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Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters
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We study nonlinear random resistor diode networks at the transition from the nonpercolating to the directed
percolating phase. The resistorlike bonds and the diodelike bonds under forward bias voltage obey a general-
ized Ohm’s lawV;I r . Based on general grounds such as symmetries and relevance we develop a field
theoretic model. We focus on the average two-port resistance, which is governed at the transition by the
resistance exponentf r . By employing renormalization group methods we calculatef r for arbitrary r to
one-loop order. Then we address the fractal dimensions characterizing directed percolation clusters. Via con-
sidering distinct values of the nonlinearityr, we determine the dimension of the red bonds, the chemical path,
and the backbone to two-loop order.
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I. INTRODUCTION

Percolation @1# describes the passage of an influen
through a medium that is irregularly structured in the se
that the influence can propagate through some reg
whereas it cannot pass other areas. Prominent example
such media are computer networks like the internet wh
information propagates and irregularity can be caused
random switch failures or other technical problems.

A particularly simple percolation model is the rando
resistor network~RRN!. In this model the irregular medium
is given by a, say, hypercubic lattice in which bonds betwe
nearest neighboring sites are randomly occupied with a p
ability p. The influence corresponds to an external currenI,
which is injected at a terminal sitex and withdrawn at an-
other terminal sitex8. Depending on the occupation prob
ability p the resistors~bonds! are likely to either be isolated
or form clusters. Two sites belong to the same cluster if th
are connected by a path of bonds and hence current can
between them. At lowp two infinitely separated termina
sites x and x8 are not connected by such a path and
network behaves as an insulator. For largep, on the other
hand, many paths betweenx and x8 may exist and the net
work is a conductor. Therefore, at some probability in b
tween, a thresholdpc must exist where for the first time
current can percolate fromx to x8. The threshold probability
is called the percolation threshold. Since it separates the
ducting and the insulating phase, it is also referred to as
critical probability. In RRNs the influence can percola
through occupied bonds in all directions. The resulting cl
ters are typically isotropic in space. This kind of percolati
is referred to as isotropic percolation~IP!. The linear extent
of the isotropic clusters can be characterized by the corr
tion lengthj;up2pcu2n, wheren is the correlation length
exponent of the IP universality class.

Directed percolation~DP! @2# is an anisotropic variant o
percolation. The bonds function as diodes so that the cur
can percolate only along a given distinguished direction. T
critical properties of isotropic and directed percolation a
very different. Typical DP clusters are anisotropic and th
are characterized by two different correlation lengths:j i
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~parallel to the distinguished direction! andj' ~perpendicu-
lar to it!. As one approaches the critical probability, the tw
correlation lengths diverge with the exponentsn i andn' of
the DP universality class.

The apparent success of DP might be attributed to the
that it is perhaps the simplest model resulting in branch
self-affine objects. It has many potential applications, inclu
ing fluid flow through porous media under gravity, hoppin
conductivity in a strong electric field@3#, crack propagation
@4#, and the propagation of surfaces at depinning transiti
@5#.

DP has a dynamic interpretation in which the disti
guished direction is viewed as time. A DP cluster then re
resents the history of a stochastic process. In this dyna
interpretation the DP universality class is the generic univ
sality class for phase transitions from an active to an abs
ing inactive state. For example, the epidemic spreading o
infectious desease without immunization@6# may be de-
scribed by DP@7#. Moreover, DP is related to self-organize
critical models@8#.

In the early 1980s Redner@9–11# introduced the random
resistor diode network~RDN! which comprises both IP and
DP. A RDN is a bond percolation model where near
neighbor sites are connected by a resistor, a positive d
~conducting only in the distinguished direction!, a negative
diode ~conducting only opposite to the distinguished dire
tion!, or an insulator with respective probabilitiesp, p1 ,
p2 , andq512p2p12p2 . In the three-dimensional phas
diagram~pictured as a tetrahedron spanned by the four pr
abilities! one finds a nonpercolating and three percolat
phases. The percolating phases are isotropic, positively
rected, or negatively directed. Between the phases there
surfaces of continuous transitions. All four phases m
along a multicritical line, where 0<rªp15p2<1/2 and
p5pc(r ). On the entire multicritical line, i.e., independent
of r, one finds the scaling properties of the usual isotro
percolation (r 50). For the crossover from IP to DP see, e.
Ref. @12#. In this paper we focus exclusively on the vicinit
of the critical surface separating the nonpercolating and
positively directed phase.

An important notion in the theory of RDNs is the avera
©2001 The American Physical Society35-1
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resistanceMR(x,x8) between two connected terminal sit
x5(x' ,t) andx85(x'8 ,t8) of the network. The critical be-
havior of this average resistance is well known@13,14#. If
MR(x,x8) is measured, for example, in the distinguishe
timelike direction then it scales as

MR~x,x8!;ut2t8uf/n i, ~1.1!

with f being the DP resistance exponent. Here in this pa
we consider a generalized RDN in which the resistorl
bonds and the diodelike bonds under forward bias volt
obey a generalized Ohm’s lawV;I r . Our motivation for
assuming this nonlinear Ohm’s law is twofold. First, re
circuit elements have nonlinear current-voltage characte
tics. This is obviously the case for diodes but it also app
to a certain extent to resistors, in particular for large curre
Our main motivation is, however, that the generalized av
age resistanceMRr

(x,x8) is related for certain values ofr to
important fractal substructures of DP clusters. This relat
provides us with an elegant way to determine the frac
dimensions of the red bonds, the chemical path, and the
backbone. Parts of this work were presented briefly in R
@13#.

The plan of presentation is the following. In Sec. II w
give background on nonlinear RDNs and set up our fi
theoretic model. Section III sketches our renormalizat
group improved perturbation calculation. We derive the sc
ing behavior ofMRr

(x,x8), which is governed by a genera

ized resistance exponentf r . We present our one-loop resu
for f r . In Sec. IV we calculate the fractal dimensions of t
red bonds, the chemical path, and the DP backbone by
sidering the limitsr→`, r→01, andr→211, respectively.
Section V contains our conclusions.

