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Amplitude-free correlation function based on an algebra for coordinate transformation
in semiclassical integrals
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We present an algebra that facilitates a systematic coordinate transformation in semiclassical integrals such
as those between the initial and final value representations. Applying this algebra to Maslov-type semiclassical
wave packet theory@A. Inoue-Ushiyama and K. Takatsuka, Phys. Rev. A59, 3256 ~1999!#, a semiclassical
correlation function is extracted, which is free of the amplitude factor that suffers an exponential divergence in
a chaotic system.
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I. INTRODUCTION

Semiclassical mechanics@1–5# has been regarded for
long time as a promising alternative to full quantum mech
ics for systems composed of heavy particles, such as,
molecular vibration and chemical reaction systems. Nev
theless, it is still extremely difficult to quantize vibration
states in a chaotic system, due to divergence in the ampli
factor ~prefactor! of the semiclassical wave functions. Th
rather short paper is concerned with a systematic metho
handling coordinate transformations in semiclassical the
and as its consequence we find an approximate form of
quantum correlation function, which is particularly useful
a calculation of the spectra of chaotic systems. We first sh
a theoretical scheme to construct a semiclassical correla
function, which is free of the amplitude factor. In a compa
ion paper@6# we will present numerical results for a quan
zation of a strongly chaotic cluster which is composed
seven identical atoms as an application. The latter pa
mainly treats more numerical aspects in practical appl
tions, including the permutation symmetry of identical pa
ticles, and also shows a spectrum arising from a straight
ward application of a semiclassical theory based on an ac
decomposed function@7#; thereby it exhibits the numerica
difficulty one encounters in quantizing chaos. It also prese
a spectrum improved by careful use of both the initial a
final value presentations, along with a spectrum based o
amplitude-free correlation function.

We begin with the current progress@8–14# made in the
semiclassical Feynman kernel@15# K, into which a coordi-
nate transformation is introduced which is relevant to
present paper. Suppose a transition amplitude in a pro
gated system is written in a coordinate representation as

^Fuf~ t !&5 K FUexpS 2
i

\
Ht D Uf L

5E E F* ~qt!K~qt ,q0 ,t !f~q0!dqtdq0 . ~1!

This representation demands quite a tedious approach
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cause it requires a double-ended root search problem. It
Miller and co-workers@8,9# who introduced a coordinate
transformation in such a way that

^Fuf~ t !&5E E F* ~qt!K~qt ,q0 ,t !f~q0!U ]qt

]p0
Udp0dq0 ,

~2!

in which the classical paths representing the semiclass
kernel are specified in terms of their initial condition
(q0 ,p0). To be more specific, the standard form of a sem
classical kernel is usually written as

Ksc~q,q0 ,t !5~2p i\!2N/2E d~q2qt!U ]qt

]p0
U21/2

3expS i

\
S1~qt ,q0 ,t !2 ip

l

2Ddqt , ~3!

where S1 and l are the classical action integral and th
Maslov index, respectively. We tentatively call this form
final value representation~FVR!. The toughest problem in
herent in the FVR is that the amplitude factoru]qt /]p0u21/2

diverges at every caustic point. On the other hand, in
transformed expression called the initial value representa
~IVR!,

Ksc~q,q0 ,t !5~2p i\!2N/2E d~q2qt!U ]qt

]p0
U1/2

3expS i

\
S1~qt ,q0 ,t !2 ip

l

2Ddp0 , ~4!

the diverging factor at the caustic has been inverted
u]qt /]p0u1/2, which simply becomes zero. This excelle
property was rediscovered in the early 1990s by other
thors in various variants of the representation@10–14#, lead-
ing to the current situation in which semiclassical theor
are widely applied to molecular dynamical studies. As
price for this divergence-free nature, the absolute value
the new amplitude factoru]qt /]p0u1/2 grows almost expo-
nentially with time in the case of classical chaos, whi
©2001 The American Physical Society24-1
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causes another difficulty in the calculation of quantum sp
tra. This is the central problem we consider in this paper
companion papers.

