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Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters
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We study nonlinear random resistor diode networks at the transition from the nonpercolating to the directed
percolating phase. The resistorlike bonds and the diodelike bonds under forward bias voltage obey a general-
ized Ohm’s lawV~1". Based on general grounds such as symmetries and relevance we develop a field
theoretic model. We focus on the average two-port resistance, which is governed at the transition by the
resistance exponenb, . By employing renormalization group methods we calculatefor arbitrary r to
one-loop order. Then we address the fractal dimensions characterizing directed percolation clusters. Via con-
sidering distinct values of the nonlinearitywe determine the dimension of the red bonds, the chemical path,
and the backbone to two-loop order.
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[. INTRODUCTION (parallel to the distinguished directipand &£, (perpendicu-
lar to it). As one approaches the critical probability, the two
Percolation[1] describes the passage of an influencecorrelation lengths diverge with the exponenjsand v, of
through a medium that is irregularly structured in the sense¢he DP universality class.
that the influence can propagate through some regions The apparent success of DP might be attributed to the fact
whereas it cannot pass other areas. Prominent examples tbfat it is perhaps the simplest model resulting in branching
such media are computer networks like the internet whergelf-affine objects. It has many potential applications, includ-
information propagates and irregularity can be caused bing fluid flow through porous media under gravity, hopping
random switch failures or other technical problems. conductivity in a strong electric fielfB], crack propagation
A particularly simple percolation model is the random [4], and the propagation of surfaces at depinning transitions
resistor networKRRN). In this model the irregular medium [5].
is given by a, say, hypercubic lattice in which bonds between DP has a dynamic interpretation in which the distin-
nearest neighboring sites are randomly occupied with a prolguished direction is viewed as time. A DP cluster then rep-
ability p. The influence corresponds to an external curtent resents the history of a stochastic process. In this dynamic
which is injected at a terminal site and withdrawn at an- interpretation the DP universality class is the generic univer-
other terminal sitex’. Depending on the occupation prob- sality class for phase transitions from an active to an absorb-
ability p the resistorgbonds are likely to either be isolated ing inactive state. For example, the epidemic spreading of an
or form clusters. Two sites belong to the same cluster if theynfectious desease without immunizatif] may be de-
are connected by a path of bonds and hence current can flosecribed by DA 7]. Moreover, DP is related to self-organized
between them. At lowp two infinitely separated terminal critical models[8].
sitesx and x’ are not connected by such a path and the In the early 1980s Redn¢®—11] introduced the random
network behaves as an insulator. For laggeon the other resistor diode networkRDN) which comprises both IP and
hand, many paths betweenandx’ may exist and the net- DP. A RDN is a bond percolation model where nearest
work is a conductor. Therefore, at some probability in be-neighbor sites are connected by a resistor, a positive diode
tween, a thresholgp, must exist where for the first time (conducting only in the distinguished directjpora negative
current can percolate fromto x’. The threshold probability ~diode (conducting only opposite to the distinguished direc-
is called the percolation threshold. Since it separates the comion), or an insulator with respective probabilitigs p. ,
ducting and the insulating phase, it is also referred to as thp_, andq=1—p—p, —p_ . In the three-dimensional phase
critical probability. In RRNs the influence can percolate diagram(pictured as a tetrahedron spanned by the four prob-
through occupied bonds in all directions. The resulting clusabilities) one finds a nonpercolating and three percolating
ters are typically isotropic in space. This kind of percolationphases. The percolating phases are isotropic, positively di-
is referred to as isotropic percolati@lP). The linear extent rected, or negatively directed. Between the phases there are
of the isotropic clusters can be characterized by the correlasurfaces of continuous transitions. All four phases meet
tion lengthé~|p—p.| ™", wherev is the correlation length along a multicritical line, where €r:=p,=p_<1/2 and
exponent of the IP universality class. p=p.(r). On the entire multicritical line, i.e., independently
Directed percolatiofDP) [2] is an anisotropic variant of of r, one finds the scaling properties of the usual isotropic
percolation. The bonds function as diodes so that the curremercolation ( =0). For the crossover from IP to DP see, e.g.,
can percolate only along a given distinguished direction. ThdRef. [12]. In this paper we focus exclusively on the vicinity
critical properties of isotropic and directed percolation areof the critical surface separating the nonpercolating and the
very different. Typical DP clusters are anisotropic and theypositively directed phase.
are characterized by two different correlation lengtgg: An important notion in the theory of RDNSs is the average
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resistanceMg(x,x") between two connected terminal sites to the conductances via,=p, . Note that the diodes are
x=(x, ,t) andx’=(x] ,t") of the network. The critical be- idealized: under forward bias voltage they behaverferl
havior of this average resistance is well knoyWr8,14. If as “Ohmic” resistors whereas they are insulating under
MRg(x,x") is measured, for example, in the distinguished,backward bias voltage. We point out that the parentheses in

timelike direction then it scales as Eq. (2.1) contain the argument of the bond conductance or
) ol resistance, respectively. It is important to realize that these
Mg(x,x")~[t=t"[ ", (1) quantities depend on the voltages or currents by means of the

step function and that sg¥i()=sgn(,). Hence we may
write op(Vp) = 0p(15) and pp(Tp) = pp(Vp)-

Assume that an external currehtis injected atx and
withdrawn atx’. It is understood that andx’ are connected.

with ¢ being the DP resistance exponent. Here in this paper
we consider a generalized RDN in which the resistorlike'"
bonds and the diodelike bonds under forward bias voltage

