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Nonperiodic delay mechanism and fractallike behavior in classical time-dependent scattering
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We study the occurrence of delay mechanisms other than periodic orbits in scattering systems with time-
dependent potentials. By using as model system two harmonically oscillating disks on a plane, we have found
the existence of a mechanism not related to the periodic orbits of the system, that delays trajectories in the
scattering region. This mechanism creates a fractallike structure in the scattering functions and can possibly
occur in several time-dependent scattering systems.

DOI: 10.1103/PhysReVvE.64.016205 PACS nun)er05.45.Pq

I. INTRODUCTION presence of phase-space structures which trap the particle in
the scattering region. Nonperiodic delay processes have also
Scattering processes are of fundamental importance iheen reported in the literatuf&3]. Nevertheless, in that case

physical, chemical, and biological systems, because they cah bounded chaotic set containing infinitely many aperiodic
give insight into the characteristics of the scatterer. The matrajectories is responsible for the delay. Our study could
jority of works in classical scattering has been focused orferve as a first step towards the deeper understanding of cer-
time-independent scattering. In this case the dynamics itin scattering processes off oscillating targets, such as mol-
classified into regular and chaotic according to the singularecules, atomic clusters, surfaces, and nuclei in the cluster
ity structure of the corresponding scattering functiphs4]. ~ model. . .
Regular scattering is associated with smooth scattering func- The outline of the paper is as follows: In Sec. Il we in-
tions with a finite number of singularities. On the contrary, troduce our model. In Sec. Ill we present the results of our
chaotic scattering functions are characterized by a fractal sémerical investigations. In Sec. IV we attempt to give an
of singularities. A typical representative of regular scatteringnterpretation of the above results by identifying the mecha-
is a system consisting of two static disks on a pl&Gg nism that leads to the delay of the trajectories in the scatter-

whereas the addition of a third disk in a triangular configu-ing region. In Sec. V we summarize our main results and

ration leads to chaotic scatterifi§]. comment on the possible extensions of this work.
Time-dependent classical scattering has received less at-
tention. Rich dynamical behavior is expected in some of the Il. DESCRIPTION OF THE MODEL

cases as it has been recently observed in R&fs15 but . . . .
there is still a lack of a deeper understanding of the processes We consider .the scatterlng of a free point particle off two
involved. In the present work we also address the problem Qq,lrcglar harmon_lcally OSC'”a“Ug disks on a plane, as _shown
classical scattering off a time-dependent scatterer, focusiny Fig. 1. The d'Sk.S are con5|d§red to be_ much heawer_ t_han
on the question how the time dependence influences the d he scattered particle. The recoil of the disks at the collision
namics in the scattering region. In order to isolate the effects
of time dependence, we consider the time-dependent coun-
terpart of the above-mentioneédtegrablesystem consisting

of two static disks on a plane. The main advantage of this
system is that choosing an appropriate set of initial condi-
tions we can eliminate the effects of the bounded orbits of
the system on the scattering dynamics. Thus we can illumi-
nate delay mechanisms other than the traditional ones based
on the presence of chaotic invariant sets of unstable periodic
orbits. The time dependence in our system is introduced by
assuming that the two disks oscillate harmonically with time.
A similar system has also been studied by Antili al.[14]
using, however, a nonharmonic oscillation law. It is found
that the time dependence gives rise to a complicated fractal-
like behavior in the scattering functions resembling the rich i 1. The two oscillating disks on they plane. The positions
structure observed in static chaotic scattering: as opposed g gisks at timet,_, are drawn with the dotted line and gtwith

the regular case, discontinuities are found to occur at manjhe solid line. The point A, which is defined with the vectgr 4, is
different scales. However, the structure of these diSCOﬂtinUithe point of the i—1)th bounce. The point B, which is defined
ties is not self-similar at arbitrarily small scales. This unevenwith r,, is the point of thenth bounce. The dashed line with the
behavior is related to a nonperiodic delay mechanism, basedtrows represents a segment of a trajectory that bounces between
on a large energy loss of the scattered particle and not to thiee two disks.
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is not taken into account and therefore the total energy of thevheren is the normal to the disk at the point of the impact
system is not conserved. The centers of the disks are oscikndV; is the velocity of the involved disk at the instant of
lating harmonically along the same axis. The position of thethe collision, which is given by
center of thath disk is given by the equation
Vi=Ajw; codwity+ ¢;). 8
di())=d@+A; sin(wit+ ), (1) . j .

