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Kinetic Ashkin-Teller model with competing dynamics
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We study a two-dimensional nonequilibrium Ashkin-Teller model based on competing dynamics induced by
contact with a heat bath at temperatdreand subject to an external source of energy. The dynamics of the
system is simulated by two competing stochastic processes: a Glauber dynamics with propatiliigh
simulates the contact with the heat bath; and a Kawasaki dynamics with probabilply Which takes into
account the flux of energy into the system. Monte Carlo simulations were employed to determine the phase
diagram for the stationary states of the model and the corresponding critical exponents. The phase diagrams of
the model exhibit a self-organization phenomenon for certain values of the fourth coupling interaction strength.
On the other hand, from exponent calculations, the equilibrium critical behavior is preserved when nonequi-
librium conditions are applied.
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I. INTRODUCTION value 1-p is increased. For a further increase of f,
when the Kawasaki process dominates the system self-
In general, nonequilibrium systems display rich and com-organizes into an ordered antiferromagnetic phase. By using
plex behavior such as phase separation, pattern formatioMonte Carlo(MC) simulations, Grandi and Figueired8]
turbulencd 1,2], and self-organization as long as nonequilib- confirmed that this phenomena occurred in the model, but
rium conditions are maintained. These latter structures around a phase diagram which is different from the one ob-
called dissipative structurds], and are found in fluid dy- tained by the PAS5]. In contrast, in the case of the kinetic
namics and chemical physical reactigB8s4]. Therefore, itis  antiferromagnetic Ising model both methods, P¥0] and
useful first to study simple models of these systems. Therg|C [11] yielded only a paramagnetic phase, without any
exist models of nonequilibrium systems described by Stationse”_organization phenomena, when the Kawasaki dynamics
ary distributions that are comparatively easy to study. Ongjominated. However, the authors of RgE2] showed re-
example is an open system in contact with a heat bath mainsently that a self-organization phenomenon may occur if the
tained in a nonequilibrium state by. an external source ,ngin-exchange rate depends on the strength of the exchange
energy[5]. Another class of nonequilibrium steady state iSpeqyeen nearest neighbor spins. Another important question
obtgmed when the system 1S closed, and thg dy”a”?'c IS d?é whether critical properties and universality classes of these
f:rrr:bzcrjalt)grélfso]callt Cigngﬁeet'&')?rr:]g: Enwoedgfnimslctin?t tgiﬁf‘];e\r,\i?tnonequilibrium systems are the same to the equivalent equi-
P ' yp y librium ones. From exponent calculations by MC simulations

address in this paper. A typical kinetic Ising model was in- ; . .
vestigated by allowing only the Glauber single spin-flip dy- qf t.he tWQ .C'ted modeI.$9,11], it was shown that the equi-
librium critical properties are preserved when nonequilib-

namics[7], which is a special case of more general spin-flip_. " ) . .
71 P g P prlum conditions are applied. This confirmed that any non-

models that admit multiple spin-flips. The kinetic Ising S > ) )
model in the presence of multiple spin-flips is a good cand;€auilibrium  spin-flip dynamics with up-down symmetry

date for a study of self-organization phenomena. It was stud?€longs to the same universality class of the equilibrium
ied by using the master-equation formalism when the systert$ing model, as suggested in REE3]. Recently, the antifer-

is governed by two competing processes: the one-spin-flifomagnetic spin-1 Blume-Capel model was studied, under
Glauber dynamic$7] and the two-spin-exchange Kawasaki the effect of these two competing dynamics, by applying
dynamics[8]. The first dynamic mimics the contact of the finite-size-scaling analysis and MC simulatiofist]. It ap-
system with the heat bath at a fixed temperafjrhile the  pears in the phase diagrams, for some values of the crystal
second simulates the input of energy into the system. Defield, a dynamical tricritical point and a kind of self-
pending on the competition between the Glauber processrganization phenomenon within the disordered phase.

with a weightp and the Kawasaki process with a weight 1  In this paper, we specifically consider the effect of the
—p, Tome and Oliveird5] studied the two-dimensional fer- competing dynamics described above on the two-
romagnetic Ising model within the dynamical pair approxi- dimensional §=2) ferromagnetic spin-1/2 Ashkin-Teller
mation(PA). An interesting phase diagram was obtained as 4AT) model [15], which is a generalization of the Ising
function of the competing parametpr A phase transition model to a four component system. It may be considered as
from the ferromagnetic to paramagnetic phase occurs as thesuperposition of two Ising models, which are described by
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continuously[18,20,21.

