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Bifurcations and global stability of synchronized stationary states in the Kuramoto model
for oscillator populations
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Bistability between synchronized stationary states is shown to occur in large populations of nonlinearly
coupled random oscillators~Kuramoto model!, governed by trimodal natural frequency distributions. Numeri-
cal simulations and a numerical investigation of bifurcating states provide evidence of global stability of such
states, subject to unimodal, bimodal, and trimodal frequency distributions. All this may be important in the
framework of large superconducting Josephson junctions arrays, as well as of neural networks.
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Synchronization phenomena in large populations of n
linearly coupled oscillators and transition from incoheren
to synchronized states are rather ubiquitous in such div
fields as biology and medicine, physics, and neural netwo
~cf., e.g.,@1# and references therein!. One of the most recen
areas that may benefit from research in this subject is tha
superconducting Josephson junction arrays; see@2–4#.

In this paper, we investigate the existence of abistable
behavior between~partially! synchronizedstationarystates,
occurring in large populations of nonlinearly coupled ra
dom oscillators, characterized by trimodal distributions
their natural frequencies. This has been done in the fra
work of the so-called Kuramoto model. It seems that, in pr
ciple, any kind of multistability might be of interest in th
field of neural networks@5#, since this suggests the existen
of stable patterns of synchronization. In particular, there
the case of vision segmentation in neurophysiology, wher
a complex image, several objects of different shape an
color may be distinguished from each other. Multistable p
terns might be instrumental in realizing such a task, un
the assumption that there exist several populations of n
rons, each sensitive to different features of the objects, s
as horizontal or vertical lines, colors, light intensity, e
Such populations would react in a selective way, either
cillating at different frequencies or oscillating at the sam
frequency but with shifted phases.

In the Kuramoto model@6–8#, the one-phase oscillato
probability density,r(u,t,v), obeys, in the thermodynami
limit of infinitely many oscillators, the nonlinear Fokke
Planck equation,

]r

]t
5D

]2r

]u2
2

]

]u
~vr!. ~1!

Here, v5v(u,v,t)5v1Kr sin(c2u), whereK is the cou-
pling strength, andv is picked from a natural frequenc
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distribution g(v). The complex order parameter,reic, is
given, in terms ofr andg(v), by

reic5E
0

2p

duE
2`

1`

dveiur~u,t,v!g~v!. ~2!

Suitable initial values, 2p periodicity with respect tou,
and normalization, *0

2pr0(u,v)du51, where r0(u,v)
5r(u,t,v)u t50, should be prescribed for the density fun
tion r.

In view of the application to neural networks, obviously
is desirable to be able to control the choice of the particu
synchronized state to which the system will be locked.
deed, what should be chosen is theinitial value,r (0), of the
order-parameter amplitude in Eq.~2!,

r ~0!5E
0

2p

duE
2`

1`

dveiur0~u,v!g~v! ~3!

@see the numerical simulations below, Fig. 2~a!#. This can be
done by an appropriate choice of the initial distributio
r0(u,v). In fact, taking, e.g.,g(v)5d(v), and expanding

r0~u,0!5
a0

2
1 (

n51

`

~ancosnu1bnsinnu! ~4!

in Fourier series, we obtain~from the normalization condi-
tion! a0/251/2p, leaving all the other coefficients arbitrary
Inserting into Eq.~3! r (0)5*0

2pr0(u,0)cosudu5a1p, from
which a15r (0)/p is obtained, the choice for the initial dis
tribution

r0~u,0!5
1

2p
1

r ~0!

p
cosu ~5!

should be made whenever the valuer (0) is prescribed.
Clearly, any other Fourier series having the coefficientsa0
anda1 above is equally suited for the present purposes.

In this paper, we consider a trimodal frequency distrib
tion,

g~v!5ad~v!1
12a

2
@d~v2v0!1d~v1v0!#,

0<a<1, ~6!
ail
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where the unimodal@1# and the bimodal@7# cases are recov
ered whena51 or a50, respectively. When the frequenc
distribution is characterized by more than two peaks, cer
new nontrivial features appear. In particular, we can sh
that the presence of a central peak~located at zero frequency!
in g(v) generates new transition regions between subcrit
and supercritical bifurcations, as well as multistabil
among stationary solutions, for certain given values of
parameters. Bistability of synchronized states is obser
and analyzed along with global stability properties with t
help of AUTO @9#, which is a powerful numerical code ca
pable of computing all bifurcating solutions to a given sy
tem of ordinary differential equations. Global stability
~partially! synchronized stationary solutions, even in unim
dal distributions, has been conjectured and searched for
long time, cf.@10#, and thus it seems important to provide
reasonable indication of what should be eventually pro
rigorously. Indeed, here we give new evidence of a posi
answer to such a question.

