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Chaos-assisted tunneling with cold atoms
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In the context of quantum chaos, both theory and numerical analysis predict large fluctuations of the
tunneling transition probabilities when irregular dynamics is present at the classical level. Here we consider the
nondissipative quantum evolution of cold atoms trapped in a time-dependent modulated periodic potential
generated by two laser beams. We give some precise guidelines for the observation of chaos-assisted tunneling
between invariant phase space structures paired by time-reversal symmetry.

DOI: 10.1103/PhysReVE.64.016221 PACS nunier05.45.Mt, 05.60.Gg, 32.80.Qk, 05.45.Pq

[. INTRODUCTION In this paper, we consider 1D time-dependent dynamics,
one of the simplest cases where irregular motion can appeatr,
During the 1970's and 1980's it gradually became clearand we study chaos-assisted tunneling. Our effective Hamil-
that classical Hamiltonian chaos profoundly affects the temtonian model, which is derived from an experimentally
poral evolution and spectral properties of the correspondingchievable situation, exhibits three main properties. First, its
quantum system as compared to the integrable ¢age classical dynamics is invariant under time reversal. Second it
Some of these featurédynamical localization, scars of pe- is controlled by a single real external paramete(for y
riodic orbits[2], et share striking similarities with concepts =0 the dynamics is integrable and chaos develops more and
originating from condensed matter physics such as weak ansore in phase space asis increasefl Third, there exists in
strong localizatioi3]. In fact these phenomena can be recasphase space, for a whole continuous rangeyog pair of
in terms of wave transport in disordered media, theas)  stable islandg, andZ_ which are time-reversed images of
randomness being of statistical or dynamical origin. In thiseach other. By stable islands we mean the set of regular
context, it is important to understand the mechanisms undeglassical trajectories in phase space which stay near a stable
lying a key feature of wave propagation which has no clasequilibrium point or near a stable periodic orbit of the sys-
sical analog: tunneling. tem. In this case, no real classical orbit started in one of these
Tunneling refers to any wave process which is classicallyslands can go into the other one. However, the quantum
forbidden toreal solutions of the Hamilton equations. For dynamics of a wave packet, initially prepared in one island,
one-dimensionallD) autonomous systems, it is well known will display a periodic behavior. The wave packet oscillates
that the quantum tunneling probability through an energetidrom one island to its time-reversed imads3]. In the quan-
barrier can be evaluated semiclassically with the help of clastum spectrum this tunneling process appears via the exis-
sical complexsolutions of the Hamilton equatiofd,5]. The  tence of nondegenerate energy doublets whose splitting gives
direct generalization of this procedure to higher dimensionathe inverse of the tunneling time betwe®&p andZ_ . Vary-
systems is straightforward for separable dynamics, but is aing y slowly modifies the geometry of the islands them-
ready subtle for integrable, but no longer separable, dynanselves. The crucial point is that it will drastically change the
ics [6,7]. In the generic case of chaotic dynamics, it evenclassical dynamics for some initial conditions lying between
proves extremely hard to handle, and the situation, until rethe islands. For small enough the chaotic layers are too
cently, seemed hopeless. Indeed, in the presence of chaasnall to play a significant role dt scales, and hence cannot
the analytical and topological properties of the classicah-  influence the quantum behavior of the system, which is es-
plexifiedphase space are far from trivial. During the last tensentially still regular. For larger values, but still before the
years however, theoretical and numerical investigations ostable islands are completely destroyed, there is a chaotic
autonomous 2D and time-dependent 1D Hamiltonian sysregime where varying or # (£ being in this case Planck’s
tems have started to highlight some mechaniggrsl2], and  constant divided by some typical classical actiaione in-
much insight has been gained on the influence of such clastuces large fluctuations, of several orders of magnitude, of
sical nonseparable dynamics. Experimental evidence of sudhe doublet splittings around their mean value. This in turn
mechanisms, which is still lacking, would be of great interestcorresponds to large fluctuations of the tunneling periods.
especially in the light of the subtle interplay between inter-These large fluctuations, induced by small changes of any
ferences and disorder. parameter, are a signature of the so-called “chaos-assisted
tunneling” regime. This has been extensively studied both
theoretically and numerically in the situation described
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tion of y, be it noise or dissipation, will dramatically wash Wy W+
out or destroy the signal. The observation of this highly fluc- ~ " ~" >~—"> -~
tuating tunneling regime thus requires both an accurate con\/\w/\/\‘> "/\/?/\/

trol of the dynamics of the preparation of the initial state and y

of the analysis of the final state. The observation of doublet z

splittings is rather common in molecular physics, when a 2/

discrete symmetry like parity is present. In most cases, the

splitting is due to standard tunneling either through an en- FIG. 1. Experimental configuration under consideration: a cloud
ergy barrier or a dynamical barri¢see, for example, Refs. of two-level atoms is illuminated by two monochromatic standing
[15-17). It was suggested in some cagé$,19 that this Wwaves with f_requencie@»t=th 6w_/2 (§w<wL). All fielc_is_ are
splitting is influenced by the existence of chaos in the claslinearly polarized along the same direction, r_:\no_l are sufficiently far
sical dynamics. Thus molecular physics provides us Witﬂjetuned from the atomic resonance so that dissipation effects can be
systems where chaos-assisted tunneling could be experimelf§nored-

tally observed. However, one usually lacks an external pa-

rameter which could allow for the observation of the fluctua-motion of the atom. By appropriately tailoring the space-time
tions of the tunneling rate. dependence of the light field, one can then produce a great
_ Atom cooling techniquepl4] provide systems which ful-  variety of potentials for the external atomic motion, as
fill all the desired requirements. They allow an accurate maproven by the atom cooling community. Note, however, that
nipulation and control of internal and external degrees okne atom-light interaction is also responsible for a dissipative
freedom, and are a useful tool_to prqduqe situations Wherﬁhenomenorﬁreal absorption of a photon followed by spon-
the wave character of the atomic motion is essefi#i@]. A 3neous emissigrwhich shortens the temporal coherence of
great variety of interaction potentials can be produced to iNthe atomic wave function. By using a laser light far detuned

frIT:Jenr(]:etithﬁ "’I‘éom'rﬁ Tortiloln, rb?ir:t by mrelansrolz n;:o(r)nci?er;eiotuprom any atomic resonance, it is possible to control this stray
agnetic fields, material gratings, or faser ight. tuptical a phenomenon and maintain it at a reasonably low rate. In the

tices with crystalline or quasicrystalline ordgt1-29 can following, we shall describe a simple physical situation for
be easily produced where atoms mimic situations usually 9. pie phy

encountered in condensed maft24,25. Dissipation(spon- atoms twhere chaos-assisted tunneling is expected to be
taneous emission and atom-atom interagtisneasily con- ~ Présent
trolled, and coherence times of the order of 10 ms can readily

be achieved. This is why cold atoms are a unique tool to B. Experimental configuration
study transport properties of waves, be it quantum ch26ks Although the internal structuréayperfine Zeeman sublev-
or weak localizatior{27,28. els) are of major importance in atom cooling, here, for sim-

Thi§ paper is organ?zed as folloyvs. In Sec. Il We.explainpncity, we will model the atom by a two-level systefas
the origin of the effe'ctlve 'Ham|lton|an for the experimental only one optical transition usually governs the dynanics
situation under consideration. In Sec. Ill we study the correyy.o' -onsider a dilute sample of identiolut independet

ls_|pon_(|llt|ng_ Cla.ss'cﬁl dy??m'ci' and shotw dvl’hy th|!s eflfecé'vqwo—level atoms propagating in the light field configuration
amiftonian IS relevant for chaos assisted tunneling. In SeG. o 510 by two monochromatic standing waves with frequen-
IV we quickly review some of the usual theoretical tech-

. . . . L i +=w E < .
nigues when dealing with both space and time periodic quan(Eles wx=w = 0wl2 where dw<w . We denote the

tum dvnamics. We also illustrate how som ntum T roundstate and excited state of each atornjd)yand|e),
um dynamics. We aiso lliustrate how Some quanium spectrgh,oqe jayels being connected by an electric dipole transition
properties have a natural classical interpretation. In Sec.

