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Chaos-assisted tunneling with cold atoms
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In the context of quantum chaos, both theory and numerical analysis predict large fluctuations of the
tunneling transition probabilities when irregular dynamics is present at the classical level. Here we consider the
nondissipative quantum evolution of cold atoms trapped in a time-dependent modulated periodic potential
generated by two laser beams. We give some precise guidelines for the observation of chaos-assisted tunneling
between invariant phase space structures paired by time-reversal symmetry.
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I. INTRODUCTION

During the 1970’s and 1980’s it gradually became cle
that classical Hamiltonian chaos profoundly affects the te
poral evolution and spectral properties of the correspond
quantum system as compared to the integrable case@1#.
Some of these features~dynamical localization, scars of pe
riodic orbits@2#, etc! share striking similarities with concept
originating from condensed matter physics such as weak
strong localization@3#. In fact these phenomena can be rec
in terms of wave transport in disordered media, the~quasi!
randomness being of statistical or dynamical origin. In t
context, it is important to understand the mechanisms un
lying a key feature of wave propagation which has no cl
sical analog: tunneling.

Tunneling refers to any wave process which is classic
forbidden toreal solutions of the Hamilton equations. Fo
one-dimensional~1D! autonomous systems, it is well know
that the quantum tunneling probability through an energ
barrier can be evaluated semiclassically with the help of c
sicalcomplexsolutions of the Hamilton equations@4,5#. The
direct generalization of this procedure to higher dimensio
systems is straightforward for separable dynamics, but is
ready subtle for integrable, but no longer separable, dyn
ics @6,7#. In the generic case of chaotic dynamics, it ev
proves extremely hard to handle, and the situation, until
cently, seemed hopeless. Indeed, in the presence of ch
the analytical and topological properties of the classicalcom-
plexifiedphase space are far from trivial. During the last t
years however, theoretical and numerical investigations
autonomous 2D and time-dependent 1D Hamiltonian s
tems have started to highlight some mechanisms@6–12#, and
much insight has been gained on the influence of such c
sical nonseparable dynamics. Experimental evidence of s
mechanisms, which is still lacking, would be of great inter
especially in the light of the subtle interplay between int
ferences and disorder.

*Electronic address: mouchet@celfi.phys.univ-tours.fr
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In this paper, we consider 1D time-dependent dynam
one of the simplest cases where irregular motion can app
and we study chaos-assisted tunneling. Our effective Ha
tonian model, which is derived from an experimenta
achievable situation, exhibits three main properties. First
classical dynamics is invariant under time reversal. Secon
is controlled by a single real external parameterg ~for g
50 the dynamics is integrable and chaos develops more
more in phase space asg is increased!. Third, there exists in
phase space, for a whole continuous range ofg, a pair of
stable islandsI1 andI2 which are time-reversed images o
each other. By stable islands we mean the set of reg
classical trajectories in phase space which stay near a s
equilibrium point or near a stable periodic orbit of the sy
tem. In this case, no real classical orbit started in one of th
islands can go into the other one. However, the quan
dynamics of a wave packet, initially prepared in one isla
will display a periodic behavior. The wave packet oscillat
from one island to its time-reversed image@13#. In the quan-
tum spectrum this tunneling process appears via the e
tence of nondegenerate energy doublets whose splitting g
the inverse of the tunneling time betweenI1 andI2 . Vary-
ing g slowly modifies the geometry of the islands them
selves. The crucial point is that it will drastically change t
classical dynamics for some initial conditions lying betwe
the islands. For small enoughg, the chaotic layers are too
small to play a significant role at\ scales, and hence cann
influence the quantum behavior of the system, which is
sentially still regular. For larger values, but still before t
stable islands are completely destroyed, there is a cha
regime where varyingg or \ (\ being in this case Planck’s
constant divided by some typical classical action! alone in-
duces large fluctuations, of several orders of magnitude
the doublet splittings around their mean value. This in tu
corresponds to large fluctuations of the tunneling perio
These large fluctuations, induced by small changes of
parameter, are a signature of the so-called ‘‘chaos-assi
tunneling’’ regime. This has been extensively studied b
theoretically and numerically in the situation describ
above@8–11#, but has not yet been observed in real expe
ments, the main reason being its extreme sensitivity to sm
changes in the classical dynamics. Anyuncontrolledvaria-
©2001 The American Physical Society21-1
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tion of g, be it noise or dissipation, will dramatically was
out or destroy the signal. The observation of this highly flu
tuating tunneling regime thus requires both an accurate c
trol of the dynamics of the preparation of the initial state a
of the analysis of the final state. The observation of doub
splittings is rather common in molecular physics, when
discrete symmetry like parity is present. In most cases,
splitting is due to standard tunneling either through an
ergy barrier or a dynamical barrier~see, for example, Refs
@15–17#!. It was suggested in some cases@18,19# that this
splitting is influenced by the existence of chaos in the cl
sical dynamics. Thus molecular physics provides us w
systems where chaos-assisted tunneling could be experi
tally observed. However, one usually lacks an external
rameter which could allow for the observation of the fluctu
tions of the tunneling rate.

Atom cooling techniques@14# provide systems which ful-
fill all the desired requirements. They allow an accurate m
nipulation and control of internal and external degrees
freedom, and are a useful tool to produce situations wh
the wave character of the atomic motion is essential@20#. A
great variety of interaction potentials can be produced to
fluence the atomic motion, be it by means of inhomogene
magnetic fields, material gratings, or laser light. Optical l
tices with crystalline or quasicrystalline order@21–23# can
be easily produced where atoms mimic situations usu
encountered in condensed matter@24,25#. Dissipation~spon-
taneous emission and atom-atom interaction! is easily con-
trolled, and coherence times of the order of 10 ms can rea
be achieved. This is why cold atoms are a unique too
study transport properties of waves, be it quantum chaos@26#
or weak localization@27,28#.

This paper is organized as follows. In Sec. II we expla
the origin of the effective Hamiltonian for the experimen
situation under consideration. In Sec. III we study the cor
sponding classical dynamics, and show why this effect
Hamiltonian is relevant for chaos assisted tunneling. In S
IV we quickly review some of the usual theoretical tec
niques when dealing with both space and time periodic qu
tum dynamics. We also illustrate how some quantum spec
properties have a natural classical interpretation. In Sec
we show, with the help of numerical experiments, ho
chaos-assisted tunneling arises in our system, and then
plain how to observe it in a real experiment. Section VII
devoted to some concluding remarks.

II. EFFECTIVE HAMILTONIAN

A. Light shifts

The very basic physical mechanism underlying our for
coming discussion is the following: when an atom is expo
to monochromatic light, its energy levels are shifted by
interaction. These level shifts originate from the polarizat
energy of the atom in the incident light field, and are cal
light shifts @29#. In the dipolar approximation, they depen
on the field intensity value at the center-of-mass position
the atom. If the field intensity is space-time dependent, t
a moving atom will experience dipolar forces: inhomog
neous light shifts result in forces and alter the center-of-m
01622
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motion of the atom. By appropriately tailoring the space-tim
dependence of the light field, one can then produce a g
variety of potentials for the external atomic motion,
proven by the atom cooling community. Note, however, th
the atom-light interaction is also responsible for a dissipat
phenomenon~real absorption of a photon followed by spo
taneous emission! which shortens the temporal coherence
the atomic wave function. By using a laser light far detun
from any atomic resonance, it is possible to control this st
phenomenon and maintain it at a reasonably low rate. In
following, we shall describe a simple physical situation f
atoms where chaos-assisted tunneling is expected to
present.