The aim of the present paper is twofold: First we form
late a simple and systematic algebra of the relevant coo
nate transformation by introducing the square root of
volume element asdq05dq0

1/2dq0
1/2* . Then we present an

approximate semiclassical correlation function, based on
action decomposed function~the Maslov type semiclassica
wave function! @7#, which is free from the diverging ampli
tude factor u]qt /]p0u1/2. Since the presence of this facto
makes a calculation of energy spectra in a chaotic sys
prohibitively difficult, our correlation function will provide a
useful alternative to study quantum spectra in chaos@16,17#.

The idea of the amplitude-free correlation function w
first launched by Miller@2#. Recently, Shao and Makri de
veloped a theory that led to a correlation function free of
amplitude factor~prefactor! @18#. Our study was develope
in an independent context, and in fact our resultant corr
tion function@Eq. ~52!# is different from that of Ref.@18# in
that ours should be applied under a limited condition.

This paper is organized as follows. Section II revie
selected semiclassical theories, which are particularly
evant to the coordinate transformation. We then propos
practical method of handling the coordinate transformat
in semiclassical theory. Various representations of the co
lation function are shown in Sec. IV, by which we derive
correlation function free of the amplitude factor.

II. SEMICLASSICAL THEORIES

Here we make a brief review of two different kinds
semiclassical theory, which are particularly relevant to
main issue of this article. One is a phase-space path inte
which is typically invariant with respect to the coordina
transformation. The other is a wave packet type theory, w
which we propose a representation of the correlation fu
tion that is free from the annoying amplitude factor.

A. Phase-space path integral

Although the above transformation from Eqs.~3! and ~4!
should keep the kernel and relevant semiclassical integ
such as the correlation function mathematically invaria
they change the values in practice. As an illustrative
ample, let us consider the behavior of the integrands a
caustic point. In the FVR theu]qt /]p0u21/2 diverges, but
u]qt /]p0u1/2 becomes zero in the IVR. The divergence r
flects the physical fact that the density of the trajector
happens to be enormous at caustics~it is still finite in full
quantum mechanics, however!. It is therefore implied that
very many trajectories are required to compensate for
‘‘zero’’ brought about by the IVR. However, a transform
tion problem does not necessarily arise in all semiclass
theories. A semiclassical theory based on the phase-s
path integral@19# is such an example. The transition amp
tude in Eq.~1! is written as
01622
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K FUexpS 2
i

\
Ht D Uf L 5~2p\!2N

3expS 2 i
Np

2 D E dZia~fZi ;FZf !

3S ]~Zf2Zi !

]Zi
D 1/2

expS i

\
S~Zf ,Zi ,t ! D

~5!

in terms of what we call the dynamical characteristic fun
tion @19#

a~fZi ;FZf !5a~fqipi ;Fqfpf !

5E dxf~x1qi !F* ~x1qf !

3expS i

\
x~pf2pi ! D , ~6!

where Zi5(qi ,pi) and Zf5(qf ,pf) specify the initial and
final points in phase space, respectively. The Jacobian
trix, whose determinant appears in Eq.~5!, is

F]~Zf2Zi !

]Zi
G5F]Zf

]Zi
G2I , ~7!

whereI is a 2N32N unit matrix, and@]Zf /]Zi # is the well-
known stability matrix:

F]Zf

]Zi
G5F]~qf ,pf !

]~qi ,pi !
G . ~8!

The Liouville theorem ensures that the determinant]Zf /]Zi
is kept to unity, resulting indZi5dZf . For Eq.~7!, we have

]~Zf2Zi !

]Zi
5)

k51

N

@12exp~ ibk!#@12exp~2 ibk!#

5)
k51

N F2 sinS bk

2 D G2

, ~9!

where exp(ibk) are the eigenvalues of the matrix@]Zf /]Zi #,
with bk a complex number in general.

