PHYSICAL REVIEW E, VOLUME 64, 016224

Amplitude-free correlation function based on an algebra for coordinate transformation
in semiclassical integrals
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We present an algebra that facilitates a systematic coordinate transformation in semiclassical integrals such
as those between the initial and final value representations. Applying this algebra to Maslov-type semiclassical
wave packet theoryA. Inoue-Ushiyama and K. Takatsuka, Phys. Revb% 3256 (1999], a semiclassical
correlation function is extracted, which is free of the amplitude factor that suffers an exponential divergence in
a chaotic system.
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[. INTRODUCTION cause it requires a double-ended root search problem. It was
Miller and co-workers[8,9] who introduced a coordinate
Semiclassical mechanid¢d-5] has been regarded for a transformation in such a way that
long time as a promising alternative to full quantum mechan-
ics for systems composed of heavy particles, such as, e.g., EIR
molecular vibration and chemical reaction systems. Never- (<D|¢(t)>=J J ®* (g K(dy,do,t) (o) aPo dpoddqo,
theless, it is still extremely difficult to quantize vibrational 0 ©)
states in a chaotic system, due to divergence in the amplitude
factor (prefactoy of_the semlcla55|c_:al wave func'glons. This ir]g which the classical paths representing the semiclassical
rather short paper is concerned with a systematic method o) i . A "
) ' . : ; X ernel are specified in terms of their initial conditions
handling coordinate transformations in semiclassical theory, o .
? ) . Jo.Po)- To be more specific, the standard form of a semi-
and as its consequence we find an approximate form of thg ; . .
) : S ) . Classical kernel is usually written as
guantum correlation function, which is particularly useful in
a calculation of the spectra of chaotic systems. We first show
a theoretical scheme to construct a semiclassical correlation o _N/zf _
function, which is free of the amplitude factor. In a compan- Ksd 0,00, 1) = (2i#) (9-ay)
ion paper 6] we will present numerical results for a quanti- . \
zation Qf a ;trongly chaotic cluste( wh|ch is composed of xex;{—sl(qt,qo,t)—m—)dqt, 3
seven identical atoms as an application. The latter paper h 2
mainly treats more numerical aspects in practical applica-
tions, including the permutation symmetry of identical par-where S, and A are the classical action integral and the
ticles, and also shows a spectrum arising from a straightformasiov index, respectively. We tentatively call this form a
ward application of.a semlclassma_ll theqry based on an actiofinal value representatiofFVR). The toughest problem in-
decomposed functiofi7]; thereby it exhibits the numerical herent in the FVR is that the amplitude factery, /dp,| 2
difficulty one encounters in quantizing chaos. It also presentgjverges at every caustic point. On the other hand, in the

a spectrum improved by careful use of both the initial andiransformed expression called the initial value representation
final value presentations, along with a spectrum based on aivR),

amplitude-free correlation function.

&qt —1/2

Po

We begin with the current progre$8—14] made in the oqt,| 12
semiclassical Feynman kerndl5] K, into which a coordi- KSC(Qquit):(ZWih)_NIZJ 8(q—qy) ol
nate transformation is introduced which is relevant to the IPo
present paper. Suppose a transition amplitude in a propa- i \
gated system is written in a coordinate representation as ><exp<%sl(qt rqut)_iﬂ'z)deu 4
i
<‘D|¢’(t)>:<¢ eXF{_gHt)‘¢> the diverging factor at the caustic has been inverted to

|aq,/dpo|*?, which simply becomes zero. This excellent
property was rediscovered in the early 1990s by other au-
:j J ®*(ayK (0, o, 1) $(Qo)dGd o (1) thors in various variants of the representatia6—14, lead-
ing to the current situation in which semiclassical theories
This representation demands quite a tedious approach, bare widely applied to molecular dynamical studies. As a
price for this divergence-free nature, the absolute value of
the new amplitude factofdq,/dpo|*? grows almost expo-
*Email address: kaztak@mns2.c.u-tokyo.ac.jp nentially with time in the case of classical chaos, which
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i
tra. This is the central problem we consider in this paper an EXD( - gHt) ¢> =(2mwh)™N
companion papers.
The aim of the present paper is twofold: First we formu-
late a simple and systematic algebra of the relevant coordi- Xexp(
nate transformation by introducing the square root of the

causes another difficulty in the calculation of quantum spec%
D

N
—|7)fdzia(¢zi;<bzf)

