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Multivalued mappings in generalized chaos synchronization
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The onset of generalized synchronization of chaos in directionally coupled systems corresponds to the
formation of a continuous mapping that enables one to persistently define the state of the response system from
the trajectory of the drive system. A recently developed theory of generalized synchronization of chaos deals
only with the case where this synchronization mapping is a single-valued function. In this paper, we explore
generalized synchronization in a regime where the synchronization mapping can become a multivalued func-
tion. Specifically, we study the properties of the multivalued mapping that occurs between the drive and
response systems when the systems are synchronized with a frequency ratio other than one-to-one, and address
the issues of the existence and continuity of such mappings. The basic theoretical framework underlying the
considered synchronization regimes is then developed.
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I. INTRODUCTION behavior of neurons is very typichl1,14-18.
This paper addresses issues of generalized synchroniza-
The synchronization of oscillations is one of the mosttion that arise in studies of chaos synchronization with a
interesting nonlinear phenomena and is an inherent part dfequency ratio other than 1:1. As it is defined 8, the

many processes studied in a wide range of natural system@”set of generalized synchronization in directionally coupled

including such diverse areas as neurobiological networks an%haotlc systems relates to the formation of a continuous map-
ing that transforms the trajectory on the attractor of the

solitary systems. As a result, the corresponding theory is e . .
tensively utilized in many practical applicatiofs—3]. The drive system into the trajectory of the response system. For

i - oh S = .. systems with invertible dynamics, this is equivalent to the
dynamical theory of the synchronization of periodic OSC'"a'formation of a continuous mapping that links the current

tions, which relates the onset of synchronization to the birthya1e5 of the systems once they settle down on the synchro-
of a stable limit cycle due to the bifurcation of the motion on 45 attractor. Since the introduction of the concept of gen-
a two-dimensional ergodic torus, is due to Van der 28! eralized chaos synchronization, significant progress has been
Since the discovery of chaotic behavior in nonlinear oscillaade in understanding the relationship between the proper-
tors and the abl“ty of chaotic oscillators to Synchronlze, the[ies of these synchronization mappings and the spectrum of
framework of the dynamical theory of synchronization haslyapunov exponents that characterize the synchronous cha-
been significantly modified. The theory now encompassestic attractor. A number of papers have analyzed conditions
the major properties inherent in the synchronization that deahat guarantee the differentiability of the synchronization
with limiting sets(called chaotic attractorshat are dynami- mapping, thus indicating the formation of a differentiable
cally much richer than isolated limit cycl¢§]. invariant manifold(in the joint phase space of the coupled
Different notions of synchronization occurring in chaotic systems that contains the synchronized chaotic attractor
oscillators have been introduced in order to explore thdsee, for exampl§l7,18). Simply put, this differentiability
qualitative dynamical changes caused by the onset of chagscurs when the rate _of contraction in the direction trans-
synchronization in numerous experimental studies. Such ndterse to the manifold is larger than the rate of contraction
tions include the cases dadlentical synchronization, where €Xperienced by trajectories of the chaotic attractor in the di-
identical chaotic oscillations are usually studied in coupled©Ction tangent to the manifold. Such cases are distinguished
systems with identical individual dynamidé,7], general- @S belonging to a subclass of generalized synchronization
ized synchronization, which extends the notion of identicalNat Nas been namatifferentiable generalized synchroniza-

synchronization to cases of directionally coupled system§Ion Lﬂ]' f it iabl hronizati .
with nonidentical individual dynamicgs,8-11], and phase { The case of a nondifferentiable synchronization mapping

oo ; . ormed in drive-response systems has been studied recentl
synchronization that usually deals with the phase locking of, [19]. In this paperr,)the sta)éility of the response behavior in g

. e whole phase space of the response system is linked with

; ) €Mhe existence of a mapping that maps the trajectories of the
dent[12,13. Studies of the phenomena of generalized andipaqtic attractor in the driving system into the trajectories of

phase synchronization are largely motivated by the need fahe response system with a mapping that is &lBlocontinu-

development of a theoretical framework that can be used tgys function. These results help fill in the gap in parameter
achieve a better understanding of Synchronization in eXperispace that exists in between the Synchroniza’[ion regime
ments with neurobiological systems where complex, chaotigyhere a smooth synchronization manifold exists and the
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N 87xj(1) observed in the experiments with two directionally coupled

L~ chaaotic circuits. The sketch of the experimental setup is pre-

x;(t) afix; (1) (1) sented in Fig. 1. The details of the experiment and the pa-
N @ N @ rameters of the circuits can be found[20].

L R2 In this paper we present a detailed analysis of this syn-

R1 vL R2 R1 chronization regime based on numerical simulation results.
—"V\ x5(1) y4(1)
i vCl vC2I I C1 C2I A. Model
= = = == The dynamics of the drive circuit are described by the set
Driving System Response System of differential equations of the forf1]

FIG. 1. The sketch of the circuit diagram for the experimental VX=X
study of chaos synchronization with frequency ratio 2:1. The fre-
quency ratio is controlled by the multlp!lar used_to select the VXp=—X1— OXy+ X3 (1)
values of the inductors and capacitors in the drive and response
circuits.

vX3= y(a1f(X1) —X3) —oX;.
natural borders of the synchronization zones. In the present )

paper, we continue by studying how this theory of continu-The response system equations are

ous functions can be extended to cases of chaos synchrony _

with frequency ratio other than 1:1, where the synchroniza- Y1=Y2

tion mapping can become multivalued.