II. THE MODEL

A. Generalized Ohm’s law

Consider ad-dimensional hypercubic lattice in which th
direction n51/Ad(1, . . . ,1) is distinguished. Assume th
the bondsb^ i , j & between two nearest neighboring sitesi andj
are directed so thatb^ i , j &•n.0.

Suppose that the directed bonds obey the nonlinear Oh
law @15#

sb^ i , j &
~Vb^ i , j &

!Vb^ i , j &
uVb^ i , j &

us215I b^ i , j &
, ~2.1a!

or, equivalently,

Vb^ i , j &
5rb^ i , j &

~ I b^ i , j &
!I b^ i , j &

uI b^ i , j &
ur 21. ~2.1b!

Vb^ i , j &
5Vj2Vi , whereVi denotes the potential at sitei, is

the voltage drop over the bond between sitesi and j. I b^ i , j &

denotes the current flowing fromj to i. In the following we
drop the subscript̂i , j & whenever the meaning is clear. Th
bond conductancessb are random variables taking on th
valuess, su(V), su(2V), and 0 with respective probabili
tiesp, p1 , p2 , andq. s is a positive constant andu denotes
the Heaviside function. The exponentsr and s describe the
nonlinearity withr 5s21. The bond resistancesrb are related
01613
,

er

e

l
s-
s
s.
r-

n
l
P

f.

d
n
l-

n-

’s

to the conductances viasb5rb
2s . Note that the diodes are

idealized: under forward bias voltage they behave forr 51
as ‘‘Ohmic’’ resistors whereas they are insulating und
backward bias voltage. We point out that the parenthese
Eq. ~2.1! contain the argument of the bond conductance
resistance, respectively. It is important to realize that th
quantities depend on the voltages or currents by means o
step function and that sgn(Vb)5sgn(I b). Hence we may
write sb(Vb)5sb(I b) andrb(I b)5rb(Vb).

Assume that an external currentI is injected atx and
withdrawn atx8. It is understood thatx andx8 are connected.
The power dissipated on the network is by definition

P5I ~Vx2Vx8!. ~2.2!

Using Ohm’s law it may be expressed entirely in terms of
voltages as

P5Rr ,1~x,x8!21uVx2Vx8u
s11

5(
b

sb~Vb!uVbus11

5P~$V%!. ~2.3!

The sum is taken over all bonds on the cluster connectinx
and x8 and $V% denotes the corresponding set of voltag
Rr ,1(x,x8) stands for the macroscopic resistance whenI is
inserted atx and withdrawn atx8. Similarly one may define
Rr ,2(x,x8) as the macroscopic resistance whenI is inserted
at x8 and withdrawn atx. The two quantities are related b
Rr ,1(x,x8)5Rr ,2(x8,x). From the power one obtains Kirch
hoff’s first law

(̂
j &

sb^ i , j &
~Vb^ i , j &

!Vb^ i , j &
uVb^ i , j &

us215(̂
j &

I b^ i , j &
52I i

~2.4!

as a consequence of the variation principle

]

]Vi
F 1

s11
P~$V%!1(

k
I kVkG50. ~2.5!

The summation in Eq.~2.4! extends over the nearest neig
bors of i and I i is given byI i5I (d i ,x2d i ,x8).

Alternatively to Eq.~2.3!, the power can be expressed
terms of the currents as

P5Rr ,1~x,x8!uI ur 115(
b

rb~ I b!uI bur 115P~$I %!,

~2.6!

with $I% denoting the set of currents flowing through the i
dividual bonds. It is understood thatrb(I b)uI bur 1150 when-
eversb(I b)50. Kirchhoff’s second law, saying that the vol
age drops along closed loops vanish, can be stated in te
of the variation principle

]

]I ( l )
P~$I ( l )%,I !50, ~2.7!
5-2
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NONLINEAR RANDOM RESISTOR DIODE NETWORKS . . . PHYSICAL REVIEW E 64 016135
i.e., there are no independent loop currentsI ( l ) circulating
around a complete set of independent closed loops.

B. Relation to fractal substructures

Now we take a short detour and show that the aver
resistanceMRr

(x,x8) is related for specific values ofr to the
mass, i.e., the average number of bonds, of important s
structures of DP clusters. The arguments below are well
tablished for RRNs and we simply adapt them here to RD
We start with the backbone. The~forward! backbone be-
tween two sitesx andx8 is defined, in principle, as the unio
of all current carrying bonds whenI is injected atx and
withdrawn atx8. Considerr→211. One obtains immedi-
ately as a consequence of Eq.~2.6! that

R21,1~x,x8!5 lim
r→211

(
b

rb~ I b!UI b

I U
r 11

5(
b

rb~ I b!,

~2.8!

with only those bonds carrying nonzero current contribut
to the sum on the right hand side. Hence

lim
r→211

MRr
~x,x8!;MB , ~2.9!

whereMB stands for the mass of the backbone.
Now we turn tor→` and r→01 following the lines of

Blumenfeld and Aharony@16#. On the backbone betwee
two sitesx andx8 one may distinguish between two differe
substructures: blobs formed by multiconnected bonds
singly connected bonds, which are referred to as red bo
Both substructures contribute to the resistance of the b
bone,

Rr ,1~x,x8!5(
b

blob

rb~ I b!UI b

I U
r 11

1(
b

red

rb~ I b!, ~2.10!

where the sums are taken over all bonds belonging to b
and over all red bonds, respectively. Since sites on a blob
multiconnected by definition,uI bu,uI u, and thus

lim
r→`

(
b

blob

rb~ I b!UI b

I U
r 11

50. ~2.11!

In conclusion,MRr
(x,x8) is related to the mass of the re

bondsM red via

lim
r→`

MRr
~x,x8!;M red. ~2.12!

Consider now the first sitex at some end of a blob. An
entering currentI splits into currentsI i ,x flowing to nearest
neighborsi with

uI i ,xu5s i ,x~Vx2Vi !uVx2Vi us. ~2.13!

