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Bifurcations and global stability of synchronized stationary states in the Kuramoto model
for oscillator populations
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Bistability between synchronized stationary states is shown to occur in large populations of nonlinearly
coupled random oscillatof&Kuramoto model governed by trimodal natural frequency distributions. Numeri-
cal simulations and a numerical investigation of bifurcating states provide evidence of global stability of such
states, subject to unimodal, bimodal, and trimodal frequency distributions. All this may be important in the
framework of large superconducting Josephson junctions arrays, as well as of neural networks.
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Synchronization phenomena in large populations of nondistribution g(w). The complex order parametere'”, is
linearly coupled oscillators and transition from incoherencegiven, in terms ofp andg(w), by
to synchronized states are rather ubiquitous in such diverse o i
fields as biology and medicine, physics, and neural networks rei‘/’=J dgf dwe'p(0,t,0)g(w). 2
(cf., e.g.,[1] and references thergirOne of the most recent 0 —
areas that may benefit from research in this subject is that
superconducting Josephson junction arrays;[2ed.

In this paper, we investigate the existence dbistable
behavior betweeiffpartially) synchronizedstationary states,

occurring in large populations of nonlinearly coupled ran- In view of the application to neural networks, obviously it

dom oscillators, characterized by trimodal distributions Ofis desirable to be able to control the choice of the particular

their natural frequencies. This has been done in the frames'ynchronized state to which the system will be locked. In-

work of the so-called Kuramoto model. It seems that, in prin-yeeq what should be chosen is thiial value r(0), of the
ciple, any kind of multistability might be of interest in the order,-parameter amplitude in E@®) ’ ’

field of neural network§5], since this suggests the existence

of stable patterns of synchronization. In particular, there is N e io

the case of vision segmentation in neurophysiology, where in r(0)= o do | dwe’po(0,w)g(w) 3

a complex image, several objects of different shape and/or _ _ _ _ _

color may be distinguished from each other. Multistable pat{see the numerical simulations below, Figaj2. This can be
terns might be instrumental in realizing such a task, undeflone by an appropriate choice of the initial distribution,
the assumption that there exist several populations of newo(f,®). In fact, taking, e.g.g(w)=6(w), and expanding
rons, each sensitive to different features of the objects, such a o

as horizontal or vertical lines, colors, light intensity, etc. po(alo):_o_l_Z (a,cosné+b,sinng) (4)
Such populations would react in a selective way, either os- 2 i=1

cillating at different frequencies or oscillating at the same. . . . o .
. . in Fourier series, we obtaiffrom the normalization condi-
frequency but with shifted phases.

In the Kuramoto mode[6-8], the one-phase oscillator tion) ag/2=1/2, leaving all the other coefficients arbitrary.

probabilty density.(0.1,6), obeys, in the thermodynamic et 29 "6 CACY FEOC 08 B0 BEORCE M VR
limit of infinitely many oscillators, the nonlinear Fokker- 1 '

. tribution
Planck equation,

cguitable initial values, Z periodicity with respect tod,
and normalization,f%”po(e,w)d0=1, where pg(6,w)
=p(0,t,0)|i=o, should be prescribed for the density func-
tion p.

1 r(0)

po(0,0)= =—+ ——cosé (5)

2 2 T

dap B JIp 0

E‘Dﬂ_az_ﬁ(vp)' (D) should be made whenever the valugd) is prescribed.

Clearly, any other Fourier series having the coefficiengs
anda; above is equally suited for the present purposes.