In Sec. Il, we present an example of chaos synchroniza-
tion with frequency ratio 2:1 and study the formation of the
multivalued mapping in detail. We do this by examining the .
bifurcations responsible for the transition from the single- Ya=v(axf(y1) —yst+9x)—oya,
valued mapping to the multivalued mapping as the regime of
generalized synchronization of chaos changes. In Sec. III, i¥here__ y=VLC1/R;C;=0.294, 0=C,/C,=1.52, ¢
order to provide a more complete view of the synchroniza-=R1VC1/L=0.534, ;=15.93 anda,=16.7 are the fixed
tion mappings and their properties, we supplement our nuSystem parameters anglis the coupling strength. Variables
merical simulation results with a discussion of some recenX1, X3, Y1, andys correspond to the voltages across the
rigorous mathematical results not easily available to theapacitorssee Fig. 1 Variablesx, andy, are proportional
reader, which are related to the considered regimes of gerﬁo the current through the inductors in the drive and response
eralized synchronization. We then review the results of thefircuits, respectively. The nonlinear functié) models the
theory behind generalized synchronization with continuoudnput-output characteristics of a nonlinear convertdy) (
functions and develop a similar theory for the case of multi-used in the circuit. The shape of the nonlinearity is presented
valued functions. in Fig. 2. In the numerical simulation, we modeled the func-
tion f( ') with the formulas

Y2=—Y1— Y2 tYs (2

Il. CHAOS SYNCHRONIZATION
WITH FREQUENCY RATIO 2:1 f(x)=sgnx)(a— vd(f,(x)—a)*+c)/d,

We consider a regime of chaos synchronization with freqyhere
qguency ratio 2:1. This type of synchronization was earlier

I ' x| if |x=<a
“ | fo(X)= —q([x|—p) if a<[x|<b
—a if |x|>b,

= d=(a’-c)/a? g=2al(b—a), p=(b+a)/2. The values of
= the parameters, b, andc are chosen to be equal to 0.5, 1.8,
and 0.03, respectivelisee[21] for detailg. The parameter

in the equations of the drive system is the time scaling pa-
rameter, which is used to select the frequency ratio of the
-0.4 8 synchronization zone.

The chaotic attractors occurring in the uncoupled drive
and response systems with these parameter settings are
shown in Fig. 3. Since we are interested in studying the

FIG. 2. The shape of the nonlinear functibf ) measured in  chaos synchronization regime with a frequency ratio of 2:1,
the experimental setup. the parameter was set equal to 0.498. As a result, the phase
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frequency ratidsee Fig. 49)].

Analysis of generalized synchronization of chaos with the
help of Poincareross sections was proposed 22]. In this
analysis, we define the Poincaceoss section in the drive
system and detect the moments of time when driving trajec-
tory crosses it. At these moments, we sample the state of the
response system and compare the points to the corresponding
set of the points in the drive system. This method simplifies
the analysis of chaotic attractors by reducing their dimension
by one. It helps to detect the onset of phase locking and, in
some cases, to examine the onset of topological equivalence

FIG. 3. Chaotic attractors of the drive system computed with thebetween the attractors in the synchronized drive and response
parameter valuer;=15.93(a), and the uncoupled response systemsystems. In the numerical simulations we analyze the prop-
(b). The bold dots on the trajectories of the driving attractor showerties of the chaotic attractors on the Poincamss section
the points where the chaotic trajectories cross the Poinuares (x,=0) by computing the points where the trajectories cross

section &;=0 with dx,/dt>0). the valuex,=0 with positive values ofdx,/dt [see Fig.
3(a)].
velocity of the trajectories of the driving attractor is about  The auxiliary system method was proposed as a practical
twice as high as that of the response attractor. method of detecting the formation of a continuous mapping
through the ability of persistently pointing out the current
B. Onset of generalized synchronization state of the response system without direct computation of

the map[23]. This method assumes the use of a tHmdx-
iliary) system that is an exact replica of the response system.
fh our case, the auxiliary system is of the form

Introduction of sufficiently strong coupling between the
systems results in the onset of synchronization. The regim
of synchronization that occurs whey=2.5 is presented in
Fig. 4. The onset of synchronization in this case is detected
using Lissajous figures, by observing the attractors in the
Poincarecross section, and by utilizing the auxiliary system
method. Each of these methods will be briefly explained in Z,=—2,— 82,+ 73 3
the following paragraphs.

The Lissajous figure is a standard approach frequently :
utilized in traditional studies of synchronization between pe- z3=y(@2f(21) ~ 23+ 9%) ~ 02,

riodic oscillators. It enables one to clearly see the onset of

phase locking and define the frequency ratio of the particulalPUe to the identity of the dynamics of the response and aux-

synchronization zone. For the frequency ratio 2:1, the Lissalli2"y Systems, the nine-dimensional space encompassing all

jous figure has a form similar to the shape of the digit “8.” thrée coupled systems has an invariant manijeicz, where
Despite the fact that due to the chaotic behavior the Lissay @ndz are vectors of the variables in the response and aux-
jous figure does not appear as a closed curve, it is still nofiary systems, respectively. When this manifold contains the

difficult to see the onset of phase locking and identify the€ntire chaotic attractor, a continuous mapping exists that
projects the trajectories of the drive system onto the trajec-

25 25 tories of the response systems after transients die(sme

®) [23] for detaily. Therefore, the formation of a chaotic attrac-
tor in the invariant manifold \{(=z) constitutes the onset of

