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Multivalued mappings in generalized chaos synchronization
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The onset of generalized synchronization of chaos in directionally coupled systems corresponds to the
formation of a continuous mapping that enables one to persistently define the state of the response system from
the trajectory of the drive system. A recently developed theory of generalized synchronization of chaos deals
only with the case where this synchronization mapping is a single-valued function. In this paper, we explore
generalized synchronization in a regime where the synchronization mapping can become a multivalued func-
tion. Specifically, we study the properties of the multivalued mapping that occurs between the drive and
response systems when the systems are synchronized with a frequency ratio other than one-to-one, and address
the issues of the existence and continuity of such mappings. The basic theoretical framework underlying the
considered synchronization regimes is then developed.
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I. INTRODUCTION

The synchronization of oscillations is one of the mo
interesting nonlinear phenomena and is an inherent pa
many processes studied in a wide range of natural syste
including such diverse areas as neurobiological networks
solitary systems. As a result, the corresponding theory is
tensively utilized in many practical applications@1–3#. The
dynamical theory of the synchronization of periodic oscil
tions, which relates the onset of synchronization to the b
of a stable limit cycle due to the bifurcation of the motion
a two-dimensional ergodic torus, is due to Van der Pol@4#.
Since the discovery of chaotic behavior in nonlinear osci
tors and the ability of chaotic oscillators to synchronize,
framework of the dynamical theory of synchronization h
been significantly modified. The theory now encompas
the major properties inherent in the synchronization that d
with limiting sets~called chaotic attractors! that are dynami-
cally much richer than isolated limit cycles@5#.

Different notions of synchronization occurring in chao
oscillators have been introduced in order to explore
qualitative dynamical changes caused by the onset of ch
synchronization in numerous experimental studies. Such
tions include the cases ofidentical synchronization, where
identical chaotic oscillations are usually studied in coup
systems with identical individual dynamics@6,7#, general-
ized synchronization, which extends the notion of identic
synchronization to cases of directionally coupled syste
with nonidentical individual dynamics@5,8–11#, and phase
synchronization that usually deals with the phase locking
the main frequencies in the spectrum of the chaotic syst
while the chaotic components of the signals remain indep
dent @12,13#. Studies of the phenomena of generalized a
phase synchronization are largely motivated by the need
development of a theoretical framework that can be use
achieve a better understanding of synchronization in exp
ments with neurobiological systems where complex, cha
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behavior of neurons is very typical@11,14–16#.
This paper addresses issues of generalized synchro

tion that arise in studies of chaos synchronization with
frequency ratio other than 1:1. As it is defined in@8#, the
onset of generalized synchronization in directionally coup
chaotic systems relates to the formation of a continuous m
ping that transforms the trajectory on the attractor of
drive system into the trajectory of the response system.
systems with invertible dynamics, this is equivalent to t
formation of a continuous mapping that links the curre
states of the systems once they settle down on the sync
nous attractor. Since the introduction of the concept of g
eralized chaos synchronization, significant progress has b
made in understanding the relationship between the pro
ties of these synchronization mappings and the spectrum
Lyapunov exponents that characterize the synchronous
otic attractor. A number of papers have analyzed conditi
that guarantee the differentiability of the synchronizati
mapping, thus indicating the formation of a differentiab
invariant manifold~in the joint phase space of the couple
systems! that contains the synchronized chaotic attrac
~see, for example@17,18#!. Simply put, this differentiability
occurs when the rate of contraction in the direction tra
verse to the manifold is larger than the rate of contract
experienced by trajectories of the chaotic attractor in the
rection tangent to the manifold. Such cases are distinguis
as belonging to a subclass of generalized synchroniza
that has been nameddifferentiable generalized synchroniza
tion @17#.

The case of a nondifferentiable synchronization mapp
formed in drive-response systems has been studied rec
in @19#. In this paper, the stability of the response behavior
the whole phase space of the response system is linked
the existence of a mapping that maps the trajectories of
chaotic attractor in the driving system into the trajectories
the response system with a mapping that is a Ho¨lder continu-
ous function. These results help fill in the gap in parame
space that exists in between the synchronization reg
where a smooth synchronization manifold exists and
©2001 The American Physical Society17-1
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natural borders of the synchronization zones. In the pre
paper, we continue by studying how this theory of contin
ous functions can be extended to cases of chaos synch
with frequency ratio other than 1:1, where the synchroni
tion mapping can become multivalued.

In Sec. II, we present an example of chaos synchron
tion with frequency ratio 2:1 and study the formation of t
multivalued mapping in detail. We do this by examining t
bifurcations responsible for the transition from the sing
valued mapping to the multivalued mapping as the regime
generalized synchronization of chaos changes. In Sec. II
order to provide a more complete view of the synchroni
tion mappings and their properties, we supplement our
merical simulation results with a discussion of some rec
rigorous mathematical results not easily available to
reader, which are related to the considered regimes of g
eralized synchronization. We then review the results of
theory behind generalized synchronization with continuo
functions and develop a similar theory for the case of mu
valued functions.

II. CHAOS SYNCHRONIZATION
WITH FREQUENCY RATIO 2:1

We consider a regime of chaos synchronization with f
quency ratio 2:1. This type of synchronization was ear

FIG. 1. The sketch of the circuit diagram for the experimen
study of chaos synchronization with frequency ratio 2:1. The f
quency ratio is controlled by the multipliern used to select the
values of the inductors and capacitors in the drive and respo
circuits.