B. Experimental configuration

Although the internal structure~hyperfine Zeeman sublev
els! are of major importance in atom cooling, here, for sim
plicity, we will model the atom by a two-level system~as
only one optical transition usually governs the dynamic!.
We consider a dilute sample of identical~but independent!
two-level atoms propagating in the light field configuratio
created by two monochromatic standing waves with frequ
cies v65vL6dv/2 where dv!vL . We denote the
groundstate and excited state of each atom byug& and ue&,
these levels being connected by an electric dipole transi
of angular frequencyvat and width G. All atoms are sup-
posed to be initially prepared in their ground state. Ea
standing wave is produced along thex axis by two counter-
propagating laser beams, and we suppose all fields to
linearly polarized along thez axis ~see Fig. 1!. After a suit-
able choice of space-time origin, the total electrical fie
strength is

E~x,t !5@E1 cos~v1t !1E2 cos~v2t !#cos~kLx!, ~1!

whereE6 are the field strengths of the two standing wav
At this point we have neglected the difference in wave v
tors of the standing waves. For this to hold, it is sufficient
assume that the atomic sample size is small enough. T
cally, the difference in thek vectors will be of the order of
1029 or less ~see below!, so that this requires the atomi
cloud to be smaller than typically a few kilometers, which
amply satisfied in a standard magneto-optical trap.

FIG. 1. Experimental configuration under consideration: a clo
of two-level atoms is illuminated by two monochromatic standi
waves with frequenciesv65vL6dv/2 (dv!vL). All fields are
linearly polarized along the same direction, and are sufficiently
detuned from the atomic resonance so that dissipation effects ca
ignored.
1-2



ic
nd
ce

e

e

t

f-

al
om

e

e
la
te

.

ra

Fo

e

es of
s

sys-

or

ply

ur

field

bits

n is

se
dy-
ated
s is
d-
h

ant
As
t
und
ace,
nt

ving
sea.
is
its

r,
of
ich
ge

as

CHAOS-ASSISTED TUNNELING WITH COLD ATOMS PHYSICAL REVIEW E64 016221
C. Dimensionless effective Hamiltonian

The effective Hamiltonian which describes the atom
motion is derived in Appendix A under some common a
well-controlled approximations. It acts in the Hilbert spa
of a one-dimensional system which is simply thex compo-
nent ~position! of the center of mass of the atom~which
means that the internal degree of freedom as well as thy
andz coordinates can be eliminated; see Appendix A!. This
reads

H5
px

2

2M
2V0 cos~2kLx!@u1cos~dv t !#, ~2!

where V05
def

2\V1V2/8dL and u5
def

(V1/2V2)1(V2/
2V1), with dL5vL2vat the detuning with respect to th
atomic frequency andV65dE6 /\ (d being the atomic di-
pole strength!. Without loss of generality we will assumeV0
to be positive since, ifV0 is negative, it is sufficient to shif
x by p/2kL to recover this case.

In the following, it will prove convenient to work with
dimensionless quantities. Rescaling quantities throught

5
def

dv t, q5
def

2kLx, p5
def

(2kL /Mdv)px , g5
def

(4kL
2/Mdv2)V0,

and Heff5
def

(4kL
2/Mdv2)H then yields the dimensionless e

fective Hamiltonian

Heff5
p2

2
2g~u1cost!cosq. ~3!

Such a Hamiltonian describes the dynamics of a periodic
driven pendulum. The associated quantum canonical c
mutation relation is@q,p#5 i\eff , and we obtain\eff\eff

58vR /dv, where vR5\kL
2/2M is the atomic recoil fre-

quency anddv is the beating frequency between the las
waves.

Such an effective Hamiltonian clearly exhibits two of th
three properties mentioned in Sec. I: the corresponding c
sical dynamics is governed by a single classical parame
the dimensionless coupling strengthg, and is invariant under
time-reversal symmetry (p,q,t)°(2p,q,2t). It is worth
mentioning that the semiclassical limit\eff→0 is realized
here by increasing the beating frequencydv between the
two laser waves.

With our field configuration, onlyu>1 can be achieved
As a slight generalization, we extend the range ofu to any
positive value, since one can design other field configu
tions whereu<1 occurs. For example,u50 yields the
Hamiltonian studied in Ref.@13# in a different context.

D. Orders of magnitude

Let us give some typical experimental parameters.
rubidium atoms, the atomic parameters areM585 amu,
lat52pc/vat50.78 mm, G/2p56 MHz, vR/2p53.8
kHz, and the saturation intensityI sat51.6 mW/cm2. Using
far-detuned laser beams (2dL /G5104) focused down to
500 mm ~power 100 mW), with a frequency differenc
01622
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dv/2p560 kHz, leads tog50.4 and\eff50.05. With such
values, spontaneous emission can be neglected up to tim
the order of few ms. It is worth noting the tiny energie
which come into play (V0;5 neV!, by several orders of
magnitude smaller than the typical ones for mesoscopic
tems.

III. CLASSICAL DYNAMICS

A. Poincaré surface of section

A Poincarésurface of section provides the usual tool f
visualizing the classical dynamics@30#. As Heff is 2p peri-
odic both in time and space, this surface of section sim
consists in the whole phase space itself~which has the topol-
ogy of a cylinder! where trajectories„p(t),q(t)… are seen
stroboscopically at every time period 2p. In the following,
without any substantial loss of generality, we will restrict o
analysis to the caseu51 which is easily experimentally
achieved when the standing waves have the same
strengths.

Figure 2 shows stroboscopic plots of phase space or
for different values ofg. Forg50, p is a constant of motion,
so that the system is integrable and the surface of sectio
composed of horizontal lines. For a weak enoughg @Fig.
2~a!#, the orbits remain confined to invariant curves. The
invariant curves stratify the whole phase space, and the
namics appears regular. One can clearly see well-separ
stability islands, each being bordered by a separatrix. Thi
the situation encapsulated in the Kol’mogorov-Arnol’
Moser~KAM ! theorem for near-integrable motion: althoug
no globally defined constants of motion exist, some invari
curves can still be constructed which order the dynamics.
g is increased@Fig. 2~b!#, more and more of the invarian
curves are broken and chaotic layers start to spread aro
separatrices. These layers fill some portion of phase sp
but the motion is still predominantly confined to invaria
curves. Above some coupling threshold@Figs. 2~c!–2~e!#,
stochastic orbits invade the phase space, and the survi
stability islands are surrounded by a connected chaotic
This occurs forg;0.1. The phase space structure in th
regime is typical of a mixed dynamics where regular orb
coexist with stochastic ones. Ifg is increased further@Fig.
2~f!#, the stability islands disappear~or are too small to be
seen at this scale! and one obtains global chaos. Howeve
we note that, even in this situation, the chaotic portion
phase space is still bounded by invariant curves, wh
means that chaos can only fully develop within some ran
of momentump.

B. Resonances

At this stage, let us rewrite the effective Hamiltonian
follows:

Heff5H01gH15
p2

2
2g cosq2

g

2
cos~q1t!

2
g

2
cos~q2t!. ~4!
1-3
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FIG. 2. Stroboscopic plots of trajectories i
phase space for different initial conditions att
50 and differentg ’s. The classical dynamics is
governed by Hamiltonian 3 withu51. At low g
values, resonance islands are visible separated
quasifree motion. Asg increases, the resonanc
islands grow and chaos appears close to the se
ratrices. The situation of interest for chao
assisted tunneling is when two symmetric islan
are separated by a chaotic sea, such asI1 andI2

in ~d! and ~e!.
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The physical interpretation of the various terms is rat
simple: the two counterpropagating laser beams at freque
v1 create a stationary wave which, in turn, creates for
atom an effective optical potential proportional to the squ
of the modulus of the electric field in the standing wav
hence the cosq dependence~it is actually 11cosq, but the
constant term does not play any role in the dynamics!. The
same effective potential is due to the standing wave cre
by the twov2 counterpropagating beams. A pair of cou
terpropagating beams at frequenciesv1 and v2 does not
create a standing wave in the lab frame. However, in a fra
moving at constant velocityv05(v12v2)c/2vL , (v051
in rescaled units! the two laser beams are shifted in fr
quency by the Doppler effect and appear to have equal
quency, building another stationary wave and yet anot
effective optical potential. In the lab frame, this appears a
modulated optical potential moving at velocityv0. By sym-
metry, there are two such effective potentials moving eit
to the right or to the left. These are the cos(q6t) terms in the
Hamiltonian.