In the limit s→` the ratios uI i ,xu/uI j ,xu vanish whenever
s i ,x(Vx2Vi)uVx2Vi us,s j ,x(Vx2Vj )uVx2Vj us. Thus, cur-
rent flows only through the resistor with the largests i ,x(Vx
01613
e
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2Vi)uVx2Vius. This argument may be iterated throughout t
entire blob. One identifies either a single self-avoiding ch
through whichI flows, with

Pr5(
b

rb~ I b!uI ur 11 ~2.14!

being the power dissipated on the chain, or several s
chains with identical power. The expression in Eq.~2.14! is
minimal for minimal (brb , i.e., the current chooses th
shortest path through the blob, and one is led to

lim
r→01

MRr
~x,x8!;Mmin , ~2.15!

whereM min stands for the mass of the chemical path.

C. Replica technique

Our aim now is to calculate the average resistance
tween two portsx andx8, which is precisely defined by

MRr
~x,x8!5^x1~x,x8!Rr ,1~x,x8!&C /^x1~x,x8!&C .

~2.16!

^•••&C denotes the average over all configurations of
diluted lattice.x1(x,x8) is an indicator function that take
the value 1 ifx andx8 are positively connected, i.e., ifI can
percolate from x to x8, and zero otherwise. Note tha
^x1(x,x8)&C5^x2(x8,x)&C is nothing more than the usua
DP correlation function.

Now we follow an idea by Stephen@17# and its generali-
zation to networks of nonlinear resistors by Harris@18# and
exploit the correlation functions

G~x,x8,lW !5^clW ~x!c2lW ~x8!& rep ~2.17!

of

clW ~x!5exp~ ilW •VW x!, lW Þ0W , ~2.18!

as generating functions ofMRr
. In writing Eqs. ~2.17! and

~2.18! we switched toD-fold replicated voltagesVi→VW i

5(Vi
(1) , . . . ,Vi

(D)), and currents l i5 i I i→lW i

5(l i
(1) , . . . ,l i

(D)). The correlation functions are given by

G~x,x8,lW !5K Z2DE )
j

)
a51

D

dVj
(a)expF2

1

s11
P~$VW %!

1
iv

2 (
i

VW i
21 ilW •~VW x2VW x8!G L

C

, ~2.19!

where

P~$VW %!5 (
a51

D

P~$V(a)%!5 (
a51

D

(
b

sb~Vb
(a)!uVb

(a)us11

~2.20!

andZ is the normalization
5-3
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Z5E )
j

dVj expF2
1

s11
P~$V%!1

iv

2 (
i

Vi
2G .

~2.21!

The additional power term (iv/2)( iVi
2 that we have intro-

duced in Eqs.~2.19! and~2.21! is necessary to give the volt
age integrals a well defined meaning. Without this term
integrands depend only on voltage differences and the i
grals are divergent. Physically, the new term correspond
grounding each lattice site by a capacitor of unit capac
The original situation can be retrieved by taking the limit
vanishing frequency,v→0.

Because the integrations in Eqs.~2.19! and~2.21! are not
Gaussian, we employ the saddle point method. The sa
point equation is nothing more than the variation princip
stated in Eq.~2.5!. Thus, the maximum of the integrand
determined by the solution of the circuit equations~2.4!. Pro-
vided that the conditionuI ur 11@s holds, we obtain, up to an
unimportant multiplicative constant which goes to 1 in t
limit D→0,

G~x,x8,lW !5K expFL r~lW !

r 11
Rr ,1~x,x8!G L

C

, ~2.22!

where

L r~lW !5 (
a51

D

~2 il (a)!r 11. ~2.23!

Now we may expandG aboutL r(lW )50,

G~x,x8,lW !5^x1~x,x8!&CS 11
L r~lW !

r 11
MRr

~x,x8!1••• D .

~2.24!

This shows us thatG is indeed the desired generating fun
tion from which the average resistance may be calculated

MRr
~x,x8!5^x1~x,x8!&C

21 ]

]„L r~lW !/~r 11!…

3G~x,x8,lW !uLr (l
W )50 . ~2.25!

Here we would like to comment on the nature oflW . We
work near the limit when all the components oflW are equal
and continue to large imaginary values. Accordingly we
@18#

l (a)5 il01j (a) ~2.26!

with real l0 and j (a), and impose the condition(a51
D j (a)

50. The saddle point approximation may be justified
demanding

ul0u@1. ~2.27!

Substitution of Eq.~2.26! into the definition ofL r leads to
01613
e
e-
to
.

le

ia

t

L r~lW !5 (
a51

D H l0
r 112 i ~r 11!l0

r j (a)

2
r ~r 11!

2
l0

r 21j (a)21•••J
5Dl0

r 112
r ~r 11!

2
l0

r 21jW 21•••. ~2.28!

Thus, one can justify the expansion in Eq.~2.24! by invoking
the conditions

ul0ur 11!D21 and ul0ur 21jW2!1. ~2.29!

Note that the replica limitD→0 allows for a simultaneous
fulfillment of the conditions~2.27! and~2.29!. However, we
will not rely exclusively on these conditions onlW . We will
provide several consistency checks for the validity of H
ris’s saddle point approach as we go along and reprod
known results.

D. Field theoretic Hamiltonian

Since infinite voltage drops between different cluste
may occur, it is not guaranteed thatZ stays finite, i.e., the
limit lim D→0ZD is not well defined. This problem can b
regularized by switching to voltage variablesqW taking dis-
crete values on aD-dimensional torus@19#. The voltages are
discretized by settingqW 5DqkW , whereDq5qM /M is the
gap between successive voltages,qM is a voltage cutoff,kW is
a D-dimensional integer, andM a positive integer. The com
ponents ofkW are restricted to2M,k(a)<M and periodic
boundary conditions are realized by settingk(a)

5k(a)mod(2M ). The continuum may be restored by takin
qM→` and Dq→0. By settingqM5q0M , M5m2, and,
respectively,Dq5q0 /m, the two limits can be taken simul
taneously viam→`. Note that the limitD→0 has to be
taken before any other limit. Since the voltages andlW are
conjugated variables,lW is affected by the discretization a
well:

lW 5Dl lW, DlDq5p/M , ~2.30!