FIG. 2. The shape of the nonlinear functionf ( ) measured in
the experimental setup.
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observed in the experiments with two directionally coupl
chaotic circuits. The sketch of the experimental setup is p
sented in Fig. 1. The details of the experiment and the
rameters of the circuits can be found in@20#.

In this paper we present a detailed analysis of this s
chronization regime based on numerical simulation resul

A. Model

The dynamics of the drive circuit are described by the
of differential equations of the form@21#

n ẋ15x2

n ẋ252x12dx21x3 ~1!

n ẋ35g~a1f ~x1!2x3!2sx2 .

The response system equations are

ẏ15y2

ẏ252y12dy21y3 ~2!

ẏ35g~a2f ~y1!2y31gx1!2sy2 ,

where g5ALC1/R2C250.294, s5C1 /C251.52, d
5R1AC1/L50.534, a1515.93 anda2516.7 are the fixed
system parameters andg is the coupling strength. Variable
x1 , x3 , y1, and y3 correspond to the voltages across t
capacitors~see Fig. 1!. Variablesx2 andy2 are proportional
to the current through the inductors in the drive and respo
circuits, respectively. The nonlinear functionf ( ) models the
input-output characteristics of a nonlinear converter (N)
used in the circuit. The shape of the nonlinearity is presen
in Fig. 2. In the numerical simulation, we modeled the fun
tion f ( ) with the formulas

f ~x!5sgn~x!~a2Ad„f p~x!2a…21c!/d,

where

f p~x!5H uxu if uxu<a

2q~ uxu2p! if a,uxu<b

2a if uxu.b,

d5(a22c)/a2, q52a/(b2a), p5(b1a)/2. The values of
the parametersa, b, andc are chosen to be equal to 0.5, 1.
and 0.03, respectively~see@21# for details!. The parametern
in the equations of the drive system is the time scaling
rameter, which is used to select the frequency ratio of
synchronization zone.

The chaotic attractors occurring in the uncoupled dr
and response systems with these parameter settings
shown in Fig. 3. Since we are interested in studying
chaos synchronization regime with a frequency ratio of 2
the parametern was set equal to 0.498. As a result, the pha
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velocity of the trajectories of the driving attractor is abo
twice as high as that of the response attractor.

B. Onset of generalized synchronization

Introduction of sufficiently strong coupling between th
systems results in the onset of synchronization. The reg
of synchronization that occurs wheng52.5 is presented in
Fig. 4. The onset of synchronization in this case is detec
using Lissajous figures, by observing the attractors in
Poincare´ cross section, and by utilizing the auxiliary syste
method. Each of these methods will be briefly explained
the following paragraphs.

The Lissajous figure is a standard approach freque
utilized in traditional studies of synchronization between p
riodic oscillators. It enables one to clearly see the onse
phase locking and define the frequency ratio of the partic
synchronization zone. For the frequency ratio 2:1, the Lis
jous figure has a form similar to the shape of the digit ‘‘8
Despite the fact that due to the chaotic behavior the Lis
jous figure does not appear as a closed curve, it is still
difficult to see the onset of phase locking and identify t

FIG. 3. Chaotic attractors of the drive system computed with
parameter valuea1515.93~a!, and the uncoupled response syste
~b!. The bold dots on the trajectories of the driving attractor sh
the points where the chaotic trajectories cross the Poincare´ cross
section (x250 with dx2 /dt.0).

FIG. 4. ~a! The Lissajous figure for the synchronized chao
oscillations plotted on the plane of variables from the drive a
response (x1 ,y1), and~b! the projections of the corresponding ch
otic trajectories onto the plane of similar variables in the respo
and auxiliary systems (y1 ,z1). The strength of the coupling isg
52.5. The bold dots show the points on the chaotic trajecto
corresponding to the moments of time when the trajectory of
drive system crosses the Poincare´ cross section (x250) with a posi-
tive value ofdx2 /dt .
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frequency ratio@see Fig. 4~a!#.
Analysis of generalized synchronization of chaos with t

help of Poincare´ cross sections was proposed in@22#. In this
analysis, we define the Poincare´ cross section in the drive
system and detect the moments of time when driving tra
tory crosses it. At these moments, we sample the state o
response system and compare the points to the correspon
set of the points in the drive system. This method simplifi
the analysis of chaotic attractors by reducing their dimens
by one. It helps to detect the onset of phase locking and
some cases, to examine the onset of topological equivale
between the attractors in the synchronized drive and resp
systems. In the numerical simulations we analyze the pr
erties of the chaotic attractors on the Poincare´ cross section
(x250) by computing the points where the trajectories cro
the valuex250 with positive values ofdx2 /dt @see Fig.
3~a!#.

The auxiliary system method was proposed as a prac
method of detecting the formation of a continuous mapp
through the ability of persistently pointing out the curre
state of the response system without direct computation
the map@23#. This method assumes the use of a third~aux-
iliary! system that is an exact replica of the response syst
In our case, the auxiliary system is of the form

ż15z2

ż252z12dz21z3 ~3!

ż35g~a2f ~z1!2z31gx1!2sz2 .