1/2
volume element aslqo=dag’dq® . Then we present an X<‘9(Zf_zi)) exp(I—S(Z 7 t))
approximate semiclassical correlation function, based on our 74 Ao
action decomposed functigithe Maslov type semiclassical (5)

wave function [7], which is free from the diverging ampli-
tude factor|dq,/dpo|*2 Since the presence of this factor
makes a calculation of energy spectra in a chaotic systenm terms of what we call the dynamical characteristic func-
prohibitively difficult, our correlation function will provide a tion [19]
useful alternative to study quantum spectra in cHa6s17].
The idea of the amplitude-free correlation function was

first launched by Millef2]. Recently, Shao and Makri de- a(pZi; PZg)=a(pqip;; Paspr)
veloped a theory that led to a correlation function free of the
amplitude factor(prefactoy [18]. Our study was developed =f dxep(x+q;)P* (x+qs)

in an independent context, and in fact our resultant correla-
tion function[Eqg. (52)] is different from that of Ref[18] in i
that ours should be applied under a limited condition. Xex;n(%x(pf— pi))’ (6)
This paper is organized as follows. Section Il reviews
selected semiclassical theories, which are particularly rel-
evant to the coordinate transformation. We then propose where Z;=(q;,p;) and Z;=(q;,ps) specify the initial and
practical method of handling the coordinate transformatiorfinal points in phase space, respectively. The Jacobian ma-
in semiclassical theory. Various representations of the corretix, whose determinant appears in Ef), is
lation function are shown in Sec. IV, by which we derive a
correlation function free of the amplitude factor.
NZi—2Z;)| | 9Zy
SE o

II. SEMICLASSICAL THEORIES

H_erle we rlnahke a br'ﬁf Lewew of 'gwol dllfferelnt Kinds Orf] wherel is a 2N X 2N unit matrix, and dZ;/9Z;] is the well-
semiclassical theory, which are particularly relevant to the .1 stability matrix:

main issue of this article. One is a phase-space path integral,
which is typically invariant with respect to the coordinate
transformation. The other is a wave packet type theory, with 97 P

. . : f (9s,py)
which we propose a representation of the correlation func- = 1= 3a o0 |-
tion that is free from the annoying amplitude factor. Iz 9(0i,pi)

®

The Liouville theorem ensures that the determinatt/ 9z,

A. Phase-space path integral . g el
is kept to unity, resulting imlZ;=dZ;. For Eq.(7), we have

Although the above transformation from E@8) and (4)
should keep the kernel and relevant semiclassical integrals
such as the correlation function mathematically invariant, HZi—Z) N
they change the values in practice. As an illustrative ex- 22 TV T [1—expibol[1—exp —ib)]
ample, let us consider the behavior of the integrands at a 24 k=1

caustic point. In the FVR thédq,/dpo| Y diverges, but N b\ 12
|0/ dpo| Y2 becomes zero in the IVR. The divergence re- =11 |2 sir(—k” , 9)
flects the physical fact that the density of the trajectories k=1 2

happens to be enormous at caustitss still finite in full

guantum mechanics, howeyett is therefore implied that

very many trajectories are required to compensate for thvhere expip,) are the eigenvalues of the matfi#Z; /9Z;],
“zero” brought about by the IVR. However, a transforma- with b, a complex number in general.

tion problem does not necessarily arise in all semiclassical We note that Eq(5) is represented in terms of the initial
theories. A semiclassical theory based on the phase-spawalue representation from the outfedmpare with Eq(1)].
path integral19] is such an example. The transition ampli- Furthermore, the coordinate transformation is straightfor-
tude in Eq.(1) is written as ward as

016224-2



AMPLITUDE-FREE CORRELATION FUNCTION BASED. .. PHYSICAL REVIEW B4 016224

(o

i Note thatF? rather thar|F|? is considered in this “equation
exr{ —zHtj|¢ of continuity” (note thatF? can be comple) although both

satisfy Eq.(15). F2 can be readily integrated locally along
[ * classical paths in terms of a Jacobian determirdaptdqq,
% Ht||® which is a minor determinant of the so-called stability matrix

