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Scientific collaboration networks. Il. Shortest paths, weighted networks, and centrality
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Using computer databases of scientific papers in physics, biomedical research, and computer science, we
have constructed networks of collaboration between scientists in each of these disciplines. In these networks
two scientists are considered connected if they have coauthored one or more papers together. Here we study a
variety of nonlocal statistics for these networks, such as typical distances between scientists through the
network, and measures of centrality such as closeness and betweenness. We further argue that simple networks
such as these cannot capture variation in the strength of collaborative ties and propose a measure of collabo-
ration strength based on the number of papers coauthored by pairs of scientists, and the number of other
scientists with whom they coauthored those papers.
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I. INTRODUCTION A. Shortest paths

. , ) A fundamental concept in graph theory is the “geode-
In the preceding papdd], we studied collaboration net-  gjc » o shortest path of vertices and edges that links two

works of scientists in which two scientists are consideredgiven vertices. There may not be a unique geodesic between
connected if they have coauthored one or more scientifi, vertices: there may be two or more shortest paths, which
papers together. As we argued, these networks are for t ay or may not share some vertices. The geo®stze-
most part true acquaintance networks, since it is likely that § yeen two vertices andj can be calculated using the fol-
pair of scientists who have coauthored a paper together afg, ing algorithm, which is a modified form of the standard
personally acquainted. And since the publication record of; o qth-first searcfe].

scientists is well documented in a variety of publicly avail- (1) Assign vertex distance zero, to indicate that it is zero
able electronic databases, construction of large and relativeglteIOS away from itself, and set-0.

complete netV\{orks is pos_s_ible by automated means. These (2) For each vertex whose assigned distancedsfollow
networks provide a promising source of real-world data to

. . . each attached edge to the vertat its other end and, Ifhas

fuel the current surge of research interest in social network . . R,

structure within the physics community. not already been assigned a distance, assign it distdnce
The networks studied in Refl] were constructed using +1. Declarekio be a predecesso_r b .

four publicly available bibliographic databases: Mediine, (3 If | has already been assigned distadcel, then

which covers research in biology and medicine; the Los Ala{h€re is no need to do this again, Huis still declared a

mos e-Print Archive, which covers experimental and theoretPredecessor df

ical physics; the Stanford Public Information Retrieval Sys- (4) Setd—d+1. . )

tem (SPIRES, which covers experimental and theoretical (5) Repeat from step 2 until there are no unassigned ver-

high-energy physics; and the Networked Computer Scienclces left. _ _ S

Technical Reference LibrafNCSTRL), which covers com- Now the shortest patfif there is one from i to j is the

puter science. A broad selection of basic statistics were caPath you get by stepping frointo its predecessor, and then

culated for these networks, including typical numbers of au{0 the predecessor of each successive vertex yntd

thors per paper, papers per author, and collaborators pé@ached. If a vertex has two or more predece_ssors, then there

author, as well as distributions of these quantities, existenc@'® two or more shortest paths, each of which must be fol-

and size of a giant component, and degree of network C|usl,_owed separately if we wish to know all shortest paths from

tering. In this second paper, we turn to some more sophisti- 1 J- ) _ i )
cated, mostly nonlocal, network measures. In the standard implementation of this algorithm, a queue

(i.e., a first-inffirst-out buffer is maintained of vertices
whose distances have been assigned, but whose attached
edges have not yet been followed. Using a queue eliminates
the need in step 2 above to search through all vertices for
In this section, we look at some measures of networkthose at distancel, and allows the algorithm to run to
structure having to do with paths between vertices in thecompletion in timeO(m), wherem s the number of edges in
network. These measures are aimed at understanding the ptte graph. We note also that the algorithm as we have de-
terns of connection and communication between scientistscribed it allows us to calculate the shortest paths fedim
In Sec. Il we discuss some shortcomings of these measuregertices to the targgtin a single run, and not just from the
and construct some more complex measures that may bettgingle vertex that we were originally interested in. Thus we
reflect true connection patterns. can calculaten shortest paths in tim®(m), wheren is the

II. DISTANCES AND CENTRALITY
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are O(n?) shortest paths to be considered, each of which
takes timeO(m) to calculate. However, since breadth-first
search algorithms can calculate shortest paths in time
O(m), it seems possible that one might be able to calculate
betweenness for all vertices in tinggmn). Here we present
a simple algorithm that performs this calculation. Being
enormously faster than the simpl¥mn?) method, it makes
possible exhaustive calculation of betweenness on the very
large graphs studied here. The algorithm is as follows.