wherelW is aD-dimensional integer taking the same values
kW . This choice guarantees that the completeness and orth
nality relations

1

~2M !D (
qW

exp~ ilW •qW !5dlW ,0W mod(2MDl) ~2.31a!

and

1

~2M !D (
lW

exp~ ilW •qW !5dqW ,0W mod(2MDq) ~2.31b!

do hold. Equation~2.31! provides us with a Fourier trans
form between theqW - andlW -tori.
5-4
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After taking care of these regularization issues, we n
carry out the average over the diluted lattice configurati
in Eq. ~2.19!. This provides us with the effective Hami
tonian

H rep52 lnK expF2
1

s11
P~$qW %!1

iv

2 (
i

qW i
2G L

C

52(
b

K~qW b!2
iv

2 (
i

qW i
2 , ~2.32!

where

K~qW !5 lnH q1p)
a51

D

expF2
s

s11
uq (a)us11G

1p1 )
a51

D

expF2
s

s11
u~q (a)!uq (a)us11G

1p2 )
a51

D

expF2
s

s11
u~2q (a)!uq (a)us11G J .

~2.33!

In order to proceed further we recall the choice forlW made in
Eq. ~2.26!. BecauselW andqW are related by Ohm’s law, we
have to make a consistant choice forqW :

q (a)5q01z (a), ~2.34!

with realq0 andz (a), and where(a51
D z (a)50. Upon impos-

ing the condition

uq0u@uz (a)u ~2.35!

for all a we may write

K~qW !5 lnH q1pexpS 2
s

s11
uqus11D

1p1Fu~2q0!1u~q0!expS 2
s

s11
uqus11D G

1p2Fu~q0!1u~2q0!expS 2
s

s11
uqus11D G J ,

~2.36!

where we have introduced the abbreviationuqus11

5(a51
D uq (a)us11. After doing a little straightforward algebr

and by dropping a term

u~q0!ln@12p2p1#1u~2q0!ln@12p2p2# ~2.37!

that does not depend on the bond conductances, we ob

K~qW !5u~q0!K1~qW !1u~2q0!K2~qW !. ~2.38!

The K6(qW ) in Eq. ~2.38! are given by
01613
s

in

K6~qW !5 lnF12
p1p6

12p2p6
expS 2

s

s11
uqus11D G .

~2.39!

Note that these are exponentially decreasing functions in
lica space with a decay rate proportional tos21. In order to
refineH rep toward a field theoretic Hamiltonian we now ex
pandK(qW ) in terms ofc:

K~qW b!5
1

~2M !D (
lW

(
qW

exp@ ilW •~qW b2qW !#K~qW !.

~2.40!

Upon exploiting thatu(q0)5u(l0) we obtain

K~qW b!5 (
lW Þ0W

clW ~ i !c2lW ~ j !H 1

2
@K̃1~lW !1K̃2~lW !#1

1

2
@u~l0!

2u~2l0!#@K̃1~lW !2K̃2~lW !#J , ~2.41!

whereK̃6(lW ) stands for the Fourier transform ofK6(qW ),

K̃6~lW !5
1

~2M !D (
qW

exp@ ilW •qW #K~qW !. ~2.42!

The Fourier transform can be carried out by switching ba
to continuous currents and expanding the logarithm in
~2.39!. The result so obtained has the Taylor expansion

K̃6~lW !5t62wr ,6L r~lW !1•••, ~2.43!

wheret6 andwr ,6;s21 are expansion coefficients depen
ing on p and p6 with t6(p,p1 ,p2)5t7(p,p2 ,p1) and
wr ,6(p,p1 ,p2)5wr ,7(p,p2 ,p1). Now we insert Eq.
~2.41! into Eq. ~2.32!. We also carry out a gradient expan
sion in position space. This is justified because only nea
neighbor pairs enter in the powerP, i.e., the interaction is
short ranged not only in replica but also in position spa
We find

H rep52 (
lW Þ0W

(
i ,bi

H 1

2
@K̃1~lW !1K̃2~lW !#c2lW ~ i !

3F11
1

2
~bi•¹!21•••GclW ~ i !1

1

2
@u~l0!2u~2l0!#

3@K̃1~lW !2K̃2~lW !#c2lW ~ i !@bi•¹1•••#clW ~ i !,~2.44!

with K̃6(lW ) given by Eq.~2.43!.
We proceed with the usual coarse graining step and

place theclW ( i ) by order parameter fieldsclW (x) which in-
herit the constraintlW Þ0W . We model the corresponding fiel
theoretic HamiltonianH in the spirit of Landau as a mesos
copic free energy and introduce the Landau-Ginzbu
Wilson type functional
5-5
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H5E ddxH 1

2 (
lW Þ0W

c2lW ~x!$t2¹22wrL r~lW !

1@u~l0!2u~2l0!#v•¹%clW ~x!

1
g

6 (
lW ,lW 8,lW 1lW 8Þ0W

c2lW ~x!c2lW 8~x!clW 1lW 8~x!

1
iv

2
¹lW

2
clW ~x!J . ~2.45!

As usual we have neglected all terms that are irrelevan
the sense of the renormalization group. The parametert is
the coarse grained ancestor oft11t2 . It specifies the ‘‘dis-
tance’’ from the critical surface under consideration.wr
;s21 is the coarse grained analog ofwr ,11wr ,2 . The vec-
tor v lies in the distinguished direction,v5vn. v depends
like t andwr on the three probabilitiesp, p1 , andp2 . For
p15p2 it vanishes. In the limitwr→0 our HamiltonianH
describes the usual purely geometric DP. Indeed,H leads for
wr→0 to exactly the same perturbation series as obtaine
@20–22#. In the limit r→1 H describes resistor diode perc
lation as studied in Refs.@13,14#. In the remainder of this
paper we drop the regularization term proportional tov for
simplicity.

III. RENORMALIZATION GROUP ANALYSIS

Now we are in the position to set up a perturbation c
culation. This perturbation calculation can be simplified fro
the onset by manipulatingH in such a way that it takes th
form of a dynamic functional@23–25#. We assume thatv
Þ0 and introduce new variables by setting

xi5n•x5vrt, c5uvu21/2s, g5uvu1/2ḡ. ~3.1!