This form of the Hamiltonian allows us to point out th
perturbative terms which may be resonant with the unp
turbed frequencies. Wheng50, the system is integrabl
since we recover free motion:Heff reduces toH05p2/2, and
(p,q) are exact action-angle variables. Forg.0, the ab-
sence of any constant of motion generates chaos. Str
scopic plots of phase space trajectories are no longer
strained to follow lines of constantH0, but generically fill
densely a two dimensional volume in phase space. As l
asg is small enough, these volumes remain thin enough
01622
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to be distinguished from regular lines at the scale of fin
precision of the measurements and/or the calculations@cf.
Fig. 2~a!#. Nevertheless, for higher values ofg, some chaotic
layers can be seen@cf. Fig. 2~b!# between regular regions
These consist of portions of phase space where trajecto
are exponentially sensitive on initial conditions. From cla
sical first-order perturbation theory~Ref. @30#, Chap. 2!, we
can infer that a term of the formA cos(sq2rt), where (s,r )
are integers, will create a resonance of widthDp54AA
around the pointp5r /s. In our case,s51, and there exist
only three such resonances. They are located atp50 (r
50) and atp561(r 561). This can be seen in@Figs.
2~a!–2~e!#. For each resonance there exists one stable p
odic orbit and one unstable periodic orbit with periods
approximately 2pur u. In the stroboscopic plot of the surfac
of section, they appear as stable and unstable fixed po
and give rise locally to the well-known phase space port
of a pendulum. In the following, we will denote byI0 ,I1 ,
andI2 the three stable islands associated withr 50,11, and
21, respectively. The physical interpretation of these th
resonances is simple: each resonance is associated with
of the modulated potentials~either static or moving! de-
scribed above. For example, the fixed point at the cente
the I1 resonance is associated with a periodic orbit wh
the atom moves at almost constant velocityv0, being trapped
in the minimum of the moving optical potential. The oth
two components of the potential appear along this orbit
rapidly varying potentials which are adiabatically averag
to constant values. As the atom can be trapped in any of
three modulated potentials, we obtain three stable perio
1-4
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CHAOS-ASSISTED TUNNELING WITH COLD ATOMS PHYSICAL REVIEW E64 016221
orbits at the centers of the three resonance islands.
For a small enoughg, the resonances are well separat

and the motion is quasi-integrable. Chaos will develop wh
the resonances start to overlap. This is the celebrated C
ikov’s overlap criterion @31# and its evaluation givesg
.0.1 in our case. Thus chaos develops in phase spac
gions where the kinetic energy term and the perturbation
of the same order of magnitude. Taking into account hig
perturbation orders ing will shift the position in phase spac
of the previous resonances as well as the frequency aro
their stable points. For instance, it can be seen in Fig. 2~e!
that the stable islandI1 is centered on a point having
momentum slightly larger than11. Perturbation terms o
higher order will also introduce other resonances of sma
size. It is precisely the overlap of the infinite cascade of s
resonances which gives rise to the chaotic layers. Never
less, Chirikov’s criterion already gives a good order of ma
nitude for the onset of chaos. For higherg, the previous three
resonant islands of stability have shrunk inside a large c
otic sea, and will eventually disappear completely@cf. Fig.
2~f!#. Nevertheless a revival of some stable islands can
be observed for some narrow windows of high values ofg.
In our situation, chaos cannot invade the whole phase sp
but is bounded by regular coasts. This is so because c
develops where resonances overlap. Sufficiently far aw
from the resonances, atoms move so fast that they experi
an average time-independent potential. Then chaos is ab
and one recovers~quasi! free motion whenupu@1.

C. Typical classical phase space portrait in the chaos-assisted
tunneling regime

The two resonant islandsI6 , when they exist, are relate
by a discrete symmetry: the time-reversal invariance. As
be seen in Fig. 3, the atoms trapped in one island can
classically escape from it: the boundaries of the islands p
the role of a dynamical barrier which atoms cannot cro
Hence jumping from one island to the other is a classica
forbidden process, though it is expected to occur in quan
mechanics. This is precisely the tunneling situation we
interested in. In fact, we will study the tunneling betweenI1

and I2 for g varying from 0.1 to 0.3 since, in that rang
classical chaos may play a revealing role even though
two stable islands still occupy a significant volume in pha
space.

Note that, in the physical situation described byHeff , tun-
neling occurs in momentum coordinates instead of space
ordinates, as usually presented in standard textbooks.
denomination of ‘‘dynamical tunneling’’@32#, refers to this
situation. The reason for investigating this situation is t
manipulation of cold atoms allows for a better contr
~preparation and detection! of momentum rather than pos
tion.

IV. QUANTUM DYNAMICS

A. Floquet-Bloch theory

When an autonomous Hamiltonian is spatially periodic
is well known @33# that its spectrum is organized in energ
01622
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bandsEn(k). These bands are labeled by a set of intege
the band indexn, and depend continuously on a set of re
numbers, the Bloch numbersk. As En(k) and the associated
eigenfunctions are periodic functions of thek’s, all the
physical information is contained in the first Brillouin zon
For 1D systems, it is simply the interval@2p/Q,p/Q#,
whereQ is the spatial period of the Hamiltonian.

When the Hamiltonian is time periodic, with a periodT,
the analog of the Bloch theory is the Floquet theory@34–36#.
The eigenvalues of the evolution operatorU(t1T,t) over
one period take the form e2 ieT/\eff. Thee ’s aret-independent
real quantities which are called the quasienergies of the
tem. Due to the time periodicity, the quasienergy spectrum
well as the associated eigenfunctions are now invariant un
e°e12p\eff /T.

For Heff , the application of Bloch and Floquet theorem
with Q5T52p yields a spectrum made out of quasiener
bandsen(k), wheren goes over the whole set of integers~for
a detailed derivation, see Appendix B!. For brevity, we will
define un,k,t&, the ket at timet with Bloch anglek, with
quasienergyen(k), which is a solution of the Schrodinge
equation@following the notations of Appendix B, we hav

set un,k,t&5
def

ucen(k),k(t)&#. We will also define un,k&

FIG. 3. Plots of some trajectories in phase space for differ
initial conditions (g50.1). InA, we display a typical Poincare´ sur-
face of section as in Fig. 2, i.e., stroboscopic plots which are fol
according to the spatial periodicity. The small black disks sh
some initial conditions. InB and C, trajectories are plotted ever
2p/100 and, unlike inA, we let q(t) evolve continuously outside
@2p,p#. Trajectoriesb and f are trapped in theI1 and I0 reso-
nance islands, respectively. Trajectoriesa ande are two examples
of regular quasifree motion.c andd correspond to chaotic motion
their initial conditions~at t50) lie in the chaotic sea of Fig. 2~d!.
1-5
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5
def

un,k,t50&. As it can be seen in Fig. 4, the band spectr
has the topology of a torus since it is both periodic
quasienergy~with period \eff) and Bloch number~with pe-
riod 1).

B. Numerical calculation of the Floquet eigenstates

As derived in Appendix B, the Floquet eigenstates c
be obtained by a diagonalization of the Floquet-Blo
operatorK̃,

K̃~ p̂,q̂,t,k!5
~ p̂1\effk!2

2
2g cosq̂~11cost!2 i\eff

d

dt
,

~5!

with periodic boundary conditions in both time and spa
The eigenvalues, which depend on the Bloch vectork, are
the quasienergies of the system. The band spectrum is s
metric with respect to the axisk50, since operator 5 is in
variant under the transformationsk°2k andp°2p. From
the expression of the Floquet-Bloch operator and the bou
ary conditions, it is very natural to expand the eigenstates
a basis set composed of products of the typef lm(t,q)
5exp(int)exp(imq), which automatically obey the periodi
boundary conditions. In such a basis, the operatorK̃ has very
strong selection rules, namely,

uDnu<1 and uDmu<1 ~6!