(1) The shortest paths to a vertgfrom every other ver-
tex are calculated using breadth-first search as described
above, taking timed(m).

(2) A variableb,, taking the initial value 1, is assigned to
each vertex.

(3) Going through the verticesin order of their distance
from j, starting from the farthest, the value lof is added to

FIG. 1. Geodesics, or shortest paths, in the collaboration netthe corresponding variable on the predecessor vertéx I6f
work between the two scientists labelacandB. k has more than one predecessor, thers divided equally

between them. This means that, if there are two shortest

number of vertices in the graph. In Fig. 1 we show the shortPaths between a pair of vertices, the vertices along those
est paths of collaborations in the Los Alamos Archive, cal-Paths are given a betweenness;oéach.
culated using the algorithm above, between two of the au- (4 When we have gone through all vertices in this fash-

thor's colleagues, who are represented by the vertices labeld@: the resulting values of the variableg represent the
A andB. One point worthy of note is that, although the two NUMPer of geodesic paths to vertehat run through each

scientists in question both work on social networks of vari-Vertex on the lattice, with the end points of each path being

ous kinds, the shortest path between them does not run eﬁpunted as part of the path. To calculate the betweenness for

tirely through other collaborations in the field. For example all paths, theby are added to a running score maintained for
y 9 . ' i P'€each vertex and the entire calculation is repeated for each of
the vertex labeled in the figure represents the present au-

h q i © andE derive f the n possible values of. The final running scores are pre-
thor, and my connections 10 an erive from papers on cisely the betweennesses of each of itheertices.

topics unconnected with networks or graph theory. Although 5jng this algorithm we have been able to calculate be-
this may at first sight appear odd, it is probably in fact a goodyeenness exhaustively for all scientists in our networks in
sign. It indicates that workers in the field come from differ- je35onable running timéFor example, the calculation for
ent scientific “camps,” rather than all descending intellectu-the [os Alamos Archive takes about two hours on a current
ally from a single group or institution. This presumably in- (circa 2000 workstation] One particularly notable feature
creases the likelihood that those workers will expressf the results is that the betweenness measure gives very
independent opinions on the open questions of the field.  clear winners among the scientists in the network: the indi-
A database that would allow one conveniently andviduals with highest betweenness are well ahead of those
quickly to extract shortest paths between scientists in thisvith second highest, who are in turn well ahead of those with
way might have some practical use. Kawtzal. [3] have third highest, and so on. This same phenomenon has been
constructed a web-based system which does just this foroted in other social network$].
computer scientists, with the idea that such a system might StrogatZ6] has raised an interesting question about social
help people to make new professional contacts by providingietworks which we can address using our betweenness algo-

a “referral chain” of intermediate scientists through whom fithm: are all of your collaborators equally important for
contact may be established. your connection to the rest of the world, or do most paths

from others to you pass through just a few of your collabo-
rators? One could certainly imagine that the latter might be
B. Betweenness and funneling true. Collaboration with just one or two senior or famous
members of one’s field could easily establish short paths to a
A quantity of interest in many social network studies islarge part of the collaboration network, and all of those short
the “betweenness” of an actoy which is defined as the total paths would go through those one or two members. Strogatz
number of shortest paths between pairs of actors that passlls this effect “funneling.” Since our algorithm, as a part
throughi [4]. This quantity is an indicator of who the most of its operation, calculates the vertices through which each
influential people in the network are, the ones who controlgeodesic path to a specified actopasses, it is a trivial
the flow of information between most others. The verticesmodification to calculate also how many of those geodesic
with highest betweenness also result in the largest increase paths pass through each of the immediate collaborators of
typical distance between others when they are rem@Sed that actor, and hence to use it to look for funneling.
Naively, one might think that betweenness would take Our collaboration networks, it turns out, show strong fun-
time of orderO(mn?) to calculate for all vertices, since there neling. For most people, their top few collaborators lie on
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before in other contexts. For example, Milgram, in his fa-