15 generalized synchronization between the drive and response

systems. Such a chaotic attractor occurs in our simulation

21222

~ " with g=2.5[see Fig. 4b)].
05 05 ] When one utilizes this method in numerical simulations, it
can be difficult to ensure that the chaotic set of trajectories in
05 o5 t.he. invariant manifold _does_not contain transversely uns.,t'able
05 0 05 1 15 2 -05 0 05 1 15 2 25 limit sets. Due to the identity of the response and auxiliary
M1 Y1 systems and the limited accuracy of numerical simulations,

FIG. 4. (8 The Lissajous figure for the synchronized chaotic the chaotic trajectory can settle down on the invariant mani-

oscillations plotted on the plane of variables from the drive and©!d Y=2, éven if the chaotic set in the manifold contains
responsex; ,y;), and(b) the projections of the corresponding cha- transversely unstable limiting subsets. This artifact of nu-
otic trajectories onto the plane of similar variables in the responsénerical simulation can be resolved by breaking the symme-
and auxiliary systemsy(,z;). The strength of the coupling ig Y between the response and auxiliary systems. In our simu-
=2.5. The bold dots show the points on the chaotic trajectoriedations, we accomplish this by using slightly different values
corresponding to the moments of time when the trajectory of thedf coupling. The coupling of the auxiliary system is larger
drive system crosses the Poincaress sectionX,=0) with a posi-  than the value of coupling in the response system by a value
tive value ofdx, /dt . of Ag=0.01, less than 1% of the coupling strength used.
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FIG. 6. The regime of asynchronous chaotic oscillations com-
FIG. 5. The maximal deviation between the states of the reputed forg=2.0.(a) The Lissajous figure in the plane,(,y,), and
sponse and auxiliary systems versus the value of coupling parantb) the projections of the corresponding chaotic trajectories onto the
eterg computed withAg=0.01. plane §/41,2;). The bold dots show the points on the chaotic trajec-
tories corresponding to the moments of time when the trajectory of
. . o the drive system crosses the Poincaress sectionx,=0) with a
C. Two regimes of generalized synchronization o
positive value ofdx, /dt.
The goal of this section is to examine in detail the main
features of two qualitatively distinct regimes of generalized L 4
synchronization observed for different values of coupling insyste_m(the dr|v_|ng system remains unchangettie synchro-
some previous experimental studies of chaos synchronizatigh 220" mappln%_for this _attlracto(rj_k_)ecomﬁs a onhe-to.-tw((j)
with a frequency ratio of 2:1see[20] for details on the mapping. Depen. Ing on Initial conditions, the synchronize
: , response oscillations settle down on the ribbon with one of
experimental s_etL)p In order to point out the .Cha!”ge be- two different phases. As a result, the single synchronized
tween the regimes of generalized synchronization VersUgyactor in the drive-response system is presented as two
variation of the coupling parameter, we analyzed ghée- jtferent attractors in the drive-response-auxiliary system,
pendence ofdy(9)={V(Z—Y)"(Z—Y)}max. Which is the one in the synchronization manifold=z and the other one
maximal deviation between the response and auxiliary syssutside the manifoldisee Fig. T)].
tems computed for the chaotic trajectories after transients die In order to examine the synchronous chaotic attractors in
out. This dependence is presented in Fig. 5. Synchronizatiomore detail and to understand the properties of the corre-
takes place for values af whered,,,,{(g) is approximately sponding synchronization mappings, we study the location
equal to zero. In Fig. 5 there are two intervals gofthat ~ and stability of the limiting sets contained in the attractors.
correspond to two synchronization regimes. These interval$hese limiting sets are the unstable periodic orfi#®09
are separated by a region of asynchronous behavior appeambedded in the chaotic attractor.
ing aroundg=2.0.
The oscillations occurring in the synchronization interval D. UPOs and the synchronization mappings
g>2.1 correspond to th_e chaotic attractor sh(_)wn in Fig. 4. It is well known that phase locking of the unstable peri-
When the value of coupling decreases and arrives at the bor-,. o ) o
. RO . ._—odic orbits in the coupled chaotic systems plays a significant
der of this synchronization interval, generalized synchroniza-
tion terminates. The chaotic attractor corresponding to these¢ 25 ‘ 25
asynchronous oscillations, computed §pt 2.0, is presented (b)
in Fig. 6. The destruction of the generalized synchronization L
follows from the appearance of sporadic outbursts of non- 1% «
identical behavior in the response and auxiliary systems, ~
which are seen in Fig.(B). Such outbursts are indicative of
the existence of transversely unstable limiting trajectories in 08 E&*’a 08 ﬁ /
the chaotic set located in the manifojg=z and therefore, @ Wty /#"
indicates the inclusion of conditionally unstable limiting tra- _ . 05
jectories in the chaotic attractor residing in the phase space %5 ¢ 08 1 15 2 ©5 0 05 1 15 2 @5
of the drive and response systems. ! 1

Further decrease O.f th.e coupling strength again r_esu_lts_ N FiG. 7. The regime of synchronized chaotic oscillations com-
the onset of §ynchron|zat|on Whe_n th_e value of coupling is Ir]outed forg=1.8.(a) The Lissajous figure of the synchronized cha-
the second interval of synchronization that takes place b&sic attractor in the plane of variables from the drive and response
tweeng~1.5 andg~ 1.9 (see Fig. 5 The synchronized cha- gystems ¥,,y,). (b) Two chaotic attractors corresponding to the
otic attractor that occurs in this case is shown in Fig. 7. In thesynchronized chaos formed in the response and auxiliary systems
joint phase space of the drive and response systems this gfiotted in the planey(;,z;). The bold dots show the points on the
tractor represents a closed ribbon formed after a “periocthaotic trajectories corresponding to the moments of time when the
doubling” of the synchronized chaotic attractor studied intrajectory of the drive system crosses the Poinaamss section
the first interval of synchronization, compare Fig&)4and  (x,=0) with a positive value ofix,/dt.

