
PHYSICAL REVIEW E, VOLUME 64, 016134
Kinetic Ashkin-Teller model with competing dynamics
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We study a two-dimensional nonequilibrium Ashkin-Teller model based on competing dynamics induced by
contact with a heat bath at temperatureT, and subject to an external source of energy. The dynamics of the
system is simulated by two competing stochastic processes: a Glauber dynamics with probabilityp, which
simulates the contact with the heat bath; and a Kawasaki dynamics with probability 12p, which takes into
account the flux of energy into the system. Monte Carlo simulations were employed to determine the phase
diagram for the stationary states of the model and the corresponding critical exponents. The phase diagrams of
the model exhibit a self-organization phenomenon for certain values of the fourth coupling interaction strength.
On the other hand, from exponent calculations, the equilibrium critical behavior is preserved when nonequi-
librium conditions are applied.
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I. INTRODUCTION

In general, nonequilibrium systems display rich and co
plex behavior such as phase separation, pattern forma
turbulence@1,2#, and self-organization as long as nonequil
rium conditions are maintained. These latter structures
called dissipative structures@3#, and are found in fluid dy-
namics and chemical physical reactions@3,4#. Therefore, it is
useful first to study simple models of these systems. Th
exist models of nonequilibrium systems described by stat
ary distributions that are comparatively easy to study. O
example is an open system in contact with a heat bath m
tained in a nonequilibrium state by an external source
energy@5#. Another class of nonequilibrium steady state
obtained when the system is closed, and the dynamic is
scribed by a local competition of two dynamics at differe
temperatures@6#. It is the former type of system that w
address in this paper. A typical kinetic Ising model was
vestigated by allowing only the Glauber single spin-flip d
namics@7#, which is a special case of more general spin-fl
models that admit multiple spin-flips. The kinetic Isin
model in the presence of multiple spin-flips is a good can
date for a study of self-organization phenomena. It was s
ied by using the master-equation formalism when the sys
is governed by two competing processes: the one-spin
Glauber dynamics@7# and the two-spin-exchange Kawasa
dynamics@8#. The first dynamic mimics the contact of th
system with the heat bath at a fixed temperatureT, while the
second simulates the input of energy into the system.
pending on the competition between the Glauber proc
with a weightp and the Kawasaki process with a weight
2p, Tome and Oliveira@5# studied the two-dimensional fer
romagnetic Ising model within the dynamical pair appro
mation~PA!. An interesting phase diagram was obtained a
function of the competing parameterp. A phase transition
from the ferromagnetic to paramagnetic phase occurs as
1063-651X/2001/64~1!/016134~7!/$20.00 64 0161
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value 12p is increased. For a further increase of 12p,
when the Kawasaki process dominates the system s
organizes into an ordered antiferromagnetic phase. By u
Monte Carlo~MC! simulations, Grandi and Figueiredo@9#
confirmed that this phenomena occurred in the model,
found a phase diagram which is different from the one o
tained by the PA@5#. In contrast, in the case of the kinet
antiferromagnetic Ising model both methods, PA@10# and
MC @11# yielded only a paramagnetic phase, without a
self-organization phenomena, when the Kawasaki dynam
dominated. However, the authors of Ref.@12# showed re-
cently that a self-organization phenomenon may occur if
spin-exchange rate depends on the strength of the exch
between nearest neighbor spins. Another important ques
is whether critical properties and universality classes of th
nonequilibrium systems are the same to the equivalent e
librium ones. From exponent calculations by MC simulatio
of the two cited models@9,11#, it was shown that the equi
librium critical properties are preserved when nonequil
rium conditions are applied. This confirmed that any no
equilibrium spin-flip dynamics with up-down symmetr
belongs to the same universality class of the equilibri
Ising model, as suggested in Ref.@13#. Recently, the antifer-
romagnetic spin-1 Blume-Capel model was studied, un
the effect of these two competing dynamics, by applyi
finite-size-scaling analysis and MC simulations@14#. It ap-
pears in the phase diagrams, for some values of the cry
field, a dynamical tricritical point and a kind of self
organization phenomenon within the disordered phase.