By substituting Eq.~3.1! into Eq. ~2.45! we obtain

J5E dd'x'dtH 1

2 (
lW Þ0W

s2lW ~x' ,t !Fr@t2¹'
2 2wrL r~lW !#

1@u~l0!2u~2l0!#
]

]t GslW ~x' ,t !

1
rḡ

6 (
lW ,lW 8,lW 1lW 8Þ0W

s2lW ~x' ,t !s2lW 8~x' ,t !slW 1lW 8~x' ,t !J ,

~3.2!

whered'5d21. Note that we have neglected a term co
taining a second derivative with respect to the ‘‘time’’t. This
is justified because this term is less relevant than the
with the first ‘‘time’’ derivative, which we kept.

We proceed with standard methods of field theory@26#.
From Eq.~3.2! we gather the diagrammatic elements contr
uting to our perturbation series. The first element is the v
tex 2ḡ. Dimensional analysis shows that the vertexḡ is
marginal in four transverse dimensions. Henced5d'11
55 is the upper critical dimension as is well known for D
01613
in

in

-

-

e

-
r-

.

The second diagrammatic element is the Gaussian prop
tor G(x' ,t,lW ) which is determined by the equation of mo
tion

H r@t2¹22wrL r~lW !#1@u~l0!2u~2l0!#
]

]tJ G~x' ,t,lW !

5d~x'!d~ t !. ~3.3!

For the Fourier transformedG̃(p,t,lW ) of G(x' ,t,lW ), where
p is the momentum conjugate tox' , one readily obtains

G̃~p,t,lW !5G̃1~p,t,lW !1G̃2~p,t,lW !. ~3.4!

The quantities on the right hand side are given by

G̃6~p,t,lW !5u~6t !u~6l0!exp@7tr„t1p22wrL r~lW !…#

3~12dlW ,0W !. ~3.5!

For the diagrammatic expansion it is sufficient to keep eit
G̃1(p,t,lW ) or G̃2(p,t,lW ). We choose to keepG̃1(p,t,lW ).

A. Nonlinear resistance of Feynman diagrams

From the vertex2ḡ and the propagatorG̃1(p,t,lW ) we
now assemble the Feynman graphs constituting our diagr
matic expansion. As in our previous work on transport in
@27–31# these Feynman diagrams have a real-world interp
tation: they may be viewed as being directed resistor n
works themselves. This real-world interpretation has ba
cally two roots. The first one is that the principal propaga
G̃1(p,t,lW ) decomposes into two parts:

G̃1~p,t,lW !5u~ t !u~l0!exp@2tr„t1p22wrL r~lW !…#

2u~ t !exp@2tr~t1p2!#dlW ,0W . ~3.6!

One of these parts is carryinglW ’s and hence we call it con
ducting. The other one is not carryinglW ’s and accordingly
we call it insulating. Equation~3.6! allows for a schematic
decomposition of the principal diagrams into sums of co
ducting diagrams consisting of conducting and insulat
propagators. In Fig. 1 we list the conducting diagrams res
ing from the decomposition procedure up to two-loop ord
The second root of the real-world interpretation is that
replica currentslW are conserved in each vertex just as c
rents are conserved in nodes of real networks. Hence we
write for each edgei of a diagramlW i5lW i(lW ,$kW %), wherelW is
an external current and$kW % denotes a complete set of inde
pendent loop currents. ThelW -dependent part of each con
ducting diagram then takes the form

expFrwr(
i

t iL r~lW i !G . ~3.7!
5-6
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Now it is important to realize that( i t iL r(lW i) resembles the
structure of a power@cf. Eq. ~2.6!#. Thus, we interpret the
‘‘time’’ associated with a conducting propagator as its res
tance and write

@Eq. ~3.7!#5exp@rwr Pr~lW ,$kW %!#. ~3.8!

The real-world interpretation provides for an alternati
way of computing the conducting Feynman diagrams.
evaluate the sums over independent loop currents

(
$kW %

exp@rwr Pr~lW ,$kW %!#, ~3.9!

we employ the saddle point method under the conditi
discussed at the end of Sec. II C. Note that the saddle p
equation is nothing more than the variational principle sta
in Eq. ~2.7!. Thus, solving the saddle point equations
equivalent to determining the total resistanceRr($t i%) of a
diagram, and the saddle point evaluation of Eq.~3.9! yields

exp@Rr~$t i%!rwrL r~lW !#, ~3.10!

where we have omitted once more multiplicative factors t
go to 1 forD→0. A completion of squares in the momen
renders the momentum integrations, which remain to be d
to compute the diagrams, straightforward. Equally well
can use the saddle point method which is exact here since
momentum dependence is purely quadratic. After an exp
sion for smallwrL r(lW ) all diagrammatic contributions are o
the form

FIG. 1. Decomposition of the primary two-leg diagrams~bold!
into conducting diagrams composed of conducting~light! and insu-
lating ~dashed! propagators to two-loop order. It is important
realize that the conducting diagrams inherit their combinatorial f
tor from their bold diagram. For example, the diagrams A and
have to be calculated with the same combinatorial factor1

2 .
01613
-

o

s
int
d

t

ne

he
n-

I „p2,t,L r~lW !…5I P~p2,t !1I W~p2,t !rwrL r~lW !1•••

5E
0

`

)
i

dti@11Rr~$t i%!rwrL r~lW !

1•••#D~p2,t;$t i%!. ~3.11!

D(p2,t;$t i%) is a typical integrand as known from the fie
theory of DP@20–22#.

B. Renormalization and scaling

We proceed with standard techniques of renormaliz
field theory@26#. The ultraviolet divergences occurring in th
diagrams can be absorbed by dimensional regularization.
employ the renormalization scheme

s→s°5Z1/2s, t→t°5Z21Ztt, ~3.12a!

wr→w° r5Z21Zwr
wr , r→r°5Z21Zrr, ~3.12b!