~|r
obey a gene_:rallzed_ Ohm's Ia\?v I". Qur motlvathn for The power dissipated on the network is by definition
assuming this nonlinear Ohm’s law is twofold. First, real
circuit elements have nonlinear current-voltage characteris- P=1(V,—V,,). (2.2)

tics. This is obviously the case for diodes but it also applies

to a certain extent to resistors, in particular for large currentsUsing Ohm'’s law it may be expressed entirely in terms of the
Our main motivation is, however, that the generalized averyoltages as
age resistancM (x,x") is related for certain values ofto

important fractal substructures of DP clusters. This relation

provides us with an elegant way to determine the fractal

P=R; +(X,X") " Vy=V, 5!

dimensions of the red bonds, the chemical path, and the DP = op(Vp)| V51
backbone. Parts of this work were presented briefly in Ref. b= = -
[13]. =P({V}). 2.3

The plan of presentation is the following. In Sec. Il we
give background on nonlinear RDNs and set up our fieldThe sum is taken over all bonds on the cluster connecting
theoretic model. Section Il sketches our renormalizationand x’ and {V} denotes the corresponding set of voltages.
group improved perturbation calculation. We derive the scaIRH(x,x') stands for the macroscopic resistance whés
ing behavior ofMg (x,x"), which is governed by a general- inserted ai and withdrawn ak’. Similarly one may define
ized resistance exponedt . We present our one-loop result R, _(X,x") as the macroscopic resistance whea inserted
for ¢, . In Sec. IV we calculate the fractal dimensions of theat X’ and withdrawn ak. The two quantities are related by
red bonds, the chemical path, and the DP backbone by comi, . (X,x")=R; _(x’,x). From the power one obtains Kirch-
sidering the limitg —o, r—0", andr——1", respectively.  hoff's first law
Section V contains our conclusions.

s—1__
> 5 (Vi ) Vi Vi | =2 b=

Il. THE MODEL 5 [§)}
_ (2.4)
A. Generalized Ohm'’s law
Consider ad-dimensional hypercubic lattice in which the @S @ consequence of the variation principle
direction n=1/\/d(1,...,1) is distinguished. Assume that
the bondd,; ;, between two nearest neighboring sitesd] V 1 —P{V}) +2 [V |= (2.5
are directed so thdi; ;,-n>0. Vi st
Suppose that the directed bonds obey the nonlinear Ohm‘Fhe summation in Eq(2.4) extends over the nearest neigh-
law [15] ) S
bors ofi andl; is given byl;=1(8; x— & x').
To (Vb )Vb ' J>|Vb<. ,>|S_1:|b<i " (2.13 Alternatively to Eq.(2.3), the power can be expressed in
- terms of the currents as
or, equivalently,
_ -1 P=R, + (xx)|I]""= 2 py(l)l1pl "' =P({1}),
V9<i,j> Pby (|b<u J>) b, J>| b J>| ' (2.1b i b = = = 2.6

Vb<i _>=Vj—Vi, whereV; denotes the potential at siteis
th_e’JvoItage drop over the bond between sitemdj. I, with {I} denoting the set of currents flowing through the in-
iy

, r+1__ _

denotes the current flowing fropto i. In the following we dividual bonds. It is understood thag(ly)|l, | 0 when
drop the subscripti,j) whenever the meaning is clear. The everap(lp) = 0. Kirchhoff's second law, saying that the volt-
bond conductances}, are random variables taking on the age drop; a'long c;losed loops vanish, can be stated in terms
valueso, a8(V), a8(—V), and 0 with respective probabili- of the variation principle
tiesp, p4, p—, andg. o is a positive constant angldenotes
the Heaviside function. The exponemt&nd s describe the 0]

S IVSIEE : | P({l 1D=0, (2.7)
nonlinearity withr =s~*. The bond resistances are related al®
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i.e., there are no independent loop curretts circulating ~ —V,)|V,—Vi[S. This argument may be iterated throughout the
around a complete set of independent closed loops. entire blob. One identifies either a single self-avoiding chain
through whichl flows, with
B. Relation to fractal substructures

Now we take a short detour and show that the average P=> pE(I9)|I|”l (2.149
resistancem R,(X,X') is related for specific values ofto the b

mass, i.e., the average number of bonds, of important sulheing the power dissipated on the chain, or several such

structures of DP clusters. The arguments below are well €Shains with identical power. The expression in mlz]) is
tablished for RRNs and we simply adapt them here to RDNSminimal for minimal =,p,,, i.e., the current chooses the

We start with the backbone. Thorward) backbone be- gportest path through the blob, and one is led to
tween two sitex andx’ is defined, in principle, as the union

of all current carrying bonds whehis injected atx and lim Mg (X,X")~M nin (2.19
withdrawn atx’. Considerr——1". One obtains immedi- —ot

ately as a consequence of Eg.6) that )
whereM i, stands for the mass of the chemical path.
Il

+1
R_y,(x,x")=lim Eb) Po(lp) :g Po(ly), C. Replica technique
rs—1t 2 —
(2.8 Our aim now is to calculate the average resistance be-

_ . .. tween two portsx andx’, which is precisely defined by
with only those bonds carrying nonzero current contributing

to the sum on the right hand side. Hence MRr(x,x’)=<X+(x,x’)Rr,+(x,x’))C/<X+(x,x’))c.

lim Mg (xX') <M, (2.9 21§
r—-1" (--+)c denotes the average over all configurations of the
diluted lattice.x . (x,x") is an indicator function that takes
the value 1 ifx andx’ are positively connected, i.e., lifcan
n percolate fromx to x’, and zero otherwise. Note that
X+ 06X ) e=(x_(x",x))¢c is nothing more than the usual

whereMg stands for the mass of the backbone.