In this paper, we specifically consider the effect of t
competing dynamics described above on the tw
dimensional (d52) ferromagnetic spin-1/2 Ashkin-Telle
~AT! model @15#, which is a generalization of the Isin
model to a four component system. It may be considered
a superposition of two Ising models, which are described
©2001 The American Physical Society34-1
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variabless i andSi sitting on each of the sites of hypercub
lattice. Within each Ising model, there is two-spin neare
neighbor interaction with strengthK2 . In addition; the dif-
ferent Ising models are coupled by a four-spin interact
with strengthK4 . The Hamiltonian of the model is given b

H52K2(̂
i j &

~s is j1SiSj !2K4(̂
i j &

SiSjs is j , ~1!

where the spinss i andSi are located on sites of a hypercub
lattice, and take the values61. The parametersK2 and K4
are the two- and four-spin interactions. Different metho
from variational approaches@16,17# to more accurate one
that take into account the effect of fluctuations@16,18–21#,
have been applied ind52 to study the critical behavior o
the equilibrium version of this model. All these metho
yielded three different phases: a paramagnetic~P! phase in
which neithers nor S nor anything else is ordered (^s&
5^S&5^sS&50); a Baxter phase in whichs and S order

FIG. 1. Plots of the fourth-order cumulants vs the reduced te
perature,T/K2 for K4 /K251.0 andp50.5 with various choices of
L. The critical temperaturesTc are ~a! 3.2160.01 for a5s, ~b!
3.2260.01 fora5S, and~c! 3.2160.01 fora5sS ~the lines in all
our figures are to guide the eye!.
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independently in a ferromagnetic fashion with^sS&Þ0; and
a partially ordered phase in whichsS is ordered ferromag-
netically, ^sS&Þ0 but ^s&5^S&50. This latter phase exist
only at high temperature, separating the Baxter and the p
magnetic phases. Apart from the variational approaches
give tricritical points, the other accurate methods yield a l
of critical points. It connects the Ising critical point at on
end (K4 /K250) to the four-state Potts critical point at th
other end (K4 /K251). Along this line the exponents var
continuously@18,20,21#.

We have wondered if the interesting AT model, wh
subjected to the competition between the Glauber and
wasaki processes, would preserve the picture of s
organization and the equilibrium critical exponents. To bet
understand and test this equivalence we have used MC s
lations and finite-size scaling to explore this rich mod
which does not preserve the up-down symmetry forK4 /K2
Þ0. The paper is organized as follows: In Sec. II, the d
namics of the model are described. Section III contains
Monte Carlo simulations used to analyze this model. Sec
IV presents our results and a discussion of our analysis.
nally in Sec. V, we draw our conclusion.

II. DYNAMICS OF THE MODEL

The states of the system evolve in time according to s
chastic dynamics. LetP(r ,t), r 5(s,S), be the probability of
state r at time t. The evolution ofP(r ,t) is given by the
master equation@8#

d

dt
P~r ,t !5(

r 8
@P~r 8,t !W~r 8,r !2P~r ,t !W~r ,r 8!#, ~2!

with r 5s, S and r 85s8, S8, and whereW(r 8,r ) gives the
probability, per unit time, of a transition from stater 8 to state
r, if the system is in stater 8. We consider the transition

-

FIG. 2. Phase diagram in the plane (h,12p) for K4 /K251
with competing Glauber~probability p! and Kawasaki~probability
12p! dynamics. The parameterh is given byh5exp(2K2 /kBT).
The system exhibits paramagnetic~P!, ferromagnetic~F!, and anti-
ferromagnetic~AF! phases.
4-2
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probability W(r 8,r ), which is constructed in order to tak
into account two competing processes, such as

