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Scientific collaboration networks. |. Network construction and fundamental results
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Using computer databases of scientific papers in physics, biomedical research, and computer science, we
have constructed networks of collaboration between scientists in each of these disciplines. In these networks
two scientists are considered connected if they have coauthored one or more papers together. We study a
variety of statistical properties of our networks, including numbers of papers written by authors, numbers of
authors per paper, numbers of collaborators that scientists have, existence and size of a giant component of
connected scientists, and degree of clustering in the networks. We also highlight some apparent differences in
collaboration patterns between the subjects studied. In the following paper, we study a number of measures of
centrality and connectedness in the same networks.
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I. INTRODUCTION fairly self-contained community such as a business commu-
nity [25—27, a school 28,29, a religious or ethnic commu-
A social networK 1,2] is a set of people or groups each of nity [30], and so forth, and constructs the network of ties by
which has connections of some kind to some or all of theinterviewing participants, or by circulating questionnaires. A
others. In the language of social network analysis, the peoplgtudy will ask respondents to name those with whom they

gr %]TOUPS are ((j:qlled "acéorg'f?‘“dd ;hed_cf:;)nnections ;ties'ncﬂave the closest ties, probably ranked by subjective close-
oth actors and ties can be defined In different ways depen less, and may optionally call for additional information

ing on the questions of interest. An actor might be a single,) -+ 10se people or about the nature of the ties,

person, a team, or a company. A tie might be a friendship . S )
between two people, a collaboration or common member be- Studies of this kind have revealed much about the struc
Jre of communities, but they suffer from two substantial

tween two teams, or a business relationship between com .
nies. P pproblems that make them poor sources of data for the kind of

Social network analysis has a history stretching back afPProach to network analysis that physics has adopted. First,

least half a century, and has produced many results concerH¢ data they retumn are not numerous. Collecting and com-
ing social influence, social groupings, inequality, diseasdiling data from these studies is an arduous process and most
propagation, communication of information, and indeed al-data sets contain no more than a few tens or hundreds of
most every topic that has interested 20th century sociologyactors. Itis a rare study that exceeds 1000 actors. This makes
The Physical Reviews, however, a physics journal. Why the statistical accuracy of many results poor, a particular dif-
should a physicist be interested in social networks? Ther§culty for the large-system-size methods used in statistical
has, in fact, been a substantial surge of interest in sociglhysics. Second, they contain significant and uncontrolled
networks within the physics community recently, as evi-errors as a result of the subjective nature of respondents’
denced by the large body of papers on the topic—see Refseplies. What one respondent considers to be a friendship or
[3—24] and references therein. The techniques of statisticahcquaintance, for example, may be completely different from
physics in particular turn out to be well suited to the study ofwhat another respondent does. In studies of schoolchildren
these networks. Profitable use has been made of a variety p#g 29, for instance, it is found that some children will claim
physical modeling techniqu¢S—7], exact solution$8-13),  friendship with every single one of their hundreds of school-
Monte Carlo simulatior{14—-17, scaling and renormaliza- mates, while others will name only one or two friends.
tion group method$15-17, mean-field theory18,19, per-  cjearly these respondents are employing different definitions
colation theory[20-22, the replica metho23], generating ¢ friendship.

functions[20,22,24, and a host of other techniques familiar Reliable statistics do exist for some other types of net-

to the r.eaders of this publlcatl_on. works. Examples include the world-wide w¢h4,31,33,

In this paper and .the following one, we makg use of som%) wer gridg5], telephone call graph83], and airline time-
of thelse techl?(lques in the study of some spemflclltlaxamp}lgs fbles[34]. These graphs are certainly interesting in their
social networks. However, our subject matter will be of in- own right, and furthermore might loosely be regarded as so-

:ﬁrest tt/(\)/ physicists fortagotheiwreiso_n: |ths_ ﬁkf{?]m thtem. Ir2:ia| networks, since their structure clearly reflects something
ese (o papers, we study networks in which the aclors arky,, + ihe structure of the society that created them. How-

scientists, and the ties between them are scientific collaboras . their connection to the “true” social networks dis-

tions, as documented by the learned articles that they WIit€, \ssed here is tenuous at best and so, for our purposes, they
cannot offer a great deal of insight.
A more promising source of data is the affiliation net-
Traditional investigations of social networks have beenwork. An affiliation network is a network of actors con-
carried out through field studies. Typically one looks at anected by common membership in groups of some sort, such