We have wondered if the interesting AT model, when
subjected to the competition between the Glauber and Ka-
wasaki processes, would preserve the picture of self-
organization and the equilibrium critical exponents. To better
understand and test this equivalence we have used MC simu-
lations and finite-size scaling to explore this rich model,
which does not preserve the up-down symmetryKqrK,

#0. The paper is organized as follows: In Sec. Il, the dy-
lattice. Within each Ising model, there is wo-spin nearest, namics of the model are described. Section Ill contains the

neighbor interaction with strengtk,. In addition; the dif-
9 g Monte Carlo simulations used to analyze this model. Section

ferent Ising models are coupled by a four-spin interactlonlv resents our results and a discussion of our analysis. Fi-
with strengthK,. The Hamiltonian of the model is given by pre ) y
nally in Sec. V, we draw our conclusion.

FIG. 1. Plots of the fourth-order cumulants vs the reduced tem-
perature,T/K, for K,/K,=1.0 andp= 0.5 with various choices of
L. The critical temperature$. are (a) 3.21+0.01 for a=o, (b)
3.22+0.01 fora=S, and(c) 3.21+0.01 fora= ¢S (the lines in all
our figures are to guide the eye

variableso; andS; sitting on each of the sites of hypercubic

H=—K,> (0i0i+SS)-Ks> SSaio;, (1) Il. DYNAMICS OF THE MODEL
i )

The states of the system evolve in time according to sto-
where the sping; andS; are located on sites of a hypercubic chastic dynamics. Le®(r,t), r=(s,S), be the probability of
lattice, and take the values1. The parameterk, andK,  stater at timet. The evolution ofP(r,t) is given by the
are the two- and four-spin interactions. Different methodsmaster equatiofi]
from variational approachegd 6,17 to more accurate ones
that take into account the effect of fluctuatidri$,18—-21,
have been applied id=2 to study the critical behavior of
the equilibrium version of this model. All these methods
yielded three different phases: a paramagn@icphase in  with r=0,Sandr’=¢’,S’, and wheréeN(r',r) gives the
which neithero nor S nor anything else is ordered «) probability, per unit time, of a transition from stateto state
=(S)=(0S)=0); a Baxter phase in whichr and S order r, if the system is in state’. We consider the transition

d
ap(r,t)=2 [P(r' H)W(r',r)—P(r,Hh)W(r,r’)], (2)
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o ) ) FIG. 4. Critical exponent(a) (wherea denotes the phases S,
FIG. 3. _F_|n|te-5|_ze dependence in log-log plots r*(T,) vs and ¢S, respectively as a function of +-p at the critical line
L at the critical poinfT, for K,/K;=1.0 andp=0.5. The straight  represented in Fig. 2. The error bars give the accuracy of our Monte

lines are the best fit to the data points. From these slopes we obtaii, o data points. The estimated valuesvadre around the corre-
(@ »=0.662:0.02 fora=o, (b) »=0.657£0.02 fora=S, and g5 ding equilibrium four state Potts value: 2.

(c) v=0.649+0.03 fora=0S.

probability W(r’,r), which is constructed in order to take w;(r)=min| 1, exp{ — AEi) , (6)
into account two competing processes, such as kT
W(r’,r)=pWg(r',r)+(1—p)Wg(r',r), (3)  whereAE; is the change in energy when spiis flipped, and

kg is the Boltzmann factor.

where For the two-spin exchange Kawasaki dynamves(r),
we also take the prescription

N
We(r ,r):i:l Orir,OrpryOrir O W), (4) wy (1) = 0 for AE;;<0 @
1 for AE;;>0,

is the one-spin flip Glauber process which simulates the con-

tact of the system with the heat bath at absolute temperatutéN€r€AE;; is the energy difference between the states after
T and and before the exchange of the neighboring spiasd]j.

