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Percolation models with multiple percolating clusters have attracted much attention in recent years. Here we
use Monte Carlo simulations to study bond percolationLgix L, planar random lattices, duals of random
lattices, and square lattices with free and periodic boundary conditions, in vertical and horizontal directions,
respectively, and with various aspect ratiog/L,. We calculate the probability for the appearancenof
percolating clustersy, ; the percolating probabilitieP; the average fraction of lattice bondsiteg in the
percolating clusters/c®), ((c%),), and the probability distribution function for the fracticrof lattice bonds
(sites, in percolating clusters of subgraphs witlpercolating clusters,,(c?) [f,(c®)]. Using a small number
of nonuniversal metric factors, we find that,, P, (c®), ((c%),), andf,(c®) [f,(c®)] for random lattices,
duals of random lattices, and square lattices have the same universal finite-size scaling functions. We also find
that nonuniversal metric factors are independent of boundary conditions and aspect ratios.
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[. INTRODUCTION Universality and scaling are two important concepts in the
modern theory of critical phenomefal-23, and percola-
Percolation is related to many interesting scientific phetion models are ideal systems for studying critical phenom-
nomena 1l]. In recent years percolation problems with mul- ena[1]. Thus universality and scaling have been actively
tiple percolating clusters have attracted much attentiorstudied in recent decades, especially for percolation models
[2-19. Most simulational studies of such problems were[24]. In 1992, Langlandt al. [25] proposed that for bond
restricted to percolation on lattic§20]. However, many and site percolation models on squésg), planar triangular
physical systems with multiple percolating clusters such agpt), and honeycomithc) lattices, the critical existence prob-
Carbino disks used in the study of quantum Hall eff¢2lls  ability (also called the crossing probability or spanning prob-
or oil fields confronted with drilling problems, do not have ability) is a universal quantity, when aspect ratios of sq, hc,
underlined regular lattice structures. Thus it is of interest taand pt lattices have relative ratios\i3:1/3/2. In 1995 and
know the relationship between quantities for percolation o996, Hu, Lin, and ChefHLC) [26,3] calculated the exis-
regular lattices and quantities for percolation not on regulatence probabilityE,, the percolation probability, and the
lattices, such as random lattices. In the present paper, we upeobability for the appearance ofpercolating clustersjV,,,
Monte Carlo simulations to study bond percolation lop  of bond and site percolation models on sq, hc, and pt lattices
XL, planar random lattices, duals of random lattices, andyith aspect ratios 1J3:1/3/2; they showed that all their
square lattices with free and periodic boundary conditions irscaled data fall on the same universal scaling functions, by
vertical and horizontal directions, respectively, and withselecting a very small numbers of nonuniversal metric fac-
various aspect ratids, /L,. We calculate the probability for tors and maintaining similar nonuniversal metric factors un-
the appearance of percolating clusters)V, ; the percolating der free and periodic boundary conditions. By using renor-
probabilitiesP; the average fraction of lattice bon@stes in ~ malization group theory, in 1996 Hovi and Aharofig7]
percolating clusterg,c®), [(c%),], and the probability distri- also pointed out that scaling functions for the spanning prob-
bution function for fractiorc of lattice bondg(siteg, in per-  ability are universal at the fixed point for every system with
colating clusters of subgraphs with percolating clusters, the same dimensionality, spanning rule, aspect ratio, and
fa(c®) [f,(c%)]. Using a small number of nonuniversal met- boundary conditions. In 1996 Okabe and Kiku¢a8], ex-
ric factors, we find thawV,, P, (c®), ((c%),), and f,(c®)  tended the work of HLC to a two-dimensional Ising model
[f,(c®)], for random lattices, duals of random lattices, andon planar regular lattices. In 1997, Hu and W4#d] found
square lattices, have the same universal finite-size scalintpat lattice and continuum percolations of hard and soft disks
functions. We also find that nonuniversal metric factors aréhave the same universal scaling functions\igy. Using the
independent of boundary conditions and aspect ratios. Fuconnection between an Ising model and a bond-correlated
thermore, this study is related to recent developments in thpercolation mode]l29], in 1999 Tomita, Okabe, and Hd7]
universality and scaling of critical phenomena. calculated the probability for the appearance glercolating
clusters,W,, the percolating probabilities?, the average
fraction of lattice sites in percolating cluste(s),,, and the
*Electronic address: hphsu@gate.sinica.edu.tw probability distribution function for the fraction of lattice
"Electronic address: huck@phys.sinica.edu.tw sites in percolating clusters of subgraphs witpercolating
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clusters,f,(c), for bond-correlated percolation model on sq,
hc, and pt lattices, with aspect ratios of\B:+/3/2. Using a
small number of nonuniversal metric factors, they found that
W,, P, {c),, andf,(c) for sq, hc, and pt lattices have the
same universal finite-size scaling functions.