[Eq. (8)]. (dai/dqg) *=3d°Sy(qy,Po.t)/dckdpy s inter-

N N . _ preted as the density of families of classical trajectories
=(2mh) " "exp —i—- fdzfa (PZs;9Zi) which are labeled by,. It is not difficult to derive, from the
Hamilton-Jacobi equation fd®.(q,pPg,t), that
NZi—Z)|H? [
% A eX[{—%S(Zi,Zf,—t) ’ (10 ((9% ot '9Qt) 1}_0 (16)
atlaqe Noao) |~
which is readily proved with the help of the following two
facts: Furthermore, one has the initial conditioagg/dqo) =1
sinceq,=q, att=0. Thus @q,/dqy) " can be regarded as a
a(pZ;; ®Zy)* =a(PZ;;pZ;) (11 local representation of the Green function for the propagator
of Eq. (15). On comparing Eq915) and(16), together with
and the initial conditions above, one immediately Ha$
(9(Zf_z|) &Zf &(Zf—Z,) (9(Z| _Zf) qt 2
iz "z iz~ oz (12 F(di,t)=F(0o,0) )
This transparent property is a clear advantage of phase-space - F(qo,O)ﬂ . exr{ ;M}
quantum theory. 2

(17)

where the derivativeq,/dqq is taken under the fixed initial
momentump,, and M (go—q;) is the Maslov index in this
representation that counts the number of zera#efdqgg up

i to the degeneracy. Thus the local solution, denoted by
\If(q,t):F(q,t)ex;{ng}, (13w (q..t), has been obtained, which is to be propagated
along a trajectory of a fixed initial momentupy. The final

which is to be propagated in terms of the equation of motioreXPression for the wave function is then written as
of the lowest order approximation i to the Schrdinger

equation. The higher order effects are taken into account in f ,

different ways by the Bohm and Maslov theories: the so- V(A= ] 000 ¥igeai( G0

called quantum potential is considered in the Bohm theory,

while the Maslov theory takes account of the hierarchical =f 5(q—qt)\Iffoocal(qt,
series of quantum transpdi20]. S;, is the classical action

that satisfies the Hamilton-Jacobi equation. Note that picking

up S;; among the various possible forrfl] is equivalent to = f 8(9—0q:(dg,Po))F(qo,
specifying an initial condition that is imposed on the trajec-

tories generated b$,,. For later convenience, we chodSg i 7M(qo— )

to be an F,-type generating function21], such that Xexp{ Sz(Qt,po't)Jff}d%-
Sei(d,Po.t) = F2(a,po,t) =F1(d,do,t) + doPo. [Neither F;
nor F, should be confused wit(q,t) of Eq. (13).] The (18
function is determined by the equation of motion

B. Maslov-type semiclassical wave function

The Maslov-type semiclassical theof20] begins with
the wave function

qu

1/2

&

A transformation from the final value to the initial value
IF representation has been adopted. We note that there still re-
—+v- VF———(V v)F, (14  mains the problem of which sign in Eq$l7) and (18)

It should be taken from the possible choices

. . . Equation(17) implies norm conservation, namely,
wherev=29S,/dq is the classical velocity. We use mass- g (17) imp y

weighted coordinates throughout, so that all the masses are -1
scaled to unity. Equatiolil4) is integrated as follows. We [F(q;,t)|>=|F(qo, , (19
start from the following observation:

JF2 or, more algebraically,

—+V-(vF?)=0. 15

TR (19 IF (a0 [da,=|F(00.0)d . 20
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However, the square of Eq17) simply brings about a dif- EBK quantization. Thus the trace formulfl6] is expressed

ferent relation as the sum of a huge number of Lorentzians, each of which
comes from different periodic orbits. Thus thefunction

F(q;,)2da,=F(q,0?exd FimM(go—0;)]ddo. (21 spikes are not usually realized in practice in the periodic
orbit sum or its variants.