ḡ→ḡ°5Z21/2Zr
21Zu

1/2Ge
21/2u1/2me/2, ~3.12c!

wheree542d' andm is the usual inverse length scale. Th
factor Ge5(4p)2d'/2G(11e/2), with G denoting the
Gamma function, is introduced for convenience.Z, Zt , Zr ,
andZu are the usual DPZ factors known to second order i
e @21,22,14#. In Ref. @14# we determinedZw5Zw1

to second

order ine. Here, we calculateZwr
for arbitrary r to ordere.

This calculation is straightforward because we can determ
the total resistance of the one-loop diagrams by using sim
rules. For example, two nonlinear resistors with resistan
t1 and t2 added in series have a total resistanceRr given by

Rr~ t1 ,t2!5t11t2 , ~3.13!

whereas two such resistors in parallel give

Rr~ t1 ,t2!2s5t1
2s1t2

2s. ~3.14!

By exploiting Eq.~3.14! we find

Zwr
511

u

2e F12
1

2r 11G1O~u2!. ~3.15!

CalculatingZwr
for generalr to higher loop orders appears t

be beyond possibility. The reason is that conducting d
grams like C in Fig. 1 appear. The total resistance of th
diagrams cannot be determined by using simple rules
Eqs. ~3.13! and ~3.14!. Instead, one has to solve the set
nonlinear circuit equations, which is hardly feasible in clos
form.

Now we set up in a standard fashion the renormalizat
group equation for our problem. The unrenormalized the
has to be independent of the length scalem21 introduced by
renormalization. In particular, the unrenormalized connec
N-point correlation functions must be independent ofm, i.e.,

-

5-7
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m
]

]m
G° N~{ x',r° t,w° rL r~lW !}; t° ,ḡ° !50 ~3.16!

for all N. Equation~3.16! translates via the Wilson function

b~u!5m
]u

]m U
0

, k~u!5m
] ln t

]m U
0

, ~3.17a!

z r~u!5m
] ln wr

]m U
0

, zr~u!5m
] ln r

]m U
0

, ~3.17b!

g . . . ~u!5m
]

]m
ln Z . . .U

0

, ~3.17c!

where the bare quantities are kept fixed while taking
derivatives, into the Gell-Mann-Low renormalization grou
equation

Fm ]

]m
1b

]

]u
1tk

]

]t
1wrz r

]

]wr
1rzr

]

]r
1

N

2
gG

3GN„$x' ,rt,wrL r~lW !%;t,u,m…50. ~3.18!

The particular form of the Wilson functions can be extrac
from the renormalization scheme and theZ factors.

The critical behavior of the correlation functions is dete
mined by the infrared stable fixed point solutions of E
~3.18!. This fixed pointu* is readily extracted from the con
dition b(u* )50. Then Eq.~3.18! is solved atu* by the
method of characteristics, which gives

GN„$x' ,rt,wrL r~lW !%;t,u,m…

5 l g* N/2GN„$ lx',l zr* rt,l zr* wrL r~lW !%; l k* t,u* ,lm…,

~3.19!

where g* 5g(u* ), k* 5k(u* ), zr* 5zr(u* ) , and z r*
5z r(u* ). To analyze the scaling behavior of the correlati
functions completely, the solution~3.19! has to be supple
mented by a dimensional analysis:

GN„$x' ,rt,wrL r~lW !%;t,u,m…

5md'N/2GN„$mx' ,m2rt,m22wrL r~lW !%;m22t,u,1….

~3.20!

Equation~3.19! in conjunction with Eq.~3.20! now gives

GN„$x' ,rt,wrL r~lW !%;t,u,m…5 l (d'1h)N/2

3GN„$ lx' ,l zrt,l 2fr /nwrL r~lW !%; l 21/nt,u* ,m….

~3.21!

h5g* , z521zr* , andn'51/(22k* ) are the well known
critical exponents for DP which have been calculated pre
ously to second order ine @21,22,14#. These DP exponents
however, are not sufficient to specify the critical behavior
01613
e

d

-
.

i-

f

the RDN correlation functions completely. In Eq.~3.21! we
introduced the additional nonlinear resistance exponent

f r5n'~22z r* !511
e

332r 12
1O~e2!. ~3.22!

Note thatf5f1 is in conformity to ordere with our result
for the resistance exponent for the usual ‘‘Ohmic’’ RDN
i.e., Eq.~3.22! satisfies an important consistency check.

Since we are primarily interested in the critical behav
of the average two-port resistance, we now take a closer l
at the two-point correlation functionG5G2. Equation~3.21!
implies for G at t50 that

G„ux'2x'8 u,t2t8,wrL r~lW !…

5 l d'1hG„l ux'2x'8 u,l z~ t2t8!,l 2fr /nwrL r~lW !…,

~3.23!

where we dropped several arguments for notational simp
ity. In the following we setx'8 50 and t850, once more for
the sake of simplicity. The choicel 5ux'u21 and a Taylor
expansion of the right hand side of Eq.~3.23! lead to

G„ux'u,t,wrL r~lW !…

5ux'u12d2h f 1S t

ux'uzD
3H 11wrL r~lW !ux'ufr /n' f w,1S t

ux'uz
D 1•••J ,

~3.24!

where n i5n'z and where thef ’s are scaling functions.
Equally well we can choosel 5t which then leads to

G„ux'u,t,wrL r~lW !…

5t (12d2h)/zf 2S ux'uz

t D
3H 11wrL r~lW !tfr /n i f w,2S ux'u

t D1•••J
~3.25!

with other scaling functionsf 2 and f w,2 .
Now we can extract the critical behavior ofMRr

. For
measurements in the distinguished direction we straight
wardly exploit Eq.~3.25! via Eq. ~2.25! and find that

MRr
;tfr /n i. ~3.26!

For all other directions we determineMRr
from Eq. ~3.24!.

With the help of Eq.~2.25! we find that

MRr
;ux'ufr /n' f w,1S t

ux'uzD . ~3.27!
5-8
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Here it is convenient to choose a common length scaleL and
to express bothux'u and t in terms of it: ux'u;L and t;Lz.
This choice guarantees that the scaling functionf w,1 is con-
stant and Eq.~3.27! simplifies to

MRr
;Lfr /n'. ~3.28!