1. COLLABORATION NETWORKS
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as clubs, teams, or organizations. Examples that have be®&d4 papers, on 643 of which he was the sole author. He has
studied in the past include company CEOs and the clubs theyo finite Erde number{41]. Clearly sheer size of output is
frequent[26], company directors and the boards of directorsnot a sufficient condition for high connectedngss.

on which they si{25,35, women and the social events they  There is also a substantial body of work in bibliometrics
attend[36], and movie actors and the movies in which they(a specialty within information scienten extraction of col-
appear5,34]. Data on affiliation networks tend to be more laboration patterns from publication data—see Ref4—43
reliable than those on other social networks, since membe@nd references therein. However, these studies have not so

ship of a group can often be determined with a precision nofar attempted to reconstruct entire collaboration networks

available when considering friendship or other types of ac{fom bibliographic data, concentrating more on organiza-
onal and institutional aspects of collaboratigat8].

guaintance. Very large networks can be assembled in thi : X
way as well, since in many cases group membership can be In this paper and the following one, we study networks of

ascertained from membership lists, making time-consumin%CiemiSts using bibliographic data drawn from four publicly

interviews or questionnaires unnecessary. A network ofvailable databases of papers.
movie actors, for example, and the movies in which they (1) Los Alamos e-Print Archive: a database of unrefereed

appear has been compiled using the resources of the InterrEPIINES in physics, self-submitted by their authors, running
Movie Databasé37], and contains the names of nearly half from 1992 to the present. This database is subdivided into

a million actors—a much better sample on which to performspecialti(::s within_ physics, such as condensed matter and
igh-energy physics.

statistics than most social networks, although it is uncleaf’ Y H ) i )
whether this particular network has any real social interest. (2) Medline: a database of articles on biomedical research
In this paper we construct affiliation networks of scientistsPublished in refereed journals, stretching from 1961 to the

in which a link between two scientists is established by theiP€Sent. Entries in the database are updated by the database’s

coauthorship of one or more scientific papers. Thus thandintainers, rather than papers’ authors, giving it relatively
groups to which scientists belong in this network are theorough coverage of its subject area. The inclusion of bio-
groups of coauthors of a single paper. This network is innjedlm_ne is c_ru0|al in a study sych as this one. In most coun-
some ways more truly a social network than many affiliationt'ies blomedlcgl rgsearch easily dwarfs C|\{|I|an research on
networks; it is probably fair to say that most pairs of people@y Other topic, in terms of both expenditure and human
who have written a paper together are genuinely acquainte@fort: Any study that omitted it would be leaving out the
with one another, in a way that movie actors who appearetf'9€st part of current scientific research.

together in a movie may not be. There are exceptions—some_ 3 S.tanford Public ~ Information Retrieval System
very large collaborations, for example in high-energy phys{SP/RES: a database of preprints and published papers in

ics, will contain coauthors who have never even met—and9h-energy physics, both theoretical and experimental, from

we will discuss these at the appropriate point. By and Iarge,1_974 to the present. The contents of this database are profes-

however, the network reflects genuine professional interaczionally maintained. High-energy physics is an interesting
tion between scientists, and may be the largest social nefaSe socially, having a tradition of much larger experimental
work ever studied38]. collaborations than other disciplines.