All matrix elements violating one of these selection rules
zero. Hence the matrix representing the operatorK̃ in this
basis is sparse and banded, and all matrix elements
simple analytical expressions. This is well suited for nume
cal diagonalization~powerful algorithms exist, for exampl
the Lanczos algorithm!. All the numerical results presente
here use this method. We checked that the effect of the t
cation of the basis is negligible: the size of the Floquet m

FIG. 4. For a Hamiltonian that isQ periodic in space andT
periodic in time, the quasienergy spectrum is made of bands tha
2p/Q periodic in the Bloch numbers and 2p\eff /T periodic in
quasienergies. Such a spectrum is shown here for Hamiltonia
(Q52p, T52p), with g50.18 and\eff53.1787.
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trix is considered to be sufficiently large when increasing
modifies the value of the quasienergy on the scale of
numerical noise only, say 10215 in double precision. Not
only is this criterion a proof of the algorithmical conve
gence, but it also is a safeguard against numerical discre
cies, since we are looking for exponentially small quantiti

C. Husimi representation and classification
of the quantum states

Classical dynamics is very illuminating when describi
the statesun,k,t&. In order to strengthen the corresponden
between classical phase-space structures and quantum s
it is convenient to work with the Husimi representation
quantum states@37#.

Such a representation associates, with each quantum
uc&, a phase space functioncH(p,q) ~wherep andq are real
numbers! defined by

cH~p,q!5
def

Ncu^zuc&u2, ~7!

whereuz& is the normalized coherent state corresponding
the complex number z5(q1 ip)/A2\eff. Nc is a
(p,q)-independent normalization factor. Becauseuz& is a
minimal Gaussian wave packet with average momentump
and average positionq, the Husimi functioncH(p,q) con-
tains some information about the degree of localization
uc& in phase space.

The minimal cell size in phase space, allowed by t
Heisenberg inequalities, is\eff . Let us see how classica
phase space structures of a typical size larger than\eff are
mirrored at the quantum level. In Figs. 5 and 6 we plot so
values ofen(k) corresponding to Hamiltonian 3 for specifie
fixed values ofg and\eff . von Neumann–Wigner argumen
@38# claimed that, generically, no exact degeneracy can
cur: rather one obtains avoided crossings. Of course, th
relevant provided the minimal energy splitting is greater th
the resolution in energy. Some Husimi functions are plot
in Figs. 5 and 6@~a!–~f!#.1

In Appendix B, it is shown that we have

vn,k5
def1

TE0

T

^n,k,tu p̂un,k,t&dt5
1

\eff

]en

]k
, ~8!

uz,k&5
def

(
mPZ

eimkQuz1mQ&, ~9!

and define, for instance,

1A technicality should be mentioned here:uue,k& and uce,k& obey
some spatial boundary conditions which are lost when working w
their Husimi representations, essentially because the coherent s
do not fulfill these properties themselves. To deal with spatia
~quasi!periodic phase space functions, it is necessary to unfold
coherent states@39# into

re

3
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cn,k
H ~p,q,t!5

def

Nz^z,kucn,k~t!& z2. ~10!

which generalizes the velocity theorem~Ref. @33#, Appendix
E! to periodic time-dependent Hamiltonians.

Figure 5~b! shows an example of the Husimi represen
tion of a state with sufficiently high average velocity to
like a free eigenstate ofH0. Far from quasidegeneracies it
localized in a narrow strip of widthDp;2p\eff /Dq;\eff
~sinceDq covers 2p), and which is centered on one of th
two classical phase space trajectories of energy aboutvn,k

2 /2
@compare with Fig. 2~e!#. Its quasienergy band~Fig. 5! is an
arc of the parabola of the free motion, but can hardly
distinguished from a straight line of slopevn,k if k is re-
stricted to one Brillouin zone. We will naturally call thes
states quasifree states.

Some states have their Husimi functions localized in
resonant stable islands~in I0 but also inI6). The number of
these states is semiclassically given by the volume of th
islands divided by 2p\eff . Far away from quasidegenera
cies, these states are at any time centered on the stable
odic orbit: this can be explained within a semiclassical
proach, and can be observed in Fig. 5~c! for a state localized
in I0, and in Figs. 6~d! and 6~e! for states inI2 and I1

FIG. 5. Quasienergy bands forg50.18 and\eff50.2037 and
some Husimi representations of typical states. In~b! we show a
quasifree state with a well defined average velocity~the derivative
of the energy level with respect tok) localized in phase space o
regular trajectories@compare with Fig. 2~e!#. On this scale, the
avoided crossings with other bands cannot be resolved. In~c! we
show a state localized in the central stable islandI0 ~actually the
‘‘ground state’’!. Far from quasidegeneracies the average velo
of this state is zero. In~a! we give an example of a chaotic stat
whose Husimi function is localized in the chaotic sea@compare with
Fig. 2~e!#. Unlike the former states, the average velocity fluctua
when the Bloch anglek is varied. The band spectrum is symmetr
with respect to the axisk50, since operator 5 is invariant under th

transformationsk°2k andp̂°2 p̂. The tunneling situation due to
the time-reversal symmetry corresponds to the dashed squared
~aroundk50), which is enlarged in Fig. 6.
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respectively. Their average velocity as well as their Hus
functions depend exponentially weakly on the Bloch para
eterk.

The last class of states which can be encountered co
sponds to chaotic ones, i.e., states whose Husimi funct
are negligible on a typical distance ofA\eff out of the chaotic
seas@cf. Fig. 5~a!#. Unlike the previous ones, their Husim
functions are very sensitive to any variation ofk since they
are delocalized in the whole chaotic sea which spreads o
all elementary cells. The large classical distribution of po
sible velocities is to be linked to the very fluctuating slop
of the quasienergies ask is varied.

D. Tunneling states

Although the system as a whole is of course time-reve
invariant, this is no longer true for its restriction at a fixe

value k of the Bloch vector. Indeed, the operatorK̃ is not

time reversal invariant, because of the crossed termkp̂. In
other words, the time-reversed partner of a state with a Bl
vectork is a state with a Bloch vector2k. It is only at the
special valuek50 ~and also k51/2 since k is defined

modulo 1! that K̃ is invariant under time-reversal symmetr
Therefore, it corresponds to the typical situation of tunnel
betweenI1 and I2 . Every state localized in an islan
around upu51 is quasidegenerate with another one. The
doublets represent a symmetric and antisymmetric comb
tion of states localized in one island only@cf. Fig. 6~f!#. The
energy splittingDen of these states fork50 is precisely the
signature of tunneling: it isp\eff divided by the typical time
an atom takes to oscillate from one island to its tim
reversed image, i.e., to reverse the sign of its velocity.

y

s

one

FIG. 6. Quasienergy bands forg50.18 and\eff50.2037 and
some Husimi representations of typical states. This is a zoom of
dashed squared zone in Fig. 5. ForkÞ0, one can find states like
those in~d! or ~e!, whose Husimi function is localized in one stab
islandI2 or I1 @compare with Fig. 2~e!#. In the frame, where the
center of the island is fixed, these states correspond to
‘‘ground’’ states~some excited states may of course exist if\eff is
small enough, as can be seen in Figs. 12 and 13!. For k50, we
recover time reversal symmetry through the existence of quas
generate doublets of symmetric or antisymmetric combinatio
This is a typical tunneling situation: following the state in~e!
~which has an average velocity about11) adiabatically withk, by
decreasingk we obtain a state in~d! that has a reversed velocity
This reversal of the velocity is a classically forbidden process~com-
pare with orbitb in Fig. 3!.
1-7
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V. CHAOS-ASSISTED TUNNELING