The stationary solution,r0(u,v), to problems~1! and~2!
can be found as an explicit function ofr, cf. @7#. Expanding
it on the right-hand side of Eq.~2! in powers ofr aroundr
5r 0 (r 050, which corresponds tor051/2p, the incoherent
solution!, Eq. ~2! yields

r 5r 01r 1r 1r 2

r 2

2!
1r 3

r 3

3!
1O~r 4!, ~7!

where

r n5*2`
1`dv g~v!E

0

2p

du cos~c2u!gn~u,v!, n51,2, . . .

and gn5dnr0 /drnur 50 can be evaluated directly from th
Fokker-Planck equation~1!, being

FIG. 1. Regions of subcritical and supercritical bifurcations
the space of parameters (a,v0). The solid line corresponds to th
analytical solution obtained from Eq.~12! settingr 3 to zero, while
the points correspond to the numerical solution obtained byAUTO.
The insets show the three different types of behavior for the va
marked by~a!, ~b!, and~c!. D is kept fixed to 1.
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d2gn

du2
2v

dgn

du
5n K

d

du
@sin~c2u!gn21#. ~8!

Expanding in Fourier series,gn5( l 52`
` Zn

l (v)ei l (u2c), c
being a constant, the Fourier coefficientsZn

l ,l 50,61,
62, . . . satisfy, for eachn, the recurrence (i D l 2v)Zn

l

5 i n(K/2)(Zn21
l 21 2Zn21

l 11 ), and then

r n52pE
2`

1`

dv g~v! Re Zn
1 . ~9!

Observing thatZn
2 l5(Zn

l )* , and thatZ0
l 50 when lÞ0, Z0

0

51/2p, andZn
050 ~using the normalization condition ofr),

we getr 25r 450, and

s

FIG. 2. Time evolution of the amplitude order parameter,r (t),
when v053.5, a50.3, andD51. Labels~1! to ~3! identify the
values of the parameters as in Figs. 4 and 6:~a! K58.15; note that
there are two stable stationary solutions, denoted by~1! and~2!, and
located in the regionK1,K,K2 in Fig. 6 corresponding to the
bistability regime;~b! oscillatory solution withK57, arising from
the Hopf bifurcation.
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BIFURCATIONS AND GLOBAL STABILITY OF SYNCHRONIZED . . . PHYSICAL REVIEW E64 016218
r 15
K

2DE
2`

1`

dv g~v!
1

11v2/D2
, ~10!

r 35
3K3

2D3E2`

1`

dv g~v!
2v2/D221

~11v2/D2!2~41v2/D2!
.

~11!

According to the implicit function theorem,r 50 is an iso-
lated solution of Eq. ~7! for KÞKc , where Kc

52$*2`
1`@D/(D21v2)#g(v)dv%21, cf. @1#.

The coefficientr 3 of r 3 in Eq. ~7! may be either negative
or positive, depending on the frequency distribution,g(v).
From Eq.~7!, in case such a coefficient is negative, the
furcation issupercritical, while, in case it is positive, it will
be subcritical. Below, we analyze the type of bifurcatio
occurring correspondingly to the trimodal frequency dis
bution, in which case

r 35
3K3

2D3 S 2
a

4
1

~12a!~2112v0
2/D2!

~11v0
2/D2!2~41v0

2/D2!
D . ~12!

Using symbolic manipulations, we can find that, whena
.ac'0.189,r 3,0 for everyv0, and thus the bifurcation is
supercritical. On the other hand, ifa,ac , there are two
frequencies,vc

2 ,vc
1 , such that forv0,vc

2 or v0.vc
1 , the

stationary solution branches off supercritically, while wh
vc

2,v0,vc
1 it branches off subcritically. In Fig. 1, a ver

good agreement is shown between the results of the ana
cal calculation of the boundary between the subcritical a
the supercritical case, evaluated from Eq.~12! setting r 3
50, and the numerical solution obtained byAUTO.

Moreover, choosing conveniently the values of the para
eters,threepossible stationary solutions are found with su
a frequency distribution. Only two of them, however, a

FIG. 3. Bifurcation diagram for the unimodal frequency dist
bution, a51 @i.e., g(v)5d(v)#. Two different numbers of har-
monics have been chosen,N54,12. The dotted line denotes th
unstable solution, while the solid line corresponds to the sta
solution.
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stable, and this behavior can indeed be observed in the
merical simulations@see Fig. 2~a!#.