The idea of constructing a network of coauthorship is not . (4 Networked Computer Science Technical Reference
new. Many readers will be familiar with the concept of the LiPrary (NCSTRL): a database of preprints in computer sci-

Erdés number, named after Paul Egddhe Hungarian math- €€, submitted by participating institutions and stretching

ematician, one of the founding fathers of graph theoryPaCk aboutten years. ,
among other thingE39]. At some point, it became a popular We have constructed complete collaboration networks for

cocktail party pursuit for mathematicians to calculate how€ach of these databases separately, and analyzed them using

far removed they were in terms of publication from Esdo a variety of techniques, some standard, some invented for the

Those who had published a paper with Esdeere given an PUrPose. A brief report of some of the work described here
Erdds number of 1, those who had published with one ofaS appeared previously as ReH0].

those people but not with Erda number of 2, and so forth.
The present author, for example, has an Brdamber of 3,
via Robert Ziff and Mark Kad40]. In the jargon of social
networks, your Erde number is the geodesic distance be- For this study, we constructed collaboration networks us-
tween you and Erdoin the coauthorship network. In recent ing data from a five year period from 1995 to 1999 inclusive,
studies[41-43, it has been found that the average &do although data for much longer periods were available in
number is about 4.7, and the maximum known finite Brdo some of the databases. There were several reasons for using
number(within mathematicsis 15. These results are prob- this fairly short time window. First, older data are less com-
ably influenced to some extent by Egigrodigious math- plete than newer for all databases. Second, we wanted to
ematical output: he published at least 1512 papers, more thatudy the same time period for all databases, so as to be able
any other mathematician ever except possibly Leonhard Eue make valid comparisons between collaboration patterns in
ler. However, quantitatively similar, if not quite so impres- different fields. The coverage provided by both the Los Ala-
sive, results are in most cases found if the network is cenmos Archive and the NCSTRL database is relatively poor
tered on another mathematicid@n the other hand, the fifth before 1995, and this sets a limit on how far back we can
most published mathematician, Lucien Godeaux, producebbok. Third, networks change over time, both because people

I1l. FUNDAMENTAL RESULTS
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TABLE |. Some fundamental statistics for the scientific collaboration networks studied here. Numbers in
parentheses are standard errors on the least significant figures.

Los Alamos e-Print Archive

Medline complete astro-ph cond-mat hep-th SPIRES NCSTRL

Total number of papers 2163923 98502 22029 22016 19085 66652 13169
Total number of authors 1520251 52909 16706 16726 8361 56627 11994
First initial only 1090584 45685 14303 15451 7676 47445 10998

Mean papers per author  6.4(6) 5.1(2) 4.8(2) 3.65(7) 4.8(1) 11.6(5) 2.55(5)
Mean authors per paper 3.754(2) 2.530(7) 3.35(2) 2.66(1) 1.99(1) 8.96(18) 2.22(1)
Collaborators per author 18.1(1.3) 9.7(2) 15.1(3) 5.86(9) 3.87(5) 173(6) 3.59(5)

Size of giant component 1395693 44337 14845 13861 5835 49002 6396
First initial only 1019418 39709 12874 13324 5593 43089 6706
As a percentage 928)% 85.48)% 89.4(3) 84.68)% 71.48)% 88.7(1.1)% 57.2(1.9)%

2nd largest component 49 18 19 16 24 69 42

Clustering coefficient 0.066(7) 0.43(1) 0.414(6) 0.348(6) 0.327(2) 0.726(8) 0.496(6)

enter and leave the professions they represent and becau&gight, Francis Wright, and Frank Lloyd Wright could all be
practices of scientific collaboration and publishing changethe same person. Also, two authors may have the same name.
In this particular study we have not examined time evolutionGrossman and loj#1] point out that there are two American
in the network, although this is certainly an interesting topicmathematicians named Norman Lloyd Johnson, who are
for research and indeed is currently under investigatiorknown to be distinct people but between whom computer
[51,52. For our purposes, a short window of data is desir-programs such as ours cannot hope to distinguish. Even ad-
able, to ensure that the collaboration network is roughlygitional clues such as home institution or field of specializa-
static during the study. , tion cannot be used to distinguish such people, since many

