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Short wavelength spectrum and Hamiltonian stability of vortex rings
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We compare dynamical and energetical stability criteria for vortex rings. It is argued that vortex rings will
be intrinsically unstable against perturbations with short wavelengths below a critical wavelength because the
canonical vortex Hamiltonian is unbounded from below for these modes. To explicitly demonstrate this
behavior, we derive the oscillation spectrum of vortex rings in incompressible, inviscid fluids within a geo-
metrical cutoff procedure for the core. The spectrum develops an anomalous branch of negative group velocity
and approaches the zero of energy for wavelengths that are about six times the core diameter. We show the
consequences of this dispersion relation for the thermodynamics of vortex rings in sup&fhiidt low

temperatures.
DOI: 10.1103/PhysRevE.64.016306 PACS nunerd7.32-y
[. INTRODUCTION quencies, is only relevant for certain critical wavelengths.

We will thus present in this paper an argument that the rel-
The long wavelength oscillation spectrum of large vortexevant stability criterion for a vortex should be that of ener-
rings in incompressible, inviscid fluids is established sincegetical stability.
the pioneering work of ThomsofLord Kelvin) [1], Thom- Below, in the section to follow, we will first introduce an
son[2], and Pocklingtori3]. The validity of that spectrum is action principle that gives a transparent representation of the
restricted to wave numbers much less than the inverse coiortex dynamical behavior in incompressible, inviscid fluids,
size and rings that are large compared to the extension of tfgom which the canonical Hamiltonian for small perturba-
core. There are, however, processes for which it is desirabléons in Sec. lll, representing the vortex eigenmodes, natu-
to know the large wave number properties of the spectruni@lly follows. Section IV gives an account of the thermody-
for smaller rings: Vortex ring nucleation, reconnection of hamics of vortex rings, related to the excitation spectrum on
vortex filaments, and dissipation in the turbulent energy cas@ quantized vortex in superfluidHe, where the conse-
cade are believed to occur on very small length scales, reacHtences of the predictions made in this work should be par-
ing down to a few times the vortex core size. Because a linéicularly clearly seen. We conclude with some remarks.
vortex represents a string object, elasticity modes will be
excited during the rapid movements executed by the string Il. DERIVATION OF THE OSCILLATION MODES
on small length scales. A fluctuating line should have equi-
librium states different from a nonfluctuating one because
the quantum or classical statistical fluctuations renormalize The peculiarity of the dynamical behavior of vortices in
the total free energy as compared to the undeformed ring. the incompressibility approximation, the fluid having a con-
In what follows, we shall derive the collective, small am- Stant mass density,, consists in the fact that configuration
plitude oscillation modes of a vortex ring in an incompress-space and phase space coindidgs]. The momenta are, in
ible, inviscid fluid. The dispersion relation is exact within the this limit, generally expressible as functions of the co-
geometrical cutoff procedure we employ and displays eordinates and play no independent dynamical role. This fact
maximum and an anomalous branch of negative group vegives rise to the following action functional of the line con-
locity. The critical wavelength for the spectrum to possess digurationC, in terms of the positionR of line elementsiR
positive excitation energy corresponds to one oscillation ofvith a constant velocity circulatioli [6],
line within a length about an order of magnitude above a . r
geometrically defined core size. It will be argued that, due to _ - _
the properties of this spectrum and the structure of the ca- Sl Jodt( 3P0 jgc<dR/\R’ aR)—HICT. (D
nonical Hamiltonian, a vortex ring is potentially unstable in
an intrinsic manner because the Hamiltonian is unbounded@he factor3 in the kinematical term reflects our choice of
from below for short wavelengths. Physically, the energeticaFartesian co-ordinates in what follows and corresponds to a
instability is caused by the fact that quantities playing the(co-ordinat¢ gauge for the vortex momentufd]. The vor-
role of “mass” and “spring constant” in the Hamiltonian tex kinetic energy is given by the Biot-Savart expression
simultaneously assume negative values. The energetical in- ) ,
stability, taking place for sufficiently large perturbations that H[C]= r_p 3§ f i (dR,dR") @
are of wavelengths less than the critical wavelerigftabout 2P0 Jo Je A |IR—R’| '
six times the core diameter in our core mogdetcurs though
the ring is dynamically stable for nearly all wavelengthswhere the shorthand notatiét= R(¢,t) andR'=R(¢’,t) is
down to the core size. The dynamical instability of a vortexused. This relation for the energy yields the usual asymptotic
ring, related to the occurrence of imaginary excitation fre-logarithmic dependence of the stationary vortex energy on