The numerical study of global stability by means ofAUTO

has been carried out using a spectral method, which ge
ates the hierarchy of ordinary differential equations,

Ṙn52n2DRn1nvCn1n
K

2
r ~Rn212Rn11!2n

dc

dt
Cn ,

~13!

Ċn52n2DCn2nvRn1n
K

2
r ~Cn212Cn11!1n

dc

dt
Rn

~14!

le

FIG. 4. Phase diagram for the trimodal frequency distribut
with v0 kept fixed to 3.5. The solid line corresponds to a loci
saddle-node~SN! bifurcations~folds!. The dotted-dashed line de
notes the Hopf bifurcation~HB1! of the incoherent branch, while
the dashed line corresponds to the Hopf bifurcation~HB2! of the
stationary synchronized branch;~a! K versusa with D51, ~b! K
versusD with a50.3. In the inset the points label the values us
in the numerical simulation in Fig. 2.
8-3
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FIG. 5. Bifurcation diagram for the amplitude order parameter,r, as a function ofK for several values ofa; ~a! a50.02,~b! a50.2, ~c!
a50.34, and~d! a50.35. Parameters values arev053.5 andD51. The solid line corresponds to the stable solution, while the dashed
denotes the unstable one.
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for the moments

Rn~v,t !5E
0

2p

cos@n~c2u!#r~ t,u,v!du, ~15!

Cn~v,t !5E
0

2p

sin@n~c2u!#r~ t,u,v!du, ~16!

cf. @11#. The order parameter is then obtained from

r ~ t !5E
2`

1`

R1~v,t !g~v! dv, ~17!

while *2`
1`C1(v,t)g(v)dv50.

In practice, we solve numerically system~14! for n
51,2, . . . ,N, setting RN115CN1150. The numberN of
modes is chosen such that the error drops below a g
tolerance, typically 10212.

In Fig. 2, the time evolution of the amplitude of the ord
parameter is plotted for several values ofK. In Fig. 3, we
01621
n

show the bifurcation diagram for the unimodal case. N
that at leastN512 modes are needed to reproduce the c
rect physical behavior, that is, the oscillators must be g
bally synchronized when the coupling among them is su
ciently large~in fact, r→1 asK→`). Such a number has to
be increased whenK is larger orD is smaller. The phase
diagram in the space of parameters (a,K) for the trimodal
case is shown in Fig. 4~a!. We can see the different kinds o
solutions that this model yields, depending on the values
the parameters. The bifurcation diagrams,r (K) versusK, for
the values ofa considered in Fig. 4~a!, are shown in Figs. 5
and 6@the labels~a!–~d! and~* ! refer to such values as give
in Fig. 4~a!#. For a given value ofa, the number of stationary
states equals the number of folds plus one. Note that for h
values ofa @case~d!#, the bifurcation diagram is unfolded
supercritical, and reproduces the pattern of the unimo
case. On the other hand, for low values ofa @case~a!#, the
bifurcation diagram presents one fold, is subcritical, a
similar to the bimodal case. The other three cases@Fig. 5~b!
and 5~c!, and Fig. 6# exhibit two folds, i.e., three stationar
8-4
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FIG. 6. Bifurcation diagram for the amplitude order paramet
r, as a function ofK. The frequency distribution is trimodal, with
v053.5, a50.3, andD51. The loop shows the maximum an
mininum of r in the oscillatory solution. In the regionK1,K,K2,
bistability between stationary synchronized solutions is observ
The points marked by~1!, ~2! @see Fig. 2~a!#, and ~3! @Fig. 2~b!#
correspond to the solution obtained by direct numerical simula
of the Fokker-Planck equation. The solid line corresponds to
stable solution, while the dashed line denotes the unstable one
et

d

d
-

01621
states. In Fig. 4~b!, we show the phase diagram in the spa
of parameters (D,K), keepinga fixed. HB1 and HB2 denote
the bifurcations that give rise to oscillatory behavior~Hopf
bifurcations!, branching off the incoherent solution or th
synchronized stationary solution, respectively.

Summarizing, we conclude that a central peak in the na
ral frequency distribution plays an important role, in that
allows for the existence of bistability between stationary
lutions. It should also be stressed that numerically evide
for global stability of the stationary synchronized states h
been given, numerically, usingAUTO. All this could be im-
portant for the dynamics of superconducting Josephson ju
tion arrays and in neural network systems. In fact, switch
between two synchronized stationary states, which may p
a role in such devices, as well as in associative memor
can be realized changing the initial conditions.
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