5 60 ] mous ‘“small world” experimen{7], noted that most of the
B | paths he found to a particular target person in an acquain-
_§ tance network went through just one or two acquaintances of
= 1 the target. He called these acquaintances “sociometric super-
g, 40 - stars.”
2 |
% C. Average distances
% 20 — Breadth-first search allows us to calculate exhaustively
= 1 the lengths of the shortest paths from every vertex on a graph
R to every other(if such a path exisjsin time O(mn). We

. "ﬁ L have done this for each of the networks studied here and

averaged these distances to find the mean distance between
any pair of(connecteglauthors in each of the subject fields
rank of collaborator studied. These figures are given in the penultimate row of

FIG. 2. The average percentage of paths from other scientists th@bPle I. As the table shows, these figures are all quite small:
a given scientist that pass through each collaborator of that scientisfjey vary from 4.0 for SPIRES to 9.7 for NCSTRL, although
ranked in decreasing order. The plot is for the Los Alamos Archivethis last figure may be artificially inflated because the
network, although similar results are found for other networks. NCSTRL database appears to have poorer coverage of its

subject area than the other databases studied hgrat any

most of the paths between themselves and the rest of thate, all the figures are very small compared to the number of
network. The rest of their collaborators, no matter how nu-vertices in the corresponding databases. This “small world”
merous, account for only a small number of paths. Considerffect, first described by Milgraf¥], is, like the existence of
for example, the present author. Out of the 44 000 scientista giant componenitl], probably a good sign for science; it
in the giant component of the Los Alamos Archive collabo-shows that scientific information—discoveries, experimental
ration network, 31000 paths from them to me, about 70%results, theories—will not have far to travel through the net-
pass through just two of my collaborators, while anotherwork of scientific acquaintance to reach the ears of those
13000, most of the remainder, pass through the next fouwho can benefit by them. Even timeaximumdistances be-
The remaining five collaborators account for a mere 1% ofween scientists in these networks, shown in the last row of
the total.(These and all other results presented in this papeTable |, are not very large, the longest path in any of the
were calculated using the “all initials” versions of our net- networks being just 31 steps long, again in the NCSTRL
works, as described in Refl], except where otherwise database, which may have poorer coverage than the others.
noted) The explanation of the small world effect is simple. Con-

To give a more quantitative impression of the funnelingsider Fig. 3, which shows all the collaborators of the present
effect, we show in Fig. 2 the fraction of paths that passauthor(in all subjects, not just physigsand all the collabo-
through the top 10 collaborators of an author, averaged ovemators of those collaborators—all my first and second neigh-
all authors in the giant component of the Los Alamos databors in the collaboration network. As the figure shows, |
base. The figure shows, for example, that on average 64% dfave 26 first neighbors, but 623 second neighbors. The “ra-
one’s shortest paths to other scientists pass through onetBus” of the whole network around me is reached when the
top-ranked collaborator. Another 17% pass through thenumber of neighbors within that radius equals the number of
second-ranked one. The top 10 shown in the figure accourstcientists in the giant component of the network, and if the
for 98% of all paths. increase in numbers of neighbors with distance continues at

That one’s top few acquaintances account for most othe impressive rate shown in the figure, it will not take many
one’s shortest paths to the rest of the world has been notesteps to reach this point.

1 2 3 4 5 6 7 8 9 10

TABLE |. Some statistics for the collaboration networks studied here. Numbers in parentheses are esti-
mates of the standard errors on the least significant figures, which are based on the difference between results
for the “all initials” and “first initial only” versions of the networks, as described in RET).

Los Alamos e-Print Archive

Medline complete astro-ph cond-mat hep-th SPIRES NCSTRL

Total number of papers 2163923 98502 22029 22016 19085 66652 13169
Total number of authors 1520251 52909 16706 16726 8361 56627 11994

First initial only 1090584 45685 14303 15451 7676 47445 10998
Mean distance 4.6(2) 5.9(2) 4.66(7) 6.4(1) 6.91(6) 4.0(1) 9.7(4)
Maximum distance 24 20 14 18 19 19 31
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FIG. 3. The point in the center of the figure represents the author FIG. 4. Avera:ge distanc_:e between pairs of scientists |ndthe varl—h
of the paper you are reading, the first ring his collaborators, and th@US nétworks, plotted agalnst a(\j/_era_gbe _dlstanrc]e c()jn a (rja? om rg]grap
second ring their collaborators. Collaborative ties between memberf the same size and degree distribution. The dotted line shows

of the same ring, of which there are many, have been omitted fron\{vhere the points would fall if measured and predicted results agreed
the figure for cla,rity ' perfectly. The solid line is the best straight-line fit to the data.