we show, with the help of numerical experiments, how f angular frequencyog and widthI'. All atoms are sup-
' €lp ol . P ' osed to be initially prepared in their ground state. Each
chaos-assisted tunneling arises in our system, and then ex:

. o . . . “Standing wave is produced along thexis by two counter-
gS\;gtte]gv:ot(;oorgzeé\éﬁéltulgir? rfeariqgi(fse”mem' Section Vil is propagating laser beams, and we suppose all fields to be
9 : linearly polarized along the axis (see Fig. 1 After a suit-

able choice of space-time origin, the total electrical field
Il. EFFECTIVE HAMILTONIAN strength is

A. Light shifts E(x,t)=[E, codw,t)+E_cogw_t)]cogk.x), (1)

The very basic physical mechanism underlying our forth-
coming discussion is the following: when an atom is exposed
to monochromatic light, its energy levels are shifted by thewhereE.. are the field strengths of the two standing waves.
interaction. These level shifts originate from the polarizationAt this point we have neglected the difference in wave vec-
energy of the atom in the incident light field, and are calledtors of the standing waves. For this to hold, it is sufficient to
light shifts [29]. In the dipolar approximation, they depend assume that the atomic sample size is small enough. Typi-
on the field intensity value at the center-of-mass position otally, the difference in thé& vectors will be of the order of
the atom. If the field intensity is space-time dependent, thed0 ° or less(see beloy, so that this requires the atomic
a moving atom will experience dipolar forces: inhomoge-cloud to be smaller than typically a few kilometers, which is
neous light shifts result in forces and alter the center-of-masamply satisfied in a standard magneto-optical trap.
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C. Dimensionless effective Hamiltonian dwl2m=60 kHz, leads toy=0.4 andh¢s=0.05. With such

The effective Hamiltonian which describes the atomicvalues, spontaneous emission can be neglected up to times of
motion is derived in Appendix A under some common andthe order of few ms. It is worth noting the tiny energies
well-controlled approximations. It acts in the Hilbert spacewhich come into play ¥o~5 neV), by several orders of
of a one-dimensional system which is simply theompo-  magnitude smaller than the typical ones for mesoscopic sys-
nent (position of the center of mass of the atofwhich  tems.
means that the internal degree of freedom as well as/the

andz coordinates can be eliminated; see Appendjx Fhis Ill. CLASSICAL DYNAMICS
reads
A. Poincare surface of section
2
H= &_Vo cos 2k X)[ 6+ cos Sw )], ) _ A F_’o_incaresurfacg of section_ provides the_usual toql for
2M visualizing the classical dynami¢80]. As Hy is 27 peri-
odic both in time and space, this surface of section simply
def def consists in the whole phase space itéeffiich has the topol-

where Vo=—-1Q0,Q0_/85 and 6=(Q,/2Q0_)+(Q_/
2Q) ), with 6, = w — w,; the detuning with respect to the

atomic frequency anfl. =dE. /% (d being the atomic di- oyt any substantial loss of generality, we will restrict our
pole strength Without loss of generality we will assum& — 5navsis to the cas@#=1 which is easily experimentally

to be positive since, iV, is negative, it is sufficient to shift -hieved when the standing waves have the same field
x by /2K, to recover this case. strengths.
_In the following, it will prove convenient to work with Figure 2 shows stroboscopic plots of phase space orbits
dimensionless quantities. Rescaling quantities through ¢, gifferent values ofy. Fory=0, piis a constant of motion,
def def def def [P . :
- — = 2 2 so that the system is integrable and the surface of section is
=dwt, =2k x, p=(2k /M Sw)py, y=(4ki/Mbw?)V,, composed of horizontal lines. For a weak enoughiFig.
and H ﬁd:ef(4k2/M5wz)H then yields the dimensionless ef- _2(a)],_ the orbits rema_in confined to invariant curves. These
fe ctivee Hamil#onian invariant curves stratify the whole phase space, and the dy-
namics appears regular. One can clearly see well-separated
p2 stability islands, each being bordered by a separatrix. This is
Heﬁ=7— v( 6+ cosT)cosq. (3) the situation encapsulated in the Kol'mogorov-Arnol'd-
Moser(KAM) theorem for near-integrable motion: although

no globally defined constants of motion exist, some invariant

ngCh a Hargllltonlar_lnc]iescrlbes_ t?eddynan:lcs of a pe_r'o?'ca”%urves can still be constructed which order the dynamics. As
fiven penadulum. The assoclaled quantum canonica com)-, is increasedFig. 2(b)], more and more of the invariant
mutation relation is[q,p]=ifies, and we obtainf g o

2 i X f curves are broken and chaotic layers start to spread around
=8wg/dw, where wg=7k(/2M is the atomic recoil fre-  qonaratrices. These layers fill some portion of phase space,
quency anddw is the beating frequency between the laseryt the motion is still predominantly confined to invariant
waves. _ o - curves. Above some coupling threshdlBigs. 2c)—2(e)],
Such an effective Hamiltonian clearly exhibits two of the gichastic orbits invade the phase space, and the surviving
three properties mentioned in Sec. I: the corresponding claggapility islands are surrounded by a connected chaotic sea.
sical dynamics is governed by a single classical parametefhis occurs fory~0.1. The phase space structure in this
t_he dimensionless coupling strengthand is invarignt under regime is typical of a mixed dynamics where regular orbits
time-reversal symmetryp(q,7)—>(—p,q,~ 7). Itis worth  ¢qexist with stochastic ones. #f is increased furthefFig.
mentlomrjg that.the sem|cla_SS|caI limit— 0 is realized 2(f)], the stability islands disappeéor are too small to be
here by increasing the beating frequendy between the geen at this scaleand one obtains global chaos. However,
two laser waves. _ . we note that, even in this situation, the chaotic portion of
With our field configuration, only¢=1 can be achieved. phase space is still bounded by invariant curves, which

As a slight generalization, we extend the rangefdb any  means that chaos can only fully develop within some range
positive value, since one can design other field configuragf momentump.

tions where #<1 occurs. For example§=0 yields the
Hamiltonian studied in Ref.13] in a different context.

ogy of a cylindey where trajectoriegp(),q(7)) are seen
stroboscopically at every time periods2 In the following,

B. Resonances

At this stage, let us rewrite the effective Hamiltonian as
follows:

Let us give some typical experimental parameters. For
rubidium atoms, the atomic parameters &fe=85 amu,
Na=27Clw4=0.78 um, T'/2m7=6 MHz, wg/27m=3.8
kHz, and the saturation intensity,=1.6 mW/cnf. Using
far-detuned laser beams §2/I'=10%) focused down to —Zcos(q—r) )
500 um (power 100 mW), with a frequency difference 2 '

D. Orders of magnitude

2

P Y
Her=Ho+ yH;= > ~ycosq- Ecos(q+ 7)
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FIG. 2. Stroboscopic plots of trajectories in
phase space for different initial conditions at
=0 and differenty’s. The classical dynamics is
governed by Hamiltonian 3 witld=1. At low y
values, resonance islands are visible separated by
quasifree motion. Asy increases, the resonance
islands grow and chaos appears close to the sepa-
ratrices. The situation of interest for chaos-
assisted tunneling is when two symmetric islands
are separated by a chaotic sea, such,aandZ_
in (d) and(e).