Here,v=v(6,w,t)=w+Kr sin(y— ), whereK is the cou- In this paper, we consider a trimodal frequency distribu-

pling strength, andw is picked from a natural frequency tion,

l-«a
J(w)=ad(w)+ ——[6(w—wg)+dlw+wg)],
* Author to whom all correspondence should be addressed. Email 2
address: acebron@physics.ucsd.edu 0<a<1, (6)
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FIG. 1. Regions of subcritical and supercritical bifurcations in
the space of parameters,(wg). The solid line corresponds to the 0.50
analytical solution obtained from E¢l2) settingr; to zero, while o
the points correspond to the numerical solution obtainedumo. @
The insets show the three different types of behavior for the values
marked by(a), (b), and(c). D is kept fixed to 1. 040 1 i
where the unimoddll] and the bimoda|7] cases are recov-
ered whenw=1 or «=0, respectively. When the frequency %37

distribution is characterized by more than two peaks, certaing
new nontrivial features appear. In particular, we can show
that the presence of a central pdhicated at zero frequengy 0.20 r
in g(w) generates new transition regions between subcritical
and supercritical bifurcations, as well as multistability
among stationary solutions, for certain given values of the o010
parameters. Bistability of synchronized states is observec
and analyzed along with global stability properties with the
help of AuTo [9], which is a powerful numerical code ca- 000 T T  w Bee s a0 1a00
pable of computing all bifurcating solutions to a given sys- t.(s)
tem of ordinary differential equations. Global stability of
(partially) synchronized stationary solutions, even in unimo- FIG. 2. Time evolution of the amplitude order paramett),
dal distributions, has been conjectured and searched for for%en @o=3.5, @=0.3, andD=1. Labels(1) to (3) identify the
long time, cf.[10], and thus it seems important to provide avalues of the parameter_s asin Flgs_. 4 an¢ebK =8.15; note that
reasonable indication of what should be eventually provedere aré two stable stationary solutions, denotedlbgnd(2), and
rigorously. Indeed, here we give new evidence of a positiv ﬂg?;ﬁﬁit;nr;g?mf%g";;;:;;gfsguﬁfﬁ \i’i;‘c}lrr_eipc;r;icisl;% tf?O::e
answer to .SUCh a ques.tlon' the Hopf bifurcation.

The stationary solutiorg( 6, ), to problems1) and(2)
can be found as an explicit function ofcf. [7]. Expanding 2
it on the right-hand side of Eq2) in powers ofr aroundr d°gn _w% — Ki[sin( —0)9n_1] (8)
=r, (ro=0, which corresponds tp,= 1/27, the incoherent d6? de do o

o (o o
solution, Eq. (2) yields

Expanding in Fourier serieg),=3;"_.Z\ (w)e'"~9, y
r? r3 . being a constant, the Fourier coefficien®,,|=0,+1,
F=ro+ral +ra5y + a5y +0(r), D satisfy, for eachn, the recurrencei@ | — w)Z,
=in(K/2)(z"L -2y, and then

where

+ o0
27 rnzzwf dog(w) ReZ?. (9)
rh=J"sdwg(w) , docody— 0)g,(0,0), Nn=12,... —

Observing thaZ,'=(Z})*, and thatz,=0 whenl+0, ZJ
and g,=d"py/dr"|,—, can be evaluated directly from the =1/2m, andzﬂzo (using the normalization condition @f),
Fokker-Planck equatiofi), being we getr,=r,=0, and
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FIG. 3. Bifurcation diagram for the unimodal frequency distri-
bution, @=1 [i.e., g(w)=8(w)]. Two different numbers of har- 20
monics have been choseN=4,12. The dotted line denotes the ' “\ ' ' - —
unstable solution, while the solid line corresponds to the stable \ & /;(fz)‘{:\/_
solution. '\ K 77 \)
16 . \\ -
‘\ 7.3 //
K [+ 1 N R E
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According to the implicit function theorenm,=0 is an iso- 4T _/,/—/'/ i
lated solution of Egqg. (7) for K#K., where K e (b)
=2{JZJ[D/(D?*+ w?)]g(w)dw}*, cf. [1]. ol . . . . .
The coefficient 5 of r® in Eq. (7) may be either negative 0.2 0.4 0.6 0.8 1 1.2 1.4
or positive, depending on the frequency distributige). D