We note that Eq.~5! is represented in terms of the initia
value representation from the outset@compare with Eq.~1!#.
Furthermore, the coordinate transformation is straightf
ward as
4-2



o

pa

io

t
so
r

ca

in

c

s-
a

g

rix

ies

a
tor

l

by
ted

e
ll re-
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K FUexpS 2
i

\
Ht D Uf L

5 K fUexpS i

\
Ht D UF L *

5~2p\!2NexpS 2 i
Np

2 D E dZfa* ~FZf ;fZi !

3F]~Zi2Zf !

]Zf
G1/2

expS 2
i

\
S~Zi ,Zf ,2t ! D , ~10!

which is readily proved with the help of the following tw
facts:

a~fZi ;FZf !* 5a~FZf ;fZi ! ~11!

and

]~Zf2Zi !

]Zi
5

]Zf

]Zi

]~Zf2Zi !

]Zf
5

]~Zi2Zf !

]Zf
. ~12!

This transparent property is a clear advantage of phase-s
quantum theory.

B. Maslov-type semiclassical wave function

The Maslov-type semiclassical theory@20# begins with
the wave function

C~q,t !5F~q,t !expF i

\
SclG , ~13!

which is to be propagated in terms of the equation of mot
of the lowest order approximation in\ to the Schro¨dinger
equation. The higher order effects are taken into accoun
different ways by the Bohm and Maslov theories: the
called quantum potential is considered in the Bohm theo
while the Maslov theory takes account of the hierarchi
series of quantum transport@20#. Scl is the classical action
that satisfies the Hamilton-Jacobi equation. Note that pick
up Scl among the various possible forms@21# is equivalent to
specifying an initial condition that is imposed on the traje
tories generated byScl . For later convenience, we chooseScl
to be an F2-type generating function@21#, such that
Scl(q,p0 ,t)5F2(q,p0 ,t)5F1(q,q0 ,t)1q0p0. @Neither F2
nor F1 should be confused withF(q,t) of Eq. ~13!.# The
function is determined by the equation of motion

]F

] t
1v•“F52

1

2
~“•v !F, ~14!

where v5] S2 /]q is the classical velocity. We use mas
weighted coordinates throughout, so that all the masses
scaled to unity. Equation~14! is integrated as follows. We
start from the following observation:

]F2

] t
1“•~vF2!50. ~15!
01622
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Note thatF2 rather thanuFu2 is considered in this ‘‘equation
of continuity’’ ~note thatF2 can be complex!, although both
satisfy Eq.~15!. F2 can be readily integrated locally alon
classical paths in terms of a Jacobian determinant]qt /]q0,
which is a minor determinant of the so-called stability mat
@Eq. ~8!#. (]qt /]q0)215]2S2(qt ,p0 ,t)/]qt]p0 is inter-
preted as the density of families of classical trajector
which are labeled byp0. It is not difficult to derive, from the
Hamilton-Jacobi equation forScl(qt ,p0 ,t), that

]

] t S ]qt

]q0
D 21

1“•FvS ]qt

]q0
D 21G50. ~16!

Furthermore, one has the initial condition (]qt /]q0)2151,
sinceqt5q0 at t50. Thus (]qt /]q0)21 can be regarded as
local representation of the Green function for the propaga
of Eq. ~15!. On comparing Eqs.~15! and~16!, together with
the initial conditions above, one immediately has@7#

F~qt ,t !5F~q0,0!S ]qt

]q0
D 21/2

5F~q0,0!U ]qt

]q0
U21/2

expF7
ipM ~q0→qt!