A. Action principle
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the infrared cutofL (system size, distance to the next vortex, Introducing the above condition in the integrals determining
or radius of a vortex ringand the ultraviolet cutoff. (the  the velocity in Eq(3) by means of a Heaviside step function,
core size in the form IfL/(C&,)], whereC is a core model we obtain the equilibrium velocity of the ring,

dependent constant. Stationarity of the action for first-order

variation of the actior(1) after R leads to the local velocity L 1 [2n-¢ 1 r 2ro+2r2— &
of a line element being perpendicular to the line element, and10=4— FJ do” e = 1o n ;
given by the Biot-Savart nonlocal induction law, 7 *ols sin - o c
dRA| 3R— de'A RR 1, 3) r
oA Je IR-R'|3] = m'n[COT( ol4)], (8)

The above proves that the actigh) leads to the correct . )
equations of motion familiar from the fluid dynamics litera- Where the cutoff angle is determined by the parameter
ture[8].

Let R(¢,t), for 0= ¢=<2m, describe the instantaneous 5=2 arcsini 9)
shape of a moving vortex ring at timg fluctuating with 2rg’
amplitude u(¢,t) around its circular equilibrium shape
Ro (¢,t), so thatR(¢,t) =Ry (¢,t) +u(¢,t). Then, we pa-  To obtain the ring oscillation modes, we expand the small
rametrize line element position, equilibrium position, andquantities u and u, in a Fourier series,u, (¢,t)

small perturbations around this equilibrium as follows =3,u, ,(t)e"?, u(,8) == Uy (1) e"® and use the
. .~ . above described cutoff procedure of E(.and(7), respec-
R(¢,t)=R, ($,t)(g,cosp+ g, sing)+e,R(H,t) tively. We then obtain the linearized equations of motion for
parallel and perpendicular oscillations of the filament,
RL:rO+uL(¢!t)l R\\:Uot+ull(¢'t) (4)
From this choice of co-ordinates and the form of the action U n=bnUL n,
(1), the phase space variables for small oscillatia(é,t)
are concluded to be U n=—aUjpn- (10
q(¢.H=uj(¢,1) The coefficients in this linearized version of HS),
P(,1)=(I'poro)u (¢,t). 5
r i1 ) 1)
These phase space variables are employed for the description an= - 2 n%Incoty —1ljnl, (1D
of the vortex eigenmodes, which follows. 0
B. The spectrum _r1 1+005(n5)_(1_n2)|ncot§_|
; N4 2 5 4 Lnp
The fundamental cutoff to be introduced for the con- ro 2 co
tinuum description to be valid is that the separation of two ]

line elements should always exceed a lenfjth

are given in terms of integrals containing, due to our param-
etrization(4) of the ring oscillations, trigonometric functions
only,

IR-R'[>&. (6)

The lengthé, is thus defined as theutoff diameterof the
vortex core. The above prescription is the simplest exact pro-

cedure to ensure that the Biot-Savart integrals remain regu- | :EJ'ZW_‘sd(ﬁ
lar. If the Biot-Savart description is refined by, e.g., adensity " 8/

profile in the core, smoothly increasing within a distance

&./2 to the constanp,, instead of being cut off to be exactly o - 2,1

zero até./2, this will effectively yield a different ultraviolet nsin(ng)sing+n(1-cos¢)
cutoff, that is, a different core consta@ of order unity,

siné
2

-3
[{1—cos(n¢)}%(1+cos¢)

multiplying a (fixed) value of ¢£.. However, the dynamical _ sinz( n§> cos( ‘_S>
behavior of the vortex line on a scale well outside the core _ 1| nsin(nj) 2 2
domain will not be affected by the core model. ) S\ S

To leading order in the fluctuations, the conditit@) is sin( 5) Sinz(z)

equivalent to

@) i

Y3 o137

=1 2j—1 '
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FIG. 1. The coefficients, (stars andb, (boxes in the equa-
tions of motion(10) in units of w., defined in Eq(14), for ry/&;
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the frequency with which a point on the core revolves around
the line designated biR(¢,t) (the name stemming in the
magnetic analogy from the role & as a fluy.