The raw data for the networks described here are comggientists have more than one institution or publish in more
puter files containing lists of papers, including authors'ihan one field. The present author, for example, has ad-
names and possibly other information such as title, abstrachesses at the Santa Fe Institute and Comell University, and
date, journal reference, and so forth. Construction of the COlpuinshes in both statistical physics and paleontology.
laboration networks is straightforward. The files are parsed |, order to control for these biases, we constructed two
to extract author names and as names are found a list {§ifferent versions of each of the collaboration networks stud-
maintained of the ones seen so far—vertices already in thg here, as follows. In the first, we identify each author by
network—so that recurring names can be correctly assigneis or her surname and first initial only. This method is
to extant vertices. Edges are added between each pair gfaarly prone to confusing two people for one, but will rarely
authors on each paper. A naive implementation of this calgyj| 1o identify two names which genuinely refer to the same
culation, in which names are stored in a simple array, woultherson, In the second version of each network, we identify
take timeO(pn), wherep is the total number of papers in authors by surname and all initials. This method can much
the database and the number of authors. This, however, nore reliably distinguish authors from one another, but will
turns out to be prohibitively slow for large networks sinee 550 identify one person as two if they give their initials
and n are of similar size and may be a million or more. giterently on different papers. Indeed this second measure
Instead therefore, we store the names of the authors in aflhears to overestimate the number of authors in a database
ordered binary tree, which reduces the running time topstantially. Networks constructed in these two different
O(plogn), making the calculation tractable, even for the tashions therefore give upper and lower bounds on the num-
largest databases studied here. . ber of authors, and hence also give bounds on many of the

In Table | we give a summary of some of the basic YESU|I§)ther quantities studied here. In Table | we give numbers of
for the networks studied here. We discuss these results igythors in each network using both methods, but for many of
detail in the rest of this section. the other quantities we give only an error estimate based on

the separation of the bounds.
A. Number of authors

The size of the databases varies considerably from about a B. Number of papers per author

million authors for Medline to about ten thousand for NC- The average number of papers per author in the various
STRL. In fact, it is difficult to say with precision how many subject areas is in the range of around three to six over the
authors there are. One can say how many distirrhes five year period. The only exception is the SPIRES database,
appear in a database, but the number of names is not tlmvering high-energy physics, in which the figure is signifi-
same as the number of authors. A single author may repordantly higher at 11.6. One possible explanation for this is
their name differently on different papers. For example, F. Lthat SPIRES is the only database that contains both preprints
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of five years used in this study, which prevents any one
author from publishing a very large number of papers. Lotka
and subsequent authors who have confirmed his law have not
usually used such a window.

It is interesting to speculate why the cutoff appears only
in physics and not in computer science or biomedicine.
Surely the five year window limits everyone’s ability to pub-
lish very large numbers of papers, regardless of their area of
specialization? For the case of Medline one possible expla-
nation is suggested by an inspection of the list of the most
published authors: it transpires that most of these authors
have names that are known to occur frequently. It is thus
conceivable that these apparently highly published authors
are really each several different people who have been con-

flated in our analysis, and hence that there is not after all any
fat tail in the distribution, only the illusion of one produced

FIG. 1. Histograms of the number of papers written by authorsPY the large number of scientists with commonly occurring
in Medline, the Los Alamos Archive, and NCSTRL. The dotted N@mes(This does not, however, explain why the tail appears

lines are fits to the data as described in the text. Inset: the equivale#® follow a power law). This argument is strengthened by the
histogram for the SPIRES database. sheer numbers of papers involved. For instance, the number