The physical interpretation of the various terms is rathetto be distinguished from regular lines at the scale of finite
simple: the two counterpropagating laser beams at frequengyrecision of the measurements and/or the calculatjohs
w, create a stationary wave which, in turn, creates for thd-ig. 2(a)]. Nevertheless, for higher values #f some chaotic
atom an effective optical potential proportional to the squardayers can be seefcf. Fig. 2b)] between regular regions.
of the modulus of the electric field in the standing wave;These consist of portions of phase space where trajectories
hence the cog dependencéit is actually 1+ cosq, but the  are exponentially sensitive on initial conditions. From clas-
constant term does not play any role in the dynajni€he  sical first-order perturbation theofRef. [30], Chap. 2, we
same effective potential is due to the standing wave createchn infer that a term of the formA cos6g—r7), where 6,r)
by the twow _ counterpropagating beams. A pair of coun-are integers, will create a resonance of widtip=4A
terpropagating beams at frequencies and w_ does not around the poinp=r/s. In our cases=1, and there exist
create a standing wave in the lab frame. However, in a framenly three such resonances. They are locateg=ad (r
moving at constant velocityy=(w, —w_)c/2w , (vo=1 =0) and atp==*1(r==1). This can be seen ifFigs.
in rescaled unitsthe two laser beams are shifted in fre- 2(a)—2(e)]. For each resonance there exists one stable peri-
quency by the Doppler effect and appear to have equal freadic orbit and one unstable periodic orbit with periods of
quency, building another stationary wave and yet anotheapproximately 2r|r|. In the stroboscopic plot of the surface
effective optical potential. In the lab frame, this appears as af section, they appear as stable and unstable fixed points,
modulated optical potential moving at velocity. By sym-  and give rise locally to the well-known phase space portrait
metry, there are two such effective potentials moving eitheof a pendulum. In the following, we will denote 18,7, ,
to the right or to the left. These are the apsf) termsinthe  andZ_ the three stable islands associated with0,+ 1, and
Hamiltonian. —1, respectively. The physical interpretation of these three

This form of the Hamiltonian allows us to point out the resonances is simple: each resonance is associated with one
perturbative terms which may be resonant with the unperef the modulated potentialéeither static or moving de-
turbed frequencies. Whery=0, the system is integrable scribed above. For example, the fixed point at the center of
since we recover free motioht reduces tddy,=p?2, and  the Z, resonance is associated with a periodic orbit where
(p,q) are exact action-angle variables. Fpr-0, the ab- the atom moves at almost constant velooigy being trapped
sence of any constant of motion generates chaos. Strobi the minimum of the moving optical potential. The other
scopic plots of phase space trajectories are no longer comwo components of the potential appear along this orbit as
strained to follow lines of constariy, but generically fill  rapidly varying potentials which are adiabatically averaged
densely a two dimensional volume in phase space. As longp constant values. As the atom can be trapped in any of the
asvy is small enough, these volumes remain thin enough nothree modulated potentials, we obtain three stable periodic
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orbits at the centers of the three resonance islands. 2
For a small enougly, the resonances are well separated A
and the motion is quasi-integrable. Chaos will develop when I
the resonances start to overlap. This is the celebrated Chir 0+
ikov's overlap criterion[31] and its evaluation givesy
=0.1 in our case. Thus chaos develops in phase space r¢ -1
gions where the kinetic energy term and the perturbation are [
of the same order of magnitude. Taking into account higher

perturbation orders ity will shift the position in phase space
of the previous resonances as well as the frequency arounB 1|
their stable points. For instance, it can be seen in FHg). 2
that the stable island. is centered on a point having a p 0}
momentum slightly larger thar-1. Perturbation terms of

higher order will also introduce other resonances of smaller ol
size. It is precisely the overlap of the infinite cascade of such  _)
resonances which gives rise to the chaotic layers. Neverthe
less, Chirikov’s criterion already gives a good order of mag- 2
nitude for the onset of chaos. For higherthe previous three ]
resonant islands of stability have shrunk inside a large cha-

otic sea, and will eventually disappear completgtf. Fig. p 0y
2(f)]. Nevertheless a revival of some stable islands can still _]
be observed for some narrow windows of high values of PN
In our situation, chaos cannot invade the whole phase space -2 — : : :
but is bounded by regular coasts. This is so because chac =300 =200 -100 g 100200 300
develops where resonances overlap. Sufficiently far away ) o )
from the resonances, atoms move so fast that they experience FIG. 3. Plots of some trajectories in phase space for different

an average time-independent potential. Then chaos is absé'fgiléflo‘f;‘;r:iitt.ig:zgi ?:;;) '2'”,'2 Wsetrgitfﬂ?é ;?cty;)licftzl Pﬁ?ﬁg’i‘;a ded
and one recoverguas) free motion whenp|>1. Sectl inrg. 2, 1.€., St ! whien
fuas) pl> according to the spatial periodicity. The small black disks show

some initial conditions. IB and C, trajectories are plotted every
C. Typical classical phase space portrait in the chaos-assisted 27/100 and, unlike inA, we letq(7) evolve continuously outside
tunneling regime [—r,m]. Trajectoriesb andf are trapped in th€, andZ, reso-

. . nance islands, respectively. Trajectoreeande are two examples
The two resonant islands. , when they exist, are related ot reqylar quasifree motiorz andd correspond to chaotic motion:

by a discrete symmetry: the time-reversal invariance. As Cagheir initial conditions(at 7=0) lie in the chaotic sea of Fig.(@).
be seen in Fig. 3, the atoms trapped in one island cannot
classically escape from it: the boundaries of the islands plapandsE, (k). These bands are labeled by a set of integers,
the role of a dynamical barrier which atoms cannot crossthe band index, and depend continuously on a set of real
Hence jumping from one island to the other is a classicalljhumbers, the Bloch numbeks As E, (k) and the associated
forbidden process, though it is expected to occur in quanturgigenfunctions are periodic functions of thes, all the
mechanics. This is precisely the tunneling situation we arghysical information is contained in the first Brillouin zone.
interested in. In fact, we will study the tunneling betw&gn  For 1D systems, it is simply the interval 7/Q,7/Q],
andZ_ for y varying from 0.1 to 0.3 since, in that range, whereQ is the spatial period of the Hamiltonian.
classical chaos may play a revealing role even though the When the Hamiltonian is time periodic, with a peridg
two stable islands still occupy a significant volume in phasehe analog of the Bloch theory is the Floquet thef@$—36.
space. The eigenvalues of the evolution operatd¢r+T,7) over
Note that, in the physical situation describedHby, tun-  one period take the form &/%eft, The ¢’s are r-independent
neling occurs in momentum coordinates instead of space c@eal quantities which are called the quasienergies of the sys-
ordinates, as usually presented in standard textbooks. Them. Due to the time periodicity, the quasienergy spectrum as
denomination of “dynamical tunneling[32], refers to this  well as the associated eigenfunctions are now invariant under
situation. The reason for investigating this situation is thaters e+ 277 o/ T.
manipulation of cold atoms allows for a better control  For H., the application of Bloch and Floquet theorems
(_preparation and detectipf momentum rather than posi- with Q=T=2= yields a spectrum made out of quasienergy
tion. bandse,(k), wheren goes over the whole set of integefsr
a detailed derivation, see Appendiy.B-or brevity, we will
IV. QUANTUM DYNAMICS define|n,k,7), the ket at timer with Bloch anglek, with
quasienergye,(k), which is a solution of the Schrodinger

equation[following the notations of Appendix B, we have
When an autonomous Hamiltonian is spatially periodic, it def

is well known[33] that its spectrum is organized in energy set |n,k,r>=|zpen(k),k(r)>]. We will also define |n,k)

A. Floquet-Bloch theory
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trix is considered to be sufficiently large when increasing it
modifies the value of the quasienergy on the scale of the
numerical noise only, say I6° in double precision. Not
only is this criterion a proof of the algorithmical conver-
gence, but it also is a safeguard against numerical discrepan-
cies, since we are looking for exponentially small quantities.