W~r 8,r !5pWG~r 8,r !1~12p!WK~r 8,r !, ~3!

where

WG~r 8,r !5(
i 51

N

d r
18r 1

d r
28r 2

...d r
i8r i

...d r
N8 r N

wi~r !, ~4!

is the one-spin flip Glauber process which simulates the c
tact of the system with the heat bath at absolute tempera
T, and

WK~r 8,r !5(
i 51

N

d r
18r 1

,....d r
i8r j

...d r
j8r i

,...,d r
N8 r N

wi j ~r ! ~5!

is the two-spin exchange Kawasaki process, which simul
the flux of energy into the system. In these equationswi(r )
andwi j (r ) are the probability per unit time of flipping spini
and the exchange of two nearest-neighboring spinsi and j.
The contact with the heat bath at temperatureT is given by

FIG. 3. Finite-size dependence in log-log plots forUL8
(a)(Tc) vs

L at the critical pointTc for K4 /K251.0 andp50.5. The straight
lines are the best fit to the data points. From these slopes we o
~a! n50.66260.02 for a5s, ~b! n50.65760.02 for a5S, and
~c! n50.64960.03 fora5sS.
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wi~r !5minF1, expS 2
DEi

kBTD G , ~6!

whereDEi is the change in energy when spini is flipped, and
kB is the Boltzmann factor.

For the two-spin exchange Kawasaki dynamicswi j (r ),
we also take the prescription

wi j ~r !5H 0 for DEi j <0

1 for DEi j .0,
~7!

whereDEi j is the energy difference between the states a
and before the exchange of the neighboring spinsi and j.

III. MONTE CARLO SIMULATIONS

We have performed MC simulations on a square latt
with L3L5N sites~2N spins!, with periodic boundary con-
ditions. We often start from different initial configurations
check if the final state~steady state! obtained is the right one
The simulation procedure used is similar to that of Ref.@11#,
and is resumed in the following: For given parameters of
model (p,T/K2 ,K4 /K2), a lattice sitei, containing the two

ain

FIG. 4. Critical exponentn~a! ~wherea denotes the phasess, S,
and sS, respectively! as a function of 12p at the critical line
represented in Fig. 2. The error bars give the accuracy of our Mo
Carlo data points. The estimated values ofn are around the corre
sponding equilibrium four state Potts valuen5

2
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spinss andS, is first randomly chosen. At each site we fir
consider thes spin and then theSspin as the reference spin
Then one chooses a random numberh l between 0 and 1. If
h l<p, a spin-flip process is attempted. Otherwise, ifh l
.p, a spin exchange of sitei is attempted with a randomly
selected neighboring sitej.

The physical quantities of use are the magnetizati
Ma(a5s, S, sS). Their associated fluctuations~suscepti-
bilities! and fourth-order cumulants are given, respective
by

Ma5^uMau&5
1

NV(
c

(
i

a i~c! with a5s,S,sS,

xa5
N

kBT
~^Ma

2&2^Ma&2! with a5s,S,sS, ~8!

UL512
^Ma

4&

3^Ma
2&2 with a5s,S,sS,

wherei runs over the lattice sites.c runs over the configura
tions obtained to update the lattice over one sweep of
entire N sites @one Monte Carlo step~MCS!#. They are
counted after the system reaches thermal equilibrium.V is
the number of MCS@10#.

FIG. 5. Ratiob/n ~a! as a function of 12p at the critical line
represented in Fig. 2. The estimated values of this ratio are aro
the corresponding equilibrium four state Potts value1

8.
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Finally, we will use finite size scaling theory@11,22# to
analyze our results. Following this approach, in the nei
borhood of the infinite critical pointTc and by using the
scaled variablex5tLl/v (t5u12T/Tc u), the above quanti-
ties, for sufficiently largeL, obey

ML~T!5L2b/v f ~x!,

xL~T!5Lg/vg~x!, ~9!