Ill. MONTE CARLO SIMULATIONS

N
W(r',r)= OrtyryeeaOprpiBprpyeeyOpr e Wii(r) (5 i i _
K(r) izl f11 IR i (1) ) We have performed MC simulations on a square lattice

with L X L =N sites(2N sping, with periodic boundary con-
is the two-spin exchange Kawasaki process, which simulateditions. We often start from different initial configurations to
the flux of energy into the system. In these equatior(s) check if the final statésteady stafeobtained is the right one.
andw;;(r) are the probability per unit time of flipping spin  The simulation procedure used is similar to that of Ret],
and the exchange of two nearest-neighboring spiasd j. and is resumed in the following: For given parameters of the
The contact with the heat bath at temperafliie given by  model (p,T/K,,K4/K,), a lattice sitei, containing the two
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FIG. 5. Ratiog/v (a) as a function of - p at the critical line P
represented in Fig. 2. The estimated values of this ratio are around FIG. 6. Ratioy/v (@) as function of }-p at the critical line
the corresponding equilibrium four state Potts VB%UE represented in Fig. 2. The estimated values of this ratio are around

the corresponding equilibrium four state Potts vaiue

spinso and§ is first randomly chosen. At each site we first
consider ther spin and then th& spin as the reference spin. Finally, we will use finite size scaling theofy11,22 to
Then one chooses a random numbyehetween 0 and 1. If analyze our results. Following this approach, in the neigh-
m=<p, a spin-flip process is attempted. Otherwise,sif  borhood of the infinite critical poinf, and by using the
>p, a spin exchange of siteis attempted with a randomly scaled variablex=tL"" (t=|1—T/T.|), the above quanti-
selected neighboring sife ties, for sufficiently large., obey

The physical quantities of use are the magnetizations
M, (a=0a,S, 0S). Their associated fluctuationsuscepti-
bilities) and fourth-order cumulants are given, respectively,

by

ML(T)=L"#"f(x),

. X (M=L"g(x), ©
Ma:(|Ma|):W§ Z ai(c) with a=0,S,0S,
UL (T)=Ugx(x),

N
=——=(M%—(M,)?) with @=0,S5,¢S, (8
Xa=j 7 (M) =(Me)T) - with a=e,S,0S, (8) ot Bx®, andg(x)—Cx” in the limit of t -0 and

x—o0, so that the infinite lattice critical behavior is recov-

(M%) . ered. If we derive the third of Eq%9) with respect to the
U=1- 3(M2)2 with a=0,S,05, temperaturel, we obtain the scaling relation
wherei runs over the lattice sites.runs over the configura- Ul(T)= Ll/vU(r)(X)_ (10)

tions obtained to update the lattice over one sweep of the
entire N sites [one Monte Carlo stegMCS)]. They are
counted after the system reaches thermal equilibrivnis ~ Then we can find the critical exponentfrom the log-log
the number of MC$10]. plot of U/ (T,) versusL, namely, thatJ| (T,)=L*U(0).
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for different sizes ranging froh=8, 16, 24, 32, and 64. The >
number of Monte Carlo steps needed to reach the steady stai 09 |
depends on the model parameters and the system size col i

Our phase diagrams are obtained from MC simulationsuvtg 1.0 E\I\I\E/E\E_E

sidered. Very long MCS's are used, typically fronx30° to ogl—a—"It——t—
10° MCS’s for thermal equilibration and610° MCS'’s for 00 02 04 06 08 e
all system sizes, to calculate the quantities of interest. We 1-p

have plotted the phase diagrams in the plahe

=exp(—K,/ksT), 1—p] for certain values ofK,/K,. We FIG. 8. Critical exponent (@) (wherea denotes the phases

note that, in our program, the ferromagnetic and antiferro™> ando'S, respectively, as a function of (+p) at the critical line
magnetic order parameters associated witl§, ando'S, as represented |r! Fig. 7. The _error bars give the accuracy of our Monte
well as their associated susceptibiliies and cumulants, arg2rlC data points. The estimated valuesvadre around the corre-
computed. sponding equilibrium Ising value=1.

In the absence of the fourth coupling interactiéh,/K,
=0, the AT model is reduced to two decoupled Ising modelsphenomena occurs in the phase diagram where an antiferro-
Consequently the phase diagram and the critical exponentsagnetic phase emerges from the disordered paramagnetic
(figures not shownare similar to those obtained by Grandi phase. For the pure Kawasaki capes 0, the evolution of
and Figueiredd9], namely, a self-organization phenomena,the system is the same for whatever temperature; then we
which occurs when the Kawasaki process dominates, and trways go to a state of maximum energy compatible with a
preservation of the equilibrium Ising critical exponents. given initial magnetization.