Now we turn tor —o andr—0* following the lines of
Blumenfeld and Aharony16]. On the backbone betwee
two sitesx andx’ one may distinguish between two different . .
substructures: blobs formed by multiconnected bonds anQP correlation functlo_n. . .
singly connected bonds, which are referred to as red bonds. Now we follow an idea by Stephed7] and its generali-

Both substructures contribute to the resistance of the bacl?—atlon to networks of nonlinear resistors by Hafis] and

exploit the correlation functions

bone,
biob e el GO N)= (00 % XX ) )rep (2.17
R (xX)=2 po(lp)|=  +2 pplp), (2.10
b - ] b= = of
where the sums are taken over all bonds belonging to blobs ) — Ny, > A
. . - = N-Vy), AN#O, 2.1
and over all red bonds, respectively. Since sites on a blob are yx(x) =expl ) (2.18
multiconnected by definitior}) ;| <[], and thus as generating functions dflg . In writing Egs. (2.17 and
blob ly|"+1 (2.18 we switched toD-fold replicated voltages/;—V;
lim % po(lo)| | =0. 21D =wv®, . vD)y, and currents  \;=il;—N\;
= - =AY, ... AP). The correlation functions are given by
In conclusion,Mg, (x,x") is related to the mass of the red D 1
bondsM 4 via G(X,x',\)= < z° T 11 de(“)ex;{ - mP({V})
j a=1
lim Mg (X,X")~M g (2.12
r—oo ’ |(l) ) S N N
+72 VZHIN-(Ve=Vy)|) . (219
Consider now the first sitg at some end of a blob. An ' c
entering current splits into currentd; , flowing to nearest h
neighbors with where
D D
1 x| = 01 x(Vx—= V) [V = Vi, (2.13 PUVHD =S PUVEON = S oy (V@) Vi0]s+1
a=1 a=1 b - = -
In the limit s—o the ratios|l;,|/|l;,| vanish whenever - (2.20

O-i,X(VX_Vi)|VX_Vi|S<O-j,X(VX_Vj)|VX_Vj|S' Thus, cur-
rent flows only through the resistor with the largest(Vy andZ is the normalization
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Z_JHdV' X _Lp V)+i_wZV2 > o r+1_ r ()
=) llavieq - ({AVh+ 5 2 Vi Arm:a; AFE—i(r+1)NGE

(2.21

rir+1) ., ()2

The additional power termi (;)/Z)Eivi2 that we have intro- - Ao &+
duced in Eqs(2.19 and(2.2]) is necessary to give the volt-
age integrals a well defined meaning. Without this term the o pr L) o
integrands depend only on voltage differences and the inte- =DAo " 2 No €5+ (2.28

grals are divergent. Physically, the new term corresponds to
grounding each lattice site by a capacitor of unit capacity.Thus, one can justify the expansion in E2.24) by invoking
The original situation can be retrieved by taking the limit of the conditions
vanishing frequencyp—0. .

Because the integrations in Eq8.19 and(2.21) are not No|""1<D™1 and |Aq| "lE2<1. (2.29
Gaussian, we employ the saddle point method. The saddle o ]
point equation is nothing more than the variation principleNote that the replica limiD—0 allows for a simultaneous
stated in Eq(2.5). Thus, the maximum of the integrand is fulfillment of the conditiong2.27) and(2.29. quever, we
determined by the solution of the circuit equati@@s). Pro-  will not rely exclusively on these conditions on We will
vided that the conditiohl|"*1> o holds, we obtain, up to an provide several consistency checks for the validity of Har-
unimportant multiplicative constant which goes to 1 in theris’s saddle point approach as we go along and reproduce
limit D—0, known results.

D. Field theoretic Hamiltonian

e A ,
G(x,x",\)=1\ ex mRH(x,x)

> , (2.22
c

Since infinite voltage drops between different clusters
may occur, it is not guaranteed thatstays finite, i.e., the
where limit limp_oZP is not well defined. This problem can be

regularized by switching to voltage variabléstaking dis-

Ar(X)z ED: (—in(@)r+t 2.23 crete vglues on E)-(_Jlimaensionf:ll toru$19]. The voltages are
a=1 discretized by setting?=AJk, whereAd =93, /M is the
. gap between successive voltagés, is a voltage cutoffk is
Now we may expand aboutA(\) =0, aD-dimensional integer, anbll a positive integer. The com-
AR ponents ofk are restricted to- M <k(®<M and perio(d;c
PN , r , ndar ndition re realiz ing'“
GOOX M) =+ ()X ))e| 1+ r+1 Mg O6X) - J. iolj“?n?o%(zfﬂ%.d;h% ion?niume:}nayege r?;torzzttbygtaking

(2249 9y —> and A9—0. By settingdy=39,M, M=m?, and,

) o ) ) respectivelyA 9= 3J4/m, the two limits can be taken simul-
This shows us that is indeed the desired generating func- taneously vian—c. Note that the limitD—0 has to be

tion from which the average resistance may be calculated V& en before any other limit. Since the voltages andre

conjugated variablesy is affected by the discretization as

. R II:
Mg (X,X")=(x+(X.X"))c A, (N)/(r+1)) -

- N=AN, ANAO=m/M, (2.30
><G(x,x’,)\)|Ar(;):o. (2.25
R wherel is aD-dimensional integer taking the same values as
Here we would like to comment on the natureXafWe k. This choice guarantees that the completeness and orthogo-
work near the limit when all the components)ofare equal nality relations
and continue to large imaginary values. Accordingly we set

[18] 1 .
- - (2M)D 25 expliN-9) =656 modamar) (2.318
NP =iNg+ & (2.26
. (a) : L D e and
with real Aq and &', and impose the conditiol ,_,&
=0. The saddle point approximation may be justified by 1
demand|ng (ZM)D Z eX[Xl)\ﬁ)=5,§'6 mod(2M A §) (23lb
A
[No|>1. (2.27

do hold. Equation(2.31) provides us with a Fourier trans-
Substitution of Eq(2.26) into the definition ofA, leadsto  form between thej- and X-tori.
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After taking care of these regularization issues, we now . p+ps L
carry out the average over the diluted lattice configurations  K+(9)=In/1— 1-p—p eXp ~ 51 |13|S+

in Eg. (2.19. This provides us with the effective Hamil- - (2.39
tonian .