Therefore, we need an algebra to describe both of these in a Aurich et al. [23] detoured this approach by aiming at

consistent manner, which is to be applied to a correlatiorzeros of

function,
Det(E—H), (29
C(t)y=(¥, (0)|¥, (t
(t)=( po! )| po ) instead of searching poles of the resolvent. Unfortunately,
aq, |2 i however, it turned out that a variety of sophisticatedme-
Zf F*(qt,O)F(QO,O)a—% ex;{ ~ 7 Polt what artificia) techniques to locate the zeros at correct posi-

tions on theE coordinate are required, including a Borel sum

over the periodic orbit expansiof23]. It seems that this
ddo, (22 difficulty could not be avoided as long as a semiclassical
expression of the spectrum is associated with the amplitude
that comes from the stability matrpozZ;/9Z; ].

i _imM(qe—ay)
—gsz(qt,po,t)++

whereq;=0q:(dg,Po) is the end point of a trajectory at tinte

with the initial condition €g,py). We stress that an out-

standing feature of this correlation function is its low dimen-  lll. SQUARE ROOT OF VOLUME ELEMENTS IN

sionality in the integral only oveqq coordinates. Equation SEMICLASSICAL INTEGRALS

.(22) should be compar_ed with EqE2) and (5), Whe_re the To treat the transformation among the semiclassical inte-

integrals are to be carried out over tfi (po) coordinates. grals more systematically, we begin with a rather general
multidimensional integral:

C. Difficulty in semiclassical eigenvalue calculation
d0o

do. 25
q, Ot (25

For quantization of integrable systems, the EBK condition |:j f(qo)dqozf f(qy,)
has established itself both theoretically and numeriddiF}.

Quantization of chaotic systems is by far more difficult. The
periodic orbit theonf16] has been a key theory to locate the

eigenvalues with use of the trace

In this expression, one should note that a small volume ele-
mentdg; can be an oriented volume with respectla,, the
sign of which is represented in terms of that of the Jacobian
Tr6(E—H) determinantdq,/dqq, since the volume can be inverted in
_ _ many ways in addition to the change of its shape and vol-
=(2wh)*1f dtf dq<q ex;{ _ I—Ht)‘q>ex;<l—Et) ume. Let us define the square root of the volume elements of

h h the integral[24], such that
J —-1/2
~(2mim) 2| at | dq 1~ [ tapdadaai™. 6
0
[ R wheredgi/® is the complex conjugate afgy?. The posi-
XeXp(%Sl(q'q’t)_miJr ﬁEt)' 23 tive semidefinite quantityq, (da,) is understood to be a

product:
This integral is well known to be asymptotically dominated
only by the so-called periodic orbits, the number of which ddo=|ddo|=dgs’dgg™ and dg=|dq|=dq’dg"* .
increases almost exponentially with the length of period. 27

However, theory encounters the following difficulties. First, . . | h o
it follows |dq,/dp,|=0 at caustic§15], which in turn brings As in ordinary complex numbers, the squaredaf”™ is

about a divergence in the integral. This is not peculiar tg0t €qual todg; unless the former is real valued. In this
chaos, however. The other difficulty is that a chaotic systen?€NS€; the related confusion can be avoided if we dofe

_ : 1/2
is associatedby definition with a fact that|aq,/ap,| Y2  =|da/. We now definedg, ™ as
becomes exponentially smaller as time passes in the final -
: H 1/2
value representation, or equ_l\(alenﬂ&qt/apd ) bec_omes _ dqt1/2: eX[{i—N(qt)hdqtlm, (28)
exponentially larger in the initial value representation. This 2

comes from the imaginary part of of Eq. (9)[22]. A Fou- i
rier transform of a function whose amplitude groges di- ~ WhereN(ay) is the sum of zeros up to the degeneracy of the

minishe$ exponentially necessarily results in a Lorentzian.following determinant picked up by a Jacobian determinant,
We will show this more clearly along with numerical data in P
a companion papd6]. (Note thatb, are purely real in inte- At ,
grable systems, and the Lorentzian does not follow in the It=x

(29
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along a path. It is convenient to set the reference of time
=X at far remote past, symbolically denotedXas — .