A. Large fluctuations

After having selected the two quasienergy bands co
sponding to the two states which are localized most dee
inside the islandsI6 , we are able to plot the splitting as
function of \eff . The great advantage of studying fluctu
tions when the effective Planck constant is varied is tha
does not affect the classical dynamics. The behavior of
splitting is very different whether chaos is present at the\eff
scale or not. In the chaotic regime~cf. Figs. 7 and 8!, that is
when \eff varies in a range where chaotic seas can be
solved, the splittings vary rapidly versus the change of a
parameter, in our case\eff . Moreover, the variations of the
splittings, despite being perfectly deterministic, are app
ently erratic—without any regular structure—and cover s
eral orders of magnitude. They show that direct coupling
the chaotic sea is the key mechanism for their understand
and are a signature of chaos-assisted tunneling@40,41#. In
fact these huge fluctuations are reminiscent of the unive

FIG. 7. Fluctuations of the energy splittingsDen between pairs
of symmetric or antisymmetric states localized in theI6 resonance
islands~here shown for the ‘‘ground state’’ inside the island!. The
classical dynamics is fixed atg50.18@compare with Fig. 2~e!#. The
existence of large fluctuations over several orders of magnitude
signature of chaos-assisted tunneling. On the average, lnuDen

u ap-
pears to decrease more or less linearily with\eff

21 except for the
plateau at 15<\eff

21<30.

FIG. 8. Fluctuations of the energy splittingsDen between the
pair of symmetric or antisymmetric states (\eff

21 is fixed at 19.309)
as a function ofg. Again, large fluctuations over several orders
magnitude are a signature of chaos-assisted tunneling. The g
increase withg is due to the growth of the chaotic sea asg in-
creases; see Fig. 2.
01622
-
ly

it
e

e-
y

r-
-
o
g,

al

conductance fluctuations observed in mesoscopic syst
@42,43# since tunneling is nothing other than wave transp
from one stability island to the other. In contrast, in the reg
lar regime where chaotic seas are smaller than\eff , the split-
tings are expected to vary smoothly@6#.

In Fig. 7, we show the splittings of the pair of stat
localized at the center of the resonances islandsI6 , as a
function of \eff . They display huge fluctuations over abo
four orders of magnitude while the general trend is a
crease as\eff →0. Similarly, when plotted as a function ofg
~see Fig. 8!, they also display large fluctuations. The gene
trend here is a fast increase of the typical splitting withg;
this is associated with a shrinking of the regular island wh
g increases, which results in an increasingly large tunne
probability. The overlap of the regular states~still supported
by the islands! with the chaotic states increases. Therefo
the coupling between the two components of the tunne
doublets which involves the chaotic states increases as w
In order to understand both the general trend and the or
of the fluctuations, two points of view can be used: a qu
tum point of view and a semiclassical one.

B. Semiclassical interpretation

If the chaotic sea is large, it is rather intuitive that it ca
be easier first to tunnel from the center of the regular isla
to the chaotic sea, then propagate freely in the chaotic se
the vicinity of the symmetric island, and finally tunnel to th
center of the symmetric island than directly tunneling b
tween the two islands. Actually, a rigorous quantitative tre
ment of this problem is highly nontrivial, and is beyond th
scope of this paper. The crucial point is that because
chaotic sea is explored rapidly and densely, it does not c
anything to cross the chaotic sea. Tunneling trajectories
be viewed as complex trajectories~i.e., with complex posi-
tion and momentum! connecting the symmetric islands. Th
tunneling amplitude associated with a single tunneling o
is essentially exp@2Im(S)/\eff#, whereS is the complex ac-
tion of the tunneling orbit. In a typical one-dimensional sy
tem ~like a double well!, there is only one such trajectory a
each energy, and the tunneling rate thus displays the w
known exponential decrease. In a chaotic system, it may h
pen that there is a whole set of tunneling trajectories wh
imaginary parts of the action are essentially identical. In su
conditions, the actual tunneling amplitude is the sum of
individual amplitudes~each taken with its proper phase!
which results in a very complicated quantity which fluctua
when parameters are changed. In some sense, this is a
gous to the speckle pattern obtained when plenty of opt
rays with various geometries are randomly interfering. T
is the very origin of the~deterministic! fluctuations of the
tunneling rates, and consequently of the energy splittin
The general trend~exponential decrease! is related to the
typical imaginary part of the action of the tunneling traje
tories.

C. Quantum point of view

A complementary quantum point of view is possible. O
can divide the eigenstates of the system into two subs

a

bal
1-8



n
et
tw
ub

d
o
te

ea
ta
si
er
a

sta
o
li
th
in
ica
te

d
tly
y
.

b
la
ss
io

b
e
y
n
-

ou
th

i
a
s

io

ou
e
ti

tes
of

ing
ges.

chy
ge

s

nd
see

he
tem.
e
tic
as

of
e-

e,

m-
m-
ig.

ea-
ruc-

-

can

a-

CHAOS-ASSISTED TUNNELING WITH COLD ATOMS PHYSICAL REVIEW E64 016221
‘‘regular’’ states localized in the resonance islands, a
‘‘chaotic’’ states localized in the chaotic sea. The two s
are only weakly coupled by tunneling. Because there are
symmetric islands, the regular states are essentially do
degenerate~neglecting direct tunneling!. The chaotic sea
also has twofold symmetry, and states can be classifie
even or odd. The two series of odd and even states ign
each other. Hence, when by accident, an even chaotic sta
almost degenerate with an even regular state, they repel
other: at the same time, there is usually no odd chaotic s
with the same energy. Thus the odd regular state is not
nificantly repelled. Hence the splitting appears due to diff
ent shifts of the even and odd regular states. Close to
avoided crossing between either the odd or even regular
and a corresponding chaotic state, a large splitting is
tained. Conversely, far from any avoided crossing, the sp
ting is small. Hence the fluctuations are associated with
existence of a large number of successive avoided cross
The typical size of these fluctuations is related to the typ
size of the avoided crossings, while the typical parame
range of these fluctuations is the distance~in parameter
space! between two consecutive avoided crossings. A mo
implementing this idea~each regular state is independen
and randomly coupled to the chaotic states of the same s
metry! was proposed in Ref.@44# and further used in Ref
@45#. In this model, the chaotic states are modeled by
Hamiltonian belonging to the Gaussian orthogonal ensem
of random matrices while the coupling between the regu
state and the chaotic state is also taken as a random Gau
variable. With these assumptions, the splitting distribut
can be calculated. Let us denote the mean level spacing
tween chaotic states byD, and the typical strength of th
coupling between the regular states and the chaotic sea bs.
Only if s!D is a regular state weakly coupled to the co
tinuum~if this inequality is violated, the regular state is com
pletely diluted in the chaotic sea by the strength of the c
pling!. We thus assume the inequality to be valid. Then,
distribution of splittingsDe is given by

P~De!5
1

p

s

s21De2
for uDeu,s,

P~De!.0, for uDeu.s, ~11!

where

s5
A2ps2

D
. ~12!

The interpretation is rather simple. The maximum splitting
observed exactly at the avoided crossing where the levels
shifted by6s/2 on both sides of their unpertubed position
Hence the splitting cannot be larger than abouts. In fact,
there is an exponentially decreasing tail in the distribut
P(De) ~associated with the Gaussian fluctuations ofs)
which we do not detail here because it is not relevant in
present case.s is the typical splitting one expects to observ
it corresponds to a shift typically due to the closest chao
state. The full distribution is a~truncated! Cauchy distribu-
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tion: it is obtained as the overall effect of all chaotic sta
lying above or below in energy. Note that, in the absence
a truncation of the Cauchy distribution, the average splitt
is not defined because the corresponding integral diver
Hence it is better to discuss the typical splittings rather than
the average splitting. It is the slow decrease of the Cau
distribution for large splitting that is responsible for the hu
fluctuations in the splittings, which can be as large ass@s.
This is reminiscent of random processes such as Le´vy flights
where rare events are dominant@46#.