However, the studies mentioned above mostly focused on
regular lattices, with fixed coordination numbdi20]. In
1999 Hsu and HuangHH) [30] determined the percolation
thresholds and critical exponents, and demonstrated explic-
itly that the ideas of universal critical exponents and univer-
sal scaling function with nonuniversal metric factors can be
extended to bond percolation dn<L periodic planar ran-
dom lattices, duals of random lattices, and square lattices, for
both existence and percolating probabilities and the mean
cluster size. This paper will study bond percolation lon
XL, planar random lattices, duals of random lattices, and
square lattices in more detail, and consider the case where
the lattices have free and periodic boundary conditions in
vertical and horizontal directions, respectively, as in [R&f.

Th_e percolating probability was defined |n_RE$O] by the FIG. 1. Examples ofa) anL,XL,=8X4 planar random lattice
ratio of the number of bonds in the percolating clusters t0 thgyig |ineg, with its dual(dashed lingson anL X L,=8X 4 rect-

total number of bonds. Here we consider two different defi-anguiar area, with periodic boundary conditions; ésica first kind
nitions of the percolating probability, in terms of bonds andof percolating cluster path, without boundary boriteld solid
sites; the latter was also used in Ref3] and[17]. We cal-  |ineg on a random lattice.

culate the probabilityV, for the appearance of percolating

clusters, the percolating probabilig the average fraction of corresponding dual lattice sites are connected by one dual
lattice bonds(sites in percolating clusters(c®), ((c%,), link. There is a one to one correspondence between links and
and the probability distribution function for the fractiorof  dual links. The whole rectangular domain is partitioned into
lattice bondgsiteg in percolating clusters of subgraphs with N nonoverlapping planar convex polyhedra, which are
n percolating clusters,,(c®) [f,(c%)], for various values of formed by dual links, and the vertices bf polyhedra are
aspect ratiod /L, and finally check the universal finite- sites for dual lattices. There is also a one to one correspon-
size scaling behaviors for these quantities. In R88], HH  dence between the lattice sites and polyhedra on the dual
used two nonuniversal metric factobs, and D3 to fix uni-  |lattice. An example of a planar random lattice with dual,
versal finite-size scaling functions for the percolating prob-under periodic boundary conditions, in both vertical and
ability in terms of bonds. In the present paper, we calculatedhorizontal directions, is shown in Fig(d).

two nonuniversal metric factors of the percolating probabil-  This paper is organized as follows: In Sec. Il, we present
ity in terms of sites, and obtained previously known valuessimulational results foW,, P, (c®), ((c%),), and f,(c")

of nonuniversal metric factors determined by HH, to check f (c%)] for bond percolation, or.,; XL, random lattices,
whether we have universal scaling functions fof,, P,  duals of random lattices, and square lattices, under free and
(c®), ({(c%n), and f,(c?) [f,(c%)] for bond percolation on periodic boundary conditions in vertical and horizontal direc-
random lattices, duals of random lattices, and square latticesions with L,/L,=4. The boundary bonds which cross the