7(a). Due to the period doubling that occurs in the response

* /.

1.5
/.

Zy
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FIG. 8. The Poincareross sections of SR UPOs, UR UPOs and chaotic trajectories in the drive-response system compaited for
=2.5,(b) g=2.0, and(c) g=1.8.

role in the understanding of different regimes of chaos syntyapunov exponent&; . If all of the conditional Lyapunov
chronization(see, for exampl§12,13,24—-2§. Any UPO is  exponents of a UPO have negative values, we call that orbit
characterized by the spectrum of multipliersor the corre- a stable responséSR) UPO. If at least one conditional
sponding Lyapunov exponents\;=In(w)/Typo, Where Lyapunov exponent of the UPO is positive, we call the orbit
Tupo is the period of the UPO. In the analysis of synchro-an unstable respong&/R) UPO.
nization in directionally coupled systems, it is always useful In our study, we consider all UPOs in the chaotic attractor
to split the whole spectrum of Lyapunov exponents into twoof the driving systenishown in Fig. 3a)] up to period 6, one
groups: the first is given by the dynamics of the autonomousf the period-8 UPOs, and one of the period-10 UPOs. Using
drive system, and the second comes from the conditionghe wave form of,(t) of these orbits as a driving force, we
dynamics of the response system. The conditional dynamicsomputed the corresponding orbits that are formed in the
corresponds to the behavior induced in the response systediven response system. It is clear that, in this case, the stable
by the driving signal. periodic orbits correspond to the SR UPOs and the unstable
Since the drive system is a three-dimensional dissipativenes to the UR UPOs formed in the joint phase space of the
system in the present case, the first group of the Lyapunodrive and response systems.
exponent spectrum for each UPO contains three exponents: The results are shown in Fig. 8, where we plot the inter-
A;>0, A,=0, andA;<0. These exponents do not dependsections of the UPOs with the Poincaceoss section X,
upon the coupling strength or any of the other parameters of 0, dx,/dt>0) projected onto the variable plang;(y).
the response system. The second group of exponents in tie order to see if the UPOs belong to the chaotic attractor we
spectrum is due to the dynamics of the response systeralso plot, in the background, the points on the Poincanss
Following [7] we call these exponents theonditional section of the chaotic trajectory.
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When the systems are synchronized wgth 2.5, all the
SR UPOs are inside the chaotic attractor, while the UR
UPOs do not belong to the attractor, see Fi@).8The tra-
jectory of the synchronized chaotic attractor wanders around
the SR UPOs that form the skeleton of the attractor. Since
this skeleton does not contain UR UPOs, the response sys-
tem always follows the driving chaotic trajectory in a stable
manner. This fact explains the stability of the identical cha-
otic oscillations in the response and auxiliary systdsee
Fig. 4(b)].

Decreasing the value of the coupling parameteesults
in a sequence of bifurcations associated with the SR UPOs.
These bifurcations create a large number of new UPOs, in-
cluding new UR UPOs, which are added to the skeleton of
the chaotic attractdisee Fig. &) for the casey=2.0]. Since
these new UR UPOs are inside the chaotic attractor they
form regions where the response behavior for the chaotic
driving is unstable. As a result, the synchronization is de-
stroyed, see Fig.(6).

There is the coexistence of two types of UPOs that have
different numbers of unstable directions in the chaotic attrac-
tor shown in Fig. &). This is indicative of the onset of a
nonhyperbolic situation27—29. Note that even though
some kind of nonhyperbolic situation may exist in the cha-
otic attractor of the driving system, it does not make any
impact on the response behavior and therefore, makes no - ) . . . ‘
impact on the synchronization between the drive and re- 1 1.4 1.8 22 26 3
sponse systems. The synchronization is sensitive only to the 8
nonhyperbolicity of the chaotic attractors contributed by the _ _ _
response system dynamics. This kind of nonhyperbolic situ- FIG. 9. The b'fur.cat'on diagrany(ty) vs g computed for the
ation is responsible for the inability to compute the trajectoryreSponse system driven tog) Fhe chaos and. by the qu@ P2,
of the response system if arbitrarily small perturbations of(? EA"d(O.l) pe, and(e) p8, which are found in the chaotic attractor
the system are taken into accod@f7]. This is the reason of the driving system.
why the identical chaotic oscillations in the response andor experiences the period doubling bifurcation. This study,
auxiliary systems do not follow the same path even when aplotted in Fig. 9, reveals a very interesting fact. It turns out
arbitrary small perturbation is considered. It also directly in-that not all the UPOs experience a period-doubling bifurca-
dicates the destruction of the continuous synchronizatiotion in conjunction with the bifurcation of the ribbon. Indeed,
mapping. the orbits that have a period, which is a multiple ofthe