|NCSTRL database, with its incomplete coverage, is excluded
(the diamond-shaped symbol in the figure
Figure 4 needs to be taken with a pinch of salt. Its con-
struction implicitly assumes that the different networks are
statistically similar to one another and to random graphs with
for instance,” = log n/log z, wherez is the average degree of the same dis.tributions of vertex degrge, an assumption that is
almost certainly not correct. In practice, however, the mea-

a vertex, the average number of collaborators in our termi d val 5 to follow Eq(1) quite closely. Turn-
nology[8,9]. In the more general class of random graphs in>Ured vaiue or seems 1o fofiow Eq.l) qui y. u

which the distribution of vertex degrees is arbitrdt,0], ing this observation around, our results also imply that it is

rather than Poissonian as in the standard case, the equivalé?ﬂss'ble. to mak_e a good predlctlon_ of the typical vertex-
expression i$11] vertex distance in a network by making only local measure-

ments of the average numbers of neighbors that vertices
~ log(n/z;) have. If this result extends beyond coauthors_hip networks to

/= m ) ) othe_r _somal networks, it cou.k_j be of some importance for

empirical work, where the ability to calculate global proper-
ties of a network by making only local measurements could
wherez, andz, are the average numbers of first and secondave large amounts of effort.
neighbors of a vertex. It is highly unlikely that a social net- We can also trivially use our breadth-first search algo-
work would not show similar logarithmic behavior— rithm to calculate the average distance from a single vertex
networks that do not are a set of measure zero in the limit ofo all other vertices in the giant component. This average is
largen. The square lattice, for instance, which does not shovessentially the same as the quantity known as “closeness” to
logarithmic behavior, would be wildly improbable as a to- social network analysts. Like betweenness it is a measure, in
pology for a social network. And the introduction of even thesome sense, of the centrality of a vertex—authors with low
smallest amount of randomness into a square lattice or othemlues of this average will, it is assumed, be the first to learn
regular lattice produces logarithmic behavior in the limit of new information, and information originating with them will
large system siz¢12,13. Thus the small world effect is reach others quicker than information originating with other
hardly a surprise to anyone familiar with graph theory. How-sources. Average distance is thus a measure of centrality of
ever, it would be nice to demonstrate explicitly the presencen actor in terms of their access to information, whereas
of logarithmic scaling in our networks. Figure 4 does this inbetweenness is a measure of an actor’s control over informa-
a crude fashion. In this figure we have plotted the measuretion flowing between others.
value of /, as given in Table I, against the value given by Calculating average distance for many networks returns
Eq. (1) for each of our four databases, along with separateesults that look sensible to the observer. Calculations for the
points for ten of the subject-specific subdivisions of the Losnetwork of collaborations between movie actors, for in-
Alamos Archive. As the figure shows, the correlation be-stance, give small average distances for actors who are
tween measured and predicted values is quite good. Aamous—ones many of us will have heard[@#]. Interest-
straight-line fit hasR?=0.86, rising to R?=0.95 if the ingly, however, performing the same calculation for our sci-

This simple idea is borne out by theory. In almost al
networks, the number dfth nearest neighbors of a typical
vertex increases exponentially wikhand hence the average
distance between pairs of verticesscales logarithmically
with n the number of vertices. In a standard random graph
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] First of all, it is probably the case, as we pointed out at the
2y 5, ] end of the previous section, that two scientists whose names
. ] appear on a paper together with many other coauthors know
B one another less well on average than two who were the sole
] authors of a paper. The extreme case that we discussed of a

- very large collaboration illustrates this point forcefully, but

1 the same idea applies to smaller collaborations too. Even on
. a paper with four or five authors, the authors probably know

] one another less well on average than authors from a smaller

10 -

average distance to all authors
=]
T

g ] collaboration. To account for this effect, we weight collabo-
[ ] rative ties inversely according to the number of coauthors as
1 10 100 1000 follows. Suppose a scientist collaborates on the writing of a
number of collaborators paper that has authors in total, i.e., he or she has-1