1 author in the Medline database published, it appears, 1697

and published papers. It is possible that the high figure foPapers, or about one paper a day, including weekends and
papers per author reflects duplication of papers in both predolidays, every day for the entire course of our five year
print and published form. However, the maintainers of theStudy. This seems to be an improbably large output.
database go to some lengths to avoid %3], and a more Interestlngly, the names that top the list in physics and
probable explanation is perhaps that publication rates argdmputer science are not ones that are known to be common.
higher for the large collaborations favored by high-energyThus it is still unclear why the NCSTRL database should
physics, since a large group of scientists has more persomave a power-law tail, although this database is small and it
hours available for the writing of papers. is pQSS|pIe thqt it ldqes possess a cutoff in the prqduptwny
In addition to the average numbers of papers per author ifistribution which is just not visible because of the limits of
each database, it is interesting to look at the distribugipn the data set. o _
of numbersk of papers per author. In 1926, Alfred Lotka  FOr the SPIRES database, which is shown separately in
[54] showed, using a data set compiled by hand, that thi%he inset of the figure, ne|.ther pure nor truncated power law
distribution followed a power law, with exponent approxi- fits the data well, the histogram displaying a significant
mately — 2, a result that is sometimes referred to as Lotka’s2Ump around the 100 paper mark. A possible explanation for
law of scientific productivity. In other words, in addition to this is that a small number of large collaborations published
the many authors who publish only a small number of pa&round this number of papers during the time period studied.
pers, one expects to see a “fat tail” consisting of a SmanS!ﬂCG ea_ch .author in such a collabqra}tloq is then. credited
number of authors who publish a very large number of payv_lth.put.)hshmg 100 papers, the statistics in the tall qf the
pers. In Fig. 1 we show on logarithmic scales histograms fofistribution can be substantially skewed by such practices.
each of our four databases of the numbers of papers pub-
lished.(These histograms and all the others shown here were
created using the “all initials” versions of the collaboration
networks) For the Medline and NCSTRL databases these Grossman and lof41] have given results showing that
histograms follow a power law quite closely, at least in theirthe average number of authors on papers in mathematics has
tails, with exponents of —2.86(3) and —3.417), increased steadily over the last 60 years, from a little over 1
respectively—somewhat steeper than those found by Lotkdp its current value of about 1.5. Higher numbers still seem to
but in reasonable agreement with other more recent studiepply to current studies in the sciences. Purely theoretical
[44,55,58. For the Los Alamos Archive the pure power law papers appear to be typically the work of two scientists, with
is a poor fit. An exponentially truncated power law doeshigh-energy theory and computer science showing averages
much better: of 1.99 and 2.22 authors per paper in our calculations. For
databases covering experimental or partly experimental sub-
ject areas the averages are, not surprisingly, higher: 3.75 for
biomedicine, 3.35 for astrophysics, 2.66 for condensed mat-
where 7 and « are constants an@ is fixed by the require- ter physics. The SPIRES high-energy physics database, how-
ment of normalization(The probabilityp, of having zero ever, shows the most startling results, with an average of
papers is taken to be zero, since the names of scientists wi896 authors per paper, obviously a result of the presence of
have not written any papers do not appear in the datgbasepapers in the database written by very large collaborations.
The exponential cutoff we attribute to the finite time window (Perhaps what is most surprising about this result is actually

number of papers

C. Numbers of authors per paper

pk:CkiTeik/K, (1)
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FIG. 2. Histograms of the number of authors on papers in Med- FI_G. 3. Histograms of the n_umber of collaborators of autho_rs in
line, the Los Alamos Archive, and NCSTRL. The dotted lines areMed“ne' the Los Alamos Archive, and NCSTRL. The dotted lines

the best fit power-law forms. Inset: the equivalent histogram for the>"0W how power-law distributions with exponents2 and —3

SPIRES database, showing a clear peak in the 200 to 500 authw)u'd look on the same axes. Inset: the equivalent histogram for the
SPIRES database, which is well fitted by a single power(@otted
range.