Note that these are exponentially decreasing functions in rep-
lica space with a decay rate proportionalato. In order to
c refineH ., toward a field theoretic Hamiltonian we now ex-

pandK(9) in terms of

Hiep= —In< ex;{ —%P({é}ﬁ% Z §?

== 2 Ky =5 2 7, (2.32

K(dp)= Z expiX- 19 HIK (D).
(2.40

Upon exploiting thatd(9,) = 6(\o) we obtain

D
> g
— o (a)|s+1
K(9) In[qupDH1 exp{ T 1 A
D

9 N U |
+p+ogl exr{_ ée(a(a))lﬁ(a”SJrl K(ﬁg): E, ¢X(|)¢x(l)[§[K+()\)+K(7\)]"‘ 5[0()\0)

A#0

D

+p_H ex;{—ia(—ﬁ(“))w(a)ﬁﬂ } _0(_)\0)][K+(7\)_K—()\)]’1 (2.41
a=1 s+1

(2.33  whereK. (X) stands for the Fourier transform &f. (),

In order to proceed further we recall the choiceXamade in - . 1 . .
Eq. (2.26). Becausex and ¢ are related by Ohm'’s law, we Ke(N)= (2M)P 2;4 exfin- G]K(9). (242
have to make a consistant choice for

(@) () The Fourier transform can be carried out by switching back
PO=Fo+ 0, (2349 o continuous currents and expanding the logarithm in Eq.

2.39. The result so obtained has the Taylor expansion
with real 9 and¢(®, and wheres?_, £(¥=0. Upon impos- (239 4 P

ing the condition Ri(X)ZTi_Wr,iAr(X)+ . (2.43
| ol (2.35 . . »
wherer. andw, .~o¢ "~ are expansion coefficients depend-
for all & we may write ing onp andp. with 7.(p,p,,p-)=7=(p,p-,p+) and
W = (P,p+,p-) =W, =(p,p-,p+). Now we insert Eg.
. o o1 (2.4)) into Eq.(2.32. We also carry out a gradient expan-
K(9)=In} q+pexp — 7 9 sion in position space. This is justified because only nearest

neighbor pairs enter in the powé, i.e., the interaction is
short ranged not only in replica but also in position space.

o(— D)+ 9(190)exp( S a|3+1>

TP st1 We find
: e(ao>+a<—ﬁo)exp(—$ ﬁl“l) } Hrep=—292b[ SIRL (0 +R_ (00 1y_i()
N#0 1D

(2.3

where we have introduced the abbreviatigry|S*?

=30 |9(®)|s*1, After doing a little straightforward algebra - -~ _ _
and b; dropping a term X[K+()\)_K—()\)]¢—£(|)[Ei‘V+ - Jiy(1),(2.449

1 1
x 1+§<9i-V>2+~--}¢g(l>+§[0<xo)—e<—xo>]

O()IN[1—p—p, ]+ 0(—F)IN[1—p—p_] (2.37  with Ri():) given by Eq.(2.43.
We proceed with the usual coarse graining step and re-
that does not depend on the bond conductances, we obtaiplace theyy; (i) by order parameter fieldg;(x) which in-
. . . herit the constraink #0. We model the corresponding field
K(93)=0(9)K,(9)+60(—99)K_(9). (238  theoretic Hamiltoniar¥ in the spirit of Landau as a mesos-
R copic free energy and introduce the Landau-Ginzburg-
The K. (9) in Eq. (2.38 are given by Wilson type functional
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o[ ) R The second diagrammatic element is the Gaussian propaga-
H:J' d X[E gd Y XOT= Vo= WA (V) tor G(x, ,t,X) which is determined by the equation of mo-
tion

+[0(No) = 6(—No) Iv- V}i(X)

- J -
—V2—w,A (A O(No)— O(—Ng) = G(X, ,t,\
O R TR pLT= V2= WA (N)]+[8(ho) ~ B(—No) 1| G(x, ,t.X)
NN ONEN#0
- =48(x,)8(1). (3.3
+ ?szpg(x)] : (2.49 o )
For the Fourier transforme@(p,t,\) of G(x, ,t,\), where

. .p is the momentum conjugate 0 , one readily obtains
As usual we have neglected all terms that are irrelevant i jugate o y

the sense of the renormalization group. The parameter _ o L .
the coarse grained ancestormf+ 7_ . It specifies the “dis- G(p,t,N) =G (p,t,N) +G_(p,t,N). (3.4
tance” from the critical surface under consideratiom,
~o~'is the coarse grained analogwf . +w, _. The vec-  The quantities on the right hand side are given by
tor v lies in the distinguished directiov=vn. v depends
like 7 andw, on the three probabilitieg, p, , andp_. For ~ - _ -
p.=p_ it vanishes. In the limitv,—0 our HamiltonianX G (p,t,N) = 0(=1) 6+ No)ex Ftp(r+p*~wA ()]
describes the usual purely geometric DP. Indé¢deads for X (1— 685 5). (3.5
w,— 0 to exactly the same perturbation series as obtained in ’
o e o Rk oo o s o the digrarmatc expansion s suffient 0 keep e
paper we drop the regularization term proportionaktéor ~ G+(P.t;A) or G_(p,t,\). We choose to kee . (p,t,\).
simplicity.