In Fig. 9, we show the statistical distribution of splitting
that we obtain numerically in the chaotic regime~normalized
to the typical splitting in order to work withs51). The
distribution is shown on a double logarithmic scale, a
compared with the Cauchy distribution. One can clearly
two regimes: for smalluDeu, P(uDeu) is almost constant and
decreases with a slope -2 for largeuDeu. The agreement with
the Cauchy distribution is very good, which proves that t
model catches the essential part of the physics in this sys

The typical splittings is proportional to the square of th
tunnelling matrix element from the initial state to the chao
sea. Hence it is expected to decrease roughly
exp@22 Im(S)/\eff#, whereS is the complex action of tun-
neling orbits~the mean level spacing scales as a power
\eff , and is thus a correction to the main exponential d
crease!. This is roughly what is observed in Fig. 7. Not
however, that there is a plateau in the range 15<\eff

21<30. A
similar observation was made in Ref.@47#, Fig. 3. Although
this is not a crucial problem~the statistics of the splitting
distribution is not affected!, a detailed explanation of this
behavior is still lacking~however, see Ref.@47#!. Finally, it
should be interesting to calculate explicitly some of the co
plex tunneling orbits in our specific system in order to co
pare the imaginary part of their actions with the slope in F
7. This work is currently in progress.

VI. EXPERIMENTAL SIGNAL

As can be seen in Fig. 5, the splittings we want to m
sure correspond to very tiny scales among the other st

FIG. 9. Statistical distribution of the energy splittingsDe ~nor-
malized to the typical splitting! between pairs of symmetric or an
tisymmetric states localized inside theI6 resonance islands (g
50.18,k50), represented on a double logarithmic scale. One
clearly distinguish two regimes: constant at smallDe followed by a
1/De2 decrease, and finally a rapid cutoff~not shown in the figure!.
The solid line is the Cauchy distribution predicted by random m
trix theory.
1-9
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tures in the band spectrum. For\eff.0.1 e.g., the tunneling
times are about\eff /De;103 times the typical period (T on
the order of a fewms). The observation of atoms havin
reversed their velocity is therefore still possible since, fo
ms, spontaneous emission has not begun to spoil our
namical model. Nevertheless, measuring tiny splittin
which are hidden so deeply in the spectrum is far from be
straightforward. Several steps are needed: preparation o
initial state, the experiment itself~where chaos-assisted tun
neling takes place!, and an analysis of the final state. Durin
the first step, one must prepare a state localized inside
resonance island, i.e., localized both in position and mom
tum spaces. The idea is to use an adiabatic transfer from
initial state extended in position space by slowly branch
the effective potential. Although the second step looks triv
~one just has to wait!, the dispersion in the vector anglek
makes things much more difficult as only thek50 states are
related by time-reversal symmetry~see Sec. IV D!, and thus
tunnel relatively fast. However, it is possible to overcom
this difficulty, as explained below. Finally, the detectio
should be rather easy, using velocity dependent Raman
sitions. We now explain in detail how the various steps c
be worked out.

A. Adiabatic preparation of the atoms in one lateral
stable island

The first step consists of preparing an initial cloud of co
rubidium atoms in order to have it located in one of t
stable island, e.g.,I1 , only. Using a standard magneto
optical trap, one can obtain a more or less thermal distri
tion of atoms with a velocity on the order of a few times t
recoil velocity v rec5\kL /M56 mm/s. However—as
shown below—this is probably too much for a good me
surement of the tunneling splitting. Additional techniqu
~side-band cooling@48#, Raman cooling@49,50#! make it
possible to obtain a subrecoil velocity distribution, i.e.,
oms with an average momentump0 and a thermal dispersio
Dpx5MDv5Mav rec with a significantly smaller than 1
We chose the initial momentum to beMdv/2kL , so that, on
average, the atoms exactly follow one of the sliding stand
wave created by a pairv6 of laser beams.

The next step is to slowly~i.e., adiabatically! switch on
the standing waves. During this phase, the spatial period
is preserved, and the Bloch vectork is thus a conserved
quantity. Initially, the momentumpx is nothing but the Bloch
vector ~modulo a integer multiple of the recoil momentum!.
Thus, by preparing a subrecoil initial state, one popula
only a small range ofk values and, for eachk value popu-
lated, a single state~momentum eigenstate!. In other words,
the initial momentum distribution becomes a statistical m
ture of Bloch states withDk5a/2 in a single energy band
More generally, if the initial momentum distribution is not
subrecoil one, but has a width equal toa recoil momenta
~with a.1), abouta bands will be populated.

Switching on the standing waves increases the optical
tential V0 and thereforeg from zero and enlarges the res
nance islands. In the frame moving with velocityp0 /M
5dv/2kL , the atoms ‘‘feel’’ a pendulumlike potentia
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2 g cosq ~in scaled coordinates! in addition to some rap-

idly time varying terms. Consequently, they will adiaba
cally localize in the potential minima, that is at the center
the resonance island. Increasingg successively localizes a
increasing number of states inI1 . The switching time must
be sufficiently long as compared to the beating period~in this
case the discarded terms are still rapidly oscillating! but also
to the inverse of the minimum energy gap~of the order of
\eff

21 if Dk is sufficiently narrow!. In order to trap all the
initially populated states,g has to be sufficiently large. For
given Bloch angle, we want to localize thea first states. The
quantum energies of a pendulum are given by the eigen
ues of the Mathieu equation~Ref. @51#, Chap. 20! ~see Figs.
10 and 11!. For a pendulum whose Hamiltonian is

FIG. 10. Comparison between the quasienergies of Hamilton
3 ~lines! and the energies~circles! obtained from the pendulum
approximation in the stable islandI0 (\50.0976, k50). The
avoided crossings that appear atg;0.07 illustrate the influence o
classical narrow chaotic seas on the quantum properties. The
simi distribution of the second excited state localized inI0 for g
50.03 is shown.

FIG. 11. Comparison between the quasienergies of Hamilton
3 ~lines! and the energies~circles! obtained from the pendulum
approximation in the stable islandsI6 (\50.0976, k50). The
three upper Husimi plots show how a quasifree state doublet
comes progressively localized in a stable island wheng increases.
The lower Husimi plot corresponds to the ‘‘ground’’ state of th
pendulum approximation in the stable islandsI6 for g50.03.
1-10
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Hpend5
p2

2
2

g

2
cosq, ~13!

the phase space volume enclosed by the separatri
16Ag/2. Semiclassically, this corresponds to 16Ag/2/
(2p\eff) states. This number will be of the order ofa when
g reaches the value

gadiab.
~ap\eff!

2

128
. ~14!

Figures 10 and 11 show the exact energy levels of
system together with the ones using the pendulum appr
mation and the Mathieu equation, as well as plots of selec
Husimi representations for few eigenstates. This allows u
check the following.

~i! The pendulum approximation works well in the regim
of interest, up to aboutg50.1.

~ii ! The semiclassical estimate of the number of trapp
states is sufficiently accurate for our purpose.

~iii ! The Husimi representations of the trapped states
well-localized: especially, the states in Fig. 11 have t
well-separated components in theI1 andI2 islands, mean-
ing that we are in a real case of tunneling.

~iv! During the initial increase ofg, the ‘‘ground’’ state is
well isolated~in energy! from the other ones, which mean
that an adiabatic preparation is possible.

Nevertheless, for this adiabatic preparation to be valid,
must make sure thatg has not reached a range where cha
has non-negligible effects on quantum properties. Physica
we want chaotic layers atg5gadiab to have a small volume
compared to the Planck constant. From Fig. 10, we can
tain the upper bound limit ofg by estimating when the
~small! avoided crossings become too large to be passed
batically. For 1/50,\eff,1/5, we observe that chaos has
influence forg,gchaos.0.04.