From .Eq..(7), in Ca_sg such_a cpefﬁment .'S neglgtlve,. th(_a bi- FIG. 4. Phase diagram for the trimodal frequency distribution
furcatlon.|§supercrltlcal while, in case it is posmvg—:-, I W'." with wq kept fixed to 3.5. The solid line corresponds to a loci of
be Sut?crltlcal BelOW’,We analyze Fhe type of blfurcat'lon' saddle-nodgSN) bifurcations(folds). The dotted-dashed line de-
occ_urrln_g cor_respondlngly to the trimodal frequency dIStrI'notes the Hopf bifurcatiofiHB1) of the incoherent branch, while
bution, in which case the dashed line corresponds to the Hopf bifurcaiipi®2) of the
stationary synchronized branctg) K versusa with D=1, (b) K
3K3 a (1-a)(—1+ ZwS/DZ) versusD with «=0.3. In the inset the points label the values used
r3:ﬁ 4 (1+ w%/D2)2(4+w§/D2) . (12 in the numerical simulation in Fig. 2.

stable, and this behavior can indeed be observed in the nu-
merical simulationgsee Fig. 2a)].

The numerical study of global stability by meansaofro
has been carried out using a spectral method, which gener-
ates the hierarchy of ordinary differential equations,

Using symbolic manipulations, we can find that, when
>a,~0.189,r3<0 for everywg, and thus the bifurcation is
supercritical. On the other hand, if<«., there are two
frequenciesp; ,w/ , such that forwy<w; or we>w, , the
stationary solution branches off supercritically, while when
w; <wg<w, it branches off subcritically. In Fig. 1, a very K dp
good agreement is shown between the results of the analyti-R = —n?DR,+no¥,+n=r(Ry_;—Rysq)—N—W,,

cal calculation of the boundary between the subcritical and 2 dt

the supercritical case, evaluated from Ed2) settingrs (13

=0, and the numerical solution obtained kyTO. K g
Moreover, choosing conveniently the values of the param- . _ 5 B " B _l//

eters,threepossible stationary solutions are found with such Wn==n"D¥,=noR,+n 2 S dt Ry

a frequency distribution. Only two of them, however, are (14
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FIG. 5. Bifurcation diagram for the amplitude order paramateas a function oK for several values o#; (a) «=0.02,(b) «=0.2,(c)
a=0.34, andd) «=0.35. Parameters values asg=3.5 andD = 1. The solid line corresponds to the stable solution, while the dashed line

denotes the unstable one.

for the moments

R (0,1)= J:wcos{n(lp— 0)1p(t, 0,0)do, (15)

W (0,t)= fohsin[n(l/f— 0)1p(t,0,0)do,  (16)

cf. [11]. The order parameter is then obtained from

r<t>=f Ry(0,09(w) do, 17

while [ T2V, (w,t)g(w)dw=0.
In practice, we solve numerically systefi4) for n
=1,2,... N, settingRy;1=Yn;1=0. The numbemN of

show the bifurcation diagram for the unimodal case. Note
that at leasN=12 modes are needed to reproduce the cor-
rect physical behavior, that is, the oscillators must be glo-
bally synchronized when the coupling among them is suffi-
ciently large(in fact,r—1 asK—). Such a number has to
be increased wheK is larger orD is smaller. The phase
diagram in the space of parameters ) for the trimodal
case is shown in Fig.(d4). We can see the different kinds of
solutions that this model yields, depending on the values of
the parameters. The bifurcation diagram@ds) versusK, for

the values ofx considered in Fig. @), are shown in Figs. 5
and 6[the labelga)—(d) and(*) refer to such values as given
in Fig. 4(@)]. For a given value of, the number of stationary
states equals the number of folds plus one. Note that for high
values ofa [case(d)], the bifurcation diagram is unfolded,
supercritical, and reproduces the pattern of the unimodal

modes is chosen such that the error drops below a givesase. On the other hand, for low valuesmfcase(a)], the

tolerance, typically 10%2.

