORTEX OSCILLATIONS IN HELIUM II

Up to this point, our considerations have been in terms
a classical vortex. Consider now the quantum mechan
zero point fluctuations of a vortex line in the quantum flu
helium II, each with a contribution1

2 \vn to the vortex
~ground state! energy. If we sum up these contributions

the limiting value nc , we get Efl[(n52
nc 1

2 \vn

.0.0035\vc d21 ~cf. the area under the dispersion curve
Fig. 3!. Comparing this with the stationary energyE0, see
Eq. ~19! of an undeformed ring in helium II, we obtain

Efl.0.014S d

p2/3jc
D 3

E0

ln~r 0 /jc!
, ~21!

where the interparticle distanced5(r0 /m)21/3 (;jc in he-
lium II !. The total quantum-mechanical fluctuation energy
the stable modes~at zero temperature! is thus much less than
the stationary energyE0, of the order of a few percent ofE0.
This need not be the case if we take into account ther
fluctuations as well. The vortex free energy may be writt
as

F~T,d!5E01b21(
n52

nc

ln~2 sinh@b\vn/2# !. ~22!

The entropic part of the free energy, due to ring oscillatio
plays an important role if the temperature is a significa
fraction of the cyclotron energy of the core. We stress t
the temperatures for fluctuations to become important
significantly higher if the cutoff is chosen well belownc .
We have also convinced ourselves that the absolute rati
the oscillation free energy part over the stationary ring
ergy, uF2E0u/E0, is larger for smaller radiusr 0, i.e., the
oscillations play an increasingly important thermodynam
role for smaller rings.

For low temperatures, fulfilling kBT!max@\vn#
.0.011\vc , Kelvin modes of small wave number and th
modes with approximately linear dispersion aroundnc ~cf.
Fig. 3! are populated@13#. In the superfluid helium II, where
\vc is of the order of ten kelvins, the condition on the tem
perature leads to the requirementT!100 mK, which is fea-
sible in experimental practice. For vortex rings of a giv
size and orientation, we thus expect two contributions to

-
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UWE R. FISCHER AND NILS SCHOPOHL PHYSICAL REVIEW E64 016306
specific heat at low temperatures, coming from the afo
mentioned two asymptotic branches of excitations on
filament. For the indicated range of mode numbers, we m
approximate the dispersion by the Kelvin-like form,

vK5g1n2 ln@nc* /n# ~1,n!nc/2!, ~23!

where the parametersg1 andnc* are

g15
uGu

4pr 0
2

5vcS jc

4r 0
D 2

, nc* 58Ae
r 0

jc
. ~24!

Nearnc , a linear law obtains

vA.g2~nc2n! ~nc2n!nc/2!, ~25!

where, numerically,

g2.0.045vc jc /r 0 . ~26!

Both of these approximate dispersion relations are valid
large r 0 /jc ~small d). The density of states for thevK
branch, within logarithmic accuracy, may be writtenNK(E)
.(4\g1ln@nc* # E)21/2; for thevA branch it is independent o
the energyE, NA(E)5(\g2)21. The asymptotical behavio
of the vortex specific heat for low temperatures then assu
the form

Cv

kB
.

2pr 0

jc
S 1.1

Aln nc*
AkBT

\vc
111.6

kBT

\vc
D . ~27!

It is, as expected, proportional to the ‘‘volume,’’ i.e., th
circumference of the ring, and has a contribution prop
tional to AT from the Kelvin-like modes and a new contr
bution proportional toT stemming from the linear dispersion
large wave number branch. This last term gives a dep
dence ofCL proportional to the area 2pr 0jc . For a random-
ized ensemble of vortex rings, with different orientations a
,

r

01630
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radii, we expect the indicated dependence on temperatu
hold for a dilute system of effectively noninteracting ring
For a dense vortex tangle, coupling of the vortex rings
mutual induction will modify the spectrum and the abo
thermodynamic behavior, a problem which is left for futu
work.

V. CONCLUSION

We have derived the oscillation modes on vortex rin
using the canonical phase space structure of small ring o
lations in an incompressible, inviscid fluid and a geometri
cutoff procedure for the core region. Beyond a critical wa
number, the excitation energy becomes negative indica
that the vortex ring is energetically unstable for perturbatio
on scales of short wavelengths. The instability relies on
energy exclusion effect of the helically displaced core a
may be interpreted in conventional Hamiltonian language
being due to the fact that the classical or quantum part
representing the excitation has both a kinetic energy w
negative mass and a potential with negative spring const

The existence and peculiar anomalous dispersion
propagating modes with very small wavelengths should h
important implications for the dynamics of vortex reconne
tion events@14# as well as the final stages of the ener
cascade process in superfluid turbulence@15#. In addition, we
expect that scattering cross sections of the elementary r
excitation in helium II with vortices, and thus the coefficien
of mutual friction between superfluid and normal comp
nents@16#, will be influenced by the presence of low energ
modes with wave numbers of the order of the inverse c
size.
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