FIG. 5. Scatter plot of the mean distance from each physicist incoauthors on that paper. Then we assume that he or she is

the giant component of the Los Alamos Archive network to all acquainted with each coauthor A4 1) times as well, on

others as a function of number of collaborators. Inset: the same dafd/€'a9€, as if there were only one coauthor. One can imagine

averaged vertically over all authors having the same number ofiS @S meaning that the scientist divides his or her time
collaborators. equally between the— 1 coauthors. This is obviously only a
rough approximation: in reality a scientist spends more time

entific collaboration networks does not return sensible reWith some coauthors than with others. However, in the ab-

sults. For example, one finds that the people at the top of the&nce of other data, it is the obvious first approximation to
list are always experimentalists. This, you might think, is notmake[16]. _
such a bad thing: perhaps the experimentalists are better con- S€cond, authors who have written many papers together
nected people? In a sense, in fact, it turns out that they are. iill. we assume, know one another better on average than
Fig. 5 we show the average distance from scientists in théh0se who have written few papers together. To account for
Los Alamos Archive to all others in the giant component asthis, we add together the strengths of the ties derived from
a function of their number of collaborators. As the figure €ach of the papers written by a particular pair of individuals
shows, there is a trend toward shorter average distance as the/l- Thus, if 57 is 1 if scientisti was a coauthor of papér
number of collaborators becomes large. This trend is clearednd zero otherwise, then our weight; representing the
still in the inset, where we show the same data averaged ovétrength of the collaboratiofif any) between scientistsand
all authors who have the same number of collaboratord. S
Since experimentalists work in large groups, it is not surpris-
ing to learn that they tend to have shorter average distances ) ikc? i(
to other scientists. WiT 4 n o1
But this brings up an interesting question: while most
pairs of people who have written a paper toge_ther will kno_there n, is the number of coauthors of papkrand we
one another_reasonably_well, there are exceptions. On ah_'g_}%')(plicitly exclude from our sums all single-author papers.
energy physics paper with 1000 coauthors_, for '”Staf_‘ce’ I IfThey do not contribute to the coauthorship network, and
un]lkely that every one of the 499 500 p'053|ble acquamtqnc heir inclusion in Eq.(2) would makew;; ill defined] We
ships between pairs of those authors Wlll_actually be realize llustrate this measure for a simple example in Fig. 6.
Our closeness measure does not take into account the te

d f llab o K " Note that the equivalent of vertex degree for our weighted

ehncy or coka orators in r;\]rgel groups”not tjof n0\r/]\{ ON€ anyatwork—i.e., the sum of the weights for each of an indi-
other, or to know one another less well, and for this réasoly;y a's collaborations—is now just equal to the number of
the predominance in the closeness rankings of scientists w

hey h h ith others:
work in such large groups is probably misleading. In the nex pers they have coauthored with others

@

section we introduce a more sophisticated form of collabo- k ok

ration network, which allows for this by including a measure > wi= LN sk 3
. . . . A 1] X ‘N, — 1 [

of the strength of collaborative interactions. i(#1) ko j(#1) Nk k

We have used our weighted collaboration graphs to cal-
culate distances between scientists. In this simple calculation

There is more information present in the databases usegle assumed that the distance between authors is just the
here than in the simple networks we have constructed fronmverse of the weight of their collaborative tie. Thus if one
them, which tell us only whether scientists have collaborateghair of authors know one another twice as well as another
or not[15]. In particular, we know on how many papers eachpair, the distance between them is half as great. Calculating
pair of scientists has collaborated during the period of theminimum distances between vertices on a weighted graph
study, and how many other coauthors they had on each afuch as this cannot be done using the breadth-first search
those papers. We can use this information to make an estalgorithm of Sec. Il A, since the shortest weighted path may
mate of the strength of collaborative ties. not be the shortest in terms of number of steps on the un-

IIl. WEIGHTED COLLABORATION NETWORKS
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A of establishing referrals, i@(mlogn) time. We can calcu-
late the weighted equivalent of betweennes®i{mnlogn)

time by a simple adaptation of our fast algorithm of Sec.
Il B—we use Dijkstra’s algorithm to establish the hierarchy
of predecessors of vertices and then count paths through ver-
o - tices exactly as before. We can also study the weighted ver-
sion of the “funneling” effect using the same algorithm. For
the moment, we have carried out just one calculation explic-
itly to demonstrate the idea; we have calculated the weighted
version of the closeness centrality measure of Sec. Il C, i.e.,

B the average weighted distance from a vertex to all others.