Dirichlet and Voronoi[31] first used the concept of ran- rectangular domain in the vertical direction on the random
dom lattices in condensed matter theory. Christ, Friedberdattices, due to periodic boundary conditions, are eliminated
and Lee(CFL) [32] used another type of random lattice to because of free boundary conditions in the vertical direction
formulate quantum field theory. Here we adopt the CFL al-considered in this paper. We adopt the method of[36] to
gorithm, and give a brief review of the construction of planarfind percolating clusters. Only the first kind of percolating
random lattices and their duals. First we randomly generateluster paths without boundary bonds in the vertical direction
N sites in thelL;XL, rectangular domain with periodic (the clusters extend from top to bottprshould be identified,
boundary conditions. Next we arbitrarily choose three nearbyind an example of this is shown in FigbL In Sec. llI, we
sites, and draw a circle to go through the three sites. If ther@se finite-size scaling theory to check the scaling behaviors
are no lattice sites inside the circle, the three sites are corof various quantities, and to show that such quantities have
nected by links to form a triangle. A planar random lattice isuniversal finite-size scaling functions for regular lattices and
constructed by repeating the process until all sites are corrandom lattices. A summary is provided in Sec. IV.
nected by links. The whole rectangular domain is divided
into 2N nonoverlapping triangles, whose vertices are sites of
the random lattice; circle centers of triangles are the sites of - WalLsL2,P). Ta(C), AND (el
dual lattices. Thus there is a one to one correspondence be- We look at the bond percolation on a lattiGewith linear
tween triangles and dual lattice sites. Because a link of theimensionsL; and L, in horizontal and vertical directions,
random lattice is shared by two triangles, the tworespectively; the probability for the appearancendbp-to-
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FIG. 3. (a) P* and(c®),, and(b) P* and(c®), on a square lattice,

512x128.

with Wo=1-E,.
p
To obtain more detailed information about the contents oflanar random lattice, and the dual of a planar random lattice of size

the percolating cluster, following Tomitet al. [17], we de-

composeWw, as

wheren=1, ...

In terms off ,(c), the average fraction of lattice bon@stes

1
anf fa(c)dc,
0

©, ¢ denotes the fraction of lattice bonds
(siteg in percolating clusters, anél,(c) is the probability
distribution function ofc in subgraphs withn percolating
clusters. The probability distribution function ofin all sub-
graphs is the overall summation bf(c), i.e.,

f<c>=n§l fr(c).

wheren=1, ...
written as

3

<c>=n§1 (c)y= f:cf(c)dc= P.

To generate subgraphs, we use a random bond occupation
process with equal occupation probabilities for each link.
The simulations are performed on 2282, 256<64, and

512%x 128 planar randongpran lattices, and their dual&p-

o, and the percolating probabilify can be

(6)

4) ran), with free and periodic boundary conditions in the ver-
tical and horizontal directions, respectively. To compare the
results with regular lattices, we also perform simulations on

square(sq) lattices of the same sizes. On each lattice, we

tion threshold for every 0.002 increment, and use the random

in subgraphs witm percolating clusters can be expressed asake 60 occupation probabilities around the critical percola-

<C>n=j10fn(0)d0,
0

bond occupation process to generaté-1f configurations

5
© for each
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on a square lattice, a planar random lattice, and the dual of a planar

random lattice of size 512128.
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FIG. 5. The scaled results &,(r,y)=W,(L,L,,p) as a func-
tion of y=(p—p.)LY" for (a) planar random lattices ar@) their

W, (Ly,L,,p) <Cb>n and(cs>n wherec? denotes the frac- duals of sizes 12832, 256<64, and 51X 128. The monotonic
decreasing function is foFy(r,y). The S shaped curve is for

tion of bonds in percolating clusters, aotldenotes the frac-

tion of sites in percolating clusters; the results are shown iff1({"¥)- The bell shaped curves from top to bottom are for

Figs. 2 and 3. The calculated results of the percolating prob'-:
abilities in terms of bondsP®, and in terms of sites, are
also shown in Fig. 3. We calculatg,(c?) and f,(c) at

p=p. and takep,=0.3333 for planar random lattices and general law

p.=0.6667 for dual lattic§30]. The results are shown in
Fig. 4. The differences between bond and site contents in

percolating clusters are shown in Figs. 3 and 4; here, for
clarity of presentation, only the results for 54228 lattices

are plotted in the figures.