Due to the identity of the dynamics of the response and a
iliary systems, the nine-dimensional space encompassin
three coupled systems has an invariant manifoldy5z, where
y andz are vectors of the variables in the response and a
iliary systems, respectively. When this manifold contains
entire chaotic attractor, a continuous mapping exists t
projects the trajectories of the drive system onto the tra
tories of the response systems after transients die out~see
@23# for details!. Therefore, the formation of a chaotic attra
tor in the invariant manifold (y5z) constitutes the onset o
generalized synchronization between the drive and respo
systems. Such a chaotic attractor occurs in our simula
with g52.5 @see Fig. 4~b!#.

When one utilizes this method in numerical simulations
can be difficult to ensure that the chaotic set of trajectorie
the invariant manifold does not contain transversely unsta
limit sets. Due to the identity of the response and auxilia
systems and the limited accuracy of numerical simulatio
the chaotic trajectory can settle down on the invariant ma
fold y5z, even if the chaotic set in the manifold contain
transversely unstable limiting subsets. This artifact of n
merical simulation can be resolved by breaking the symm
try between the response and auxiliary systems. In our si
lations, we accomplish this by using slightly different valu
of coupling. The coupling of the auxiliary system is larg
than the value of coupling in the response system by a va
of Dg50.01, less than 1% of the coupling strength used
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C. Two regimes of generalized synchronization

The goal of this section is to examine in detail the ma
features of two qualitatively distinct regimes of generaliz
synchronization observed for different values of coupling
some previous experimental studies of chaos synchroniza
with a frequency ratio of 2:1~see @20# for details on the
experimental setup!. In order to point out the change be
tween the regimes of generalized synchronization ver
variation of the coupling parameter, we analyzed theg de-

pendence ofdmax(g)5$A„z2y…T„z2y…%max, which is the
maximal deviation between the response and auxiliary s
tems computed for the chaotic trajectories after transients
out. This dependence is presented in Fig. 5. Synchroniza
takes place for values ofg wheredmax(g) is approximately
equal to zero. In Fig. 5 there are two intervals ofg that
correspond to two synchronization regimes. These inter
are separated by a region of asynchronous behavior app
ing aroundg52.0.

The oscillations occurring in the synchronization interv
g.2.1 correspond to the chaotic attractor shown in Fig.
When the value of coupling decreases and arrives at the
der of this synchronization interval, generalized synchroni
tion terminates. The chaotic attractor corresponding to th
asynchronous oscillations, computed forg52.0, is presented
in Fig. 6. The destruction of the generalized synchronizat
follows from the appearance of sporadic outbursts of n
identical behavior in the response and auxiliary syste
which are seen in Fig. 6~b!. Such outbursts are indicative o
the existence of transversely unstable limiting trajectories
the chaotic set located in the manifoldy5z and therefore,
indicates the inclusion of conditionally unstable limiting tr
jectories in the chaotic attractor residing in the phase sp
of the drive and response systems.

Further decrease of the coupling strength again result
the onset of synchronization when the value of coupling is
the second interval of synchronization that takes place
tweeng'1.5 andg'1.9 ~see Fig. 5!. The synchronized cha
otic attractor that occurs in this case is shown in Fig. 7. In
joint phase space of the drive and response systems thi
tractor represents a closed ribbon formed after a ‘‘per
doubling’’ of the synchronized chaotic attractor studied
the first interval of synchronization, compare Figs. 4~a! and

FIG. 5. The maximal deviation between the states of the
sponse and auxiliary systems versus the value of coupling pa
eterg computed withDg50.01.
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7~a!. Due to the period doubling that occurs in the respon
system~the driving system remains unchanged!, the synchro-
nization mapping for this attractor becomes a one-to-t
mapping. Depending on initial conditions, the synchroniz
response oscillations settle down on the ribbon with one
two different phases. As a result, the single synchroni
attractor in the drive-response system is presented as
different attractors in the drive-response-auxiliary syste
one in the synchronization manifoldy5z and the other one
outside the manifold@see Fig. 7~b!#.

In order to examine the synchronous chaotic attractor
more detail and to understand the properties of the co
sponding synchronization mappings, we study the locat
and stability of the limiting sets contained in the attracto
These limiting sets are the unstable periodic orbits~UPOs!
embedded in the chaotic attractor.

D. UPOs and the synchronization mappings

It is well known that phase locking of the unstable pe
odic orbits in the coupled chaotic systems plays a signific

-
m-

FIG. 6. The regime of asynchronous chaotic oscillations co
puted forg52.0. ~a! The Lissajous figure in the plane (x1 ,y1), and
~b! the projections of the corresponding chaotic trajectories onto
plane (y1 ,z1). The bold dots show the points on the chaotic traje
tories corresponding to the moments of time when the trajector
the drive system crosses the Poincare´ cross section (x250) with a
positive value ofdx2 /dt.

FIG. 7. The regime of synchronized chaotic oscillations co
puted forg51.8. ~a! The Lissajous figure of the synchronized ch
otic attractor in the plane of variables from the drive and respo
systems (x1 ,y1). ~b! Two chaotic attractors corresponding to th
synchronized chaos formed in the response and auxiliary sys
plotted in the plane (y1 ,z1). The bold dots show the points on th
chaotic trajectories corresponding to the moments of time when
trajectory of the drive system crosses the Poincare´ cross section
(x250) with a positive value ofdx2 /dt.
7-4
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FIG. 8. The Poincare´ cross sections of SR UPOs, UR UPOs and chaotic trajectories in the drive-response system computed~a! g
52.5, ~b! g52.0, and~c! g51.8.
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role in the understanding of different regimes of chaos s
chronization~see, for example@12,13,24–26#!. Any UPO is
characterized by the spectrum of multipliersm i or the corre-
sponding Lyapunov exponentsL i5 ln(mi)/TUPO, where
TUPO is the period of the UPO. In the analysis of synchr
nization in directionally coupled systems, it is always use
to split the whole spectrum of Lyapunov exponents into t
groups: the first is given by the dynamics of the autonom
drive system, and the second comes from the conditio
dynamics of the response system. The conditional dynam
corresponds to the behavior induced in the response sy
by the driving signal.