UL~T!5U0~x!,

where f (x)→Bxb, andg(x)→Cxg in the limit of t→0 and
x→`, so that the infinite lattice critical behavior is reco
ered. If we derive the third of Eqs.~9! with respect to the
temperatureT, we obtain the scaling relation

UL8~T!5L1/vU08~x!. ~10!

Then we can find the critical exponentv from the log-log
plot of UL8(Tc) versusL, namely, thatUL8(Tc)5L1/vU08(0).

nd FIG. 6. Ratiog/n ~a! as function of 12p at the critical line
represented in Fig. 2. The estimated values of this ratio are aro
the corresponding equilibrium four state Potts value7

4.
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IV. PHASE DIAGRAMS AND CRITICAL EXPONENTS

Our phase diagrams are obtained from MC simulatio
for different sizes ranging fromL58, 16, 24, 32, and 64. The
number of Monte Carlo steps needed to reach the steady
depends on the model parameters and the system size
sidered. Very long MCS’s are used, typically from 53105 to
106 MCS’s for thermal equilibration and 63106 MCS’s for
all system sizes, to calculate the quantities of interest.
have plotted the phase diagrams in the plane@h
5exp(2K2 /kBT), 12p# for certain values ofK4 /K2 . We
note that, in our program, the ferromagnetic and antifer
magnetic order parameters associated withs, S, andsS, as
well as their associated susceptibilities and cumulants,
computed.

In the absence of the fourth coupling interaction,K4 /K2
50, the AT model is reduced to two decoupled Ising mode
Consequently the phase diagram and the critical expon
~figures not shown! are similar to those obtained by Gran
and Figueiredo@9#, namely, a self-organization phenomen
which occurs when the Kawasaki process dominates, and
preservation of the equilibrium Ising critical exponents.

For weakK4 /K2 ,K4 /K251, the AT model has the sym
metry of the four-state Potts model@16–21# in the equilib-
rium case. The critical temperature for every value ofp is
better located by using the standard cumulant intersec
method~for s, S, andsS! for several lattice sizes@9,22#. We
can see in Fig. 1 that all the fourth-order cumulants ass
ated with the magnetizationŝs&, ^S&, and ^sS& intersect at
nearly the same critical temperatureTc for whatever value of
L within statistical errors. Using this method, we have det
mined the phase diagram when the Kawasaki process is
plied. It is shown in Fig. 2 that we have two phases: a pa
magnetic ~P! phase where^s&5^S&5^sS&50, and a
ferromagnetic~F! phase wherês& and ^S& are ordered fer-
romagnetically and̂sS&Þ0. A critical line separates thes
two phases. For very high values of the flux of energy in
the system, in the neighborhood ofp50, a self-organization

FIG. 7. Phase diagram in the plane (h,12p) for K4 /K252. The
system exhibits paramagnetic~P!, ferromagnetic~F!, and partially
ordered~PO! phases.B3 denotes a multicritical point.
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phenomena occurs in the phase diagram where an antife
magnetic phase emerges from the disordered paramag
phase. For the pure Kawasaki case,p50, the evolution of
the system is the same for whatever temperature; then
always go to a state of maximum energy compatible with
given initial magnetization.

On the other hand, we have also extracted the associ
critical exponents from our data by using finite size scal
relations@Eqs. ~9! and ~10!#. Thus with Tc determined, we
have calculated the exponentsv, b, andg from the log-log
plots of the derivative of the cumulants, the magnetizatio
and the susceptibilities, respectively, as functions ofL
@11,22#. For every log-log plot we have calculated the valu
of UL , ML , and xL at the critical temperatureTc(p) ob-
tained from Fig. 2. Another way to find the critical expone
v is to use the location of the susceptibility peak at the fin
lattice critical temperatureTc(L), namely, Tc(L)2Tc
'L21/v ~figures not shown!. Both methods yield, within sta
tistical errors, values ofv that are nearly consistent to eac
other @22# ~see Fig. 3!. As we can see from Figs. 4–6, ou
estimates ofv, b/v, and g/v as functions of 12p are in
agreement with the corresponding equilibrium four-st