As one can see from Figs(# and 7a), the further de- period of the chaotic ribbon after the bifurcatiprare not
crease of the coupling between the systems results in thgubject to the period-doubling bifurcatiofisee Figs. &)
period doubling of the ribbon formed by the chaotic attrac-and 9e)]. The other UPOs go through the period doubling
tor. When this period doubling “bifurcation” is complete, bifurcation along with the ribbon.
all the SR UPOs and the chaotic trajectories of the attractor The difference in the bifurcation scenarios between the
are moved far enough from the region occupied by the URp(4XN) UPOs(with N an integey and the other UPOs re-
UPOs and, as a result, all UR UPOs again reside only outsidgult in different synchronization mappings occurring when
the chaotic attractofsee Fig. &)]. This qualitative change the response system is driven by these different UPOs. After
of the chaotic behavior eliminates the nonhyperbolic situathe period doubling bifurcation, the orbits whose periods are
tion caused by the dynamics of the response system and, asiat multiples of 4 have a one-to-two synchronization map-
result, the generalized synchronization is regairses Tb)]. ping [see Figs. &) and 9d)], while thep(4xXN) orbits do
It follows from the analysis of the SR UPOs that in this not bifurcate and their synchronization mapping remains 1:1
regime of chaos synchronization any point on the UPOs confsee Figs. &) and 9e)]. This situation raises the following
tained in the chaotic attractor of the driving system maps iquestion: How do these one-to-one synchronization map-
to two points located on the corresponding SR UPOs. Therepings for thep(4 <X N) orbits fit into the one-to-two synchro-
fore, this synchronization is characterized by one-to-two synnization mapping that occurs for all trajectories of the cha-
chronization mapping. otic attractor? The answer to this question comes from the

In order to understand the properties of this synchronizaanalysis of the stable response images to periodic driving
tion mapping we studied the bifurcations of the SR UPOswith the p(4xN) orbits. When the ribbon bifurcates, the
when the value of coupling parameter is changed from higtp(4 X N) orbits respond with the creation of a new pair of
to low in the interval where the ribbon of the chaotic attrac-response orbits. One is SR UPO and the other is UR UPO

[ | [ ————
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' ' ' previous section. The main goal here is to link the properties

iessseseest ety ———— of the synchronization mappings with the stability character-
G| istics of the response system behavior.

As it was shown in the previous section, the use of a

. - p4 SR UPO Poincarecross section enables one to simplify the analysis of

°°°°°° * p4 SRUPO the synchronization mapping by studying the dynamics of

*P4URUPO the maps. In a rather general case, the maps occurring in the

drive and response systems can be presented as maps with a
skew product structure of the form

y,(t)

Xn+1= F(Xn) 4

055 17 19 2.1 23 Yoi1=Gk(Xn,Yn)s (5)

wherex andy are vectors consisting of the variables in the

FIG. 10. The bifurcation diagram(t,) vs g computed for the drive, response and auxiliary systems respectively kand

response system driven by the unstable periodic @ditocated in

the chaotic attractor of the driving system. The stable response opargmetetrhdefpe?d'?%.on thfe shtrength ththe .COIIJ.p“n% W
bits are indicated by circles and diamonds. The unstable response Ince the irst studies of chaos synchronizalion between

orbit is indicated by crosses. nonidenticalsystemg 5], synchronization was interpreted as
the system behaving in such a way that for any orkjt,¥,,),

(this bifurcation scenario for the4 orbit is presented in Fig. the coordinatey, is just a function of thex,, once transients
10). Therefore, despite the fact that periodic synchronizatiorflie out. The first rigorous results on generalized synchroni-
for p(4x N) is characterized by a one-to-one mapping, eachzatm_n were obtgmed for cases where thgre exists a §mooth
point on thep(4XN) orbit has two stable images in the mManifold belonging to the graph of a functigr-h(x) thatis
phase space of the response system. Having two SR upatable in the transve_rsal direction and contains the_ chaotlc
for eachp(4x N) orbit, the orbits are able to conform to the attractor corresponding to the synchronized oscillations
one-to-two chaos synchronization mapping. [17,18]. This approach relies on the theory of normally hy-

This example allows us to draw the following conclusionsPerbolic invariant manifolds. . .
on the properties of generalized chaos synchronization with a In most studies of different regimes of generalized chaos
multivalued mapping. synchronlzapon, it is observe_d that in some regiork ofl-

(1) The synchronized chaotic attractor represents a ribboH€S, @ functiorh seems to exist, but it is not smooth. As a
of chaotic trajectories that does not contain limiting sets with"esult, the graph oh is a complicated geometrical object
unstable response dynamics. Each point in the chaotic attratS€e. for exampl¢17,30)). In this section we discuss recent
tor of the driving system maps intdl points in the chaotic ~figorous results on the properties of nonsmoot_h functions
attractor in the joint phase space of the drive-response sy@"d present new results for the case of multivalued map-
tem (in the presented examplé)=2). The value of the PINGS.
numberM is invariant over the attractor.

(2) TheseM points are located in the chaotic ribbon in A. Results and examples concerning single-valued functiorts
such a way that they represent the different phases of the To make the If-contained first briefly di
motion along the ribbon. Any trajectory of the synchronized . paper sefi-containeéd, we Tirst brietly discuss
attractor passes through all phases in sequential order. Therlg-e rlgorc_)us.results on the existence a_nd continuity .Of the
fore, the multivalued synchronization map can be presenteaynihrgglze_‘rt'hon functlog that were obtr;aune(:] mfa pr%v_lous
as the cyclic sequence of the single-valued continuous mapg.c.)lrd [19]. ne pap'?r hemonstratgs that t'e #nct s

(3) The UPOs of the chaotic attractor in the drive system older (_:ontlnuous : t € (_:ontract_lon rat_e n the response
have SR UPOs, each of which is characterized by the maps_ystgm is small and L|fsch|tz-contr|nnuous if it |ns greater than
ping where one point on the driving UPO maps iM@oints a cr_|t|cal v_alue. Assume_ thate R™ and yE.R ,_and that
of the corresponding SR UPO. The exception to this ruIeGk IS contlnuou_s anq: IS a home_omorpihllsrr(l.e._, Fis
includes only the UPOs of the driving chaotic attractor with continuous and invertible with an inverse " that is con-

periods that are multiples of the period of the chaotic ribbon.tinuous)' The dynamics in the.joint phasg space of the drive
d response systems is determined by a map