The frequencie$13) are exactly zero for both=0 and
n=1 to any order iné. In the first caseg,=0 and by
=(T/4mr3)[cos@2)] *—ve/r, whereas in the latter case,
a;=vy/rg and b;=0. The first case of symmetry corre-
sponds tau, o=const, and tells us that the radius of the ring
as a function of is determined up to theconstank value of
u, o- In the second case, in turmy ,; is a constant. The
resulting line deformation resembles, ¥ 0, a translation
of the ring as a whole. Except for radij that are just about
an order of magnitude abo\& , the coefficientsa, andb,

=75 up ton=12. There occurs a dynamically unstable mode of@r€ practically the same over the range of allowed values of

imaginary frequency fon=8.

1(2m-6 1-—cogng)
IH,n=u,n—§f5 dp——

Sin E

1
o oot
=|M—]§12j—_1. (12)

In Fig. 1, the coefficient®, andb,, for ro/¢.=7.5 are
shown.

According to Eq.(10), the frequencies of oscillation of a
vortex ring are evaluated from

wﬁZanbn. (13

We scale the coefficients, ,b, in Figs. 1 and 2 and frequen-
ciesw, in Fig. 3 below in units of the fundamental cyclotron
frequency of the vortex core,

4T

=

(14

We

Qn
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FIG. 2. The coefficients,, given in Eq.(11) up ton=276"1
=2mrol €. for rqlé.=60 in units of w. defined in Eq.(14). For
these small values af, a, andb,, are indistinguishable within the
figure’s resolution. The dotted curve is the asymptotic resultsfor
—0 in Eq.(15).

n, so that for6<1 the frequency squaradﬁ is essentially
equal to eithem? or b2 and the waves around the ring are
circularly polarized, like for ordinary Kelvin waves. How-
ever, forry getting closer toé., a, becomes increasingly
different fromb,, and the waves become elliptically polar-
ized, the absolute ratio of amplitudes in the ring plane and
out of the plane being given by, ,/uj.|=[a,/b,|. A
small ring thus oscillates more in the ring plane than out of
the ring plane. Let us also stress that for the calculation of
the oscillation modes, the nonlocality in the Biot-Savart in-
tegrals of Eqs(2) and(3) is fully taken into account.

For direct comparison with the dispersion of Kelvin
waves on rings, we consider, for fixexl the limesé—0 in
Egs.(11) and(12) to obtain

LA 4] o 1).3
an_E%n nf_c St 5T 550
4ry,

&
(n<1/26) (15

_ I 1 ) ( 1 3
bn—E—z (n —1) In —28n+§)—§(5n—1)

o

WhereSn:EJLl(Zj —1)"1. There is an important difference
between the dispersion relatidgh3) (which is exact within
our hollow core modg] with a, andb,, from Egs.(11) and
the usually quoted asymptotic results of Lord Kelyih],
Thomson[2], and Gran{9,10] (also cf. the work of Pismen
and Nepomnyashchj12], who found the same result as
Grant, but within a much simpler scheme similar to gurs
These results correspond to the relatiobs) for the coeffi-
cientsa, andb, in the limit of §—0 for fixed n (save for
different core structure constapt§ he important difference
consists in the fact that the geometric cutoff prescripti®n
which ensures that a core of diametgris always excluded
in the evaluation of Eq(3), is taken care of in relationd 1)
exactly for any admissible value of the ratio of ring radius
and core diametery/¢;, such thané~O(1) can be con-
sistently realized. The anomalous branch also occurs, shifted
to smaller mode numbers, as a consequence of relatiéns
However, the minimum resides at valuesrof 6! that are
beyond the applicability of Eq$15). We have depicted the
difference between the exact and asymptotic results in Fig. 2
for the whole range ofn up to the valuen=275"1
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=2m1,/&; corresponding t&k=2m/&. (A=§.). For the value  The (constant variablesu, o anduj, do not appear in Eq.