Since the drive system is a three-dimensional dissipa
system in the present case, the first group of the Lyapu
exponent spectrum for each UPO contains three expone
L1.0, L250, andL3,0. These exponents do not depe
upon the coupling strength or any of the other parameter
the response system. The second group of exponents in
spectrum is due to the dynamics of the response sys
Following @7# we call these exponents theconditional
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Lyapunov exponentsL i
c . If all of the conditional Lyapunov

exponents of a UPO have negative values, we call that o
a stable response~SR! UPO. If at least one conditiona
Lyapunov exponent of the UPO is positive, we call the or
an unstable response~UR! UPO.

In our study, we consider all UPOs in the chaotic attrac
of the driving system@shown in Fig. 3~a!# up to period 6, one
of the period-8 UPOs, and one of the period-10 UPOs. Us
the wave form ofx1(t) of these orbits as a driving force, w
computed the corresponding orbits that are formed in
driven response system. It is clear that, in this case, the st
periodic orbits correspond to the SR UPOs and the unst
ones to the UR UPOs formed in the joint phase space of
drive and response systems.

The results are shown in Fig. 8, where we plot the int
sections of the UPOs with the Poincare´ cross section (x2
50, dx2 /dt.0) projected onto the variable plane (x1 ,y1).
In order to see if the UPOs belong to the chaotic attractor
also plot, in the background, the points on the Poincare´ cross
section of the chaotic trajectory.
7-5
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When the systems are synchronized withg52.5, all the
SR UPOs are inside the chaotic attractor, while the
UPOs do not belong to the attractor, see Fig. 8~a!. The tra-
jectory of the synchronized chaotic attractor wanders aro
the SR UPOs that form the skeleton of the attractor. Si
this skeleton does not contain UR UPOs, the response
tem always follows the driving chaotic trajectory in a stab
manner. This fact explains the stability of the identical ch
otic oscillations in the response and auxiliary systems@see
Fig. 4~b!#.

Decreasing the value of the coupling parameterg results
in a sequence of bifurcations associated with the SR UP
These bifurcations create a large number of new UPOs
cluding new UR UPOs, which are added to the skeleton
the chaotic attractor@see Fig. 8~b! for the caseg52.0#. Since
these new UR UPOs are inside the chaotic attractor t
form regions where the response behavior for the cha
driving is unstable. As a result, the synchronization is
stroyed, see Fig. 6~b!.

There is the coexistence of two types of UPOs that h
different numbers of unstable directions in the chaotic attr
tor shown in Fig. 8~b!. This is indicative of the onset of a
nonhyperbolic situation@27–29#. Note that even though
some kind of nonhyperbolic situation may exist in the ch
otic attractor of the driving system, it does not make a
impact on the response behavior and therefore, make
impact on the synchronization between the drive and
sponse systems. The synchronization is sensitive only to
nonhyperbolicity of the chaotic attractors contributed by
response system dynamics. This kind of nonhyperbolic s
ation is responsible for the inability to compute the trajecto
of the response system if arbitrarily small perturbations
the system are taken into account@27#. This is the reason
why the identical chaotic oscillations in the response a
auxiliary systems do not follow the same path even when
arbitrary small perturbation is considered. It also directly
dicates the destruction of the continuous synchroniza
mapping.

As one can see from Figs. 6~a! and 7~a!, the further de-
crease of the coupling between the systems results in
period doubling of the ribbon formed by the chaotic attra
tor. When this period doubling ‘‘bifurcation’’ is complete
all the SR UPOs and the chaotic trajectories of the attra
are moved far enough from the region occupied by the
UPOs and, as a result, all UR UPOs again reside only out
the chaotic attractor@see Fig. 8~c!#. This qualitative change
of the chaotic behavior eliminates the nonhyperbolic sit
tion caused by the dynamics of the response system and
result, the generalized synchronization is regained@see 7~b!#.
It follows from the analysis of the SR UPOs that in th
regime of chaos synchronization any point on the UPOs c
tained in the chaotic attractor of the driving system maps
to two points located on the corresponding SR UPOs. Th
fore, this synchronization is characterized by one-to-two s
chronization mapping.

In order to understand the properties of this synchron
tion mapping we studied the bifurcations of the SR UP
when the value of coupling parameter is changed from h
to low in the interval where the ribbon of the chaotic attra
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tor experiences the period doubling bifurcation. This stu
plotted in Fig. 9, reveals a very interesting fact. It turns o
that not all the UPOs experience a period-doubling bifur
tion in conjunction with the bifurcation of the ribbon. Indee
the orbits that have a period, which is a multiple of 4~the
period of the chaotic ribbon after the bifurcation!, are not
subject to the period-doubling bifurcations@see Figs. 9~c!
and 9~e!#. The other UPOs go through the period doubli
bifurcation along with the ribbon.