A. Nonlinear resistance of Feynman diagrams

IIl. RENORMALIZATION GROUP ANALYSIS — ~ -
From the vertex—g and the propagatoG, (p,t,\) we

Now we are in the position to set up a perturbation cal-now assemble the Feynman graphs constituting our diagram-
culation. This perturbation calculation can be simplified frommatic expansion. As in our previous work on transport in IP
the onset by manipulatingf in such a way that it takes the [27-31 these Feynman diagrams have a real-world interpre-
form of a dynamic functional]23—25. We assume that tation: they may be viewed as being directed resistor net-
#0 and introduce new variables by setting works themselves. This real-world interpretation has basi-

cally two roots. The first one is that the principal propagator

xj=n-x=vpt, ¢=lv| s, g=[v|"g. 3D G, (p,t,X) decomposes into two parts:

By substituting Eq(3.1) into Eq. (2.45 we obtain é+(p,t,>f)= 8(t) B\ o) exd] — tp(r+ pz—WrAr(X))]

pl 7= V2 —wW,A,(N)] —o(t)exd —tp(7+p?)]6y 6. (3.6

1
j=J ddeldt[E > so(x, )

N#0
One of these parts is carryirfgs and hence we call it con-

sy(x, 1) ducting. The other one is not Carryinbs and accordingly
we call it insulating. Equatiori3.6) allows for a schematic
decomposition of the principal diagrams into sums of con-
S_7(X, 0S5 (X, )Sper (X, ,t)), ducting diagrams consisting of conducting and insulating
propagators. In Fig. 1 we list the conducting diagrams result-
ing from the decomposition procedure up to two-loop order.
The second root of the real-world interpretation is that the

whered, =d—1. Note that we have neglected a term con-replica currents\ are conserved in each vertex just as cur-
taining a second derivative with respect to the “time'This  rents are conserved in nodes of real networks. Hence we may

is ]UStlfled because this term is less relevant than the ongrite for each edgeof a diagran’]}:i:):i():,{;})’ Where): is

with the first “time” derivative, which we kept. > :
i ' . an external current anfk} denotes a complete set of inde-
We proceed with standard methods of field the[®2§]. X . ! P !

From Eq.(3.2) we gather the diagrammatic elements contrib—fj’en,f_jemdl_OOp cu;Lents;. i‘(l'h)e-tﬂepfendent part of each con-
uting to our perturbation series. The first element is the ver@tcting diagram then takes the torm
tex —g. Dimensional analysis shows that the verigxs

marginal in four transverse dimensions. Herted, +1 exp pw, S A (X)) .
=5 is the upper critical dimension as is well known for DP. ra e

d
+[O(ho) = 0(—No) 7

(3.2

(3.7
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(P2, A (X)) =1 p(P?,0) + T w(P2, 1) pW, A (X) + - - -
- | TT ata+ Ricttower, ()
1

+---ID(P% G {tD). (3.11

D(p?,t;{t;}) is a typical integrand as known from the field
theory of DP[20-22.

- (Ox

+2

=@_2
ﬂ

B. Renormalization and scaling

We proceed with standard techniques of renormalized
field theory[26]. The ultraviolet divergences occurring in the
diagrams can be absorbed by dimensional regularization. We
employ the renormalization scheme

A
+
é’

s—8$=27%s, r—7r=2"1'Z 1, (3.123

=
A
gl

W —W,=Z"1Z, W, p—p=Z1Z,p, (3.129

FIG. 1. Decomposition of the primary two-leg diagrafh®ld) _ o
into conducting diagrams composed of conducfilight) and insu- g—g=
lating (dashedl propagators to two-loop order. It is important to
realize that the conducting diagrams inherit their combinatorial facwheree=4—d, and is the usual inverse length scale. The
tor from their bold diagram. For example, the diagrams A and Bfactor G.=(4m) 92I'(1+€/2), with T' denoting the
have to be calculated with the same combinatorial fagtor Gamma functlon is introduced for convenienzeZ,, Z,,,

andZ, are the usual DF factors known to second order in
Now it is important to realize tha¥;t;A,(X\;) resembles the € [21,22,14. In Ref.[14] we determine&,,=Z,, to second
structure of a powefcf. Eq. (2.6)]. Thus, we interpret the order ine. Here, we calculat&,, for arbitraryr to ordere.

“time” associated with a conducting propagator as its resis-Thijs calculation is stralghtforward because we can determine
tance and write the total resistance of the one-loop diagrams by using simple
SN rules. For example, two nonlinear resistors with resistances

[Eq. B.7)]=exdpw P(\.{«x})]. (88, andt, added in series have a total resistaRcegiven by

The real-world interpretation provides for an alternative
way of computing the conducting Feynman diagrams. To
evaluate the sums over independent loop currents

Z—l/ZZ;lZa/ZGe—1/2u1/2M6/2’ (312()