line).
how small it is. The hundreds strong megacollaborations of
CERN and Fermilab are sufficiently diluted by theoreticalpeak in the SPIRES data around 700—presumably again a
and smaller experimental groups that the number is only esult of the presence of large collaborations.
and not 100. For the other three databases, the distributions show some
Distributions of numbers of authors per paper are showrturvature. This may, as we have previously suggegiéet
in Fig. 2, and appear to have power-law tails with widely be the signature of an exponential cutoff, produced once
varying exponents of-6.2(3) (Medline), —3.34(5) (Los  again by the finite time window of the study. Redf&T] has
Alamos Archive, —4.6(1) (NCSTRL, and —2.18(7) suggested an alternative origin for the cutoff using growth
(SPIRES. The SPIRES data, which are again shown in amodels of networks—see Rdfl0]. Another possibility has
separate inset, also display a pronounced peak in the distideen put forward by Baraba[58], based on models of the
bution around 200-500 authors. This peak presumably coollaboration process. In one such mofl], the distribu-
responds to the large experimental collaborations that domiion of the number of collaborators of an author follows a
nate the upper end of this histogram. power law with slope— 2 initially, changing to slope-3 in
The largest number of authors on a single paper was 168the tail, the position of the crossover depending on the length
(in high-energy physics, of course of time for which the collaboration network has been evolv-
ing. We show slopes-2 and —3 as dotted lines on the
figure, and the agreement with the curvature seen in the data
. . L is moderately good, particularly for the Medline datgor
serrtzz ?r:ﬁ'?r::ng:fabb:stévsezr;etheem;ﬂggiuzz ddI:t(i:lllplrIT?ere rssr?fhe Los Alamos and NCSTRL databases, the slope in the tall
o I}.Feems to be somewhat steeper thad.)
numbers of collaborators that a scientist has, the total num-
ber of people with whom a scientist wrote papers during the
five year period. The average number of collaborators is
markedly lower in the purely theoretical disciplines (3.87 in  In the theory of random grapHf4,59-61 it is known
high-energy theory, 3.59 in computer scientiean in the that there is a continuous phase transition with increasing
wholly or partly experimental ones (18.1 in biomedicine, density of edges in a graph at which a “giant component”
15.1 in astrophysigs But the SPIRES high-energy physics forms, i.e., a connected subset of vertices whose size scales
database takes the prize once again, with scientists having &xtensively. Well above this transition, in the region where
impressive 173 collaborators, on average, over a five yedhe giant component exists, the giant component fills a large
period. This clearly begs the question whether the highportion of the graph, and all other componefitg., con-
energy coauthorship network can be considered an accuratected subsets of vertigesre small, with average size inde-
representation of the high-energy physics community at allpendent of the numbaenr of vertices in the graph. We see a
it seems unlikely that many authors would know 173 col-situation reminiscent of this in all of the graphs studied here:
leagues well. a single large component of connected vertices that fills the
The distributions of numbers of collaborators are showrmajority of the volume of the graph, and a number of much
in Fig. 3. In all cases they appear to have long tails, but onlysmaller components filling the rest. In Table | we show the
the SPIRES datdinse) fit a power-law distribution well, size of the giant component for each of our databases, both
with a low measured exponent ef1.20. Note also the small as total number of vertices and as a fraction of system size.

D. Numbers of collaborators per author

E. Size of the giant component
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In all cases the giant component fills around 80% or 90% ogfficient will take a nonzero value even in very large net-
the total volume, except for high-energy theory and comworks, because there is a finitand probably quite large
puter science, which give smaller figures. A possible explaprobability that two people will be acquainted if they have
nation of these two anomalies may be that the correspondingnother acquaintance in common. This is a hypothesis we
databases give poorer coverage of their subjects. The hep-#an test with our collaboration networks. In Table | we show
high-energy database is quite widely used in the field, bujajues of the clustering coefficien®, calculated from Eq.
overlaps to an extent with the longer established SPIRE®)) for each of the databases studied, and as we see the
database, and it is possible that some authors neglect it fQf1ues are indeed large, as large as 0.7 in the case of the
this reason(53]. The NCSTRL computer science databasesp|res database, and around 0.3 or 0.4 for most of the
differs from the others in this study in that the preprints it jiparo
contains are submitted by participating institutions, of which  Thare are a number of possible explanations for these
there are about 160. Preprints from institutiorjs not particihigh values ofC. First of all, it may be that they indicate
pating are mostly left out of the database, and its coverage Qfimply that collaborations of three or more people are com-
the subject area is, as a result, incomplete. mon in science. Every paper that has three authors clearly
We also show in Table | the size of the second largest,nyriputes a triangle to the numerator of E2). and hence
component in éach of our networks. This component is in allhreases the clustering coefficient. This is, in a sense, a
cases far smaller than the giant component—typically CoNg;yia| form of clustering, although it is by no means socially
sisting of only 20 or 30 authors—in qualitative agreeme”tuninteresting.
with our expectations from the theory of random graphs. In fact it turns out that this effect can account for some
The figure of 80—-90 % for the size of the giant componenty ;¢ not all of the clustering seen in our graphs. One can
is a promising one. It indicates that the vast majority of SCi-cqnsiruct a random graph model of a collaboration network
entists are connected via collaboration, and hence via pefnat mimics the trivial clustering effect, and the results indi-
sonal contact, W|th_ the rest of their field. Furthermore, as We.5te that only about a half of the clustering that we see is a
show in the following papef62], the path through the net- o5t of authors collaborating in groups of three or more
work that connects two scientists is typically very short. De—[24]_ The rest of the clustering must have a social explana-
spite the prevalence of journal publishing and conferences iﬂon, and there are some obvious possibilities.
the sciences, person-to-person contact is still of paramount (1) A scientist may collaborate with two colleagues indi-
importance in the communication of scientific information, vidually, who may then become acquainted with one another
and it is reasonable to suppose that the scientific enterpris[ﬁrough their common collaborator, and so end up collabo-
would be significantly hindered if scientists were not so well 4ting themselves. This is the usual explanation for transitiv-