The difference in the bifurcation scenarios between
p(43N) UPOs~with N an integer! and the other UPOs re
sult in different synchronization mappings occurring wh
the response system is driven by these different UPOs. A
the period doubling bifurcation, the orbits whose periods
not multiples of 4 have a one-to-two synchronization ma
ping @see Figs. 9~b! and 9~d!#, while thep(43N) orbits do
not bifurcate and their synchronization mapping remains
@see Figs. 9~c! and 9~e!#. This situation raises the following
question: How do these one-to-one synchronization m
pings for thep(43N) orbits fit into the one-to-two synchro
nization mapping that occurs for all trajectories of the ch
otic attractor? The answer to this question comes from
analysis of the stable response images to periodic driv
with the p(43N) orbits. When the ribbon bifurcates, th
p(43N) orbits respond with the creation of a new pair
response orbits. One is SR UPO and the other is UR U

FIG. 9. The bifurcation diagramy1(tn) vs g computed for the
response system driven by~a! the chaos and by the UPOs:~b! p2,
~c! p4, ~d! p6, and~e! p8, which are found in the chaotic attracto
of the driving system.
7-6
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~this bifurcation scenario for thep4 orbit is presented in Fig
10!. Therefore, despite the fact that periodic synchronizat
for p(43N) is characterized by a one-to-one mapping, ea
point on thep(43N) orbit has two stable images in th
phase space of the response system. Having two SR U
for eachp(43N) orbit, the orbits are able to conform to th
one-to-two chaos synchronization mapping.

This example allows us to draw the following conclusio
on the properties of generalized chaos synchronization wi
multivalued mapping.

~1! The synchronized chaotic attractor represents a rib
of chaotic trajectories that does not contain limiting sets w
unstable response dynamics. Each point in the chaotic at
tor of the driving system maps intoM points in the chaotic
attractor in the joint phase space of the drive-response
tem ~in the presented example,M52). The value of the
numberM is invariant over the attractor.

~2! TheseM points are located in the chaotic ribbon
such a way that they represent the different phases of
motion along the ribbon. Any trajectory of the synchroniz
attractor passes through all phases in sequential order. Th
fore, the multivalued synchronization map can be presen
as the cyclic sequence of the single-valued continuous m

~3! The UPOs of the chaotic attractor in the drive syst
have SR UPOs, each of which is characterized by the m
ping where one point on the driving UPO maps intoM points
of the corresponding SR UPO. The exception to this r
includes only the UPOs of the driving chaotic attractor w
periods that are multiples of the period of the chaotic ribb
Each point on these special UPOs can map into a single p
of the corresponding SR UPO. However, these UPOs sh
therefore haveM stable response UPOs.

III. FUNCTIONS IN THE THEORY
OF GENERALIZED SYNCHRONIZATION OF CHAOS

In this section we formulate the theoretical framework
the synchronization mappings that occur in those regime
chaos synchronization similar to the one considered on

FIG. 10. The bifurcation diagramy1(tn) vs g computed for the
response system driven by the unstable periodic orbitp4 located in
the chaotic attractor of the driving system. The stable response
bits are indicated by circles and diamonds. The unstable resp
orbit is indicated by crosses.
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previous section. The main goal here is to link the proper
of the synchronization mappings with the stability charact
istics of the response system behavior.

As it was shown in the previous section, the use o
Poincare´ cross section enables one to simplify the analysis
the synchronization mapping by studying the dynamics
the maps. In a rather general case, the maps occurring in
drive and response systems can be presented as maps w
skew product structure of the form

xn115F~xn! ~4!

yn115Gk~xn ,yn!, ~5!

wherex andy are vectors consisting of the variables in t
drive, response and auxiliary systems respectively, andk is a
parameter depending on the strength of the coupling.

Since the first studies of chaos synchronization betw
nonidenticalsystems@5#, synchronization was interpreted a
the system behaving in such a way that for any orbit (xn ,yn),
the coordinateyn is just a function of thexn , once transients
die out. The first rigorous results on generalized synchro
zation were obtained for cases where there exists a sm
manifold belonging to the graph of a functiony5h(x) that is
stable in the transversal direction and contains the cha
attractor corresponding to the synchronized oscillatio
@17,18#. This approach relies on the theory of normally h
perbolic invariant manifolds.

In most studies of different regimes of generalized cha
synchronization, it is observed that in some region ofk val-
ues, a functionh seems to exist, but it is not smooth. As
result, the graph ofh is a complicated geometrical objec
~see, for example@17,30#!. In this section we discuss recen
rigorous results on the properties of nonsmooth functionh
and present new results for the case of multivalued m
pings.

A. Results and examples concerning single-valued functionsh

To make the paper self-contained, we first briefly discu
the rigorous results on the existence and continuity of
synchronization functionh that were obtained in a previou
work @19#. The paper demonstrates that the functionh is
Hölder continuous if the contraction rate in the respon
system is small and Lifschitz-continuous if it is greater th
a critical value. Assume thatxPRm and yPRn, and that
Gk is continuous andF is a homeomorphism~i.e., F is
continuous and invertible with an inverseF21 that is con-
tinuous!. The dynamics in the joint phase space of the dr
and response systems is determined by a m
fk : (xn ,yn)°(xn11 ,yn11). We also assume that in th
joint phase space there exists a basin of attractionB5Bxy
PRm1n, i.e., fk(B),Int(B) for any kPS, whereS is a re-
gion in k space in which the systems~4! and ~5! exhibit
master-slave chaos synchronization. Without loss of gene
ity, we assume thatBxy5Bx3By , i.e., Bxy is a rectangle,
whereBx (By) is a ball inx space~y space!.