At each time the determinant of E(9) changes its sign,
N(q,) acquiresr (if the degeneracy of zero happens to\be
it acquiresM ). In view of the physical continuity on the
Riemann surfaceN(q;) should proceed as 87—2m
—37—4m—---. This number is should be counted as a
positive number in the positive time direction>0), and a
negative number in the negative directior<(0). Then, in
order to comprehend Eq&l7), (20), and(21), it is natural to
use the following expression as our theoretical basis:

F(a:,t)dai?=F(qo,0dag?, (30)

which is valid only when the two points are connected by a
trajectory. This represents a conservation law including the

phase. In fact, Eq(30) comes back to

F(a, ,t)eX;{i gN(qt)}ldqtl“z

=F(qo,0)ex+gN(qo)}ldqol“Z, (31

which in turn gives

—1/2
d0

do

F(qt ,t)

(32

F<q0,0>exp( _ig[N(Qt)_N(QO)]>

where we understand the absolute value of the square of the

Jacobian as

J —-1/2 J 1/2 d 1/2
20 _|%% :_| ol _ (33)
ddo ot |dqy| 22
Since the Maslov index is defined as
M(do—ay) =N(d;) —N(do) (34
we should have the sign in E(L7) fixed as
F(q,t)=F (00,0 Y 9%~
(G, ) =F(do,0)exp =i 5 M(do—a0) | = -
(39

Also, both Eqs(20) and(21) are naturally derived from Eq.
(31). Incidentally, one can readily prove a useful identity

PHYSICAL REVIEW B4 016224

[ LT
do’* dag®=exp —i 5{N(qy) - N(Qo)]} |dai|*Ad | V2

[ T 12
=exp —iE[N(qt)—N(qo)]} g0 %
- o7 a0 12
=exp —izIN(a) =N(ao)]|| 7o} .
(36)

IV. CORRELATION FUNCTION

The quantum correlation function provides information
from which the energy spectrum can be extracted through its
Fourier transform

i
S(E)zf (\P(O)|\If(t))exp<gEt)dt. (37
There can be a variety of ways of representing the correlation
function in semiclassical mechanics, some of which can be
particularly useful in quantizing classical chaos.

A. Various representations of the correlation function

1/2

Insert a formal equatiorF(qt,t)=|:(ck),o)dqt*l/2dq0

into Eqg. (18), and we have

\I,Po

local

\I’po(q,t):f o(g—qy) (q;,t)da

. .
=J 8(q—ayexp 7 S2(qr.Po.t)

1/2%

X F(qq,t)dgdq;

i :
:f (9= ayexp 7 S2(qr.Po.t)

1/2 %

X F(do,0da3d (39)

Different representations of a wave function result in differ-
ent expressions of the correlation function. An example is

Cpo(8)=(W;, (8)|¥p (1)

i i
= f eXF{ﬁSZ(qt va!t)_ﬁSZ(Qt ipO!S)
XF*(q¢,S)F(q;,t)dg

:f f 8(ds— ap) F* (00,0 F(0g2.0)
i i
X ex %Sl(qtaqOZrt)_"%quOZ

i
_gsl(CIs’CIOLS)

1/2x

1/2%
01 .

i
% Po%l}dq dquzd qud oh (39
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The last equality makes use of the last term of E28).  condition (Qgy.pg) at time t=0. [Note thatq_.(qos1,Po)

Therefore we have a basic property =0¢(do1, — Po).] If it happens thatqo;=qg,, Eq. (44) is
. . readily satisfied. However, these paths are not connected
Cpo(s,t) =<\pr0(s)|\pr0(t)> smoothly att=0 unlesspy,=0, since a momentum jump
from —pg to pg is necessary.
= 8(as— Gy) F(Go1,0) F* (002,0) To see what kind of trajectories make major contribu-
f j s o o tions, let us take an average 8{E) of Eq. (43) over the

i initial momentumpg. It safices to see an average @f,o
XeXF{ = 7 S2(C Gz, ) (—1,t) overp,, and focus on
i i
~ 7 Polozt 7 S2(Gs,Go1S) J’ dpoCp,(—t:1)
+ flpro%l dg2d gt dql> dg?  (40) :Zﬂﬁj f 3(q-t—dt) F* (do1,0)F(do2,0) 8( o1~ do2)
Thus the reIationstO(s,t)*=Cpo(t,s) and CpO(O,t)* Xex[{lﬁ_sl(qt:QOZat)

= CpO(O,— t) naturally result.