2 G ,
~17!

where the derivative]qt /]q0 is taken under the fixed initia
momentump0, andM (q0→qt) is the Maslov index in this
representation that counts the number of zeros of]qt /]q0 up
to the degeneracy. Thus the local solution, denoted
C local

p0 (qt ,t), has been obtained, which is to be propaga
along a trajectory of a fixed initial momentump0. The final
expression for the wave function is then written as

Cp0
~q,t !5E d~q2qt!C local

p0 ~qt ,t !dqt

5E d~q2qt!C local
p0 ~qt ,t !U ]qt

]q0
Udq0

5E d~q2qt~q0 ,p0!!F~q0,0!U ]qt

]q0
U1/2

3expF i

\
S2~qt ,p0 ,t !7

ipM ~q0→qt!

2 Gdq0 .

~18!

A transformation from the final value to the initial valu
representation has been adopted. We note that there sti
mains the problem of which sign in Eqs.~17! and ~18!
should be taken from the possible choices7.

Equation~17! implies norm conservation, namely,

uF~qt ,t !u25uF~q0,0!u2U ]qt

]q0
U21

, ~19!

or, more algebraically,

uF~qt ,t !u2dqt5uF~q0,0!u2dq0 . ~20!
4-3
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However, the square of Eq.~17! simply brings about a dif-
ferent relation

F~qt ,t !2dqt5F~q0,0!2 exp@7 ipM ~q0→qt!#dq0 . ~21!

Therefore, we need an algebra to describe both of these
consistent manner, which is to be applied to a correlat
function,

C~ t !5^Cp0
~0!uCp0

~ t !&

5E F* ~qt,0!F~q0,0!U ]qt

]q0
U1/2

expF2
i

\
p0qt

2
i

\
S2~qt ,p0 ,t !7

ipM ~q0→qt!

2 Gdq0 , ~22!

whereqt5qt(q0 ,p0) is the end point of a trajectory at timet
with the initial condition (q0 ,p0). We stress that an out
standing feature of this correlation function is its low dime
sionality in the integral only overq0 coordinates. Equation
~22! should be compared with Eqs.~2! and ~5!, where the
integrals are to be carried out over the (q0 ,p0) coordinates.

C. Difficulty in semiclassical eigenvalue calculation

For quantization of integrable systems, the EBK condit
has established itself both theoretically and numerically@17#.
Quantization of chaotic systems is by far more difficult. T
periodic orbit theory@16# has been a key theory to locate th
eigenvalues with use of the trace

Trd~E2H !

5~2p\!21E dtE dqK qUexpS 2
i

\
Ht D UqL expS i

\
EtD

5~2p i\!2N/2E dtE dqU ]q

]p0
U21/2

3expS i

\
S1~q,q,t !2 ip

l

2
1

i

\
EtD . ~23!

This integral is well known to be asymptotically dominat
only by the so-called periodic orbits, the number of whi
increases almost exponentially with the length of peri
However, theory encounters the following difficulties. Fir
it follows u]qt /]p0u50 at caustics@15#, which in turn brings
about a divergence in the integral. This is not peculiar
chaos, however. The other difficulty is that a chaotic syst
is associated~by definition! with a fact thatu]qt /]p0u21/2

becomes exponentially smaller as time passes in the
value representation, or equivalentlyu]qt /]p0u1/2, becomes
exponentially larger in the initial value representation. T
comes from the imaginary part ofbk of Eq. ~9!@22#. A Fou-
rier transform of a function whose amplitude grows~or di-
minishes! exponentially necessarily results in a Lorentzia
We will show this more clearly along with numerical data
a companion paper@6#. ~Note thatbk are purely real in inte-
grable systems, and the Lorentzian does not follow in
01622
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EBK quantization.! Thus the trace formula@16# is expressed
as the sum of a huge number of Lorentzians, each of wh
comes from different periodic orbits. Thus thed-function
spikes are not usually realized in practice in the perio
orbit sum or its variants.