bifurcation diagram presents one fold, is subcritical, and

In Fig. 2, the time evolution of the amplitude of the order similar to the bimodal case. The other three cd$ég. 5(b)

parameter is plotted for several valueskfIn Fig. 3, we

and Hc), and Fig. § exhibit two folds, i.e., three stationary
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' ' ' ' states. In Fig. &), we show the phase diagram in the space
of parameters,K), keepinga fixed. HB1 and HB2 denote
the bifurcations that give rise to oscillatory behavitopf
bifurcations, branching off the incoherent solution or the
synchronized stationary solution, respectively.

Summarizing, we conclude that a central peak in the natu-
ral frequency distribution plays an important role, in that it
allows for the existence of bistability between stationary so-
lutions. It should also be stressed that numerically evidence
for global stability of the stationary synchronized states has
been given, numerically, usinguto. All this could be im-
portant for the dynamics of superconducting Josephson junc-
tion arrays and in neural network systems. In fact, switching
between two synchronized stationary states, which may play
-0.1 . : . . a role in such devices, as well as in associative memories,
K can be realized changing the initial conditions.

The authors are indebted to C. Jr®eVicente, for advice
concerning applications of multistability concepts to neural
'systems, and to L. L. Bonilla for his interest in this work.
0y=3.5, @—0.3, andD=1. The loop shows the maximum and A.P. thanks J. Gatafor having introduced him to the subject

mininum of  in the oscillatory solution. In the regick, <K <K, of numgncal bifurcations. J.A.A. acknowledges support by
bistability between stationary synchronized solutions is observed® Office of Naval ResearctCode 33]). This work has
The points marked byl), (2) [see Fig. 28], and (3) [Fig. 2b)]  been supported, in part, by UNESCO under Contract No.
correspond to the solution obtained by direct numerical simulatiodVO-ROSTE 875.704.0, the Italian GNFM-CNRnow

of the Fokker-Planck equation. The solid line corresponds to thé&SNFM-INJAM), and ltalian MURST funds. All computa-
stable solution, while the dashed line denotes the unstable one. tions were conducted at CASPUR, Rome.

FIG. 6. Bifurcation diagram for the amplitude order parameter
r, as a function oK. The frequency distribution is trimodal, with

[1] S.H. Strogatz and R.E. Mirollo, J. Stat. Phg8, 613(1991. Lecture Notes in Physics Vol. 3%pringer, New York, 1976
[2] K. Wiesenfeld, P. Colet, and S.H. Strogatz, Phys. Rev. Lett. pp. 420—422Chemical Oscillations, Waves, and Turbulence
76, 404 (1996; Phys. Rev. B57, 1563(1998. (Springer, Berlin, 1984
[3] K. Park and M.Y. Choi, Phys. Rev. B6, 387 (1997. [7] L.L. Bonilla, J.C. Neu, and R. Spigler, J. Stat. Ph§g, 313
[4] T. Van Duzer and C. W. Turne§uperconductive Devices and (1992.
Circuits (Prentice Hall, Upper Saddle River, NJ, 1999 [8] L.L. Bonilla, C.J. Peez Vicente, and R. Spigler, Physica D
[5] Nonlinear Dynamics and Neural Networkroceedings of the 113 79(1998.
63rd W.E. Heraeus Seminar, Friedrichsdoedited by H. G. [9] E. J. DoedelauTo: Software for continuation and bifurcation
SchusterVCH, Weinheim, 1999 problems in ordinary differential equations, California Institute
[6] Y. Kuramoto, Self-entrainment of a Population of Coupled of Technology, 1997.

Nonlinear Oscillators in International Symposium on Math- [10] S.H. Strogatz, Physica D43 1 (2000.
ematical Problems in Theoretical Physieslited by H. Araki, [11] J.A. Acebrm, and L.L. Bonilla, Physica [114 296 (1998.

016218-5