I1l. UNIVERSAL FINITE-SIZE SCALING FUNCTIONS

The finite-size scaling theory was first formulated by

X, (1) ~L~P"E(LY).

o(r.y), with n=2, 3, and 4, respectively.

system with a linear dimensiob, X, (t), should obey the

(7)

Here F(x) with x=tL” is labeled as a scaling function,
with v as a correlation length exponent. In 1984, Privman

and Fishef23] considered universal finite-size scaling func-
tions and nonuniversal metric factors, and proposed that the

singular part of the free energy of a critical system can be

Fisher in 197122]. According to the theory, for a physical
quantity X, which scales a((t)~t” in a thermodynamic
system near a critical point=0, the same quantity in a finite
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In Refs.[26,30, three nonuniversal metric factoBs;, D, 02}
andD; were used for regular lattices and random lattices, to onl
describe the universal scaling functions of existence prob- T
ability E, and the percolating probability, i.e., 0.0 Ll—1 . : L
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
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with z=D,(p—po) LY.

Following Hu and Lin[3], in Figs. 3a) and 3b), respec-
tively, we use the evaluated percolation threshpld[30]
and the exact value of the critical exponent; 4/3, to plot
W, , as a function of/=(p— p.)L'", for planar random lat-

lattice (dotted curves (a) n=1; the intersection of the curves on
thex=0 axis, from top to bottom, are far=L,/L,=1,2,3...,6.
(b) The width of curves from small to large are foe=L,/L,
=123...,6.

scaled data fovV, can be described by a single scaling func-

tices and their duals. We can see from these results that thgyn F_(r,y) with r=L,/L,, andF (r,y) for n=2 as a sym-

TABLE I. The values of metric factor®,, D5, DY, DS and

Dg, for square lattices, random lattices, and their duals, with fre
and periodic boundary conditions in vertical and horizontal direc-

tions, respectively.

metric function ofy. In Fig. 6 we plotW,(L,,L,,p) as a
function of x for bond percolation on a 5X128 random

Sattice, the dual of a random lattice, and a square lattice,

wherex=D;(p—p.)LY", with D, taken from Table | and
L=(L,;XL,)"% Figure 6 shows that the calculated results
for eachn can be well described by a single universal scaling
function U ().

Lattices  Square  Planar random  Dual of planar random
D, 1 1.166+0.020 1.17%0.016
D5 1 1.164+0.014 1.176:0.015
D3 1 1.512+0.008 0.7780.002
D3 1 1.186-0.012 1.186:0.014
D3 1 1.062£0.001 1.005:0.002

In Hu and Lin’s papef3], the scaling function& ,(r,y)
were calculated for bond percolation on a square lattice for
various values of the aspect ratiolVe will examine whether
the same nonuniversal metric factd@s can be extended to
different aspect ratios. We calculafé, for L, XL, random

lattices, the duals of random lattices, and square lattices with
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FIG. 9. The scaled results &f(p,L)/L"#”, in terms of bonds
(P=PP®) and sites P=P9), for different types of lattice sizes 256
40 X 64 and 51X 128, as a function of=(p—p.)L*".
Figure 8b) shows thatC(r,0) increases linearly with an in-
3.0 creasingly large, and that different lattices have the same
_ slope of approximately 0.43.
2 Tomita et al. [17] obtained universal finite-size scaling
&)

functions of(c),, (c), f,(c), andf(c) for a bond-correlated
percolation model, corresponding to an Ising model on pla-
nar regular lattices. It is of interest to extend such a study to
bond random percolation on random lattices. From Eg)s.

(6), and(11), the universal scaling functions ¢f) and(c),

can be expressed as

2.0

1.0

(Y} AU P NP N T TP P TP S I T D3<C(p,L)>=L_ﬁ/VG(Z) (13
00 10 20 30 40 50 60 7.0 80 90 100 11.0
r and
1 —Blv
FIG. 8. (a) U, (r,0) as a function of =L, /L,, for a number of Ds(e(p,L))n=L FrG(2), (14)

percolating clusters from 0 to 4, artd) C(r,0) as a function of
=L,/L,, with the slope of the fitting line 0.43. The square lattice
(), the planar random latticeZ), and the dual of the planar

with z=D,(p—pc)LY”. At p=p., the universal scaling
functions off(c) andf,(c) are expressed as

random lattice &), all have horizontal periodic boundary condi- D3 'f(c)=LF"H(z') (19
tions.