IV. FRACTAL DIMENSIONS OF DP CLUSTERS

In this section we calculatef r for r→01, r→`, and r
→211 to two-loop order. This provides us with the fract
dimension of the backbone, the red bonds, and the chem
length, respectively.

A. Red bonds

For self-affine objects the notion of fractal dimension
less straightforward than for self-similar objects. To det
mine, for example, the fractal dimension of the red bonds
DP one considers a (d21)-dimensional hyperplane with ori
entation perpendicular toxi . The cut through the red bond
is a self-similar object with the fractal dimension

dred
cut5dred21, ~4.1!

where dred is the local fractal dimension@32# of the red
bonds. By virtue of Eqs.~2.12! and~3.27! the mass of the red
bonds scales as

M red5ux'uf` /n' f w,1S xi

ux'uzD . ~4.2!

Accordingly the mass of the cut scales as

M red
cut5ux'uf21 /n'xi

21f w,1S xi

ux'uzD . ~4.3!

By choosing once moreux'u;L andxi;Lz we find that

M red
cut;Lf` /n'2z. ~4.4!

This leads via Eq.~4.1! to

dred511f` /n'2z. ~4.5!

It remains to computef` . To do so we take direct ad
vantage of our view of the Feynman diagrams as being
sistor networks themselves. As argued in Sec. II B, blobs
not contribute to the total resistance forr→`. In analogy
01613
al

-
n

e-
o

only singly connected conducting propagators contribute
the total resistance of a diagram, i.e.,

R`~$t i%!5 (
i

singly

t i , ~4.6!

with the sum being taken exclusively over singly connec
conducting propagators. The contribution of a diagram to
renormalization factorZw`

takes the form

I W~p2,t !5E
0

`

)
j

dtjD~p2,t;$t j%! (
i

singly

t i . ~4.7!

Note that the factort i in Eq. ~4.7! corresponds to the inser
tion ~cf. Ref. @26#! of 1

2 s2 into the i th edge of the diagram
Thus, we can generateI W(p2,t) for a given conducting dia-
gram by inserting1

2 s2 into its singly connected conductin
propagators. This procedure is carried out up to two-lo
order, i.e., every conducting propagator in Fig. 1 that do
not belong to a closed loop gets an insertion. The resul
diagrams are displayed in Fig. 2.

At this point it is instructive to consider the contribution
of the diagrams listed in Fig. 1 toZt . These can be gener
ated by inserting1

2 s2 in conducting as well as in insulatin
propagators. Again, one obtains the diagrams depicted
Fig. 2 with the same prefactors. Consequently,Zw`

and Zt

are identical at least up to two-loop order. The same goes
the corresponding Wilson functionsz` andk. From the defi-
nition of f r it follows that

f`5
22z *̀

22k*
511O~e3!. ~4.8!

Upon inserting Eq.~4.8! into Eq. ~4.5! we obtain the princi-
pal result of Sec. IV A,

dred5111/n'2z, ~4.9!

FIG. 2. Diagrammatic expansion in the limitr→`. The listed
diagrams including their prefactors can be obtained from the c
ducting diagrams shown in Fig. 1 in two different ways: first b
inserting 1

2 s2 into all singly connected conducting propagators a
second by inserting12 s2 into every conducting and insulating propa
gator. As a consequence, the renormalization factorsZw`

andZt are
identical. The lines stand for conducting propagators evaluate
zero currents, the solid dots for1

2 s2 insertions.
5-9
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holding at least to second order ine. By substituting the
results of Refs.@21,22# in Eq. ~4.9! we obtain the following
e expansion fordred:

dred512
e

6 H 11F 73

288
2

55

144
lnS 4

3D GeJ 1O~e3!.

~4.10!

Note that the scaling relation~4.9! holds rigorously and its
validity is not restricted to second order in thee expansion.
Coniglio @33# proved for IP that the mass of the red bon
scales as

M red~0,x!;uxu1/n. ~4.11!

For IP this is equivalent to saying that the fractal dimens
of the red bonds isdred51/n. Since Coniglio’s arguments d
not rely on the isotropy of the system, they can be adapte
apply to DP. For the DP problem Eq.~4.11! has to be modi-
fied to

M red~0,x!5ux'u1/n' f w,1S xi

ux'uz
D . ~4.12!

This in turn leads again to Eq.~4.9!.

B. Chemical length

Next we address the fractal dimension of the chem
length. Equation~2.15! in conjunction with Eq.~3.27! pro-
vides us with

Mmin5ux'uf0 /n' f w,1S xi

ux'uzD . ~4.13!

By applying the same reasoning as in Sec. IV C we learn
the local fractal dimension of the chemical length is given

dmin511f0 /n'2z. ~4.14!

In order to calculatef0 we determine the shortest sel
avoiding path of conducting propagators connecting the
ternal legs of a diagram. Due to the dynamic structure al
these paths for a given diagram have the same total re
tance which is nothing more than the total ‘‘time’’ betwee
the external legs. Hence we can choose any self-avoid
path connecting the external legs. We work with the d
grammatic expansion depicted in Fig. 3.

FIG. 3. Diagrammatic expansion in the limitr→01. The mean-
ing of the symbols is the same as in Fig. 2.
01613
n

to

l

at
y

x-
f
is-

g
-

Minimal subtraction provides us with the renormalizatio
factor

Z0511
u

4e
1

u2

32e F7

e
231

9

2
lnS 4

3D G1O~u3!. ~4.15!

Note thatZ0 as stated in Eq.~4.15! is identical to the field
renormalization Z given to two-loop order in Refs
@21,22,14#. By virtue of the renormalization scheme~3.12!
we deduce that

r°w° 05rw0 , ~4.16!

at least to second order inu. Equation~4.16! leads via

m
] ln~rw0!

]m U
0

50 ~4.17!

to

zr1z050. ~4.18!

From the definitions off r andz it follows immediately that

f05n'z1O~e3!. ~4.19!