connected to one another. ity in acquaintance networkd].
_ o (2) Three scientists may all revolve in the same circles—
F. Clustering coefficients read the same journals, attend the same conferences—and, as

An interesting idea circulating in the social networks & result, independently start up separate collaborations in
community currently is that of “transitivity,” which, along Pairs, and so contribute to the value@falthough only the
with its sibling “structural balance,” describes symmetry of Workings of the community, and not any specific personal
interaction among trios of actors. “Transitivity” has a dif- interaction, is responsible for introducing them.
ferent meaning in sociology from its meaning in mathemat- (3) As a special case of the previous possibility—and per-
ics and physics, although the two are related. It refers to th8aps the most likely case—three scientists may all work at
extent to which the existence of ties between actosdB  the same institution, and as a result may collaborate with one
and between acto® and C implies a tie betwee andC. ~ another in pairs.

The transitivity, or more precisely the fraction of transitive  Interesting studies could no doubt be made of these pro-
triples, is that fraction of connected triples of vertices whichcesses by combining our network data with data on, for in-
also form “triangles” of interaction. Here a connected triple Stance, institutional affiliations of scientists. Such studies are,
means an actor who is connected to two others. In the phydlowever, perhaps better left to the social scientists.

ics literature, this quantity is usually called the clustering The clustering coefficient of the Medline database is wor-

coefficientC [5], and can be written thy of brief mention, since its value is far smaller than those
for the other databases. One possible explanation of this
3X number of triangles on the graph comes from the unusual social structure of biomedical re-

C= number of connected triples of vertices () search, which, unlike the other sciences, has traditionally
been organized into laboratories, each with a “principal in-
vestigator” supervising a large number of postdoctoral asso-

The factor of 3 in the numerator compensates for the fact thatiates, students, and technicians working on different
each complete triangle of three vertices contributes threerojects. This organization produces a treelike hierarchy of
connected triples, one centered on each of the three verticespllaborative ties. A tree has no loops in it, and hence no
and ensures th&=1 on a completely connected graph. On triangles to contribute to the clustering coefficient. Although
all random graph€=0(n"1) [5,24], wheren is the number the biomedicine hierarchy is certainly not a perfect tree, it
of vertices, and hence goes to zero in the limit of large grapimay be sufficiently treelike for the difference to show up in
size. In social networks it is believed that the clustering co-the value ofC. Another possible explanation comes from the
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generous tradition of authorship in the biomedical sciencedind that in biomedicine the degree of network clustering is
It is common, for example, for a researcher to be made anuch lower than in other fields, possibly indicating differ-
coauthor of a paper in return for synthesizing reagents useeinces in social organization between biomedical and other
in an experimental procedure. Such a researcher will in mangesearch communities.

cases have a less than average likelihood of developing new In the following papef62], we continue the study of the
collaborations with their collaborators’ friends, and thereforenetworks introduced here, looking at a variety of nonlocal

of increasing the clustering coefficient. network properties. Among other things, we look at the typi-
cal distances between pairs of scientists through the network,
IV. CONCLUSIONS evaluate a number of centrality indices for our networks, and

) ) ] ~_ propose a method for calculating the strength of collabora-
In this paper we have studied social networks of scientist$on petween scientists.

in which the actors are authors of scientific papers, and a tie
between two actors represents coautho_rship of one or more ACKNOWLEDGMENTS
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