ro/&.=60 used, the coefficiert, is essentially identical to (18) because of our choice of parametrizatidh which cor-

a, within the resolution of the figurécf. Fig. 1, which has responds to a transformation to the rest frame of a ring of

ro/é.=7.5 and where the difference betweapandb, is  radiusry moving with velocityv,. The above expression for

clearly discerniblg ‘H then represents the rest frame Hamiltonian of the vortex.
For completeness, we state the solution of the equationghe phase space variables may, for example, be chosen to

of motion (10). If the vortex ring undergoes at tinte=0 a  be q,=u;, and p,=Ipgrou, ,, like in (5), so that the

deformation represented by mass M,=I"pgro/b, and elasticity (spring constant
D,=I'poroa,. Equally well, we may choose the option
i = dp,=—Tperou which reverses the role of
u(¢,00=Re>, u? e, Gn=Uys,n NG Pn= =1 poloUjn, W . < 9
1(4.0) ; I.n mass and elasticity coefficients in conventional Hamiltonian

language(replacesa,, by b, andb, by a, in M,, andD,,).
The identity of phase space and configuration sgdeer|

- 0 i S ) .
u (¢,0= Re; ul e"?, (160 implies that both options are viable.
From the Hamiltoniar{18), we gather that stable oscilla-
the solution at a later timetakes the form tion modes are those that haagandb,, both positive. They

contribute positive energy to the Hamiltonian. Energetically
unstable, though giving a real frequency, are the modes that
havea, andb,, both negative, because they contribute nega-
tive energy to the Hamiltonian. A different sign af andb,,

. leads to dynamically unstable modes, which have imaginary
en?, frequencies and amplitudesexponentially growingor de-
caying in time. For mode numbers above

b .
uf ,cog wpt) +ud an—n sin(w,t) |e"?,
n

UH((;‘J,I) = Re;

ul(qb,t):Re;

0 o an .
ULYnCOiU)nt) - UHan—Sln(wnt)
n

17
o
wherew,=+va,b,. n=ng= 35 (20
IIl. HAMILTONIAN and up ton=55""1, botha, andb,, become negative such
The Hamiltonian corresponding to the equations of mo-that the energy cont_rlbutlon porrespon_dmg to thesg modes is
tion (10) assumes the form negative To quadratic order in the oscillation amplitude, os-

cillations with wave lengths smaller than~6¢&. thus imply
TCporo 5 5 that vortex modes of such small wave number are unstable.
H=Eo+ > 5 [anUjn+baut ], (18 Hence, the stable spectrum is restricted to mode numbers of
2=n=ne magnitude less than.~ &, by definition the last mode
number for which the oscillation energy is positive semidefi-

where the stationary energy of the ring is given by ) ) . ) i
nite, before entering the negative energy domain seen in Fig.

I'2poro S S 2. We have plotted the dispersion relation of the stable
Eo=—5 (In CO[(z)}—Z CO%E ) (19  modes in Fig. 3, forq/&.=60.
With regard to the validity of the assumption of an incom-
W pressible fluid, we note that the frequency at the maximum in