Denote by Ak the maximal attractor inBxy , i.e., Ak

5ùn50
` fk

n(Bxy). Because of our assumptions,

r-
se
7-7
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lim
n→`

uyn2 ỹnu50, ~6!

where (xn ,yn)5fk
n(x0 ,y0), (xn ,ỹn)5fk

n(x0 ,ỹ0 ,) and

(x0 ,y0), (x0 ,ỹ0) are arbitrary points inBxy .
To avoid nonessential technicalities it was supposed

@19# that the limit in Eq.~6! is achieved monotonically, i.e.

uyn112 ỹn11u<uyn2 ỹnu ~7!

for any kPS and anyn>0.
Let Ak,xªPxAk be the image ofAk under the natura

projectionPx to Rm.
Theorem 1A@19#. (Existence)Under assumptions~6! and

~7!, there exists a function h: Ak,x→Rn such thatAk is a
graph of function h.

We emphasize that it is the inversibility ofF that ensures
thath is a single-valued function. Continuity plays no role
this stage.

Theorem 2A@19#. (Continuity) Under the assumptions o
Theorem 1A, the function h is continuous.

To obtain more detailed characteristics of this functio
dependence, additional assumptions were made. It was
sumed that

uyn112 ỹn11u<k1uyn2 ỹnu ~8!

wherek1,1. Of course, the parameterk1 is a function ofk.
For the sake of simplicity, we assume thatk15k. Thus,

uyn112 ỹn11u<kuyn2 ỹnu, 0,k,1. ~9!

It follows that

uGk~x,y!2Gk~x,ỹ!u<kuy2 ỹu ~10!

for any (x,y), (x,ỹ)PBxy .
Assumption~9! implies thatuyn2 ỹnu goes to zero expo

nentially fast, and this fact allows one to prove thath is
Hölder continuous provided that the functionsF andGk have
good smooth properties, or provided at the least that they
Lipschitz-continuous.

Considering the forward and backward dynamics of
driving system~4! we assume the following properties,

uF~x!2F~ x̃!u<g1ux2 x̃u ~11!

and

uF21~x!2F21~ x̃!u<g2ux2 x̃u, ~12!

where g2 ,g1>1. When Lyapunov exponents do exi
~when the dynamics are differentiable with additional su
able conditions!, the quantities lng1 ,ln g2 play the role of
the forward and backward greatest Lyapunov exponents
spectively, and lnk plays the role of the conditiona
Lyapunov exponent.
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It is assumed that functionGk(x,y) of the response sys
tem ~5! is Lifschitz continuous with respect tox, i.e., for any
(x,y), (x̃,y)PBxy ,

uGk~x,y!2Gk~ x̃,y!u<hux2 x̃u ~13!

whereh.0.
Theorem 3A@19#. (Hölder property) Under assumption

(10)–(13) the function h is Ho¨lder continuous, i.e., for any

0,a,ac , and x,x̃PAk,x one has

uh~x!2h~ x̃!u<2rux2 x̃ua, ~14!

where

a<acª
1

12
ln~g1g2!

ln k

, ~15!

and r>rc , whererc is the solution of the equation,

r5
h

g12k
r@ ln(g1g2)/ lnk#11 expS ln k2 lnuByu

ln k
ln@g1g2# D .

Theorem 4A@19#. (Lipschitz property) Under the condi
tions of Theorem 3A and provided that

0,k,
1

g2
, ~16!

the function h is Lifschitz continuous, i.e.,

uh~x!2h~ x̃!u<Lux2 x̃u, ~17!

where L>Lcªhg2/(12kg2).
The considered theorems give a pretty clear picture of

complexity of the synchronization mappings that usually o
cur in different regimes of generalized synchronization
chaos. It follows from these results that even in the case
differentiable generalized synchronization@17#, the change
of the parameters toward the border of the synchroniza
zone will gradually reduce the rate of contraction in the
sponse system. At some critical value of the contraction r
~see Theorems 3A and 4A!, the smoothness of synchroniza
tion mapping will be destroyed while the systems rem
synchronized with a nondifferentiable function.

Example:To illustrate the results above, let us consid
coupled He´non maps.

We consider the linear coupling of twononidentical
Hénon-type maps. For certain values of coupling streng
the hypotheses of our theorems are fulfilled.

Let f be the following invertible map: f : @0,1#2

→@0,1#2, f (x1 ,y1)5(x18 ,y18) with

x185y1

y185 f 1~y1!1bx1
7-8
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wheref 1 : @0,1#→@0,1# is Lipschitz, with Lipschitz constan
g1 , 0,b<1. Let f 1 be such that f 1(y1)<g1/2,; y1
P@0,1#, and (11b1)(g1/2)<1. The mapf is a homeomor-
phism of the unit square. Letgc be the following map:
gc : @0,1#4→@0,1#2, gc(x1 ,y1 ,x2 ,y2)5(x28 ,y28) with

x285y21c~y12y2!

y285 f 2~y2!1b2x21c„f 1~y1!1b1x1…2@ f 2~y2!1b2x2!],

where 0<c<1, f 2 : @0,1#→@0,1# is Lipschitz, with Lips-
chitz constant g2 , (11b2)(g2/2)<1 and f 2(y2)
<g2/2,; y2P@0,1#. For convenience, we shall use the fo
lowing shorthand:v15(x1 ,y1) andv25(x2 ,y2).