C. Husimi representation and classification
of the quantum states

Classical dynamics is very illuminating when describing
the stategn,k, 7). In order to strengthen the correspondence
between classical phase-space structures and quantum states,
it is convenient to work with the Husimi representation of

k quantum statef37].
FIG. 4. For a Hamiltonian that i© periodic in space and@ Such a representation associates, with each quantum state

periodic in time, the quasienergy spectrum is made of bands that al¢?). & phase space functiaft'(p,q) (wherep andq are real
27/Q periodic in the Bloch numbers andnZ /T periodic in ~ numbers defined by
quasienergies. Such a spectrum is shown here for Hamiltonian 3 det
(Q=2m, T=2m), with y=0.18 andfi4=3.1787. ©
o WP a)=Nyl(Z ), ()
def
z|n k,7=0). As it can be seen in Fig. 4, the band spectrumWhere|Z> is the normalized coherent state corresponding to
has the topology of a torus since it is both periodic inthe complex number z=(q+ip)/V2fier. N, is a

quasienergywith periodi.s) and Bloch numbetwith pe-  (P.d)-independent normalization factor. Becaugy is a
riod 1). minimal Gaussian wave packet with average momenpum

and average positiog, the Husimi functiony™(p,q) con-
tains some information about the degree of localization of
| ) in phase space.

As derived in Appendix B, the Floquet eigenstates can The minimal cell size in phase space, allowed by the
be obtained by a diagonalization of the Floquet-Blochyeisenberg inequalities, i&.;. Let us see how classical

B. Numerical calculation of the Floquet eigenstates

operatorK, phase space structures of a typical size larger thagnare
R mirrored at the quantum level. In Figs. 5 and 6 we plot some
~ oA (p+fienk)? - , values ofe,(k) corresponding to Hamiltonian 3 for specified
K(p.Q,7.K) = =~ ycosq(1+cos) —ifiefry ., fixed values ofy andfiq. von Neumann—Wigner arguments

(5 [38] claimed that, generically, no exact degeneracy can oc-
cur: rather one obtains avoided crossings. Of course, this is
with periodic boundary conditions in both time and spacerelevant provided the minimal energy splitting is greater than
The eigenvalues, which depend on the Bloch ve&oare the resolution in energy. Some Husimi functions are plotted
the quasienergies of the system. The band spectrum is syrin Figs. 5 and §(a)—(f)].X
metric with respect to the axis=0, since operator 5 is in- In Appendix B, it is shown that we have
variant under the transformatioks> —k andp— —p. From
the expression of the Floquet-Bloch operator and the bound- defq T 1 ge
ary conditions, it is very natural to expand the eigenstates on vn k:_f <n,k,q-|;3|n,k,r>d7-: — (8)
a basis set composed of products of the typg(7,Q) " Tlo fre ok
=exp(int)exp(imqg), which automatically obey the periodic
boundary conditions. In such a basis, the opertbas very def
strong selection rules, namely, |z,k)= EZ €M 9z+mQ), (9)
me
|An|<1 and|Am|<1 (6)
and define, for instance,
All matrix elements violating one of these selection rules is
zero. Hence the matrix representing the oper#toin this
basis is sparse and banded, and all matrix elements havey technicality should be mentioned heter, ) and |y, ) obey
simple analytical expressions. This is well suited for numeri-some spatial boundary conditions which are lost when working with
cal diagonalization(powerful algorithms exist, for example their Husimi representations, essentially because the coherent states
the Lanczos algorithjn All the numerical results presented do not fulfill these properties themselves. To deal with spatially
here use this method. We checked that the effect of the trunquasjperiodic phase space functions, it is necessary to unfold the
cation of the basis is negligible: the size of the Floquet macoherent statef39] into
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FIG. 6. Quasienergy bands for=0.18 and# .;=0.2037 and
0 . some Husimi representations of typical states. This is a zoom of the
dashed squared zone in Fig. 5. Ho# 0, one can find states like
those in(d) or (e), whose Husimi function is localized in one stable
0 islandZ_ or 7, [compare with Fig. &)]. In the frame, where the
D) center of the island is fixed, these states correspond to the
I \ Y “ground” states(some excited states may of course exigt df is
004 e 0y o0 0 om0 oms ow O small enough, as can be seen in Figs. 12 and E8r k=0, we
k recover time reversal symmetry through the existence of quaside-
generate doublets of symmetric or antisymmetric combinations.
FIG. 5. Quasienergy bands fgr=0.18 andfi,z=0.2037 and  This is a typical tunneling situation: following the state (g)
some Husimi representations of typical states(Wpwe show a  (which has an average velocity aboutl) adiabatically withk, by
quasifree state with a well defined average veloite derivative  decreasing we obtain a state irfd) that has a reversed velocity.

of the energy level with respect {9 localized in phase space on This reversal of the velocity is a classically forbidden prodessn-
regular trajectorie§compare with Fig. @)]. On this scale, the pare with orbitb in Fig. 3.

avoided crossings with other bands cannot be resolvecc) e

show a state localized in the central stable isldgdactually the ) ) . . o
“ground state”). Far from quasidegeneracies the average velocit)feSpeCt'Vely' Their average velocity as well as their Husimi

of this state is zero. Iffia) we give an example of a chaotic state, functions depend exponentially weakly on the Bloch param-
whose Husimi function is localized in the chaotic §eampare with ~ €terk.
Fig. 2(e)]. Unlike the former states, the average velocity fluctuates The last class of states which can be encountered corre-
when the Bloch anglé is varied. The band spectrum is symmetric sponds to chaotic ones, i.e., states whose Husimi functions
with respect to the axikzoisinceA operator 5 is invariant under the gre negligible on a typical distance dﬁ_eﬁ out of the chaotic
transformationg— —k andp— —p. The tunneling situation due to  seas[cf. Fig. 5a@)]. Unlike the previous ones, their Husimi
the time-reversal symmetry corre_spor_lds to the dashed squared zofitctions are very sensitive to any variationlosince they
(aroundk=0), which is enlarged in Fig. 6. are delocalized in the whole chaotic sea which spreads over
all elementary cells. The large classical distribution of pos-

H def ) sible velocities is to be linked to the very fluctuating slopes
Un(P,0, 7) =NKZ K| thn ()% (0 of the quasienergies asis varied.

0.06 '

which generalizes the velocity theordRRef.[33], Appendix
E) to periodic time-dependent Hamiltonians.

Figure 8b) shows an example of the Husimi representa-
tion of a state with sufficiently high average velocity to be  Although the system as a whole is of course time-reversal
like a free eigenstate dfly. Far from quasidegeneracies it is invariant, this is no longer true for its restriction at a fixed
localized in a narrow strip of widthAp~27fie/AQ~7%er  valuek of the Bloch vector. Indeed, the operatéris not
EsmcelAq_colveLs 2r), and V;'h'_c h tIS _cent?red on O;';ﬁ)()f the time reversal invariant, because of the crossed tepmin
wo classical phase space trajectories of energy app other words, the time-reversed partner of a state with a Bloch

[compare with Fig. @)]. Its quasienergy bangFig. 5) is an vectork is a state with a Bloch vector k. It is only at the
arc of the parabola of the free motion, but can hardly beS ecial valuek=0 (and alsok=1/2 sincek is defined
distinguished from a straight line of slopsg, \ if k is re- P - -

stricted to one Brillouin zone. We will naturally call these modulo J thatK is invariant under time-reversal symmetry.
states quasifree states. Therefore, it corresponds to the typical situation of tunneling

Some states have their Husimi functions localized in thebetweenZ, and Z_. Every state localized in an island
resonant stable island® Z, but also inZ.). The number of around|p|=1 is quasidegenerate with another one. These
these states is semiclassically given by the volume of thesdoublets represent a symmetric and antisymmetric combina-
islands divided by Z 7. Far away from quasidegenera- tion of states localized in one island orlgf. Fig. 6f)]. The
cies, these states are at any time centered on the stable pexirergy splittingA €, of these states fdk=0 is precisely the
odic orbit: this can be explained within a semiclassical apsignature of tunneling: it isr# o divided by the typical time
proach, and can be observed in Fi¢c)Jor a state localized an atom takes to oscillate from one island to its time-
in Zo, and in Figs. &) and Ge) for states inZ_ andZ, reversed image, i.e., to reverse the sign of its velocity.