Aurich et al. @23# detoured this approach by aiming
zeros of

Det~E2H !, ~24!

instead of searching poles of the resolvent. Unfortunat
however, it turned out that a variety of sophisticated~some-
what artificial! techniques to locate the zeros at correct po
tions on theE coordinate are required, including a Borel su
over the periodic orbit expansion@23#. It seems that this
difficulty could not be avoided as long as a semiclassi
expression of the spectrum is associated with the amplit
that comes from the stability matrix@]Zf /]Zi .#.

III. SQUARE ROOT OF VOLUME ELEMENTS IN
SEMICLASSICAL INTEGRALS

To treat the transformation among the semiclassical in
grals more systematically, we begin with a rather gene
multidimensional integral:

I 5E f ~q0!dq05E f ~qt!U]q0

]qt
Udqt . ~25!

In this expression, one should note that a small volume
mentdqt can be an oriented volume with respect todq0, the
sign of which is represented in terms of that of the Jacob
determinant]qt /]q0, since the volume can be inverted
many ways in addition to the change of its shape and v
ume. Let us define the square root of the volume element
the integral@24#, such that

I 5E f ~q0!dq0
1/2dq0

1/2* , ~26!

wheredq0
1/2* is the complex conjugate ofdq0

1/2. The posi-
tive semidefinite quantitydq0 (dqt) is understood to be a
product:

dq0[udq0u5dq0
1/2dq0

1/2* and dqt[udqtu5dqt
1/2dqt

1/2* .
~27!

As in ordinary complex numbers, the square ofdqt
1/2 is

not equal todqt unless the former is real valued. In th
sense, the related confusion can be avoided if we notedqt

[udqtu. We now definedqt
1/2 as

dqt
1/25expF i

p

2
N~qt!G udqtu1/2, ~28!

whereN(qt) is the sum of zeros up to the degeneracy of
following determinant picked up by a Jacobian determina

]qt

]qt5X
, ~29!
4-4
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along a path. It is convenient to set the reference of timt
5X at far remote past, symbolically denoted asX52`.

At each time the determinant of Eq.~29! changes its sign
N(qt) acquiresp ~if the degeneracy of zero happens to beM,
it acquiresMp). In view of the physical continuity on the
Riemann surface,N(qt) should proceed as 0→p→2p
→3p→4p→•••. This number is should be counted as
positive number in the positive time direction (t.0), and a
negative number in the negative direction (t,0). Then, in
order to comprehend Eqs.~17!, ~20!, and~21!, it is natural to
use the following expression as our theoretical basis:

F~qt ,t !dqt
1/25F~q0,0!dq0

1/2, ~30!

which is valid only when the two points are connected b
trajectory. This represents a conservation law including
phase. In fact, Eq.~30! comes back to

F~qt ,t !expF i
p

2
N~qt!G udqtu1/2

5F~q0,0!expF i
p

2
N~q0!G udq0u1/2, ~31!

which in turn gives

F~qt ,t !5F~q0,0!expS 2 i
p

2
@N~qt!2N~q0!# D U ]qt

]q0
U21/2

,

~32!

where we understand the absolute value of the square o
Jacobian as

U ]qt

]q0
U21/2

5U]q0

]qt
U1/2

5
udq0u1/2

udqtu1/2
. ~33!

Since the Maslov index is defined as

M ~q0→qt!5N~qt!2N~q0! ~34!

we should have the sign in Eq.~17! fixed as

F~qt ,t !5F~q0,0!expS 2 i
p

2
M ~q0→qt! D U ]qt

]q0
U21/2

.

~35!

Also, both Eqs.~20! and~21! are naturally derived from Eq
~31!. Incidentally, one can readily prove a useful identity
01622
a
e

he

dqt
1/2* dq0

1/25expF2 i
p

2
@N~qt!2N~q0!#G udqtu1/2udq0u1/2

5expF2 i
p

2
@N~qt!2N~q0!#GU ]qt

]q0
U1/2

dq0

5expF2 i
p

2
@N~qt!2N~q0!#GU]q0

]qt
U1/2

dqt .

~36!