To have contraction in v2 space, that is
ugc(v1 ,v2)2gc(v1 ,ṽ2)u<kuv22 ṽ2u with 0,k,1, the fol-
lowing condition must be satisfied1:

c.12
1

11b21
g2

2

.

The forward and backward expansion rates ofF are, re-
spectively, given by:g1511g1/2 andg25b1

21.
Theorem 3A holds, i.e., the functionh is Hölder continu-

ous and one can easily check the following expression
the Hölder exponent,

a05

lnF ~12c!S 11b21
g2

2 D G
lnS b1~12c!S 11b2

g2

2 D
11

g1

2

D .

The condition~16! in Theorem 4A reads

c.12
b1

11b21
g2

2

.

According to Theorem 4A, this means that the functionh is
Lipschitz continuous.

B. Multivalued function h

The framework of chaos synchronization discussed ab
applies only to the cases when the functionh is a single-
valued function, because of the assumption~6!. As a result
this framework is not applicable to the case of synchroni
tion presented in Fig. 7 where each point on the cha
attractor Ak,x in driving system maps into two differen
points of the synchronized chaotic attractorAk . In this case
By is not a simply connected region, and assumption~6!

1We use the normuvu5uxu1uyu, wherev5(x,y).
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cannot be used. Below we reformulate the results on sin
valued function in order to extend it to the case of multiv
ued function.

Assume thatBy5ø i 51
p By

i , whereBy
i are pairwise disjoint

closed balls in they space,Bx is a closed ball in thex space,
andBxy5Bx3By .

We also assume that monotonic synchronization occur
Bxy , i.e.,

lim
n→`

uyn2 ỹnu50 ~18!

and

uyn112 ỹn11u<uyn2 ỹnu, ~19!

where (xn ,yn)5fk
n(x0 ,y0), (xn ,ỹn)5fk

n(x0 ,ỹ0 ,) and

(x0 ,y0), (x0 ,ỹ0) are arbitrary points inB such thaty0 andỹ0

belong to the same ballBy
i for somei.

Denote by Ak the maximal attractor inBxy , i.e., Ak

5ùn50
` fk

n(Bxy) and let Ak,xªPxAk be the image ofAk

under the natural projectionPx to Rm.
In this situation some extensions of theorems 1A–

hold.
Theorem 1B. (Existence) Under conditions (18) and (19

and provided that for anyxPAk,x and for any i, 1< i<p,
there existyiPBy

i such that(x,yi)PAk , there exist p func-
tions hi : Ak,x→Rn, i 51, . . . ,p such that graph(hi),Bx

3By
i and Ak5ø i 51

p graph (hi).
Scheme of the proof.The proof is mainly the same as th

one for single-valued case~Theorem 1A!. However we need
to emphasize the following facts. For anyxPAk,x and for
any n>0, the setfk

n(x,ø i 51
p By

i ) has p connected compo-
nents inside„Fn(x),ø i 51

p By
i
… and every set„Fn(x),By

i
… con-

tains one and only one of them. Indeed, if we assume
„Fn(x),By

i
… contains more than one connected compone

for some i then it will imply that there exist aj such that
„Fn(x),By

j
… contains no components. SinceF is 1:1, it means

that there are no points of the attractor in„Fn(x),By
j
… and we

have a contradiction. From this point forward, one can f
low the proof of Theorem 1A.h

Theorem 2B. (Continuity) Under assumptions of Theore
1B, the functions hi are continuous, for i51, . . . ,p.

Scheme of the proof.Let x and x̃ be close to each othe
and consider the points„x,hi(x)… and „x̃,hi( x̃)…. We show
now thatfk

21
„x,hi(x)… andfk

21
„x̃,hi( x̃)… belong to the sets

„F21(x),By
j
… and „F21( x̃),By

j
…, respectively, with the same

numberj.
Assuming the contrary, i.e.,fk

21
„x,hi(x)…P„F21(x),By

j
…

but fk
21

„x̃,hi( x̃)…P„F21( x̃),By
j 8
… and j 8Þ j . Therefore

fk„F
21( x̃),By

j 8
… belongs to (x̃,By

i ) and fk„F
21( x̃),By

j
… be-

longs to „x̃,By
i 8
… where i 8Þ i . Consider now the points

„F21(x),y… and „F21( x̃),y…, yPBy
i . It follows that

dist(fk„F
21(x),y…,fk„F

21( x̃),y…) is bounded from zero pro
vided thatx and x̃ are close enough. Roughly speaking, th

distance is greater than12 dist(By
j ,By

j 8). On the other side, we
7-9
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know thatuF21(x)2F21( x̃)u is small, therefore by continu
ity of fk , dist(fk„F

21(x),y…,fk„F
21( x̃),y…) is also small,

resulting in a contradiction.
The rest of the proof is the same as in Theorem 2A.h
We assume now that conditions similar to Eqs.~8!–~13!

hold in Bxy , i.e., inequalities~8!–~10! hold provided thaty
5y0 , ỹ5 ỹ0 belong to the same connected component in
setBy; other conditions remain the same.

Taking into account the schemes of the proofs of Th
rems 1B and 2B, one can check that the proofs of the
lowing two theorems are similar to the proofs of Theore
3A and 4A.