D. Tunneling states
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conductance fluctuations observed in mesoscopic systems

10 [42,43 since tunneling is nothing other than wave transport
y from one stability island to the other. In contrast, in the regu-
10 lar regime where chaotic seas are smaller thgn the split-
Aen . tings are expected to vary smooth#.
1o In Fig. 7, we show the splittings of the pair of states

localized at the center of the resonances islahds as a
function of7ie. They display huge fluctuations over about
0 10 20 30 four orders of magni_tude while the general trend_ is a de-
B crease ad ¢ — 0. Similarly, when plotted as a function ¢f
(see Fig. 8 they also display large fluctuations. The general
FIG. 7. Fluctuations of the energy splittinds:,, between pairs  trend here is a fast increase of the typical splitting wjth
of symmetric or antisymmetric states localized in fheresonance this is associated with a shrinking of the regular island when
islands(here shown for the “ground state” inside the islanihe increases, which results in an increasingly large tunneling
classical dynamics is fixed at=0.18[compare with Fig. &]. The  probability. The overlap of the regular statasill supported
existence of large fluctuations over several orders of magnitude is By the islands with the chaotic states increases. Therefore,
signature of chaos-assisted tunneling. On the avera@bgnﬂrap- the coupling between the two components of the tunneling
pears to decrease more or less linearily witly" except for the  doublets which involves the chaotic states increases as well.

plateau at 15:7 4 <30. In order to understand both the general trend and the origin
of the fluctuations, two points of view can be used: a quan-
V. CHAOS-ASSISTED TUNNELING tum point of view and a semiclassical one.

A. Large fluctuations . L .
B. Semiclassical interpretation

After having selected the two quasienergy bands corre-
sponding to the two states which are localized most deepl}:/)
inside the islandg .., we are able to plot the splitting as a N
function of .. The great advantage of studying fluctua-
tions when the effective Planck constant is varied is that i
does not affect the classical dynamics. The behavior of th

splitting is very different whether chaos is present atft . e = i
sgale ogr not. Iﬁ the chaotic regintef. Figs. 7pand 8 thatgii ment of this problem is highly nontrivial, and is beyond the
scope of this paper. The crucial point is that because the

when # . varies in a range where chaotic seas can be re-h i is explored rapidlv and denselv. it d not :
solved, the splittings vary rapidly versus the change of anf aotic sea IS explored rapidly a ensely, It does not cos

parameter, in our case,;. Moreover, the variations of the anything to cross the chaotic sea. Tunneling trajectories can

splittings, despite being perfectly deterministic, are apparggnvfr\]’(\;egqg;;&?%f:ngggﬁort'ﬁze's’ Vn:'mefr??iz::ﬁ dF)sO:?II'-r]e
ently erratic—without any regular structure—and cover sev-, . : cting the symr S .
tunneling amplitude associated with a single tunneling orbit

eral orders of magnitude. They show that direct coupling ta i .
the chaotic sea is the key mechanism for their understanding, essentially exp-Im(S)/#eq], whereSis the complex ac-

and are a signature of chaos-assisted tunndgg41). In ion of the tunneling orbit. In a typical one-dimensional sys-

fact these huge fluctuations are reminiscent of the universaf™ (like a double well, there IS only one suqh trajectory at
each energy, and the tunneling rate thus displays the well-

known exponential decrease. In a chaotic system, it may hap-
pen that there is a whole set of tunneling trajectories whose

If the chaotic sea is large, it is rather intuitive that it can
easier first to tunnel from the center of the regular island
to the chaotic sea, then propagate freely in the chaotic sea to
Ithe vicinity of the symmetric island, and finally tunnel to the
genter of the symmetric island than directly tunneling be-
tween the two islands. Actually, a rigorous quantitative treat-

10" WTM”W imaginary parts of the action are essentially identical. In such
conditions, the actual tunneling amplitude is the sum of all
10 individual amplitudes(each taken with its proper phase

which results in a very complicated quantity which fluctuates

Aeg, L
when parameters are changed. In some sense, this is analo-
10" gous to the speckle pattern obtained when plenty of optical
rays with various geometries are randomly interfering. This
10 . . . is the very origin of the(deterministi¢ fluctuations of the
0.00 010 020 030 040 tunneling rates, and consequently of the energy splittings.
% The general trendexponential decreapés related to the

typical imaginary part of the action of the tunneling trajec-
FIG. 8. Fluctuations of the energy splittingse,, between the  tgrjes.

pair of symmetric or antisymmetric statev%,;(f1 is fixed at 19.309)

as a function ofy. Again, large fluctuations over several orders of
magnitude are a signature of chaos-assisted tunneling. The global
increase withy is due to the growth of the chaotic sea @sn- A complementary quantum point of view is possible. One
creases; see Fig. 2. can divide the eigenstates of the system into two subsets:

C. Quantum point of view
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“regular” states localized in the resonance islands, and 10"
“chaotic” states localized in the chaotic sea. The two sets
are only weakly coupled by tunneling. Because there are two 10
symmetric islands, the regular states are essentially doubly ‘\HM
degenerate(neglecting direct tunneling. The chaotic sea
also has twofold symmetry, and states can be classified as 10
even or odd. The two series of odd and even states ignore

each other. Hence, when by accident, an even chaotic state is 107
almost degenerate with an even regular state, they repel each

other: at the same time, there is usually no odd chaotic state

with the same energy. Thus the odd regular state is not sig-

nificantly repelled. Hence the splitting appears due to differ- FIG. 9. Statistical distribution of the energy splittinge (nor-

ent shifts of the even and odd regular states. Close to anfalized to the typical splittingbetween pairs of symmetric or an-
avoided crossing between either the odd or even regular statéymmetric states localized inside tf#e. resonance islandsy(
and a corresponding chaotic state, a large splitting is ob=0-18,k=0), represented on a double logarithmic scale. One can
tained. Conversely, far from any avoided crossing, the split¢!ealy distinguish two regimes: constant at snied followed by a
ting is small. Hence the fluctuations are associated with th&/A€” decrease, and finally a rapid cutéffot shown in the figune
existence of a large number of successive avoided crossings'€ Solid line is the Cauchy distribution predicted by random ma-
The typical size of these fluctuations is related to the typical"™* €oY-

size of the avoided crossings, while the typical paramete{ion: it is obtained as the overall effect of all chaotic states

;ar;%; bogtvt/r;ietvgg%tgr?gggii\l/se ;T/%ic?é?i:(g:sﬁ]ar:rgeﬁg de ying above or below in energy. Note that, in the absence of
Sp . S 0SSINGS. truncation of the Cauchy distribution, the average splitting
implementing this idedeach regular state is independently .

and randomly coupled to the chaotic states of the same Synl]s not defined because the corresponding integral diverges.

. : Hence it is better to discuss the typical splittigather than
metry) was proposed in Ref44] and further used in Ref. o .
[45]. In this model, the chaotic states are modeled by the average splitting. It is the slow decrease of the Cauchy

Hamiltonian belonging to the Gaussian orthogonal ensembil |str|buf[|on fpr large S.pl.'ttmg tha_t is responsible for the huge
uctuations in the splittings, which can be as largerass.

of random matrices while the coupling between the regulaﬁ_hiS is reminiscent of random processes such ‘ag likghts

state and the chaotic state is also taken as a random GaussmH .
. . X o .~ " where rare events are domingd#sb.
variable. With these assumptions, the splitting distribution In Fig. 9, we show the statistical distribution of splittings

can be calcu_lated. Let us denote the mean level spacing bﬁﬁat we obtain numerically in the chaotic regittmormalized
tweer) chaotic states by, and the typical strength of the to the typical splitting in order to work witts=1). The
coupling between the regular states and the chaotic sea by distribution is shown on a double logarithmic scale, and

t(i)nnul)lljrlr]: (ﬁjﬂAs ilﬁea Jgﬁ:‘l?é Sit;t:tgée?ﬁéyrgoﬂgsgt;?et?secg?: compared with the Cauchy distribution. One can clearly see