IV. CORRELATION FUNCTION

The quantum correlation function provides informatio
from which the energy spectrum can be extracted through
Fourier transform

S~E!5E ^C~0!uC~ t !&expS i

\
EtDdt. ~37!

There can be a variety of ways of representing the correla
function in semiclassical mechanics, some of which can
particularly useful in quantizing classical chaos.

A. Various representations of the correlation function

Insert a formal equationF(qt ,t)5F(q0,0)dqt
21/2dq0

1/2

into Eq. ~18!, and we have

Cp0
~q,t !5E d~q2qt!C local

p0 ~qt ,t !dqt

5E d~q2qt!expF i

\
S2~qt ,p0 ,t !G

3F~qt ,t !dqt
1/2dqt

1/2*

5E d~q2qt!expF i

\
S2~qt ,p0 ,t !G

3F~q0,0!dq0
1/2dqt

1/2* . ~38!

Different representations of a wave function result in diffe
ent expressions of the correlation function. An example i

Cp0
~s,t !5^Cp0

~s!uCp0
~ t !&

5E expF i

\
S2~qt ,p0 ,t !2

i

\
S2~qt ,p0 ,s!G

3F* ~qt ,s!F~qt ,t !dqt

5E E d~qs2qt!F* ~q01,0!F~q02,0!

3expF i

\
S1~qt ,q02,t !1

i

\
p0q02

2
i

\
S1~qs ,q01,s!

2
i

\
p0q01Gdq01

1/2* dq02
1/2dqs

1/2dqt
1/2* . ~39!
4-5
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The last equality makes use of the last term of Eq.~38!.
Therefore we have a basic property

Cp0
~s,t !* 5^Cp0

~s!uCp0
~ t !&*

5E E d~qs2qt!F~q01,0!F* ~q02,0!

3expF2
i

\
S2~qt ,q02,t !

2
i

\
p0q021

i

\
S2~qs ,q01,s!

1
i

\
p0q01Gdq01

1/2dq02
1/2* dqs

1/2* dqt
1/2 ~40!

Thus the relationsCp0
(s,t)* 5Cp0

(t,s) and Cp0
(0,t)*

5Cp0
(0,2t) naturally result.

The standard form of the correlation function used
practice is of course

Cp0
~0,t !5E F* ~qt,0!expF2

i

\
p0qtG

3expF i

\
S2~qt ,p0 ,t !GF~q0,0!dq0

1/2dqt
1/2*

5E F* ~qt,0!F~q0,0!expF2
i

\
p0qt

1
i

\
S1~qt ,q0 ,t !

2 i
p

2
~N~qt!2N~q0!!G udqtu1/2udq0u1/2, ~41!

which looks beautifully symmetric. In the second equality
this equation, Eq.~36! was used. The conversion into th
form of Eq. ~22! is easy with the use of the identity

udqtu1/2udq0u1/25U ]qt

]q0
U1/2

dq0 , ~42!

and with the help of Eq.~34!.

B. Evaluation of a correlation function

The spectrum we are going to numerically evaluate@6# is
a Fourier integral of the form

S~E!5Re lim
T→`

2

TE0

T/2

Cp0
~2t,t !expS 2

i

\
EtDdt. ~43!

Then Eq.~39! requires two trajectories that end up at t
same pointqt by different routes, namely,

qt~q02,p0!5q2t~q01,p0!, ~44!

where qt(q02,p0), for instance, indicates a positionqt
reached by a trajectory at timet, that starts with an initial
01622
condition (q02,p0) at time t50. @Note that q2t(q01,p0)
5qt(q01,2p0).# If it happens thatq015q02, Eq. ~44! is
readily satisfied. However, these paths are not conne
smoothly at t50 unlessp050, since a momentum jump
from 2p0 to p0 is necessary.

To see what kind of trajectories make major contrib
tions, let us take an average ofS(E) of Eq. ~43! over the
initial momentump0. It safices to see an average ofCp0

(2t,t) over p0, and focus on

E dp0Cp0
~2t,t !