The standard form of the correlation function used in [
practice is of course - gsl(anqOL_t)}dqéllz*dq(l)IZqul/%dqtllz* . (45
Cpo(o’t):f F*(qt,O)ex;{ _ gpo%} The trajectories contributing to this integral should satisfy
Jo1= Yo2 (46)

[
xexr{gszmt ,po,t>}F<q0,0>dqé’2dq%’2* and

:J F*(qt,o),:(qo,o)ex% Lo 001 Po) = A-(Go1.P0) = (G, ~Po)  (47)
due to the newly appearing function. The stationary phase
i argument applied to Eq45) requires
+2-51(0t. 9o, 1)
Pt(do1,Po) = — Pt(doz, — Po)- (48)

r
—i E(N(qt)—N(qo))}|dqt|1’2|dq0|1/2, (41)  However, general trajectories do not satisfy E@&) and
(48) simultaneously. There are two important exceptions.

which looks beautifully symmetric. In the second equality in ON€ IS the case of a periodic orbit in phase space. Only for
this equation, Eq(36) was used. The conversion into the Periodic orbits whose periods happen to be the same as

form of Eq.(22) is easy with the use of the identity time t, for which pr(os,Po) =Po and pr(doz, ~Po) = —Po
are realized, the correlation function can have significant val-
o o |9 12 ues. This would give an alternative expression to periodic
|day| " dge| "= N dago, (42)  orbit theory[16], to which we do not intend to return in this
paper.
and with the help of Eq(34). The other special case arises from the trajectories of
B. Evaluation of a correlation function Po=0. (49)

The spectrum we are going to numerically evaly&eis  This condition is stronger in that,=0 ensures the equalities
a Fourier integral of the form in both Eqgs.(47) and (48) for any qo;, ¢, andt. Further-
5 r112 i more, trajectories _havingozo atézO must t:jg appropriatg
_ iz _ - to represent a motion corresponding to standing waves, since
S(B) ReT“j;TJ Ciol t,t)ex;{ zﬁ Et) dt. (43 they are generally formed in a fixed boundary. In view of the
well-known difficulty inherent in periodic orbit theory, we
Then Eq.(39) requires two trajectories that end up at the hereafter focus on the correlation function composed of the

same poing;, by different routes, namely, trajectories ofpy=0.
Gt(Go2:Po) =9-t(do1,Po), (44) C. A correlation function free of the amplitude factor
where 0;(gg2,Pp), for instance, indicates a positiog; It was suggested from the above analysis that a potentially

reached by a trajectory at tinte that starts with an initial useful representation of the correlation function can be gen-
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erated in terms opy=0 andgq,=qg; to quantize classically the Fourier transform. Such difficulties will be numerically
chaotic systems. We resume from E&9), with pp=0 and  shown very clearly in our following pap¢6]. On the other
s=—t. Even if we setpy=0, those trajectories satisfying hand, the Maslov index remains in the correlation function,
a¢(do1,Po) =0d-t(do2,Po), With qg,# 0oz, remain in the in-  which constitutes an essential part of the quantum phase.
tegration of Eq.(39). However, since they are disconnected Thus a calculation of the Maslov index, through the compu-
in configuration space, and because of &), their contri-  tation of the matrix[dq,/dqe;], or by a some other tech-
butions must be very small. We thus deliberately disregarghique, is unavoidable.

these trajectories and keep only those trajectories satisfying Tq jdentify the property of Eq(52), let us investigate the

Po=0 andqp,=doy, leaving an “essential part” of the cor-  glementdg2dq’? a little further. Owing to the character-

. . t
relation function as istics of paths adopted in relation(52), &(q_,

~ —q)dg*2dqg® can be rewritten afsee Eq(36), replacing
Col—t,t)= f f 8(0- =0y F* (doy,0)F (lo1,0) dag” with dg¥f]

i i
Xex[{gsl(QtquLt)_%sl(qtyq01=_t) Yo 112 o
8(d-¢—q)dg-idg;" ™ = 8(q_;—gy)ex _lg(N(Qt)