For weakK,/K,,K,/K,=1, the AT model has the sym- On the other hand, we have also extracted the associated
metry of the four-state Potts modegl6—21] in the equilib-  critical exponents from our data by using finite size scaling
rium case. The critical temperature for every valuepas relations[Egs. (9) and (10)]. Thus with T determined, we
better located by using the standard cumulant intersectiohave calculated the exponents 8, and y from the log-log
method(for o, S, andaS) for several lattice sizg®,22]. We  plots of the derivative of the cumulants, the magnetizations
can see in Fig. 1 that all the fourth-order cumulants associand the susceptibilities, respectively, as functions Lof
ated with the magnetization), (S, and(oS) intersect at [11,22. For every log-log plot we have calculated the values
nearly the same critical temperatufg for whatever value of of U, M, and x, at the critical temperatur&.(p) ob-

L within statistical errors. Using this method, we have deter{ained from Fig. 2. Another way to find the critical exponent
mined the phase diagram when the Kawasaki process is ap-is to use the location of the susceptibility peak at the finite
plied. It is shown in Fig. 2 that we have two phases: a paralattice critical temperatureT.(L), namely, T.(L)—T.
magnetic (P) phase where(o)=(S)=(csS)=0, and a ~L " (figures not shown Both methods yield, within sta-
ferromagnetic(F) phase wherdo) and(S) are ordered fer- tistical errors, values of that are nearly consistent to each
romagnetically andoS)#0. A critical line separates these other[22] (see Fig. 3 As we can see from Figs. 4—6, our
two phases. For very high values of the flux of energy intoestimates ofv, /v, and y/v as functions of +p are in
the system, in the neighborhood pf=0, a self-organization agreement with the corresponding equilibrium four-state
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Potts exponentév =2, Blu=%, andy/v=1) [19,20, and for all values of temperatur@/K,, any self-organization
show that the argument of Ref13] also holds for this phenomenon in the system. The only stationary state is the
model. Although we do not present detailed calculations condisordered one whatever the initial starting configuration
cerning the continuous transition between the paramagnetiéerromagnetic, antiferromagnetic, or disordered phases
and antiferromagnetic phases, the critical temperature and The critical exponents associated with this phase diagram
the critical exponents can be obtained in a similar manner asave been calculated. However, we point out that in the equi-
the ferromagnetic-paramagnetic transition. For instance, fdibrium case ¢=1), the transitions ferre:PO and
p=0.005 we have found the following value3,.=6.08 PO—parra both belong to the Ising universality class with
+0.02, v=0.68+0.03, B/v=0.14+0.02, and y/v=1.73 well known exponents(v=1, B/lv=1/8, and ylv="7/4)
+0.05. [20,21]. By using the same analysis as described above, in
WhenK, /K, is increasedK,/K,>1, a different topol- Figs. 8—10 we show our estimates of the stationary expo-
ogy appears. Our results from MC data are plotted in Fig. hentsv, B/v, andy/v as functions of +p. They all com-
for K,/K,=2. We have obtained three phases: a paramagpare in a good way with the corresponding equilibriuch 2
netic phase, a ferromagnetic phase and a partially orderdding critical exponents. Thus the argument of Réf3] is
(PO) phase at high temperatures. They are all separated ®lso preserved for this value of the fourth coupling interac-
critical lines of second order. The latter PO phdéeS)  tion.
#0 but({o)=(S)=0), which exists at equilibriumg=1),
persists for small values of the flux of ener@e., when the
Glauber process still dominates the dynamisd separates V. CONCLUSION
the ferromagnetic phase from the paramagnetic one. By in- We have determined the phase diagram and studied the
creasing the flux of energy, the PO phase disappears, and wgtationary critical properties of a nonequilibrium Ashkin-
have only a critical line, which separates the ferromagnetideller model in a square lattice, where the system is in con-
and paramagnetic phases. It is a decreasing functiom of tact with a heat bath at temperatufeand subject to an ex-
Since the dominant dynamic is the Kawasaki process, we diternal flux of energy. The phase diagrams of the model we
not observe within our simulations, for any valuepfind  have obtained through Monte Carlo simulations exhibit, for
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small values ofK,/K,, a self-organization phenomena the different phases of the system, belong to the Ising uni-
which disappears for stronger ones. versality class.
Finally, with the use of finite size scaling ideas, the criti-
cal exponents have been calculated. Our results show that for
K,/K,=1, we have a line of critical points that belong to the ACKNOWLEDGMENT
four-state Potts model. When the coupliig/K, becomes
stronger,K,/K,=2, the exponent calculations show that This work was supported by the program Grant PARS:
both the critical lines=-PO, POP, andF-P, which separate Physique 035.
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