52p\E E d~q2t2qt!F* ~q01,0!F~q02,0!d~q012q02!

3expF i

\
S1~qt ,q02,t !

2
i

\
S1~qs ,q01,2t !Gdq01

1/2* dq02
1/2dq2t

1/2dqt
1/2* . ~45!

The trajectories contributing to this integral should satisfy

q015q02 ~46!

and

qt~q01,p0!5q2t~q01,p0!5qt~q01,2p0! ~47!

due to the newly appearingd function. The stationary phas
argument applied to Eq.~45! requires

pt~q01,p0!52pt~q01,2p0!. ~48!

However, general trajectories do not satisfy Eqs.~47! and
~48! simultaneously. There are two important exceptio
One is the case of a periodic orbit in phase space. Only
periodic orbits whose periodsT happen to be the same a
time t, for which pT(q01,p0)5p0 and pT(q01,2p0)52p0
are realized, the correlation function can have significant v
ues. This would give an alternative expression to perio
orbit theory@16#, to which we do not intend to return in thi
paper.

The other special case arises from the trajectories of

p050. ~49!

This condition is stronger in thatp050 ensures the equalitie
in both Eqs.~47! and ~48! for any q01, qt , and t. Further-
more, trajectories havingp050 at t50 must be appropriate
to represent a motion corresponding to standing waves, s
they are generally formed in a fixed boundary. In view of t
well-known difficulty inherent in periodic orbit theory, we
hereafter focus on the correlation function composed of
trajectories ofp050.

C. A correlation function free of the amplitude factor

It was suggested from the above analysis that a potent
useful representation of the correlation function can be g
4-6
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erated in terms ofp050 andq025q01 to quantize classically
chaotic systems. We resume from Eq.~39!, with p050 and
s52t. Even if we setp050, those trajectories satisfyin
qt(q01,p0)5q2t(q02,p0), with q02Þq01, remain in the in-
tegration of Eq.~39!. However, since they are disconnect
in configuration space, and because of Eq.~46!, their contri-
butions must be very small. We thus deliberately disreg
these trajectories and keep only those trajectories satisf
p050 andq025q01, leaving an ‘‘essential part’’ of the cor
relation function as

C̃0~2t,t !5E E d~q2t2qt!F* ~q01,0!F~q01,0!

3expF i

\
S1~qt ,q01,t !2

i

\
S1~q2t ,q01,2t !G

3dq01
1/2* dq01

1/2dq2t
1/2dqt

1/2* , ~50!

in which both the geometry and the action integrals along
trajectories are now smoothly connected, and

q2t~q01,p050!5qt~q01,p050!. ~51!

We have no way to estimate exactly how small are the c
tributions made by all the neglected trajectoies. Also, so
there is no ‘‘practical method’’ to overcome the divergen
problem described above in quantizing chaotic systems.~By
a practical method, we mean a method that can be applie
molecular vibrational states of more than three dimensio!
We will therefore numerically test the extracted correlati
function by applying it to a vibrational problem of a seve
atomic cluster@6#, since Eq.~50! has a distinguished advan
tage in quantizing chaos, as shown below.

C̃0(2t,t) of Eq. ~50! is rewritten to appear as

C̃0~2t,t !5E E d~q2t2qt!uF~q01,0!u2expF i

\
S1~qt ,q01,t !

2
i

\
S1~q2t ,q01,2t !Gdq01

3expF i
p

2
N~q2t!G udq2tu1/2

3expF2 i
p

2
N~qt!G udqtu1/2

5E dq01uF~q01,0!u2expF2
i

\
S1~qt ,q01,t !