In our study we have chosen tleaxis as the axis of oscil-
whered(®) denotes the equilibrium position of the centay,  lation [Aj=(A;,0)]. We have also chosen the radii, the an-
is a vector directed along the axis of oscillation having maggular frequencies, and the amplitudes of the disks to be the
nitude equal to the amplitude of the oscillation; is the ~S@me Ri=R;=R, w;=w,=w, A;=A,=A). Equations
angular frequency of the oscillation, ang is the initial (6) and (7) are invariant under the scaling transformation
phase. The position(t) and the velocityu(t) of the particle

in the time interval between the - 1)th and thenth bounce

are given by
r(t)= r'n—l—’—(t_tn—l)un—lu

u(t)zun—la (2)

wherer,_, denotes the position of then(-1)th bounce,

w—\w, U;—AU,, t,— 9

and therefore the system can be described in terms of the
dimensionless variables

~ Uy ~ ~ Iy

Un:m, th=ot,, rnZA. (10)

u,_1 denotes the velocity of the scattered particle after the ] ] ]
(n—1)th bounce, and,_, denotes the time when that BY following the above procedure, we iterate numerically the

bounce occurred. In order to find the timewhen the next

bounce will occur, we must solve the equation

ldi(t)—r(t)[2=R?, (3)

where R; denotes the radius of thiegh disk. This equation
must be solved twicdfor i=1,2) and the smallest non-
negative solution has to be kept. The conditi@hn leads to

the equation
Ci(t—ty_1)?+CoSi(wit+ ¢y) +Ca(t—tn_1)sin(wit + ¢)
+C4(t_tn_1)+C5Sin(wit+ ¢i)+C6:0, (4)

where the coefficients,, ... ,cq are given by

Clzuﬁfl!
c,=A2?,
C3=—2U,_1-A;,
Cs=2(rp-1—d?) - uy_y, 5)
cs=2(r, 1~ d®)-A;,

Cﬁz(rn—l_di(O))z_ Riz-

Equation(4) is solved numerically to obtait,. Using Eq.

(2), the position of the next bounce is then given by

Mm=rno1t(th—th-Un_1. (6)

Since the mass of the disks is considered to be much larg
than that of the scattered particle, the velocity of the particl

after thenth bounce is given by

Up=U,—1—2[N-(Up_1—=V))]-n, (7)

map (p,Upn,tn)—(Fns1.Uns1,tns1) and obtain the trajecto-
ries for a large number of initial conditions.

. NUMERICAL RESULTS
A. Fractallike scattering functions

The scattering region is defined as a circular domain of
radiusRy> R; centered at the origin. As initial conditions we
chooser(0)=0 andu(0)= (U, cose, Uysinc). For the ma-
jority of our numerical calculations we have chosen the di-
mensionless parameters of the system toRseR/A= 10,
d9=d{%/A=(-15,0), dP=dP/A=(15,0), p1=m, b,
=0, =10 2?rad, andR,= 100. For these values of the pa-
rameters the scattered particle exhibits a small humber of
bounces(typically 4—7), in contrast to Ref[14] where the
number of bounces is much larggypically more than 100
due to the different choice of the parameters. We have ob-

tained the delay tim& that the particle spends in the scat-
tering region, the scattering anglg,,;, and the outgoing

velocity U, as a function oft,. The results are shown in
Fig. 2. A rich fractallike structure is observed in these scat-

tering functions for rather small values of,. As U, in-
creases, the scattering functions become more regular. In or-
der to study the dependence of the structure of this function

on the anglex, we have calculated (ug) for a=10"3rad

and =10 'rad. The results are shown in Fig. 3. We ob-
serve that as the angle increases the function becomes more
regular in the sense that the rangeWgf in which T(ug)
exhibits wild oscillations becomes smaller. This was ex-
pected since for smaller the particle exhibits more bounces
and therefore senses more strongly the dynamics in the scat-

er ~ ~
dering region. We observe that the peak structurd @f,)

behaves as a fractal set for many different scales. The lower
limit where the breaking of the fractality occurs becomes

smaller and smaller as we approach the regigr-0. In
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FIG. 2. (@ The delay timeT, (b) the scattering angles, (in
radian3, and (c) the outgoing velocityu,,, as a function of the
initial velocity U, for initial anglea=10"2 rad. All the plots were

created by iterating T0initial conditions.

order to investigate the apparent fractal structure of the sy
tem, we make successive magnifications ofThEo) plot of
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FIG. 3. The delay timd as a function of the initial velocity,
for the values of the initial anglex (@ a=102 rad, (b)a
=10 !rad.