; equality 1s v ’ 9 two regimes: for smallA €|, P(]A¢|) is almost constant and
plgtely diluted in the chaotlc'sea by' the strength of the COU4ecreases with a slope -2 for larigee|. The agreement with
p!lng_). We thus assume thg mgquallty to be valid. Then, th%he Cauchy distribution is very good, which proves that the
distribution of splittingsA e is given by

model catches the essential part of the physics in this system.
The typical splittings is proportional to the square of the

P(Ag)

P(Ae)= i _5 for |Ae|<o, tunnelling matrix element from the initial state to the chaotic
T 2+ A€? sea. Hence it is expected to decrease roughly as
exd —2Im(S)/%«], whereSis the complex action of tun-
P(A€e)=0, for [Ae|>a, (1)) neling orbits(the mean level spacing scales as a power of

hetr, and is thus a correction to the main exponential de-

where crease This is roughly what is observed in Fig. 7. Note,
J2m0? however, that there is a plateau in the ranges ﬁgﬁls 30. A
5= ) (12)  similar observation was made in R¢47], Fig. 3. Although
A this is not a crucial problenfthe statistics of the splitting

_ L _ _ ... distribution is not affected a detailed explanation of this
The interpretation is rather simple. The maximum splitting iSpahavior is still lackinghowever, see Ref47)). Finally, it

observed ixactly at the avoided crossing where the levels a@,q|q pe interesting to calculate explicitly some of the com-
shifted by /2 on both sides of their unpertubed p05|t|ons.p|ex tunneling orbits in our specific system in order to com-

Hence the splitting cannot be larger than aboutin fact, — yare the imaginary part of their actions with the slope in Fig.
there is an exponentially decreasing tail in the distribution; This work is currently in progress.

P(A€) (associated with the Gaussian fluctuations oof

which we do not detail here because it is not relevant in our

present casesis the typical splitting one expects to observe:

it corresponds to a shift typically due to the closest chaotic As can be seen in Fig. 5, the splittings we want to mea-
state. The full distribution is @runcated Cauchy distribu- sure correspond to very tiny scales among the other struc-

VI. EXPERIMENTAL SIGNAL
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tures in the band spectrum. Fbgs~0.1 e.g., the tunneling

times are about o/A e~ 10° times the typical periodT on

the order of a fewus). The observation of atoms having
reversed their velocity is therefore still possible since, for 1
ms, spontaneous emission has not begun to spoil our dy-
namical model. Nevertheless, measuring tiny splittings
which are hidden so deeply in the spectrum is far from being ¢
straightforward. Several steps are needed: preparation of the -0.01
initial state, the experiment itselftvhere chaos-assisted tun-

neling takes plage and an analysis of the final state. During 003 ]
the first step, one must prepare a state localized inside one
resonance island, i.e., localized both in position and momen- =005 =" =
tum spaces. The idea is to use an adiabatic transfer from an ' ’ v
initial state extended in position space by slowly branching

the effective potential. Although the second step looks trivial FIG. 10. Comparison between the quasienergies of Hamiltonian
(one just has to wajit the dispersion in the vector angke 3 (lines) and the energiescircles obtained from the pendulum
makes things much more difficult as only tke 0 states are approximation in the stable island, (7=0.0976,k=0). The
related by time-reversal symmet(gee Sec. IV ), and thus  avoided crossings that appearjat 0.07 illustrate the influence of
tunnel relatively fast. However, it is possible to overcomeclassical narrow chaotic seas on the quantum properties. The Hu-
this difficulty, as explained below. Finally, the detection simi distribution of the second excited state localizedZjnfor y
should be rather easy, using velocity dependent Raman traf=0-03 is shown.

sitions. We now explain in detail how the various steps can

0.05 1

0.03 1

0.0 A

be worked out. —1ycosq (in scaled coordinate¢sn addition to some rap-
idly time varying terms. Consequently, they will adiabati-
A. Adiabatic preparation of the atoms in one lateral cally localize in the potential minima, that is at the center of
stable island the resonance island. Increasimgsuccessively localizes an

) . . o increasing number of statesin . The switching time must

Th_e first step consists of preparing an |n|t|a! cloud of coldp, sufficiently long as compared to the beating pefindhis
rubidium atoms in order to have it located in one of the 556 the discarded terms are still rapidly oscillatingt also
stable island, e.g.Z,, only. Using a standard magneto- (4 the inverse of the minimum energy gégf the order of

optical trap, one can obtain a more or less thermal distribuh—ﬁl if Ak is sufficiently narrow. In order to trap all the

. . ) ) e
tion .Of atoms .W'th a velocity on the order of a few times theinitially populated statesy has to be sufficiently large. For a
recoil velocity v,.~=hk /M=6 mm/s. However—as

h bel this bably t h f d given Bloch angle, we want to localize thefirst states. The
2u?gvn?en? g:‘NEe Itsurlwié)lirr?gaspxllitt%% m:(;:ditic());a? ?eoc(;mig]f;s'quantum energies of a pendulum are given by the eigenval-
(side-band cooling48], Raman cooling[49.50) make it ues of the Mathieu equatiaiRef.[51], Chap. 20 (see Figs.

. . : SR ) 10 and 1]. For a pendulum whose Hamiltonian is
possible to obtain a subrecoil velocity distribution, i.e., at- o penduium w rronian 1
oms with an average momentysg and a thermal dispersion
Ap,=MAv=Mav. With a significantly smaller than 1.

We chose the initial momentum to Bédw/2k,_, so that, on 0.05 1
average, the atoms exactly follow one of the sliding standing
wave created by a pai- of laser beams. 0.03 A

The next step is to slowlyi.e., adiabatically switch on

the standing waves. During this phase, the spatial periodicity 0.01 1 i

is preserved, and the Bloch vectkris thus a conserved € .. = —=
quantity. Initially, the momentum, is nothing but the Bloch —00] Fog. o® , -
vector(modulo a integer multiple of the recoil momentum -
Thus, by preparing a subrecoll initial state, one populates  -0.03 - N i
only a small range ok values and, for eack value popu- MﬂwT_E
lated, a single stattmomentum eigenstateln other words, -0.05 : : : -
the initial momentum distribution becomes a statistical mix- 000 002 004 006 008 010
ture of Bloch states witlAk= «/2 in a single energy band. v
More ge_nerally, if the initial momemum diStrib_UIion is not a FIG. 11. Comparison between the quasienergies of Hamiltonian
SUPFGCO” one, but has a W'd_th equal dorecoil momenta 3 (jines) and the energiescircles obtained from the pendulum
(with a>1), aboute: bands will be populated. approximation in the stable islands. (%=0.0976,k=0). The
Switching on the standing waves increases the optical pahree upper Husimi plots show how a quasifree state doublet be-
tential V, and thereforey from zero and enlarges the reso- comes progressively localized in a stable island wieincreases.
nance islands. In the frame moving with velocipy/M The lower Husimi plot corresponds to the “ground” state of the
=dwl2k_, the atoms “feel” a pendulumlike potential pendulum approximation in the stable islarfs for y=0.03.
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2 to prepare only this value dfin a real experiment, it seems
Hpend=— — 5 €osq, (13 at first sight that only a small fraction of atonfslose to
k=0) may effectively tunnel, hence considerably reducing

the phase space volume enclosed by the separatrix [§€ signal to noise ratio. A solution is to force all atoms to go

16\y/2. Semiclassically, this corresponds to \@2/ through thek=~0 region. The simplgst idea is to impose a
(2mhe) states. This number will be of the order @fwhen slow increase of th& value, by adding a constant external
y reaches the value force F from outside. Then the full Hamiltonian that governs

the dynamics is

% 2
Vo= e (19 H'(p,a,7)=H(p,a,7) ~QF. (16

Figures 10 and 11 show the exact energy levels of th(;I'he potentiaV induces a dynamical drift in the Bloch angle:

system together with the ones using the pendulum approxi- 1
mation and the Mathieu equation, as well as plots of selected —k(7)=-—F. (17)
Husimi representations for few eigenstates. This allows us to dr
check the following.