The adiabatic preparation of all the atoms in one sta
island will be achieved ifgadiab,gchaos, that is, if the atoms
are cold enough to have

a,
8A2gchaos

p\eff
.

0.7

\eff
. ~15!

In every situation considered in the following, we will hav
to check that this condition is fulfilled. Next we have
reach the desired value forg (.0.18) in the chaotic regime
while preserving the state in the island. This will be achiev
if g is increased sufficiently fast so that all encounte
avoided crossings with chaotic states are passed diabatic
Hence the whole preparation of the initial atomic state p
ceeds by two steps: a first adiabatic increase ofg at the very
beginning to significantly populate regular states in one
land, followed by a diabatic increase ofg to preserve them in
the chaotic regime.

B. How to force tunneling?

As discussed in Sec. IV D, the tunneling splitting is sm
only for a Bloch vectork50. As it is not presently possible
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to prepare only this value ofk in a real experiment, it seem
at first sight that only a small fraction of atoms~close to
k50) may effectively tunnel, hence considerably reduci
the signal to noise ratio. A solution is to force all atoms to
through thek'0 region. The simplest idea is to impose
slow increase of thek value, by adding a constant extern
forceF from outside. Then the full Hamiltonian that govern
the dynamics is

H8~p,q,t!5H~p,q,t!2qF. ~16!

The potentialV induces a dynamical drift in the Bloch angle

d

dt
k~t!5

1

\eff
F. ~17!

It is shown in Appendix C that this relation, which is we
known in the time independent case~see, for instance, Ref
@52#, Chap.6!, remains valid whenH is periodic in time.

A convenient way of realizing experimentally such a co
stant force is to chirp the laser frequencies, that is make
the frequencies drift linearly in time. In an accelerated fram
the laser frequencies appear as constants, and we are ba
our model. However, in this noninertial frame, the consta
acceleration is translated in a constant force; hence the
tem is governed by Eq.~16!. This method has been used wi
cold atoms~see Ref.@24#!.

The global result is a slow drift of thek distribution. This
causes the variousk classes to come successively closer
k50, and thus become able to tunnel. Whether the atom
effectively tunnel or not depends on the time scale on wh
k changes. Ifk varies rapidly, the avoided crossing atk50 is
crossed diabatically, i.e., the velocity distribution will not b
modified. If k varies slowly, it is crossed adiabatically~rapid
adiabatic passage!. The Landau-Zener formula@53# yields a
typical time scale for the crossover between diabatic a
adiabatic crossing.

Figures 12 and 13 illustrate, for\eff50.2037, the drift of
atoms initially localized inI1 ~one energy band! whose dis-
tribution in k covers 1/10 of the Brillouin zone fromk.
21/10 tok.0 ~a subrecoil initial velocity distribution with a
width on the order ofv rec/5). We allow the atoms to evolve
under the forceF in order to obtain a global translation o
1/10 in k. After moving across the splitting atk50, if the
force F is weak to follow the energy level adiabatically, th
average momentum of the atoms has reversed its sign, as
be seen in Fig. 13. Measuring the critical value ofF for this
Landau-Zener-like transition furnishes a means to meas
the splitting. Another possibility would be to modulate th
external force~and thus thek values! periodically in time in
order to induce a resonant transfer betweenI1 andI2 .

In any case, the method may work only if no oth
avoided crossing come into play. Numerical investigatio
show that there are mainly tiny avoided crossings along
energy curve of interest. However, as a general rule, th
are usually a few avoided crossings with similar or larg
sizes than the avoided crossing of interest. If such an avo
crossing is also passed adiabatically, it will of course sp
the momentum distribution. Hence it is crucial for the initi
1-11
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k distribution to be sufficiently narrow to avoid this problem
Hence a subrecoil velocity distribution seems necessary

C. Detection

After the atoms have interacted with the modulat
waves, one can switch off the lasers either abruptly or a
batically ~in which case the atoms adiabatically leave t
resonance island!. In both cases, the atoms which have tu

FIG. 12. In order to measure the tunneling splitting atk50 ~see
Figs. 5 and 6!, the atoms are prepared into states localized inside
I1 resonance island. The average momentum distribution~top
graph! is peaked at a value slightly larger than11 in agreement
with Fig. 2. The initial states occupy one-tenth of the first Brillou
zone, and are represented by the circles in the lower graph.\eff

50.2037, g50.18.) After an adiabatic sliding ofDk.0.1, the
states are populated, and the average momentum distributio
shown in Fig. 13.

FIG. 13. The final states obtained after drift of the Bloch vec
by Dk.1/10 ~the initial state in Fig. 12!. If the force governing the
motion @Eq. ~17!# is chosen such that the sliding is adiaba
through the avoided crossing atk50, the momentum of the tunnel
ing atoms just reverses its sign. If the initial states cover a sm
enough, well-centered, interval of the Brilloin zone, only thek50
avoided crossing is important. Other avoided crossings can be
at k.60.09 ande.0.43. Those are responsible for the moment
dispersion of the atoms, and should be avoided as much as pos
01622
a-

-

neled fromI1 to I2 will end with a momentum close to
2p0. A standard time of flight technique should be enou
to detect them. A more sophisticated technique, based
example, on velocity sensitive Raman transitions@54,48#,
could also be used with a subrecoil resolution if needed@24#.

VII. CONCLUSION

In this paper we have proposed a simple and access
experimental configuration in which the observation
chaos-assisted tunneling should be feasible. It consists o
oms propagating in the light field of two far-detuned mon
chromatic standing waves with slightly different frequencie
However, observing the tunneling effect requires subrec
cooling techniques to conveniently prepare the atom
sample together with a well-controlled experimental pro
dure ~adiabatic preparation of the atomic state in one sta
island followed by a drift of the Bloch vector!. As the tun-
neling period fluctuates over several decades when the
tential strength varies~see Fig. 8!, observing that these fluc
tuations requires a stabilization of the laser intensity at
level of a few percent.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

To derive the effective Hamiltonian@Eq. 2#, we basically
proceed in three steps@55#. First we assume that any diss
pation process can be safely ignored. Indeed for tunnelin
be observable, the phase coherence of the atomic wave f
tion must be preserved during all the process. In our ca
this means that spontaneous emission must be negligibl
can be shown@56# that increasing the laser detuning cons
erably decreases the loss of phase coherence. Hence the
lution will be essentially Hamiltonian, provided that eac
laser beam is sufficiently far-detuned from the atomic re
nance:

ud6u5uv62vatu@G. ~A1!

When this holds, the total Hamiltonian operator for th
two-level system is the sum of three terms: the kinetic
ergy operator describing the center-of-mass motion of ato
of massM, the energy operator for the internal degrees
freedom, and the coupling between internal and external
grees of freedom. In the dipolar approximation, the inter
tion is justdE(x,t), and it does not depend ony andz. The
dynamics alongy and z is just trivially described by free
motion, and can be easily eliminated, since the total quan
state factorizes as a plane wave iny andz. One is then left
with the dynamics alongx which is described by the Hamil
tonian
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ble.
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Hat5
px

2

2M
~ ue&^eu1ug&^gu!1\vatue&^eu

2dE~x,t !~ ue&^gu1ug&^eu!, ~A2!

wherepx is the atomic momentum alongx. ug& and ue& are
the ground and excited states, andd is the atomic dipole
strength connecting them.

Second, we expand the total atomic state as

uC&5cg~x,t !ug&1ce~x,t !exp~2 ivLt !ue&, ~A3!

and we neglect high frequency~optical! antiresonant terms
and suppose that the amplitudes change slowly during
optical period. This is known as the rotating wave appro
mation @57#, and features the averaging procedure to elim
nate fast variables in classical perturbation theory@30#. This
yields the coupled amplitude equations

i\] tcg52
\2

2M
]xx

2 cg2
\V~x,t !

2
ce , ~A4a!

i\] tce52
\2

2M
]xx

2 ce2\dLce2
\V* ~x,t !