FIG. 8. Critical exponentn ~a! ~wherea denotes the phasess,
S, andsS, respectively!, as a function of (12p) at the critical line
represented in Fig. 7. The error bars give the accuracy of our Mo
Carlo data points. The estimated values ofn are around the corre
sponding equilibrium Ising valuen51.
4-5
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Potts exponents~v5 2
3 , b/v5 1

8 , and g/v5 7
4 ! @19,20#, and

show that the argument of Ref.@13# also holds for this
model. Although we do not present detailed calculations c
cerning the continuous transition between the paramagn
and antiferromagnetic phases, the critical temperature
the critical exponents can be obtained in a similar manne
the ferromagnetic-paramagnetic transition. For instance,
p50.005 we have found the following values:Tc56.08
60.02, v50.6860.03, b/v50.1460.02, and g/v51.73
60.05.

When K4 /K2 is increased,K4 /K2.1, a different topol-
ogy appears. Our results from MC data are plotted in Fig
for K4 /K252. We have obtained three phases: a param
netic phase, a ferromagnetic phase and a partially ord
~PO! phase at high temperatures. They are all separate
critical lines of second order. The latter PO phase~^sS&
Þ0 but ^s&5^S&50!, which exists at equilibrium (p51),
persists for small values of the flux of energy~i.e., when the
Glauber process still dominates the dynamics! and separates
the ferromagnetic phase from the paramagnetic one. By
creasing the flux of energy, the PO phase disappears, an
have only a critical line, which separates the ferromagn
and paramagnetic phases. It is a decreasing function op.
Since the dominant dynamic is the Kawasaki process, we
not observe within our simulations, for any value ofp and

FIG. 9. Ratiob/n ~a! as a function of 12p at the critical line
represented in Fig. 7. The estimated values of this ratio are aro
the corresponding equilibrium Ising value18.
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for all values of temperatureT/K2 , any self-organization
phenomenon in the system. The only stationary state is
disordered one whatever the initial starting configurat
~ferromagnetic, antiferromagnetic, or disordered phases!.

The critical exponents associated with this phase diag
have been calculated. However, we point out that in the e
librium case (p51), the transitions ferro↔PO and
PO↔parra both belong to the Ising universality class w
well known exponents~v51, b/v51/8, and g/v57/4!
@20,21#. By using the same analysis as described above
Figs. 8–10 we show our estimates of the stationary ex
nentsv, b/v, andg/v as functions of 12p. They all com-
pare in a good way with the corresponding equilibrium 2d
Ising critical exponents. Thus the argument of Ref.@13# is
also preserved for this value of the fourth coupling intera
tion.

V. CONCLUSION

We have determined the phase diagram and studied
stationary critical properties of a nonequilibrium Ashki
Teller model in a square lattice, where the system is in c
tact with a heat bath at temperatureT and subject to an ex
ternal flux of energy. The phase diagrams of the model
have obtained through Monte Carlo simulations exhibit,

nd FIG. 10. Ratiog/n ~a! as function of 12p at the critical line
represented in Fig. 7. The estimated values of this ratio are aro
the corresponding equilibrium Ising value74.
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small values of K4 /K2 , a self-organization phenomen
which disappears for stronger ones.

Finally, with the use of finite size scaling ideas, the cr
cal exponents have been calculated. Our results show tha
K4 /K251, we have a line of critical points that belong to th
four-state Potts model. When the couplingK4 /K2 becomes
stronger,K4 /K252, the exponent calculations show th
both the critical linesF-PO, PO-P, andF-P, which separate
.

a

01613
for

the different phases of the system, belong to the Ising u
versality class.
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