Each point on these special UPOs can map into a single poi .
pol € Specl S bl Single pol i (X0, Yn)— (Xns1,Yns1). We also assume that in the

of the corresponding SR UPO. However, these UPOs should* . :
therefore havéV stable response UPOs. joint phase space there exists a basin of attradBerB,,

e RM*N j.e., ¢ (B)CInt(B) for anyke S, whereSis a re-
gion in k space in which the system@) and (5) exhibit
master-slave chaos synchronization. Without loss of general-
ity, we assume thaB,,=B,XB,, i.e., By, is a rectangle,

In this section we formulate the theoretical framework forwhereB, (By) is a ball inx space(y space.
the synchronization mappings that occur in those regimes of Denote by A, the maximal attractor irB,,, i.e., Ay
chaos synchronization similar to the one considered on the ﬂ;‘;oqbﬂ(Bxy). Because of our assumptions,

IlI. FUNCTIONS IN THE THEORY
OF GENERALIZED SYNCHRONIZATION OF CHAOS
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lim |yn_§n| =0,

n—o

where Q(n 1yn): d’E(XOvyO)’ (Xn vyn): (f)E(XO 1901)

(X0.Y0), (Xo,Yo) are arbitrary points i, .

PHYSICAL REVIEW E 64 016217

(6) It is assumed that functio®,(x,y) of the response sys-
tem (5) is Lifschitz continuous with respect tq i.e., for any
(xy), (X,y) €Byy,
and 5 5
|G(%,Y) = G(X.y)| < 7x—X] (13

To avoid nonessential technicalities it was supposed in
[19] that the limit in Eq.(6) is achieved monotonically, i.e., Where»>0.

|yn+1_’9n+ 1| = |yn_§n|

for anyke S and anyn=0.

Theorem 3A19]. (Holder property) Under assumptions
7) (10)—(13) the function h is Hder continuous, i.e., for any

0<a<a,, and xxe Ay one has

Let Ay ,:=I1, A be the image ofA, under the natural Ih(x)—h(x)|<2p|x=X|*, (14)

projectionII, to R™.

Theorem 1A19]. (Existence)Under assumption® and  Where
(7), there exists a function:h A, ,—R" such thatA, is a

graph of function h U 1 (15)
We emphasize that it is the inversibility 8fthat ensures ¢ In(yry_)’
thath is a single-valued function. Continuity plays no role at 1- Ink

this stage.

Theorem 2A19]. (Continuity) Under the assumptions of and p=p., wherep, is the solution of the equation,

Theorem 1A, the function h is continuous.

To obtain more detailed characteristics of this functional 7
dependence, additional assumptions were made. It was asP=

sumed that

|yn+1_’§/n+1| $k1|yn_§n|

Ink—1In|B,|
[In(y., y_)/Ink]+1 y
kp eX[{ Ink |n[7’+7—] .

Theorem 4A19]. (Lipschitz property) Under the condi-
(8 tions of Theorem 3A and provided that

wherek,;<1. Of course, the parametky is a function ofk. 1
For the sake of simplicity, we assume that=k. Thus, 0< k<y—, (16)

Vns1—Ynea| <Klyn—Yal, 0<k<L1.

It follows that
|Gi(x,y) = Gy(x, )| <kly—Y]

for any (x,y), (x.y) e Byy -

Assumption(9) implies that|y,—Y,| goes to zero expo-
nentially fast, and this fact allows one to prove tlmis
Holder continuous provided that the functioRendG, have
good smooth properties, or provided at the least that they a

Lipschitz-continuous.

Considering the forward and backward dynamics of the
driving system(4) we assume the following properties,

[F(x) = F(X)| <y4|x=X
and

IFY(x)—F Y(®)|<y_|x—X|,

(99 the function h is Lifschitz continuous, i.e.,
|h(x)—h(x)|<L|x=X], (17)

(100 where =L =5y /(1—ky.).

The considered theorems give a pretty clear picture of the
complexity of the synchronization mappings that usually oc-
cur in different regimes of generalized synchronization of
chaos. It follows from these results that even in the case of
differentiable generalized synchronizatiph7], the change
|%f the parameters toward the border of the synchronization
zone will gradually reduce the rate of contraction in the re-
sponse system. At some critical value of the contraction rate
(see Theorems 3A and 4Athe smoothness of synchroniza-
tion mapping will be destroyed while the systems remain
synchronized with a nondifferentiable function.

Example:To illustrate the results above, let us consider
coupled Haon maps.

We consider the linear coupling of twaonidentical
Henon-type maps. For certain values of coupling strength,
(120 the hypotheses of our theorems are fulfilled.

Let f be the following invertible map:f: [0,1]?