In conjunction with Eq.~2.15! this leads finally to

d min511O~e3!. ~4.20!

This result is intuitively plausible because the chemical d
tance in DP is basically equivalent to the ‘‘time’’t.

C. Backbone

We conclude Sec. IV by studying the backbone dime
sion. By virtue of Eqs.~2.9! and~3.27! the mass of the back
bone scales as

MB5ux'uf21 /n' f w,1S xi

ux'uzD . ~4.21!

Accordingly the local fractal dimension of the backbone
given by

DB511f21 /n'2z. ~4.22!

It remains to computef21. Once more we exploit our
real-world interpretation. As argued in Sec. II B, the res
tance of the backbone between two sitesx andx8 is given by

R21,1~x,x8!5(
b

rb~ I b!, ~4.23!

with the sum running over all current carrying bonds of t
underlying cluster. In analogy, the resistance of a conduc
Feynman diagram is given by

R21~$t i%!5(
i

cond

t i , ~4.24!
5-10
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where the sum extends over all conducting propagator
the diagram. This tells us that the contribution of a diagr
to Zw21

takes the form

I W~p2,t !5E
0

`

)
j

dtjD~p2,t,$t j%!(
i

cond

t i . ~4.25!

Hence we can generateI W(p2,t) of any conducting diagram
by inserting 1

2 s2 into its conducting propagators. All con
ducting propagators in Fig. 1 get such an insertion. Then
a matter of simple counting to see that the individual con
butions cancel each other. Thus, we find

Zw21
511O~e3!. ~4.26!

As a consequence we obtain

lim
r→211

f r /n'5z2h, ~4.27!

at least to second order ine. Equation~4.27! leads by virtue
of Eq. ~4.22! to

DB512h5d2
2b

n'

, ~4.28!

whereb5n'(d211h)/2 is the DP order parameter exp
nent known to second order ine @21,22#. From the scaling
relation Eq.~4.28!, which is the main result of this section
the e expansion ofDB is readily obtained by inserting thee
expansion forh @21,22#:

DB511
e

6 H 11F 25

288
1

161

144
lnS 4

3D GeJ 1O~e3!.

~4.29!

Equation~4.28! is in agreement with scaling argumen
@34# yielding that the fractal dimension of the transverse
through a DP cluster with local dimensiondf is df215d
212b/n' . The analogous cut through the backbone can
viewed as the intersection of the cut through the cluster
the cluster’s backward oriented pendant@10,35#. Hence, the
codimension of the backbone cut is twice the codimens
b/n' of the cluster cut, which leads again to Eq.~4.28!.

It is interesting to compare thee expansion result to nu
merical estimates. We are not aware, however, of any si
lations in whichDB itself was determined. Huberet al. @36#
presented numerical results for the scaling exponent of
backbone mass when measured in the longitudinal direct
In the following we call this exponentD̃B . Formally one can
defineD̃B via MB;t D̃B. From Eqs.~2.9!, ~3.26!, and~4.27! it
follows that

D̃B511
2b

n i
1

d21

z
, ~4.30!

at least to second order ine. Crudely evaluating the corre
spondinge expansion ofD̃B for small spatial dimensions
leads to poor quantitative predictions. Therefore it is app
01613
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priate to improve thee-expansion by incorporating rigor
ously known features. We carry out a rational approximat
which takes into account that obviouslyD̃B(d51)51. In
practice this is done by adding an appropriate third or
term. By this procedure we obtain the interpolation formu

D̃B'11S 12
e

4D ~0.0833e10.0583e2!. ~4.31!

Evaluation in two dimensions leads toD̃B(d52)51.2
60.15, where the error is based on a subjective estim
This result is, within the errors, in agreement with the n
merical result @36# D̃B(d52)51.3060.03. Our result,
though, appears to be somewhat small.

V. CONCLUSIONS

In this paper we studied a nonlinear version of resis
diode percolation where Ohm’s law is generalized toV;I r .
We investigated the critical behavior of the average two-p
resistanceMRr

at the transition from the nonpercolating
the directed percolating phase. By employing our real-wo
interpretation of Feynman diagrams we calculated the re
tance exponentf r for arbitrary r to one-loop order. To our
knowledge this is the first time thatf r has been determine
for the RDN whilef r has been known for the RRN, also t
one-loop order, since the 1980s@18#. Extending either of
these results to higher loop orders seems to be beyond
sibility because not all conducting diagrams appearing
higher loop orders can be assembled by simply adding re
tors in parallel and in series. For these diagrams one ha
solve the set of nonlinear Kirchhoff’s equations to obta
their total resistance. In closed form, however, this is har
feasible.

The relation ofMRr
to the mass of the red bonds, th

chemical length, and the backbone, respectively, provided
with alternative means to extract the fractal dimensions
these substructures of DP clusters. By computingf r for r
→`, r→01, and r→211 we determineddred, dmin , and
DB to two-loop order.

The fractality in DP and IP is qualitatively different. D
clusters are self-affine rather than self-similar objects. Hen
the notion of fractal dimension is more subtle for DP than
IP. Moreover, DP has a Markovian character which is e
dent in the dynamic interpretation. This Markovian charac
provides for scaling relations that do not have an analog
IP. The DP backbone dimension, for example, can be
pressed entirely in terms of the usual~purely geometric!
critical exponents of the DP universality class,DB5d
22b/n' . Within the renormalization group framework suc
a scaling relation is typically associated with a Ward ide
tity. The fact thatw21 renormalizes trivially to two-loop
order is reminiscent of this Ward identity. It is an interesti
issue for future work to identify the Ward identity and i
underlying symmetry. Another consequence of the Mark
ian character of DP is that the fractal dimension of t
chemical length is identical to 1. This is intuitively plausib
since the shortest longitudinal path through a DP cluster c
responds to the time in the dynamical interpretation.
5-11
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The fractal dimension of the red bonds in DP obeys
scaling relationdred5111/n'2z, similar to thedred51/n
for IP. The Ward identities corresponding to either of the
scaling relations are not known to date. Again, this lea
interesting and challenging opportunities for future studie
lin

g
io

01613
e
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