X dag?* dggd gtz gl (50)
in which both the geometry and the action integrals along the - N(Qt))} |day M d |2
trajectories are now smoothly connected, and
=46(9-(— 0y
d-t(do1.Po=0)=0(do1,Po=0). (51) o, |2
. t
We have no way to estimate exactly how small are the con- Xex —imN(ay)] 994 dg-
tributions made by all the neglected trajectoies. Also, so far
there is no “practical method” to overcome the divergence =06(0-1— Q)
problem described above in quantizing chaotic systeBs. aq_| 2
a practical method, we mean a method that can be applied to xexd —imN(qy)] _t dg;.
molecular vibrational states of more than three dimensjons. 99,
We will therefore numerically test the extracted correlation (53)
function by applying it to a vibrational problem of a seven
atomic clustef6], since Eq.(50) has a distinguished advan-
tage in quantizing chaos, as shown below. Here we see the Jacobian determinants that characterize ei-
Co(—t,t) of Eq. (50) is rewritten to appear as ther the initial and final representations. However, both
dq./dq_, anddq_./dq, are unity, or
~ i
Co(_t,t):f f 5(qt_Qt)|F(QO1,0)|29XF{%Sl(Qt +do1:t)
i 2t _ 99— 1 (54
- 551(Q—u%1,_t)}d%1 99t Po=0 90 Po=0
T 12
XGX%IEN(Q—O}NQ—J under Eq.(51). This is rather obvious, since the stability

matrix should be considered only in the limited manifold of
T trajectories that satisfiegp=0 att=0, and hence comes
xexp —i= N(dy)||dg ) at.
2 t t back exactly to the same points in such a way that

i
_ 2 _
B f A6 F (91,0 ex;{ 275101 Gos V) q_;+Agq—qg,+Aq astime passes ast—0—t

(55)
—igwqﬁqt)}, (52

for any arbitrary displacement a&q. Therefore, the ampli-
where the Maslov index is defined as ususll(q_;—q;) tude factor for this particular case is canceled out.
=N(ay) —N(g-y). It is remarkable that an annoying ampli-  The energy spectra in integrable systems are quantized in
tude factor, such d9/q,/dpo| Y2 or |9q;/dqoy *% is missing  terms of the information of the action integral and the
in this expression. Recall thagq,/dpo| 2 diminishes ex- Maslov index alone, as typically realized in the EBK condi-
ponentially for a chaotic system, whileq, /9q,,| Y/ diverges  tion. The energy spectra extracted from the correlation func-
exponentially; both thereby causing numerical difficulties intion of Eq. (52),
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representations. Various variants for representations of quan-

) mance of transformations among the initial and final value
dt
tum correlation functions have been shown.

2 T2, i
S(E)==Re Iimf Co(—t,t)exp 2-Et
T ..o )

2 T 2 As a harvest of this algebraic approach, we have found a
==lim J dtJ dqoi F(9o1,0)|? cos{—sl(qt ,Jo1,t) representation of a semiclassical correlation function based
T 0 h on an action decomposed functigig. (52)], which is free
from amplitude factors such &&q;/4q;| ~ 2. Since this fac-
, (56)  tor quite often causes fatal troubles in numerical calculations
of the energy spectra for a chaotic system, it can serve as a
e : .useful alternative to existing methods for quantizing classi-
does not make a formal distinction be‘V_Ve_e” chaoth ?‘”d Nz ally chaotic systems. We will show a practical application
tegrable systems. On the other hand, it is never trivial tha f the thus obtained amplitude-free correlation function in a
the spectra arising from E@52) can cover the entire spec- companion papéji6], in which a systematic numerical study

trum, sinceCo(—t,t) is an extraction from the full correla- is made of the vibrational spectrum of anAike cluster
tion function. In other words, there can exist a possibility with various methods.

that some spectral peaks may be missing from those spectra.
Nevertheless, this expression is quite promising, and deserv-
ers numerical tests$]. ACKNOWLEDGMENTS
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