The results reveal that, by constrast with the simple close-

1 1 11 ness measure, the list of scientists who are well connected in
- + 1 + - = —- thi . . . . )
3 5 6 is weighted sense is no longer dominated by experimental

ists, although the well connected among them still score

FIG. 6. AuthorsA andB have coauthor_ed three papers together,higmy; sheer number of collaborators is no longer a good
labeled 1, 2, and 3, which had respectively four, two, and thregyredictor of connectedness. For example, the fifth best con-
authors. The tie betweeh andB accordingly accrues weights 1/3, hacted scientist in high-energy thedout of 8000 is found
1, and 1/2 from the three papers, for a total weight of 11/6. to have only three collaborators listed in the database, but

nonetheless scores highly in our calculation because his ties
weighted network. Instead we use Dijkstra’s algoritt8],  with those three collaborators are strong and because the
which calculates all distances from a given starting veitex collaborators are themselves well connected.
as follows. Many of the scientists who score highly in this calculation

(1) Distances from vertekare stored for each vertex and appear to be well known individuals, at least in the opinion
each is labeled “exact,” meaning we have calculated thaof this author and his colleagues, and are therefore plausibly
distance exactly, or “estimated,” meaning we have made anvell connected. We find also that the number of papers writ-
estimate of the distance, but that estimate may be wrong. Ween by scientists who are well connected in this particular
start by assigning an estimated distancecofo all vertices sense is universally high. Having coauthored a large number
except vertex to which we assign an estimated distance ofof papers is, as it rightly should be, always a good way of
zero. (We know the latter to be exactly correct, but for the becoming well connected. Whether you write many papers
moment we consider it merely “estimated.” with many different authors, or many with a few, writing

(2) From the set of vertices whose distances froare  many papers will put you in touch with your peers.
currently marked “estimated,” choose the one with the low-
est estimated distance, and mark this “exact.”

(3) Calculate the distance from that vertex to each of its
immediate neighbors in the network by adding to its distance \We have studied social networks of scientists in which the
the length of the edges leading to those neighbors. Any ofctors are authors of scientific papers, and a tie between two
these distances that is shorter than a current estimated diguthors represents coauthorship of one or more papers. The
tance for the same vertex supersedes that current value andtworks studied were based on publication data from four

IV. CONCLUSIONS

becomes the new estimated distance for the vertex. databases in physics, biomedical research, and computer sci-
(4) Repeat from step 2, until no “estimated” vertices re- ence. In this second of two papers, we have looked at a
main. variety of nonlocal properties of our networks. We find that

A naive implementation of this algorithm takes time typical distances between pairs of authors through the net-
O(mn) to calculate distances from a single vertex to all oth-works are small—the networks form a “small world” in the
ers, orO(mr?) to calculate all pairwise distances. One of thesense discussed by Milgram—and scale logarithmically with
factors ofn, however, arises because it takes ti@gn) to  total number of authors in a network, in reasonable agree-
search through the vertices to find the one with the smalleshent with the predictions of random graph models. We have
estimated distance. This operation can be improved by stointroduced an algorithm for counting the number of shortest
ing the estimated distances in a binary héapartially or-  paths between vertices on a graph that pass through each
dered binary tree with its smallest entry at its jodWe can  other vertex, which is one order of system size faster than
find the smallest distance in such a heap in t@(), and previous algorithms, and used this to calculate the so-called
add and remove entries in tim@(logn). This reduces the ‘“betweenness” measure of centrality on our graphs. We also
time for the evaluation of all pairwise distances toshow that for most authors the bulk of the paths between
O(mnlogn), making the calculation feasible for the large them and other scientists in the network go through just one
networks studied here. or two of their collaborators, an effect that Strogatz has

It is in theory possible to generalize any of the calcula-dubbed “funneling.”
tions of Sec. Il to the weighted collaboration graph using this We have suggested a measure of the strength of collabo-
algorithm and variations on it. For example, we can findrative ties which takes account of the number of papers a
shortest paths between specified pairs of scientists, as a wagyen pair of scientists have written together, as well as the
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