B. Investigation of the fractallike structure

In order to quantify the observations concerning the ap-
parent fractality of the system made in the previous subsec-
tion, we have calculated an effective uncertainty dimension

of T(Up) [16,17. The uncertainty dimension is given ki,
=1-p, where B8 appears ad(e)~¢e” at the e—0 limit.
f(e) is the fraction of uncertain points, for a given value of

uncertainty.e, and for randomly chosen points. Eachug is
considered to be uncertain if we find that the difference

|T(Uo) —T(Ug+€)| is larger than a number of order %.
cannot tend to zero since we have found that our system is
not self-similar at arbitrarily small scales. We therefore use
the term effective dimension to indicate the slope offl@g

vs loge in a finite range ofe. In our calculation we have
included as many random points as necessary to obtain 150
SL_lncertain points per run. We have calculated the effective
uncertainty dimension for several valuesaoénd in all cases
log f(e€) as a function of log can be well fitted by a straight

Fig. 2() in a region ofu, around the value 0.8. The results Jine, indicating that the system resembles the behavior of a
are shown in Fig. 4. We observe that the fractallike structurgractal at many different scales. A plot of I6¢) as a func-

breaks at a very small scale. In thig region, this breaking
scale is found to be around 10 In the following, a more in

depth analysis of these findings will be given.

tion of loge for «=10"2 rad is shown in Fig. 5. The corre-
sponding effective dimension is found to be equal to 0.58.
The effective dimensions are not sensitive to variations of
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FIG. 5. The logarithm of the fraction of uncertain points
log;of (¢) as a function of logye for «=10"2 rad. The fit with a
straight line is also shown.

C. Decay law

We have also investigated the behavior of the function
N(t)/Ng which gives the fraction of particles that remain in
the scattering region after tintelt is known that for hyper-
bolic systemd\(t)/N, decays exponentially whereas for sys-
tems with marginal orbits and KAM tori it usually obeys a
power law[18]. In order to study numerically the behavior of
N(t)/No we need to perform a Monte Carlo simulation by
iterating a large numbeX, of randomly selected initial con-
ditions. In our system, in contrast to the static two-disk sys-
tem, an averaging over the initial velocity of the particle has
also to be performed since the system is not conservative. In

our calculation for the oscillating systerg is uniformly
distributed in (0,2 since this is the range of, where all the

peaks of T(U,) occur. The anglex has been chosen in
(0,0.7] since for values o in this range the particle exhib-

its at least one collision before exiting the scattering region.
An averaging over the initial phases has also been per-
formed. We have used 1@rbits. For some orbits the major
loss of energy occurs at the last collision. These orbits escape
from the scattering region with a very low velocity and

therefore they correspond to pronounced peaks inf{g)
plot. In order for these peaks not to be much higher than

FIG. 4. Magnifications of Fig. @) around the value 0.8 of the those corresponding to a delay of the particle between
initial velocity uo. Although in(a) a self-similar structure appearsto pounces. we ch00§~§0=25. The result is shown in Fig. 6.

exist, it is found that this structure does not persist at arbitrarily

small scales as shown ib) and(c).

the initial anglea: a variation ofd, of less than 10% is
observed for a variation of between the values 16 rad

From this figure it is clear that for our systeW(t)/Ng is

very close to a power law with an exponent which for the
chosen values of the parameters is found to be approximately
equal to— 2.38. The corresponding static system is expected
to have an exponential decay law. In this case, no averaging
in ug is performed since the system is conservative. If we

and 10 * rad. For each angle, there is a scale below which average inu, for the static system we will also obtain a
it is not possible to find any uncertain points. This supportgpower law with an exponent equal te2 (the derivation is
our observation that self-similarity does not persist at arbishown in the Appendix If, on the other hand, we exclude

trarily small scales.