Fig. 3, situated ah=n.2=(25)"* for all values ofry/&,
0.01 not too close to unity, scales as,~=0.011w., with the cy-
X clotron frequencyw, defined in Eq(14) [w.~ 10" sec ! in
0.008 % superfluid “He (helium I1)]. Oscillation velocities thus re-
. main, for moderate oscillation amplitudes of the order of a
few &, well below the speed of sound even in the superfluid
helium I, where &, is of atomic size andcé.~T
. =mw(£/2)%, so that the incompressibility approximation
0.002 & - holds. This is more questionable for the second, much larger,
o . frequency maximum amn=348"1, corresponding to the
J * maximum negative value of the coefficiemtin Fig. 2 given
10 20 30 40 50 60 by a,~—0.18w,.
n Consider, for a physical interpretation of the energetical
FIG. 3. Stable oscillation frequencies of a vortex ring in units of INStability aroundh=n., Fig. 4 where we show the shape of
the cyclotron frequency, as a function of the mode numbefor ~ deformation of the vortex core for a small wavelength of
the ratiory/£,=60=5"1, up ton,=/(38). For this ratio of ra- order A\.=6¢&., corresponding to the crossover to the un-
dius and core diameter, the exact valuais63. The maximumis, Stable oscillations regime. We may infer that the negative
essentially independent of the value 6f situated at mdxs,]  Oscillation energy, occurring at a smaller wavelength than
=0.011w, with n=n_/2. that shown in Fig. 4, is due to a volume exclusion effect. The

0.006

0.004
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FIG. 4. Shape of wave traveling along the ring for mode num-
bers near the critical mode numbes showing the helical vortex
core displacement.

excluded core volume kinetic energy is large enough suc
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instability will take place right after we have crossed the
dynamical instability region, independent of the precise
value of the criticah. as a function of /¢ . It is apparent
from Fig. 4 that the instability will persist for anfregular-
izing) model taken of the core region as long as the energy
density of the core is significantly less than that of the sur-
rounding bulk fluid, i.e., as long as it is still significantly
reduced compared to the bulk if we, for example, turn on
interactions(take into account compressibiljtyinside the
core. For smaller energy density differences between core
and bulk, the value ofi, will be shifted upwardsfor a given
value ofry/&.) but the energetical instability will still exist.

IV. LOW TEMPERATURE THERMODYNAMICS
OF VORTEX OSCILLATIONS IN HELIUM II

Up to this point, our considerations have been in terms of
a classical vortex. Consider now the quantum mechanical
zero point fluctuations of a vortex line in the quantum fluid
helium Il, each with a contributiors%w, to the vortex
(ground statgenergy. If we sum up these contributions to

the limiting value n., we get Eu=3" 3tw,
=0.0035%w, 6! (cf. the area under the dispersion curve in
Fig. 3). Comparing this with the stationary enery, see
IEq. (19) of an undeformed ring in helium II, we obtain

that there is only small energetical cost of exciting a pertur-

bation on the filament for the stable modes with mode num
bers slightly belown;, and an energetical gain for the un-
stable ones. In the Hamiltoniaii8), we neglect the tail of

positive excitation energies corresponding to positive value
of a,,b, seen in Fig. 2 because it is very close to the limit of
core elements touching themselves, at which point our cor
model certainly becomes invalid because it is then meanin
less to speak about helical oscillations of a hollow toru
That the coefficients, andb,, and thus the excitation en-
ergy, do increase again after=36"1, can be traced back to

S

Eo
In(ro/&c)’

d 3
Eq=0.01 21
~ood | o

here the interparticle distance=(po/m) Y2 (~&. in he-
um II). The total quantum-mechanical fluctuation energy in
e stable mode@t zero temperatuyas thus much less than

S
w

g{_he stationary energl,, of the order of a few percent &,
This need not be the case if we take into account thermal

fluctuations as well. The vortex free energy may be written

the fact that line elements having like circulation approachas
each other closely if we further compress the spiral of Fig. 4
along its axis. The volume energy exclusion effect we just
described is then counterbalanced for these very short wave-
lengths by the resulting strong repulsion of adjacent elements

AT,8)= Eo+,8’12_2,2 In(2 sinf Bhw,/2]). (22

of the same circulation.
The frequency13) is imaginary ifa, andb, have differ-
ent signs and alynamical instability results[11,12. We

The entropic part of the free energy, due to ring oscillations,
plays an important role if the temperature is a significant
fraction of the cyclotron energy of the core. We stress that

stress, however, that the unboundedness of the Hamiltonighe temperatures for fluctuations to become important are

(18) from below leads to the energetical instability of the
ring for mode numbers beyony . This instability will exist
for any value ofé respectively ofry/é.. The change in-
duced by choosing some different, more regular and differ
entiable core structure than our prescripti@ is the nu-

significantly higher if the cutoff is chosen well belom, .