Theorem 3B. (Hölder property) If the conditions are sat
isfied, under assumptions of Theorem 1B, the functionsi ,
i 51, . . . ,p are Hölder continuous, i.e., for any0,a,ac ,
x,x̃PAk,x one has,

uhi~x!2hi~ x̃!u<2rux2 x̃ua, ~20!

where

a<acª
1

12
ln~g1g2!

ln k

, ~21!

and r>rc , whererc is the solution of the equation,

r5
h

g12k
r [ ln(g1g2)/ ln k] 11 exp@D~k,g1 ,g2!#, ~22!

where

D~k,g1 ,g2!ª
ln k2 ln~maxi uBy

i u!
ln k

ln~g1g2!. ~23!

Theorem 4B. (Lipschitz property) Under conditions o
Theorem 3B and provided that

0,k,
1

g2
, ~24!

the functions hi , i 51, . . . ,p, are Lipschitz-continuous, i.e.,

uhi~x!2hi~ x̃!u<Lux2 x̃u, ~25!

where L>Lcªhg2/12kg2 .
In order to deal with problems in the case of multivalu

function h we make use of the auxiliary systems approa
@23#. Consider an auxiliary system that is a replica of t
response system~5! and given by the equation of the form

zn115Gk~xn ,zn!. ~26!

Note that the auxiliary system~26! can serve, as well as in
the case of standard generalized synchronization, to indi
the validity of synchronization.

Let the dynamics in the joint phase space of the dri
response and auxiliary systems be determined by a
ck : (xn ,yn ,zn)°(xn11 ,yn11 ,zn11). Due to the identity
01621
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between the response and auxiliary system there always
an invariant manifoldMS : y5z. Let us relate the ballBy

i to
Bz

i : z0PBz
i if y05z0PBy

i , an indicator of multivalued syn-
chronization We can use the equality

lim
n→`

uyn2znu50, ~27!

where (xn ,yn ,zn)5ck
n(x0 ,y0 ,z0) and (x0 ,y0 ,z0), is an arbi-

trary point inB such thaty0PBy
i andz0PBz

i with the same
index i, as an indicator of multivalued synchronization. I
deed, it is simple to see that the following statement hold

Theorem 5B. Under the assumptions of Theorem 1B
equality (27) is satisfied provided that y0PBy

i and z0PBz
i

with the same index i.
The behavior of orbits in the attractor can be different.

could be related to a cyclic repetition,h1→h2→h1→h2
→ . . . , or amore complex sequence ofhi . It depends on the
partition of Ak,x into connected components.

In the simplest case whenAk,x is connected, every orbit in
Ak behaves in the same way: for anyi there is aj such that
fk„graph(hi)…5graph(hj ), 1< i , j <p. This fact is a direct
corollary of Theorem 2B. Indeed, for any two pointsQ1 and
Q2 in graph(hi) and anye.0 there is a collection of points
P0 , . . . PNPgraph(hi) such that P05Q1 , PN5Q2 and
dist(Pi ,Pi 11)<e, 0< i<N21. Because of the continuity o
fk , the pointsfk(Pi) and fk(Pi 11) belong to the same
branch, sayg(hj ) for any i 50, . . .N21. In fact, a trajectory
switches the disjoint balls in they space in a particular order
and this order is uniquely determined by a permutatioi
→ j .

If Ak,x contains more than one connected compone
then the behavior of orbits inside each of them determi
the same itinerary among branchesgraph(hi). For example,
if such a component contains the projection of a perio
point then the itinerary will be also periodic. But if a com
ponent does not contain a periodic orbit then the itiner
could be nonperiodic; in this caseAk,x should have infinitely
many connected components.

IV. CONCLUSIONS

The example of generalized synchronization of cha
considered in Sec. II enables us to explore properties o
type of chaos synchronization mapping in which the ma
ping is a multivalued function. Based on analysis of the co
ditional stability of the synchronous chaotic behavior of t
response system, we come to conclusions concerning the
istence and continuity of the synchronization mappin
formed in these regimes of generalized synchronization.
used the auxiliary system method to detect the onset of c
ditional stability both in case of single-valued mappings a
in case of multivalued mappings.

Changing the strength of the coupling between the dr
and response systems, we followed the transition from a
gime of synchronization with a single-valued function to
regime with a double-valued function. These two regimes
synchronization are separated by a regime of asynchron
chaotic oscillations. Our numerical analysis showed that
7-10
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regime of asynchronous oscillations occupies an interva
the coupling parameter values where all of the neces
bifurcations occur that are required for the formation of t
type of synchronization mapping. Analysis of the unsta
periodic orbits ~UPOs! contained in the chaotic attracto
formed in the joint phase space of drive and response
tems revealed a very interesting element of this bifurcat
scenario. We have found that not all UPOs in the attrac
experience the period doubling bifurcations as the ribb
containing the chaotic trajectories of the attractor doubles
period. The UPOs with periods that are multiples to the
riod of the postbifurcation chaotic ribbon remain qualit
tively unchanged. In this case the response system gene
additional UPOs with identical periods via tangential bifu
cations. Thanks to these additional UPOs the so form
double-valued synchronization function applies universa
to all orbits of the driving chaotic attractor.
,

-

I.
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The introduction of multivalued synchronization mappin
into the concept of the generalized synchronization of ch
provides another theoretical framework which is crucial
understanding of chaos synchronization phenomenon
many cases of synchronization in directionally coupled s
tems. Such cases include synchronization with frequency
tio other then 1:1 where the formation of multivalued sy
chronization mappings is a quite natural occurrence.
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