from our calculations the “uncertain” trajectori¢for which
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FIG. 6. The fractiorN(t)/N, of particles remaining in the scat- FIG. 7. Some of the major peaks of Fig(ap are classified

tering region at time. The thick solid curve includes all the trajec- according to the bounce that leads to the major energy loss of the

tories and the thin solid curve includes only the “certain” trajecto- scattered particle. The symbafs, [0, andO denote the first, the

ries (see Sec. Il B. For larget both curves approximately obey second, and the third bounce, respectively.

power laws with different exponents. The dashed lines show the

corresponding linear fits. The plots were created by iterallgg bounce, since with the parameters chosen, the scattered par-
=10’ initial conditions. ticle senses strongly the curvature of the disks after the sec-

ond bounce.

Setting =0 the dynamics is limited to one spatial di-
mension. In this case the system resembles to the Fermi ac-
celeration model[19,20. For notational convenience we
switch to the variables, u,, t, [see Eq.9)]. The particle
starts at the origin with initial velocity(0)= (ug,0). In or-
der to find the time. when the first collision with the right
disk occurs, we have to solve the equation

[T(Ug, ¢, a)—T(Ug+€,,a)]| is larger than a number of or-
der 1] for the oscillating system we find a decay which for
large times follows approximately a power law with an ex-
ponent greatefin absolute valugthan 2.38. It turns out that
e~10 % is an optimal value allowing the almost complete

elimination of the peaks iff(Uuy) without deforming the
background. For this value efwe find an exponent approxi-
mately equal to-5. The result is shown in Fig. 6. From the )
above it becomes clear that although the presence of the Uot=75 ~R+AsiIn(wt). (12)
oscillation accelerates the escape of the particles, the pres-

ence of the high peaks in th&(uy) function (uncertain  The timet, can be thought of as the abscissa of the first point
pointg introduces a delay of the particles and slows downof intersection of the straight linegt with the sinusoidal
the escape. The origin of these peaks will be discussed in theurve D/2— R+ A sin(wt) (see Fig. 8 From this figure it is

following section. obvious thatt; is a discontinuous function af,. Disconti-
nuities occur for the values af, for which the line is tangent

IV. INTERPRETATION OF THE RESULTS: to the sinusoidal curve. If we denote §S the value oft,

A DIFFERENT DELAY MECHANISM after the discontinuity, the value afy=u§ at which the

. . . . ._discontinuity occurs is given b
By analyzing the trajectories that stay for long times in y g y

the scattering region, we found that these do not exhibit a ug =Aw cog wt]). (12
large number of bounces. The observed delay comes from

orbits along which the scattered particle loses much of itSTherefore the velocity of the particle after the first collision
energy and therefore traverses segments of its orbit with a; is also discontinuous as a functionwf. At this point we
very low velocity. This sudden loss of energy can happen ashould stress that the oscillation law need not only be har-
any of the bounces provided thiat,_;—2Vi|| is small but  monic for these discontinuities to occur. In FigaPa plot of

not as small as for the particle to bounce on the same disk; as a function ofiy is shown. We observe sharp peaks that
again. We have classified the peaks ofife,) plot accord- get denser asi,—0. For u,—0, the initial velocity that
ing to the bounce which leads to the major loss of energycorresponds to a giveny is given by

The result is shown in Fig. 7. Prominent peaks that are due to

the first bounce are observed. We also observe that around E_ R—A

each of the peaks there is a rich fractallike structure. In the 2
following we are going to give a qualitative interpretation of Uo=
the above observations by using a simple one-dimensional

model which neglects the curvature of the disks. This modeTherefore the distance between two successive peaks on the
can yield quantitative results only for the first and the secondl, axis is given by

T (13
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FIG. 8. The abscissa of the point of intersection of the sinu- b
soidal curveD/2— R+ sinwt and the straight linelgt is the timet, 8
when the first bounce occurs for the one-dimensional system (
=0). The slope of the straight line ig. For values ofi, for which
the straight line is tangent to the sinusoidal cutyes discontinu- 6
ous as a function ofiy. The value oft. after the discontinuity is §~
denoted as; . <
~ 4
D
> R—A 5
Aug= — Atg, (14 L
Cc

whereAt.=27/ . Combining the above two relations, we
conclude tha’rAuo~u§ asuy—0. The density of the peaks U
therefore increases asuf/asu,—0.