(i) The pendulum approximation works well in the regime It is shown in Appendix C that this relation, which is well

of interest, up to abouy=0.1. known in the time independent ca&ee, for instance, Ref.
(i) The semiclassical estimate of the number of trapped52], Chap.6, remains valid wher is periodic in time.
states is sufficiently accurate for our purpose. A convenient way of realizing experimentally such a con-

(i) The Husimi representations of the trapped states argtant force is to chirp the laser frequencies, that is make all
well-localized: especially, the states in Fig. 11 have twothe frequencies drift linearly in time. In an accelerated frame,

well-separated components in tie andZ_ islands, mean- the laser frequencies appear as constants, and we are back to
ing that we are in a real case of tunneling. our model. However, in this noninertial frame, the constant

(iv) During the initial increase of, the “ground” state is acceleration is translated in a constant force; hence the sys-
well isolated(in energy from the other ones, which means tem is governed by Eq16). This method has been used with
that an adiabatic preparation is possible. cold atoms(see Ref[24]). . o '

Nevertheless, for this adiabatic preparation to be valid, we The global result is a slow drift of thiedistribution. This
must make sure that has not reached a range where chao$auses the various classes to come successively closer to
has non-negligible effects on quantum properties. Physically<= 0, and thus become able to tunnel. Whether the atom will
we want chaotic layers at= y,4i,t0 have a small volume €ffectively tunnel or not depends on the time scale on which
compared to the Planck constant. From Fig. 10, we can obk changes. Ik varies rapidly, the avoided crossingkat 0 is
tain the upper bound limit ofy by estimating when the crossed diabatically, i.e., the velocity distribution will not be
(smal) avoided crossings become too large to be passed didbodified. Ifk varies slowly, it is crossed adiabaticallsapid
batically. For 1/56<%.4< 1/5, we observe that chaos has no adiabatic passageThe Landau-Zener formul3] yields a
influence fory< yenaos=0.04. typical time scale for the crossover between diabatic and

The adiabatic preparation of all the atoms in one stabl@diabatic crossing. _
island will be achieved ifygias< Yehaos that is, if the atoms Figures 12 and 13 illustrate, fdr.z=0.2037, the drift of

are cold enough to have atoms initially localized irZ, (one energy bandvhose dis-
tribution in k covers 1/10 of the Brillouin zone frork=
8v2¥ehaos 0.7 —1/10 tok=0 (a subrecaoil initial velocity distribution with a
a<—————=— (15  width on the order ob/5). We allow the atoms to evolve

et et under the force- in order to obtain a global translation of

In every situation considered in the following, we will have 1/10 ink. After moving across the splitting &=0, if the

to check that this condition is fulfilled. Next we have to force F is weak to follow the energy level adiabatically, the
reach the desired value for (=0.18) in the chaotic regime 2verage momentum of the atoms ha§ 'reversed its sign, as can
while preserving the state in the island. This will be achieved?® S€€n in Fig. 13. Measuring the critical valueFofor this

if y is increased sufficiently fast so that all encountered-2ndau-Zener-like transition furnishes a means to measure
avoided crossings with chaotic states are passed diabaticalljl® SPlitting. Another possibility would be to modulate the
Hence the whole preparation of the initial atomic state pro£Xtérmnal forceland thus thek valueg periodically in time in
ceeds by two steps: a first adiabatic increase af the very ~ Order to induce a resonant transfer betwggnandZ.. .
beginning to significantly populate regular states in one is- !N any case, the method may work only if no other

land, followed by a diabatic increase pfto preserve them in avoided crossing come into. play. Numerical jnvestigations
the chaotic regime. show that there are mainly tiny avoided crossings along the

energy curve of interest. However, as a general rule, there
are usually a few avoided crossings with similar or larger
sizes than the avoided crossing of interest. If such an avoided
As discussed in Sec. IV D, the tunneling splitting is smallcrossing is also passed adiabatically, it will of course spoil
only for a Bloch vectok=0. As it is not presently possible the momentum distribution. Hence it is crucial for the initial

B. How to force tunneling?
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100 | ] neled fromZ, to Z_ will end with a momentum close to
S0 — po- A standard time of flight technique should be enough
60 to detect them. A more sophisticated technique, based for
W 4 ] example, on velocity sensitive Raman transitidbg,48,
20 ] could also be used with a subrecoil resolution if nee/d:.
0 ‘ - - (p)
-2 - 0 ! 2 VIIl. CONCLUSION
0.08 . . . . .

In this paper we have proposed a simple and accessible
experimental configuration in which the observation of
chaos-assisted tunneling should be feasible. It consists of at-
oms propagating in the light field of two far-detuned mono-
chromatic standing waves with slightly different frequencies.

’ - . However, observing the tunneling effect requires subrecoil
008 -004 000 004 008 cooling techniques to conveniently prepare the atomic
sample together with a well-controlled experimental proce-

FIG. 12. In order to measure the tunneling splittingat0 (see  dure (adiabatic preparation of the atomic state in one stable
Figs. 5 and § the atoms are prepared into states localized inside thgs|and followed by a drift of the Bloch vectprAs the tun-

I, resonance island. The average momentum distributtop  neling period fluctuates over several decades when the po-
graph is peaked at a value slightly larger thanl in agreement antig| strength variegsee Fig. 8, observing that these fluc-

with Fig. 2. The initial states occupy one-tenth of the first Brillouin tuations requires a stabilization of the laser intensity at the
zone, and are represented by the circles in the lower graph. ( level of a few percent

=0.2037, y=0.18.) After an adiabatic sliding oAk=0.1, the
states are populated, and the average momentum distribution is
shown in Fig. 13.

0.07
0.06 |
0.05 |
0.04 ¢
0.03
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After the atoms have interacted with the modulated _
waves, one can switch off the lasers either abruptly or adia- APPENDIX A: DERIVATION OF THE EFFECTIVE
batically (in which case the atoms adiabatically leave the HAMILTONIAN
resonance islandin both cases, the atoms which have tun- 14 gerive the effective HamiltoniafEq. 2], we basically
proceed in three steg85]. First we assume that any dissi-

80 ' ' ' pation process can be safely ignored. Indeed for tunneling to
60 ] be observable, the phase coherence of the atomic wave func-
w Ot ] tion must be preserved during all the process. In our case,
20 L ] this means that spontaneous emission must be negligible. It
0 can be show56] that increasing the laser detuning consid-
20 5 2 0 7 2 (p) erably decreases the loss of phase coherence. Hence the evo-
0.08 s ‘ , . , lution will be essentially Hamiltonian, provided that each
007 D 2 / % laser peam is sufficiently far-detuned from the atomic reso-
) ) AN nance:
0.06 | \
¢ 0.05 b |6+|=]w+—ws{>T. (A1)
0.04 77 When this holds, the total Hamiltonian operator for this
0.03 x 4 k two-level system is the sum of three terms: the kinetic en-
-008 -004 000 004 008 ergy operator describing the center-of-mass motion of atoms

FIG. 13. The final states obtained after drift of the Bloch vectorOf massM, the energy _operator for _the internal degrees of
by Ak=1/10 (the initial state in Fig. 12 If the force governing the freedom, and the coupling 'between lnternal 'and exte:-rnal de-
motion [Eq. (17)] is chosen such that the sliding is adiabatic 9"€€S Of freedom. In the dipolar approximation, the interac-
through the avoided crossing et 0, the momentum of the tunnel- 0N is justdE(x,t), and it does not depend gnandz. The
ing atoms just reverses its sign. If the initial states cover a smalflynamics alongy and z is just trivially described by free
enough, well-centered, interval of the Brilloin zone, only the0 ~ Motion, and can be easily eliminated, since the total quantum
avoided crossing is important. Other avoided crossings can be se&tate factorizes as a plane waveyimndz One is then left
atk=+0.09 ande=0.43. Those are responsible for the momentumwith the dynamics along which is described by the Hamil-
dispersion of the atoms, and should be avoided as much as possibfenian
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p)2( <. Itis then easy to see that the ground-state amplitude
Hat=m(|e)(e|+|g><g|)+ﬁwa[|e>(e| 4 Obeys an effective Schdinger equation, with a Hamil-
tonian
—dEXx,D(le)(gl+[g)el), (A2) ) ,
Px |, AlQXxD)
wherep, is the atomic momentum along |g) and|e) are H=om " 45, (A8)
the ground and excited states, adds the atomic dipole
strength connecting them. Eventually, up to an irrelevant purely time-dependent term,
Second, we expand the total atomic state as we obtain
Wy=iy(X,1)|9) + (X, Dexp —iw t)|e), (A3 2
W)= g(xDlg)+ prelxexp—iw t)]e),  (A3) e P pcoszi ot coun], (49
and we neglect high frequendpptical antiresonant terms
and suppose that the amplitudes change slowly during an def def

optical period. This is known as the rotating wave approxi-ynere Vo=—4Q0,0_/85, and 6=(Q.,/20_)+(Q_/
mation[57], and features the averaging procedure to elimi-() ).