We have also convinced ourselves that the absolute ratio of
the oscillation free energy part over the stationary ring en-
ergy, | F—Eg|/Ey, is larger for smaller radius,, i.e., the
oscillations play an increasingly important thermodynamic

merical value of the slope of the negative group velocityrole for smaller rings.

branch within a number of order unity, and the mode number For low temperatures, fulfilling kgT<max[% w,]

for which the excitation energy becomes negative. The fact=0.011% w., Kelvin modes of small wave number and the
that arounch, dynamical instabilities can take place has alsomodes with approximately linear dispersion around(cf.
been recognized ifil2], where the dynamical instability was Fig. 3) are populated13]. In the superfluid helium Il, where
investigated using the Gross-Pitaevskiodel of a superfluid % w, is of the order of ten kelvins, the condition on the tem-
and it was indeed found thaté./ro=0(1). However, what perature leads to the requirem@n& 100 mK, which is fea-
has been missed in this wot&nd others in the conventional sible in experimental practice. For vortex rings of a given
fluid mechanical framework8,11]), is that an energetical size and orientation, we thus expect two contributions to the
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specific heat at low temperatures, coming from the aforeradii, we expect the indicated dependence on temperature to
mentioned two asymptotic branches of excitations on thénold for a dilute system of effectively noninteracting rings.
filament. For the indicated range of mode numbers, we mayor a dense vortex tangle, coupling of the vortex rings by

approximate the dispersion by the Kelvin-like form, mutual induction will modify the spectrum and the above
thermodynamic behavior, a problem which is left for future
wx=7y1n?In[n¥/n] (1<n<n2), (23 work.

where the parameterg, andny are
V. CONCLUSION

2
yi= |F|2:wc é) , ngzg\/_eﬁ_ (24) We have derived the oscillation modes on vortex rings
4arrg 4arg &e using the canonical phase space structure of small ring oscil-
. ) lations in an incompressible, inviscid fluid and a geometrical
Nearn,, a linear law obtains cutoff procedure for the core region. Beyond a critical wave
_ _ . number, the excitation energy becomes negative indicating
©a=72(Ne=N) (Ne=N<N/2), 25 that the vortex ring is energetically unstable for perturbations
where, numerically, on scales of s_hort wavelengths. The inste}bility relies on the
energy exclusion effect of the helically displaced core and
¥2=0.045w; &./1g. (26)  may be interpreted in conventional Hamiltonian language as

being due to the fact that the classical or quantum particle
Both of these approximate dispersion relations are valid fofepresenting the excitation has both a kinetic energy with
large ro/&. (small 5). The density of states for thex  negative mass and a potential with negative spring constant.
branch, within logarithmic accuracy, may be writthig (E) The existence and peculiar anomalous dispersion of
= (4 y1In[n§1E)"Y2 for the wa branch it is independent of - propagating modes with very small wavelengths should have
the energyE, NA(E) = (% y,) ~ 1. The asymptotical behavior important implications for the dynamics of vortex reconnec-
of the vortex specific heat for low temperatures then assumegon events[14] as well as the final stages of the energy

the form cascade process in superfluid turbulefiid. In addition, we
expect that scattering cross sections of the elementary roton
C, 2mrg 11 kgT kgT excitation in helium Il with vortices, and thus the coefficients
— = ——=\/—+11.6—]. (27 . :
Kg & Inn* nt ho. ho. of mutual friction between superfluid and normal compo-

nents[16], will be influenced by the presence of low energy
It is, as expected, proportional to the “volume,” i.e., the modes with wave numbers of the order of the inverse core
circumference of the ring, and has a contribution propor-Size.

tional to \T from the Kelvin-like modes and a new contri-

bution proportional tal' stemming from the Iinea( dispersion, ACKNOWLEDGMENT
large wave number branch. This last term gives a depen-
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