Re(ty,t) =ty +to, (3.13

whereas two such resistors in parallel give

> exp pw, P (X {x})], (3.9 Ri(ty,ty) 5=ty S+t, . (3.14
{x}

By exploiting Eq.(3.14) we find
we employ the saddle point method under the conditions

discussed at the end of Sec. Il C. Note that the saddle point
equation is nothing more than the variational principle stated Zy =1+ —
in Eq. (2.7). Thus, solving the saddle point equations is ' 2€
equivalent to determining the total resistariRg{t;}) of a
diagram, and the saddle point evaluation of B9 yields ~ CalculatingZ,, for general to higher loop orders appears to
R be beyond possibility. The reason is that conducting dia-
exd R, ({tj}) pw, A, (N)], (3.10  grams like C in Fig. 1 appear. The total resistance of these

diagrams cannot be determined by using simple rules like
where we have omitted once more multiplicative factors thaggs. (3.13 and (3.14). Instead, one has to solve the set of

goto 1 forD—0. A completion of squares in the momenta nonlinear circuit equations, which is hardly feasible in closed
renders the momentum integrations, which remain to be dongyrm.

to compute the diagrams, straightforward. Equally well we  Now we set up in a standard fashion the renormalization
can use the saddle point method which is exact here since tl’@oup equation for our pr0b|em_ The unrenormalized theory
momentum dependence is purely quadratic. After an exparhas to be independent of the length sqale' introduced by
sion for smaliw, A, (\) all diagrammatic contributions are of renormalization. In particular, the unrenormalized connected
the form N-point correlation functions must be independenjuofi.e.,

1— +0(u?). (3.15

2r+1

016135-7



OLAF STENULL AND HANS-KARL JANSSEN PHYSICAL REVIEW E64 016135

Jd o 0 NS the RDN correlation functions completely. In E®.21) we
rm Gn({ XL, pt, W A (N)}; 7,0)=0 (3.16 introduced the additional nonlinear resistance exponent

for all N. Equation(3.16) translates via the Wilson functions

dr=v, (2-(F)=1+ +0(e?). (3.22

3x 22
au dinrt
'B(U)_“@ G | 3178 Note thaté= ¢, is in conformity to ordere with our result
0 0 for the resistance exponent for the usual “Ohmic” RDN,
glnw, alnp i.e., Eq.(3.22 satisfies an important consistency check.
()= g , gp(u)z,ua— , (3.17bH Since we are primarily interested in the critical behavior
H oo Mo of the average two-port resistance, we now take a closer look
at the two-point correlation functio® = G,. Equation(3.21)
_d implies forG at 7=0 that
7...(U)—,U«£|n zZ |, (3.170
0

G(le—XH,'[—t',WrAr()\))

where the bare quantities are kept fixed while taking the a4 - N = I -
derivatives, into the Gell-Mann-Low renormalization group =19TTG (1 x = xT[IA(t=t"), 17 7 Pw A (L)),
equation (3.23

d d d d N where we dropped several arguments for notational simplic-
M@”LB%"‘ TK(;_TJFerr(;_V\,r*ng%jLE?’ ity. In the following we sei =0 andt’ =0, once more for
R the sake of simplicity. The choice=|x,|! and a Taylor
X GnAX, ,pt, WA (N} 7,u,u)=0. (3.18  expansion of the right hand side of E§.23 lead to

The particular form of the Wilson functions can be extracted G(x,| ,I,Wr/\r():))
from the renormalization scheme and téactors.
The critical behavior of the correlation functions is deter- 1ode
mined by the infrared stable fixed point solutions of Eg. =[x, "1 Ix,|?
(3.18. This fixed pointu* is readily extracted from the con- +

dition B(u*)=0. Then Eq.(3.18 is solved atu* by the . t

method of characteristics, which gives X4 L+WA (N x|y, ™ +.,
Xy

G({X, Pt WA (X))} 7,U, ) (324
=17 NG ({1x, 1% pt, 15w A, (M) Y1 7,u* I w),  where vj=v,z and where thef’s are scaling functions.
(3.19 Equally well we can choosk=t which then leads to

where y* = y(u*), k*=x(u*), {F={,(u*) , and g Gl twr (1)

={;(u*). To analyze the scaling behavior of the correlation x, |7

functions completely, the solutiof8.19 has to be supple- =t(1‘d‘”)’zf2(T)

mented by a dimensional analysis:

x|

1+w,A,()C)t<Wvfw,z(T oo

Gn(X, ,pt, WA (X)) 7,U, ) X

d, N/ZG

N X, Pt AW A (V) 27,0, ). (3.29

(820 with other scaling function$, andf,, .

Now we can extract the critical behavior MRr' For
measurements in the distinguished direction we straightfor-
GnUx, 'pt’WrAr(X’)};T’U,M):|(dl+7])N/2 wardly exploit Eq.(3.25 via Eqg.(2.25 and find that

=u

Equation(3.19 in conjunction with Eq.(3.20 now gives

- ~tPr Iy
X Gp({1x, ,12pt, 1~ M A ()1~ Yo, u* ). Mg, ~ % (3.26

(3.21 For all other directions we determirMRr from Eq. (3.24).

=7, z=2+ 5; ,andv, =1/(2— k*) are the well known With the help of Eq(2.25 we find that

critical exponents for DP which have been calculated previ-
ously to second order ia [21,22,14. These DP exponents, Mg ~|x,|® /", 4
however, are not sufficient to specify the critical behavior of ' ’

) . (3.29

X, [?
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Here it is convenient to choose a common length scaad
to express botlx, | andt in terms of it:|x, |~L andt~LZ -2 +2 @, +2 <—®
This choice guarantees that the scaling functign is con-
stant and Eq(3.27) simplifies to
+2 5’5—+2<—< E'S—
Mg ~L %", (3.29