2 i
p

2
M ~q2t→qt!G , ~52!

where the Maslov index is defined as usual:M (q2t→qt)
5N(qt)2N(q2t). It is remarkable that an annoying amp
tude factor, such asu]qt /]p0u21/2 or u]qt /]q01u1/2, is missing
in this expression. Recall thatu]qt /]p0u21/2 diminishes ex-
ponentially for a chaotic system, whileu]qt /]q01u1/2 diverges
exponentially; both thereby causing numerical difficulties
01622
d
ng

e

-
r

to
.

the Fourier transform. Such difficulties will be numerical
shown very clearly in our following paper@6#. On the other
hand, the Maslov index remains in the correlation functio
which constitutes an essential part of the quantum ph
Thus a calculation of the Maslov index, through the comp
tation of the matrix@]qt /]q01#, or by a some other tech
nique, is unavoidable.

To identify the property of Eq.~52!, let us investigate the
elementdq2t

1/2dqt
1/2* a little further. Owing to the character

istics of paths adopted in relation~52!, d(q2t

2qt)dq2t
1/2dqt

1/2* can be rewritten as@see Eq.~36!, replacing
dq0

1/2 with dq2t
1/2#

d~q2t2qt!dq2t
1/2dqt

1/2* 5d~q2t2qt!expF2 i
p

2
~N~qt!

2N~q2t!!G udqtu1/2udqtu1/2

5d~q2t2qt!

3exp@2 ipN~qt!#U ]qt

]q2t
U1/2

dq2t

5d~q2t2qt!

3exp@2 ipN~qt!#U]q2t

]qt
U1/2

dqt .

~53!

Here we see the Jacobian determinants that characteriz
ther the initial and final representations. However, bo
]qt /]q2t and]q2t /]qt are unity, or

]qt

]q2t
U

p050

5
]q2t

]qt
U

p050

51, ~54!

under Eq.~51!. This is rather obvious, since the stabili
matrix should be considered only in the limited manifold
trajectories that satisfiesp050 at t50, and hence come
back exactly to the same points in such a way that

q2t1Dq→qt1Dq as time passes as2t→0→t
~55!

for any arbitrary displacement ofDq. Therefore, the ampli-
tude factor for this particular case is canceled out.

The energy spectra in integrable systems are quantize
terms of the information of the action integral and t
Maslov index alone, as typically realized in the EBK cond
tion. The energy spectra extracted from the correlation fu
tion of Eq. ~52!,
4-7
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S~E!5
2

T
Re lim

T→`
E

0

T/2

C̃0~2t,t !expS 2
i

\
EtDdt

5
2

T
lim

T→`
E

0

T/2

dtE dq01uF~q01,0!u2 cosF2

\
S1~qt ,q01,t !

2
p

2
M ~q2t→qt!1

2

\
EtG , ~56!

does not make a formal distinction between chaotic and
tegrable systems. On the other hand, it is never trivial t
the spectra arising from Eq.~52! can cover the entire spec
trum, sinceC̃0(2t,t) is an extraction from the full correla
tion function. In other words, there can exist a possibil
that some spectral peaks may be missing from those spe
Nevertheless, this expression is quite promising, and des
ers numerical tests@6#.

V. CONCLUDING REMARKS

We have developed a systematic algebra for coordin
transformation in semiclassical integrals, which can prov
a convenient perspective and practice in the actual per
i-

ys

a-

01622
-
t

tra.
rv-

te
e
r-

mance of transformations among the initial and final va
representations. Various variants for representations of qu
tum correlation functions have been shown.

As a harvest of this algebraic approach, we have foun
representation of a semiclassical correlation function ba
on an action decomposed function,@Eq. ~52!#, which is free
from amplitude factors such asu]qf /]qi u21/2. Since this fac-
tor quite often causes fatal troubles in numerical calculati
of the energy spectra for a chaotic system, it can serve
useful alternative to existing methods for quantizing clas
cally chaotic systems. We will show a practical applicati
of the thus obtained amplitude-free correlation function in
companion paper@6#, in which a systematic numerical stud
is made of the vibrational spectrum of an Ar7-like cluster
with various methods.
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