and
r=L,/L,=1,2,...,6, anddetermine the universal scaling D3 M (c)=LP"H (), (16

functionsU ,(r,x), wherex=D,(p—p.)L'", and whereD,
is taken from Table I. The results for=1 and 2 are shown With z’=DscL?"”. To check the finite-size scaling and uni-
in Figs. 7@ and 7b), respectively. We can see that the versality of these quantities, we use simulation results for
scaled data for eaahcan be described very well by a single 256X64 and 51X 128 square lattices, planar random lat-
universal scaling function. The results 0f,(r,x) as a func- tices, and their duals. In R¢B0], the percolating probability
tion of r, for n=0,1, ...,4 at thecritical pointp=p., are P is defined in terms of the bond number in percolating
presented in Fig. @), which shows that the three lattices clusters, and the nonuniversal metric fact@rs= D5 and
provide similar results. We also calculate the average numb ;= Dg are used. To evaluate factdds andD3, we adopt
ber of percolating cluster§(r,x), defined by the same procedure as in RE30], plotting P®/L~#'* and
» PS/L~#'" as functions ofy=(p—p.)LY", as shown in Fig.
C(r,x)= z U, (r,x)n. (12) 9. All _the nonun@vers_al metric factprs fo_r the different types
n=1 of lattices used in this paper are listed in Table I.
In Figs. 1Ga) and 1@b), we plot DsP/L~#"" and
C(r,0) for a random lattice, the dual of a random lattice, andDs(c),/L #'* as functions ofz=D,(p—p)LY" for bond
a square lattice, as a functions mfare shown in Fig. @).  content and site content, respectively, with andD 5 taken
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=D s(p- Liwv _
=D, () FIG. 11. The scaled results &f,(z',L)=D; . (c)/ILP" as a

function of z’ =D4(p—p.)L?"" for square lattices, planar random
FIG. 10. Th I It L)=D3< L . -3 “ e
(iﬁ,y 0 € _sca ed_ resufts Of?,f;(z’ ) 8 c(p,_ ) lattices, and their duals of sizes 2664 and 51X 128, with fitting
>, /L , as a function oz=D,(p—p.)L™", for square lattices, It lid ) —¢® and Da=DP- (b) c=cS and D
planar random lattices, and their duals of sizes>268 and 512 rfi)us s(solid curveg: () c=c” and D3=D3; (b) c=c® and D,
X 128.(a) c=c®, D,=D5, andD;=D}Y; (b) c=c®, D,=D}, and " 3"
DSZDZ

from Table I. Atp=p,, the scaled dat®;'f(c)/L#’* and  values of Ref[30], where the boundary conditions are dif-

Dglfn(c)/Lﬁ/”, as functions ofz’:D3cLﬁ/V, are presented ferent from the boundary conditions of the present paper.
in Figs. 11a) and 11b), respectively, for the bond content These results suggest that, in random lattices, the nonuniver-
and site content. Figures 10 and 11 show that the bond pesal metric factors are also independent of the boundary con-
colation processes on square lattices, random lattices, arditions and aspect ratios, as in the case of regular lattices

their duals have universal finite-size scaling functions. [3,26]. Please also note th&x;, D3, andD$ in Table | are
consistent within numerical errors, bDf is not equal tdD$.
IV. SUMMARY AND DISCUSSION Many interesting problems are related to the properties of

multiple percolating clusters. It is of interest to extend the

Having used nonuniversal metric factors from Table | in : . X .
. . N . study of the present paper to higher spatial dimensions. In
this paper, we found that universal finite-size scaling func- y P bap 9 P

. . . particular, a further study of multiple percolating clusters in
tions forW, (Figs. 6 and ¥, (c®),, andP [Fig. 10@)], (¢, . . oS

and PS [Fig. 10b)], f,(c®) [Fig. 11a)], and f,(c%) [Fig. three dimensions could be related to an oil drilling problem.
11(b)]. Figure 7 includes results for different aspect ratips This work was supported in part by the National Science

i.e., 6=r=1. The values of nonuniversal metric factdrs,, Council of the Republic of Chin&Taiwan under Contract
DY, andDg of Table | are consistent with the corresponding No. NSC 89-2112-M-001-084.
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