IV. FRACTAL DIMENSIONS OF DP CLUSTERS

& &0

In this section we calculate, for _r_’OJr’ r—ce, andr FIG. 2. Diagrammatic expansion in the limit-. The listed
——1" to two-loop order. This provides us with the fractal diagrams including their prefactors can be obtained from the con-
dimension of the backbone, the red bonds, and the chemicglicting diagrams shown in Fig. 1 in two different ways: first by
length, respectively. inserting3s into all singly connected conducting propagators and
second by insertinés2 into every conducting and insulating propa-
gator. As a consequence, the renormalization fadgrsandZ , are
identical. The lines stand for conducting propagators evaluated at

For self-affine objects the notion of fractal dimension iszero currents, the solid dots fgis? insertions.
less straightforward than for self-similar objects. To deter-
mine, for example, the fractal dimension of the red bonds ironly singly connected conducting propagators contribute to
DP one considers al 1)-dimensional hyperplane with ori- the total resistance of a diagram, i.e.,
entation perpendicular tg . The cut through the red bonds .
is a self-similar object with the fractal dimension singly

R.({t}H)= Ei i, (4.6

A. Red bonds

d(r:g(;: dreq— 1, (4.1)

with the sum being taken exclusively over singly connected
where d,o4 is the local fractal dimensiof32] of the red conducting propagators. The contribution of a diagram to the
bonds. By virtue of Eqg2.12 and(3.27) the mass of the red renormalization factoz,, takes the form
bonds scales as
singly

Iw(pz,t>=J:1jI DN S . (47

X
M red= |XL|¢x/VLfW,1< H z) : (4-2)

X, | Note that the factot; in Eq. (4.7) corresponds to the inser-
tion (cf. Ref.[26]) of 3s? into theith edge of the diagram.
Thus, we can generatg,(p?,t) for a given conducting dia-
gram by insertingss? into its singly connected conducting
propagators. This procedure is carried out up to two-loop
) order, i.e., every conducting propagator in Fig. 1 that does

Accordingly the mass of the cut scales as

X

x| . 4.3 not belong to a closed loop gets an insertion. The resulting
X, |

diagrams are displayed in Fig. 2.

At this point it is instructive to consider the contributions
) . of the diagrams listed in Fig. 1 td,. These can be gener-
By choosing once morkx, |~L andx~L* we find that ated by insertingts? in conducting as well as in insulating

propagators. Again, one obtains the diagrams depicted in

cut__ _q/ -1
M feq= %[ -2 LX) fw,l(

MCUL [ /v =2 (4.4) Fig. 2 with the same prefactors. Consequendly, andZ.
e are identical at least up to two-loop order. The same goes for
the corresponding Wilson functiords, and . From the defi-
This leads via Eq(4.1) to nition of ¢, it follows that
2-(%
Oreg= 1+ /v, — 2. (4.9 b= —=1+0(¢). (4.9
— K

It remains to computeb,,. To do so we take direct ad- Upon inserting Eq(4.8) into Eg. (4.5 we obtain the princi-
vantage of our view of the Feynman diagrams as being repal result of Sec. IV A,
sistor networks themselves. As argued in Sec. Il B, blobs do
not contribute to the total resistance for>oc. In analogy dieg=1+1/v, —2, 4.9
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FIG. 3. Diagrammatic expansion in the limit-0*. The mean-
ing of the symbols is the same as in Fig. 2.

holding at least to second order i By substituting the
results of Refs[21,27 in Eq. (4.9) we obtain the following

e expansion fod,q4:
[l—l—{ In( ) 6]4—0(63).
(4.10

Note that the scaling relatio@.9) holds rigorously and its
validity is not restricted to second order in theexpansion.
Coniglio [33] proved for IP that the mass of the red bonds
scales as

73 55
288 144

4

3

€

dreg=1— 6

M re 0,X) ~| x| 1. (4.12)

PHYSICAL REVIEW E64 016135

Minimal subtraction provides us with the renormalization

)
3

Note thatZ, as stated in Eq4.15 is identical to the field
renormalization Z given to two-loop order in Refs.
[21,22,14. By virtue of the renormalization schentd.12
we deduce that

u+u2
4e ' 32¢

7 9
— -3+

— _ 3
Zo=1+ . 5In| 5 |+O(ud). (4.19

o o

pPWo= pWpo,

(4.1

at least to second order in Equation(4.16) leads via

For IP this is equivalent to saying that the fractal dimension/n conjunction with Eq(2.19 this leads finally to

of the red bonds igl,.q= 1/v. Since Coniglio’s arguments do

not rely on the isotropy of the system, they can be adapted to

apply to DP. For the DP problem E@t.11) has to be modi-
fied to

X

M ed 0,X) = |XL|1/Vwa,1< (4-12)

X, [*
This in turn leads again to E¢4.9).

B. Chemical length

Next we address the fractal dimension of the chemical ;

length. Equation2.15 in conjunction with Eq.(3.27) pro-
vides us with

X

Mmin:|XL|¢O/VLfW,1< (4.13

X, |7

By applying the same reasoning as in Sec. IV C we learn that
the local fractal dimension of the chemical length is given byt

dpin="1+ o/ v, —2. (4.14

In order to calculatep, we determine the shortest self-

avoiding path of conducting propagators connecting the ex-

ternal legs of a diagram. Due to the dynamic structure all o
these paths for a given diagram have the same total resi
tance which is nothing more than the total “time” between

the external legs. Hence we can choose any self-avoiding
path connecting the external legs. We work with the dia-

grammatic expansion depicted in Fig. 3.

dln(pwo)
—| =0 4.1
" . (4.17
{,+80=0. (4.18
From the definitions oty, andz it follows immediately that
do=v,z+0(€%). (4.19
d min=1+0(€>). (4.20

This result is intuitively plausible because the chemical dis-
tance in DP is basically equivalent to the “time”