We observe tha]]l gets close to 0 near the discontinuities FIG. 9. (a) The velocityul after the first bounce as a function of
(ug=2V, whereV is the velocity of the disk involved in the the initial velocity u for the one-dimensional systena-0). (b)
collision). If the velocity after the collision is small, but not |1/ui| as a function ofu, for the one-dimensional system. The
small enough as for the particle to rebounce on the samigcations o_f the singularities are very close to the locations of the
disk, there is a delay of the particle between the first and th@€aks of Fig. 7 that correspond to a loss of energy of the scattered
second bounce. We expect this delay to be present in thRArticle at the first bounce.

original system &+ 0) and to manifest itself as a peak in the . . :
g y ¢+0) P gion after some bounce. Since there is a lower bound on the

T(uo) plot, since for smalkr the curvature of the disks can ye|ocity with which the particle can leave a disk, we do not

be neglected for the first collision. expect the structure around the peaks to be infinitely dense.

In the following we Wlll_g|ve a qugahtauve interpretation This is consistent with our observation that the fractal struc-
of the fact that there is a rich fractallike structure around the

o ~ ture of T(Uo) breaks at aliy scale. The high
peaks ofT (ug) for the original system. The quantity/u,| is ure of T(uo) breaks at some smally scale © higher a

a measure of how much time is spent betweenritieand peal_< of theT(uo) pIo_t is, the smaller the veI(_)city of the

(n+1)th collision for the one-dimensional system. In Fig. particle along the orbit and the lower the breaking scale. The

9(b) a plot of |1/u;| as a function ofu, for the one above mechanism also explains the presence of peaks in the
1 0 -

dimensional system is shown. We observe that the peaks &cattering functions of Ref14], however, the structure there

. =~ ) is more dense due to the different choice of the parameters.
this plot are very close to the peaks of theo) plot (Fig. 2) Fyrthermore, the mechanism is also present when the oscil-
that correspond to the delay of the particle between the f'r%ting hard disks are replaced by two oscillating potential

and the second bounce. Tii€uo) plot can be thought of as  hills. A detailed analysis of the dynamics of such a system is
several iterations dfL/u,| plots which are expected to have a left for a future study.

structure similar to thgl/u,| plot. Foru, that corresponds to
a peak of thél (U,) plot, U, falls in the low velocity region, V. CONCLUSIONS AND OUTLOOK
where the structure of tHé@/u,| plot is very dense. We there-  |n the present paper we have studied the effects of time

fore expect fingerprints of this dense structure to be apparerfependence on the scattering process of a point particle off
around anyu, value which maps onto the low velocity re- two harmonically oscillating hard disks. A different mecha-
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nism leading to long-lived scattering trajectories has been APPENDIX
found. It is associated with the energy loss of the scattered
particle at the collisions. This mechanism is not directlyfu
related to the periodic orbits of the system and induces
fractallike structure in the scattering functions. At the statis-th
tical level, the mechanism manifests itself as a change in the
properties of the fractiol(t)/Ng of particles that remain in N(t) 1 ) 5 I(x)
the scattering region after tinte Although this function still Ny KJ’ d XJ’ d°p® p/_m_t ’
obeys a power law, the absolute value of the corresponding
exponent is modified by a significant amount. An interestingvherel(x) is the distance traveled by the projectile starting
question that will be studied in the future is how time depen-ts trajectory aix with momentunmp, © is the theta function,
dence affects the dynamics of a system whose static countefd C is & normalization constant given by
part is chaotic, such as the three disk syst@h As an

C= f f d?xd?p.

In this appendix we present the calculation of M@)/N,
nction in the case of the scattering off two static disks.
cluding in the phase space integration the momentum of
e projectile we obtain

(A1)

extension to this work, the transport properties of a lattice (A2)
gas consisting of oscillating disks will be studied. Another

open question is the quantum manifestation of this mechadsing polar coordinates, the integral over momentum can be

nism. performed as follows:
2
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