2
cg .

~A4b!

In these equationsdL5vL2vat is the mean laser detuning
the star denotes complex conjugation, andV(x,t) reads

V~x,t !5@V1 exp~2 idv t/2!1V2 exp~ idv t/2!#

3cos~kLx!, ~A5!

whereV65d E6 /\ are the Rabi frequencies of each stan
ing wave.

As a final step, we now assume that atoms initially p
pared in their ground state mostly evolve in their grou
state. This means that the whole atomic dynamics is so
determined by the ground-state amplitudecg . For this to
hold, an adiabatic elimination of the excited-state amplitu
@56# must be justified. If the spatial partial derivatives we
absent, Eqs.~A4! would just describe the Rabi oscillatio
phenomenon. It is then known that far off resonance, i
when the frequency separation of the states is much la
than any other frequencies, the Rabi oscillation is very sm
in amplitude. A sufficient condition is

udLu@V6 ,dv. ~A6!

If, in addition, we assume that the excited-state kine
energy is very small~which will be easily achieved with cold
atoms!,

udLu@K ceU px
2

2M
UceL , ~A7!

then an adiabatic elimination of the excited-state amplitu
amounts to neglecting the spatial and temporal derivative
ce in Eq. A4b which is then solved asce.2(V* /2dL)cg
01622
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!cg . It is then easy to see that the ground-state amplit
cg obeys an effective Schro¨dinger equation, with a Hamil-
tonian

H5
px

2

2M
1

\uV~x,t !u2

4dL
. ~A8!

Eventually, up to an irrelevant purely time-dependent te
we obtain

H5
px

2

2M
2V0 cos~2kLx!@u1cos~dv t !#, ~A9!

where V05
def

2\V1V2/8dL and u5
def

(V1/2V2)1(V2/
2V1).

APPENDIX B: FLOQUET-BLOCH FORMALISM

In this appendix, we briefly recall the Floquet-Bloch fo
malism which is used for a quantum problem whose Ham
tonianH is periodic in both space and time. We will deno
T andQ the temporal and spatial periods, respectively.

Let us first consider the time periodicity. We defin
@34,36,58#

K~ p̂,q̂,t!5
def

2 i\
d

dt
1H~ p̂,q̂,t!, ~B1!

where p̂ and q̂ stand for canonical Hermitian operato
whose commutator is@ p̂,q̂#52 i\.

If U(t8,t) denotes the unitary evolution operator fromt
to t8 associated with HamiltonianH, the periodicity of the
dynamics implies thatU(t1T,T)5U(t,0) and

U~t1T,t!5U~t1T,T!U~T,0!U~0,t!

5@U~0,t!#21U~T,0!U~0,t!. ~B2!

This shows thatU(t1T,t) and U(T,0) differ by a unitary
transformation, and hence have the same spectrum~but of
course different eigenvectors!, independent oft. The eigen-
values ofU(t1T,t) have a unit modulus, and can be wri
ten ase2 i enT/\ whereen is the so-called quasi-energy define
modulo 2p\/T. If ucn(t)& denotes the corresponding eige
vector, we can define the Floquet state

uxn~t!&5
def

ei ent/\ucn~t!&, ~B3!

which is by construction periodic with periodT.
Inserting the definition of the Floquet state in the tim

dependent Schro¨dinger equation, we immediately obtain

K~ p̂,q̂,t!uxn~t!&5enuxn~t!&, ~B4!

which means that the quasienergy spectrum is obtained
diagonalizing the Floquet Hamiltonian in the space of tim
periodic functions.
1-13
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The second step consists of making use of the invaria
of H under spatial translations with periodQ. The unitary

translation operatorT̂Q5
def

e2 i p̂Q/\ commutes withK. We can
then use the spatial counterpart of the Floquet theor
namely, the Bloch theorem@33#, and label the eigenstates o
K with the Bloch numberkP@2p/Q,p/Q@ ~the first Bril-
louin zone!, which means diagonalizingK in each subspace
with fixed k. If one defines the Floquet-Bloch states as

uun,k~t!&5e2 ikq̂uxn,k~t!&5ei en(k)t/\e2 ikq̂ucn,k~t!&,
~B5!

where$cn,k(t)&% forms a complete orthogonal eigenbasis
is easy to show that they can be obtained by diagonaliz
the Floquet-Bloch Hamiltonian,

K̃~ p̂,q̂,t,k!5K~ p̂1\k,q̂,t!, ~B6!

on the subspace of time and space periodic functions. In
specific case, the Floquet-Bloch Hamiltonian reads

K̃~ p̂,q̂,t,k!5
~ p̂1\k!2

2
2g~u1cost!cosq̂2 i\

d

dt
.

~B7!

The spatial periodicity of the Floquet-Bloch states leads
a discrete set of dispersion relationsen(k). For fixedn, the
set of all quasienergiesen(k) for k in the first Brillouin zone
@2p/Q,p/Q@ is called thenth band of the system.

Let us now obtain the velocity theorem@Eq. 10#. Using
the above relations, we have

^ce,k~t!u p̂uce,k~t!&5^ue,k~t!u~ p̂1\k!uue,k~t!&

5^ue,k~t!u~\21]K̃/]k!uue,k~t!&.

The derivation with respect tok of the relation

^ue,k(t)uK̃uue,k(t)&5e(k) leads to

^ce,k~t!u p̂uce,k~t!&5
1

\

]e

]k
1 i\

d

dt S ^ue,k~t!u
]

]k
uue,k~t!& D

2S 1

\

]

]k
^ue,k~t!u!K̃uue,k~t!&

2F S 1

\

]

]k
^ue,k~t!u!K̃uue,k~t!&G* .

~B8!

The two last terms on the the right hand side are oppos
since the normalization of theu’s leads to]^ue,kuue,k&/]k
50. Moreover, after time averaging Eq. B8 overT, the total
t derivative vanishes since theu’s are preciselyT periodic
while the time-independentk derivative of the quasienerg
remains unchanged. Eventually,
01622
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^ce,k~t!u p̂uce,k~t!&dt5
1

\

]e

]k
. ~B9!

APPENDIX C: BLOCH ANGLE DYNAMICS

In this appendix we derive Eq.~17!, which is valid for an
arbitrary strength of the constant forceF provided that the
potentialV52Fq remains strictly linear inq. Let us choose
a stateuc(t)& evolving underH85H1V, such that it coin-
cides with a Floquet-Bloch state att50:

i\eff

d uc~t!&
dt

5H8~ p̂,q̂,t!uc~t!& ~C1!

and

uc~t50!&5ucn,k~t50!&. ~C2!

In the interaction picture, we immediately have

i\eff

duc I~t!&
dt

52FU†~t,0!q̂U~t,0!uc I~t!&, ~C3!

where uc I(t)&5
def

U†(t,0)uc(t)&, and whereU denotes the
evolution operator underH. Let uf(t)& be the ket defined by

uf~t!&5
def

e2 iFq̂t/\effuc I~t!&. ~C4!

It is straightforward to obtain its evolution,

i\eff

duf~t!&
dt

5G~t!uf~t!&, ~C5!

where

G~t!5
def

F~ q̂2e2 i tFq̂/\effU†~t,0!q̂U~t,0!ei tFq̂/\eff!.
~C6!

SinceU†(t,0) commutes with the translation operatorT̂Q , it
can be checked that@G(t),T̂Q#50. The evolution ofuf(t)&
underG will therefore preserve its initial quantum numberk,

T̂Quf~t!&5e2 ikQuf~t!&, ~C7!

for all t. Thus, making use of Eqs.~C3! and ~C4!, we have

T̂Quc~t!&5e2 i (k1Ft/\eff)Quc~t!&, ~C8!

which shows thatuc(t)& is actually a Bloch wave with a
Bloch angle given byk(t)5k(0)1Ft/\eff , even if it
spreads among the quasienergy bands@39,38#.
1-14
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