C. Backbone

We conclude Sec. IV by studying the backbone dimen-
sion. By virtue of Eqs(2.9) and(3.27) the mass of the back-
bone scales as

Accordingly the local fractal dimension of the backbone is
given by

X
M= X, [ #1771 f | —

(4.20

ok

DB:1+¢*1/VL_Z' (422

It remains to computeb_,. Once more we exploit our
real-world interpretation. As argued in Sec. Il B, the resis-
ance of the backbone between two sitemdx’ is given by

Ro1+(xX)= 2 py(l), (4.23

ith the sum running over all current carrying bonds of the
inderlying cluster. In analogy, the resistance of a conducting
eynman diagram is given by

cond

Ro({th= Ei ti, (4.24

016135-10
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where the sum extends over all conducting propagators griate to improve thee-expansion by incorporating rigor-
the diagram. This tells us that the contribution of a diagranously known features. We carry out a rational approximation

to Z,, | takes the form

cond

IW(pz,t)=f:1:[ dtjD(pz,t,{tj})Ei t.. (4.29

Hence we can generalg/(p?,t) of any conducting diagram
by inserting 3s? into its conducting propagators. All con-

ducting propagators in Fig. 1 get such an insertion. Then it i

which takes into account that obviouslyg(d=1)=1. In
practice this is done by adding an appropriate third order
term. By this procedure we obtain the interpolation formula

DB%1+

€
1— Z) (0.083%+0.05832).  (4.31)

Evaluation in two dimensions leads tBg(d=2)=1.2

a matter of simple counting to see that the individual contri-— 915, where the error is based on a subjective estimate.

butions cancel each other. Thus, we find

z, =1+ O(€d). (4.26
As a consequence we obtain
im ¢, /v, =z—7, (4.27

r—-—1%

at least to second order in Equation(4.27) leads by virtue
of Eq. (4.22 to

2
Dg=1—n=d— —'8,
v,

(4.28

whereB8=v,(d—1+ 7)/2 is the DP order parameter expo-
nent known to second order n[21,22. From the scaling
relation Eq.(4.28), which is the main result of this section,
the e expansion oDy is readily obtained by inserting the
expansion fory [21,22:

25 161I 4
2881224\ 3

€

61—|—

€

Dg=1+ +0(€d).

(4.29

Equation(4.28 is in agreement with scaling arguments

This result is, within the errors, in agreement with the nu-

merical result [36] Dg(d=2)=1.30£0.03. Our result,
though, appears to be somewhat small.

V. CONCLUSIONS

In this paper we studied a nonlinear version of resistor
diode percolation where Ohm'’s law is generalized/tel'.
We investigated the critical behavior of the average two-port
resistanceM R, at the transition from the nonpercolating to

the directed percolating phase. By employing our real-world
interpretation of Feynman diagrams we calculated the resis-
tance exponend, for arbitraryr to one-loop order. To our
knowledge this is the first time thas, has been determined
for the RDN while ¢, has been known for the RRN, also to
one-loop order, since the 1980%8]. Extending either of
these results to higher loop orders seems to be beyond pos-
sibility because not all conducting diagrams appearing at
higher loop orders can be assembled by simply adding resis-
tors in parallel and in series. For these diagrams one has to
solve the set of nonlinear Kirchhoff's equations to obtain
their total resistance. In closed form, however, this is hardly
feasible.

The relation ofMg to the mass of the red bonds, the

chemical length, and the backbone, respectively, provided us

[34] yielding that the fractal dimension of the transverse CutWlth alternative means to extract the fractal dimensions of

through a DP cluster with local dimensiah is d;—1=d

—1-pB/v, . The analogous cut through the backbone can b
viewed as the intersection of the cut through the cluster anlfs

the cluster’s backward oriented pendéi®,35. Hence, the

codimension of the backbone cut is twice the codimensio

Blv, of the cluster cut, which leads again to £4.28.

It is interesting to compare the expansion result to nu-
merical estimates. We are not aware, however, of any sim
lations in whichDy itself was determined. Hubet al. [36]

presented numerical results for the scaling exponent of th
backbone mass when measured in the longitudinal directio®

In the following we call this exponerﬁzB. Formally one can
defineDg via Mg~tP8. From Egs(2.9), (3.26), and(4.27) it
follows that

2 d-1

_t —

B 1.
DBlV‘| .

, (4.30

at least to second order in Crudely evaluating the corre-
spondinge expansion ofDg for small spatial dimensions

these substructures of DP clusters. By computifgfor r

&%, r—0", andr——1" we determined,eq, dmip, and

to two-loop order.
The fractality in DP and IP is qualitatively different. DP

(clusters are self-affine rather than self-similar objects. Hence,

the notion of fractal dimension is more subtle for DP than for
IP. Moreover, DP has a Markovian character which is evi-

LF_ient in the dynamic interpretation. This Markovian character

provides for scaling relations that do not have an analog in
gD. The DP backbone dimension, for example, can be ex-
ressed entirely in terms of the usugurely geometrig
critical exponents of the DP universality clasBg=d
—2pB/v, . Within the renormalization group framework such
a scaling relation is typically associated with a Ward iden-
tity. The fact thatw_; renormalizes trivially to two-loop
order is reminiscent of this Ward identity. It is an interesting
issue for future work to identify the Ward identity and its
underlying symmetry. Another consequence of the Markov-
ian character of DP is that the fractal dimension of the
chemical length is identical to 1. This is intuitively plausible
since the shortest longitudinal path through a DP cluster cor-

leads to poor quantitative predictions. Therefore it is approresponds to the time in the dynamical interpretation.
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