13

where y_,y,=1. When Lyapunov exponents do exist —[0,1]? f(Xq,y1)=(X1,y}) with
(when the dynamics are differentiable with additional suit-

able conditiony the quantities Iy, ,Iny_ play the role of X]=Y1

the forward and backward greatest Lyapunov exponents, re-

spectively, and Ik plays the role of the conditional

Lyapunov exponent.

y1="fa(y1) +bx,

016217-8
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wheref;: [0,1]—[0,1] is Lipschitz, with Lipschitz constant
vy, 0<b=1. Let f; be such thatf,(y,)<y./2,V y;

€[0,1], and (1+b,)(v4/2)<1. The mapf is a homeomor-
phism of the unit square. Leg. be the following map:

Jde- [011]4_)[011]21 gc(xlvyl!XZIyZ):(xéiyé) with
X;=Y2+C(Y1—Y2)

Yo=T2(y2) +baxo+ c(f1(y1) +bix1)—[f2(y2) +boxo)],

where O<c=<1, f,: [0,1]—[0,1] is Lipschitz, with Lips-
chitz constant y,, (1+Dby)(v,/2)<1 and fy(y,)
<v,/2,V y,e[0,1]. For convenience, we shall use the fol-
lowing shorthandv ;= (x1,y;) andv,=(X,,Y5).

To have contraction in v, space, that is
|9c(v1,02) —9e(v1,02)|<k|v,—v,| with 0<k<1, the fol-
lowing condition must be satisfiéd

1
c>1—

14byt 22

2

The forward and backward expansion rated-cdire, re-
spectively, given byy,=1+y,/2 andy_=b; .
Theorem 3A holds, i.e., the functidnis Holder continu-

PHYSICAL REVIEW E 64 016217

cannot be used. Below we reformulate the results on single-
valued function in order to extend it to the case of multival-
ued function. _ .

Assume thaB,=UF_;B, , whereB, are pairwise disjoint
closed balls in theg spaceB, is a closed ball in the space,
andB,,=B,XB,.

We also assume that monotonic synchronization occurs in

Byy, 1-€.,
lim |Yn—Yal=0 (18)
and
Yo+ 1= Yo 1l <[Yn=Yal, (19
where  ,,¥n) = dr(X0.Y0),  (Xn.¥Yn)=k(Xo0.Yo,) and

(X0.Yo), (Xo,Yo) are arbitrary points i such thaty, andy,
belong to the same balB'y for somei.

Denote by .4, the maximal attractor irByy, i.e., A
=Nj_oPr(Byy) and let A, ,:=II, A, be the image of4,
under the natural projectiod, to R™.

In this situation some extensions of theorems 1A—4A
hold.

Theorem 1B(Existence) Under conditions (18) and (19),
and provided that for anxe Ay and for any j 1<i<p,

ous and one can easily check the following expression fofhere existy; e B; such that(x,y;) € Ay, there exist p func-

the Hdder exponent,

In| (1—c)| 1+b,+ %H
Cl’O:
by(1—c) 1+b2§)
In 5
1
1+

The condition(16) in Theorem 4A reads
b
c>1- ! v
2
1+by+ >

According to Theorem 4A, this means that the functiois
Lipschitz continuous.

B. Multivalued function h

The framework of chaos synchronization discussed abovd

applies only to the cases when the functioris a single-
valued function, because of the assumptién As a result

tions h: Ac—R", i=1,...p such that graph(h;)CB
X By and A= UP_; graph (h;).

Scheme of the prooT.he proof is mainly the same as the
one for single-valued cag@heorem 1A. However we need
to emphasize the following facts. For amy A, , and for
any n=0, the set¢y(x,UP_;B)) hasp connected compo-
nents inside(F"(x),Uf_,By) and every setF"(x),B,) con-
tains one and only one of them. Indeed, if we assume that
(F”(x),B'y) contains more than one connected components
for somei then it will imply that there exist & such that
(F”(x),B{,) contains no components. SinEds 1:1, it means
that there are no points of the attractor(ﬁi‘(x),B{,) and we
have a contradiction. From this point forward, one can fol-
low the proof of Theorem 1A

Theorem 2B(Continuity) Under assumptions of Theorem
1B, the functions hare continuous, for#1,...p.

Scheme of the proofet x andx be close to each other
and consider the pointé,h;(x)) and (x,h;(x)). We show
now that, *(x,h;(x)) and ¢, (x,h;(x)) belong to the sets
1(x),B}) and (F"*(x),B)), respectively, with the same
numberj. .

Assuming the contrary, i.e *(x,hi(x)) e (F"*(x),B})

this framework is not applicable to the case of synchronizabut ¢, *(x,h(x)) e (F 1(x),B}) and j'#j. Therefore

tion presented in Fig. 7 where each point on the chaoti

attractor A, , in driving system maps into two different
points of the synchronized chaotic attractdy. In this case
B, is not a simply connected region, and assumptién

We use the nornw|=|x|+|y|, wherev=(x,y).

@w(F~1(x),B)) belongs to %,B!

}) and ¢y (F*(x),B)) be-
longs to (7<,Biy') where i’ #i. Consider now the points
(FXx).y) and (F%(X)y), yeB,. It follows that
dist(¢(F1(X),y), d(F1(X),y)) is bounded from zero pro-
vided thatx andx are close enough. Roughly speaking, this
distance is greater thédist(Bj ,B{,/). On the other side, we

016217-9
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between the response and auxiliary system there always exist
an invariant manifolMg: y=z. Let us relate the baEIS'y to

B: zoeB; if yo=2,€ By, an indicator of multivalued syn-
chronization We can use the equality

know that|F~1(x) — F~*(x)| is small, therefore by continu-
ity of ¢y, dist(pu(F1(x),y), ok(F1(X).y)) is also small,
resulting in a contradiction.
The rest of the proof is the same as in Theorem [ZA.
We assume now that conditions similar to E(®—(13)

hold in By, i.e., inequalities8)—(10) hold provided thay n“j:o |Yn—20/ =0, (27)
=Yo, §/=§/0 belong to the same connected component in the
SetBy; other conditions remain the same. where Q(n Yn 1Zn): wE(XOlyO!ZO). and (XO:YO;ZO): is an arbi-