nate fast variables in classical perturbation thd@@|. This

yields the coupled amplitude equations APPENDIX B: FLOQUET-BLOCH FORMALISM

5o g ﬁ_z&z _RQ(XD) (Ada) In this appendix, we briefly recall the Floquet-Bloch for-
L TV 2 Ve malism which is used for a quantum problem whose Hamil-
tonianH is periodic in both space and time. We will denote

_ K2 ) RQ* (x,1) T andQ the temporal and spatial periods, respectively.
ihdrpe=— oy e hdL e ————iy. Let us first consider the time periodicity. We define

(Aab)  [3436,58
In these equations, = w, — wy is the mean laser detuning, L. % d .
the star denotes complex conjugation, &gk,t) reads K(p.g,7)=—if g—+H(p,q,7), (B1)

QX0 =[Q exp(—idwt/2)+Q_ expidwt/2)] where p and q stand for canonical Hermitian operators
x cogk X), (A5)  whose commutator ifp,q]=—if.
If U(7',7) denotes the unitary evolution operator fram
whereQ). =d E. /# are the Rabi frequencies of each stand-to 7' associated with HamiltoniaHl, the periodicity of the

ing wave. dynamics implies that) (7+ T,T)=U(,0) and
As a final step, we now assume that atoms initially pre-
pared in their ground state mostly evolve in their ground U(r+T,7)=U(r+T,TH)U(T,0)U(O,7)

state. This means that the whole atomic dynamics is solely —TU0.91-U(T.00U(O B2
determined by the ground-state amplitugg. For this to [U(0.7)] (T.OU0.7). (B2)

hold, an adiabatic elimination of the excited-state amplituderis shows that) (7+T,7) and U(T,0) differ by a unitary
[56] must be justified. If the spatial partial derivatives were.onsformation. and hence have the same specthurh of

absent, Eqs(A4) would just describe the Rabi oscillation . rse different eigenvectorsndependent of-. The eigen-

phenomenon. It is then knoyvn that far off resonance, I..values ofU(7+T,7) have a unit modulus, and can be writ-
when the frequency separation of the states is much largeL, qea—ien™% wheree. is the so-called quasi-energy defined
n

than any other frequencies, the Rabi oscillation is very smali g6 277/T. If [y,(r)) denotes the corresponding eigen-
in amplitude. A sufficient condition is vector, we can define the Floquet state

def
— ei enlh , B3
If, in addition, we assume that the excited-state kinetic én() [n(7)) B3
energy is very smaliwhich will be easily achieved with cold \ynich is by construction periodic with pericH

atoms, Inserting the definition of the Floquet state in the time-
) dependent Schdinger equation, we immediately obtain
P >
S| thel o | e ) (A7) .
4] <"’e om | e K (B, Dl 1) = enlxe( M), ®2)

then an adiabatic elimination of the excited-state amplitudavhich means that the quasienergy spectrum is obtained by
amounts to neglecting the spatial and temporal derivatives adiagonalizing the Floguet Hamiltonian in the space of time-
e in Eq. Adb which is then solved ag.=—(2%/256,),  periodic functions.
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The second step consists of making use of the invariance

of H under spatial translations with perid@. The unitary
def N
translation operatof ,=e~ """ commutes witK. We can

then use the spatial counterpart of the Floquet theorem,
namely, the Bloch theorefi83], and label the eigenstates of

K with the Bloch numbek e[ —#/Q,w/Q[ (the first Bril-
louin zong, which means diagonalizing in each subspace
with fixed k. If one defines the Floquet-Bloch states as

Un (7)) =€ k|, (1)) =€l alO7he ik g (7)),

PHYSICAL REVIEW E 64 016221

1(7 A 1 de
?fo<¢e,k(7)|p|¢e,k(7)>d72%%' (Bg)

APPENDIX C: BLOCH ANGLE DYNAMICS

In this appendix we derive E@17), which is valid for an
arbitrary strength of the constant foréeprovided that the
potentialV= —Fqg remains strictly linear irg. Let us choose
a state| (7)) evolving undeH’=H+V, such that it coin-
cides with a Floguet-Bloch state at0:

d|y(n)

where{, (7))} forms a complete orthogonal eigenbasis, it et —q, = H'(p,q,7)|¢(7)) (CY
is easy to show that they can be obtained by diagonalizing
the Floquet-Bloch Hamiltonian, and
K(p,q,7,k)=K(p+7ik,q,7), (B6) | (7=0))=[ihn (7= 0)). (C2)
on the subspace of time and space periodic functions. In oyp, the interaction picture, we immediately have
specific case, the Floquet-Bloch Hamiltonian reads
~ dl¢'(7)) -
I +7hk)? . d ihei————=—FUT(7,0qU(7,0|¥'(7)), (C3
K(p,q,r,k)z%—y(wrcosﬂcosq—ihd—f o dr (rOqU(rOly(m). (€3

(B7)

The spatial periodicity of the Floquet-Bloch states leads t

a discrete set of dispersion relatioag k). For fixedn, the
set of all quasienergies, (k) for k in the first Brillouin zone
[—7/Q,w/Q[ is called thenth band of the system.

Let us now obtain the velocity theorefqg. 10. Using
the above relations, we have

<l//5,k( T)| 6| lpe,k( T)>:<ue,k( T)|(ﬁ+hk)|ue,k(7-)>
= (U (D] (A~ KI oK) |u k(7).
the relation

The derivation with respect tok of

(Uer(D)|K|ug (7)) = e(k) leads to

- loe . d d
<¢e,k(7)|p|¢e,k(7)>:g%4—Iha(<ue,k(7)|ﬁ|ue,k(7)>)

190 ~
- (% %(ue,k(T)DK“JE,k( T)>

*

190 ~
- (% £<u5|k(7)|)K|ue,k(T)>

(B8)

(0]

def
where | ' (7))=U"(7,0)| (7)), and whereU denotes the
evolution operator undet. Let |¢4(7)) be the ket defined by

def R
|p(7))=e"Fa7het] 4! (7).

(C4
It is straightforward to obtain its evolution,
- d[é(7)
her—g— =G (7| (7). (C5)
T
where
def R . . A
G(r)=F(q—e ety 7,0)qU(7,0)€' TV err),
(C6)

SinceU™(7,0) commutes with the translation operai'cg, it

can be checked th{iG(T),'T'Q]zo. The evolution of (7))
underG will therefore preserve its initial quantum number

Told()=e"*|p(n), (C7)
for all 7. Thus, making use of Eq$C3) and (C4), we have

The two last terms on the the right hand side are opposite,

since the normalization of the's leads tod(u, |u. )/ ok
=0. Moreover, after time averaging Eq. B8 ovirthe total
7 derivative vanishes since thes are preciselyl periodic

Tolw(r))y=e (K FhenQ y( 7)), (C9

which shows thaty (7)) is actually a Bloch wave with a

while the time-independerk derivative of the quasienergy Bloch angle given byk(7)=Kk(0)+F7/fis, even if it

remains unchanged. Eventually,

spreads among the quasienergy bard$s3§.
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