Taking into account the schemes of the proofs of Theotrary point inB such thaty, < B}, andzy e B}, with the same
rems 1B and 2B, one can check that the proofs of the folingeyx i, as an indicator of multivalued synchronization. In-
lowing two theorems are similar to the proofs of Theoremsyegq, it is simple to see that the following statement holds.
3A and 4A. Theorem 5B. Under the assumptions of Theorem 1B the

Theorem 3B(Holder property) If the conditions are sat- equality (27) is satisfied provided thaty B!, and zc B!
isfied, under assumptions of Theorem 1B, the functigns h it the same index i Y z

i=1,...p are Hdder continuous, i.e., for anp<a<ac, The behavior of orbits in the attractor can be different. It
X,xe Ay x one has, could be related to a cyclic repetitiom;—h,—h;—h,
- - — ..., or amore complex sequence bf. It depends on the
[hi() — hi(x)|<2p|x—x], (20 partition of Ay , into connected components.
In the simplest case whe#,  is connected, every orbit in
A, behaves in the same way: for anthere is g such that
1 ¢(graph(h;))=graph(h;), 1<i,j<p. This fact is_ a direct
a< A= (21 corollary of Theorem 2B. Indeed, for any two poiii@s and
_ N(y+7v-) Q, in graph(h;) and anye>0 there is a collection of points
Ink Po....Pyegraphh;) such thatPy=Q;, Py=Q, and
dist(P; ,P; ;1) <€, 0<i<N-—1. Because of the continuity of
¢y, the points¢,(P;) and ¢ (P;; 1) belong to the same
branch, say(h;) for anyi=0,...N—1. In fact, a trajectory

where

and p=p., wherep, is the solution of the equation,

p= plnrey K+ L ey T A(K, vy ,y-)], (22 switches the disjoint balls in thespace in a particular order,
YK and this order is uniquely determined by a permutation
—j.
where If Ay« contains more than one connected components
In k—In(ma>g|Bi ) then the behavior of orbits inside each of them determines
A(K,yy,y-):= ik “n(y.y_). (23 the same itinerary among branctgraph(h;). For example,

if such a component contains the projection of a periodic
point then the itinerary will be also periodic. But if a com-
ponent does not contain a periodic orbit then the itinerary
could be nonperiodic; in this casé  should have infinitely
many connected components.

Theorem 4B (Lipschitz property) Under conditions of
Theorem 3B and provided that

1
O<k<—, (249

IV. CONCLUSIONS

the functions h, i=1,... p, are Lipschitz-continuous, i.e., . o
! P P The example of generalized synchronization of chaos

|h-(x)—h-(§<)|sL|x—§| (25) considered in Sec. Il enables us to explore properties of a
! ' ' type of chaos synchronization mapping in which the map-
where =L =7y_/1-ky_. ping is a multivalued function. Based on analysis of the con-

In order to deal with problems in the case of multivaluedditional stability of the synchronous chaotic behavior of the
function h we make use of the auxiliary systems approactf€SPonse system, we come to conclusions concerning the ex-
[23]. Consider an auxiliary system that is a replica of theiSteénce and continuity of the synchronization mappings

response systers) and given by the equation of the form formed in these regimes of generalized synchronization. We
used the auxiliary system method to detect the onset of con-

Zn1=Gu(Xn 7). (26) ditional stability both in case of single-valued mappings and
in case of multivalued mappings.

Note that the auxiliary systerf26) can serve, as well as in Changing the strength of the coupling between the drive
the case of standard generalized synchronization, to indicatnd response systems, we followed the transition from a re-

the validity of synchronization. gime of synchronization with a single-valued function to a
Let the dynamics in the joint phase space of the driveregime with a double-valued function. These two regimes of
response and auxiliary systems be determined by a magynchronization are separated by a regime of asynchronous
et (XnyYniZn)—=(Xn+1:Yn+1,Zn+1). Due to the identity chaotic oscillations. Our numerical analysis showed that this
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regime of asynchronous oscillations occupies an interval of The introduction of multivalued synchronization mapping
the coupling parameter values where all of the necessarnto the concept of the generalized synchronization of chaos
bifurcations occur that are required for the formation of thisprovides another theoretical framework which is crucial for
type of synchronization mapping. Analysis of the unstableunderstanding of chaos synchronization phenomenon in
periodic orbits (UPO9 contained in the chaotic attractor many cases of synchronization in directionally coupled sys-
formed in the joint phase space of drive and response sygems. Such cases include synchronization with frequency ra-
tems revealed a very interesting element of this bifurcationjo other then 1:1 where the formation of multivalued syn-
Scenario. We haVe found that not a.” UPOs in the attractobhronization mappings is a quite natural occurrence.
experience the period doubling bifurcations as the ribbon
containing the chaotic trajectories of the attractor doubles its
period. The UPOs with periods that are multiples to the pe-
riod of the postbifurcation chaotic ribbon remain qualita-
tively unchanged. In this case the response system generatesThe authors are grateful to H.D.I. Abarbanel, K. Josic, L.
additional UPOs with identical periods via tangential bifur- Kocarev, L. Pecora, and U. Parlitz for helpful discussions.
cations. Thanks to these additional UPOs the so formedl.F.R. was sponsored in part by U.S. Department of Energy
double-valued synchronization function applies universally(Grant No. DE-FG03-95ER1451@énd the U.S. Army Re-
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