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We present an extension of past approximations such as the Bethe approximation where we look at gener-
alized Husimi trees. In doing so we obtain a sequence of ever more accurate approximations. The sequence is
very systematic, and sequences of as few as three points can be extrapolated to give critical temperature
estimates to within 0.1% or better of the exact value for our test cases. In the case of the square lattice, Ising
ferromagnet, where five levels of approximation are obtained, estimates within 0.003% are obtained. Critical
exponents can also be approximated but with much less accuracy. Much of our attention is devoted to the
critical line of the phase diagram of the antiferromagnetic Ising model on the square lattice, where our results
compare very favorably with other approximations. The method is general enough to be applicable to any spin
lattice system where the spin takes on a discrete set of values.

DOI: 10.1103/PhysReVvE.64.016126 PACS nuner05.50+q, 64.60.Cn, 75.10.Hk

[. INTRODUCTION approach[6,7] where a discrete, one dimensional map is
found and the phase diagram of the system is determined by

In recent years we have taken a natural step beyond tH&e behavior of the fixed points, periodic cycles, etc., associ-
Bethe approximation, which we take to mean the approximaated with the map. We use this approach but by making
tion based on the behavior of a spin variable at the center gfonnections at more than one site we have multidimensional
a Cayley tree, to consider Husimi trees. Husimi trees arélynamical systems which govern the behavior of the system
built up by Connecting po'ygons’ eg., a three-site triang|e[ather than the one-dimensional maps arising In the Study of
rather than the two-site edges as done in the Cayley tredhe previous systems. For completeness one should mention
This was first done by the authft,?] to study the phase that two site connections are also made in R&f.where a
diagrams of Ising model systems with interactions involvingtwo layer Ising system is studied and connections are there-
more than two sites where clearly the Cayley tree approackre made at two sites.
could not be applied. In addition this was done to approxi- In the following section we present the general method
mate the phase diagram of the antiferromagnetic Ising modélong with some of the extrapolation methods we will use.
on the triangle latticd3]. This system is the prototypical This is followed by approximating the quintessential test
frustrated system and the Bethe approximation does not eveéi@ses two-dimensional, nearest neighbor, ferromagnetic,
give a qualitatively correct phase diagram much less onéSing model systems where exact results for the critical tem-
with any quantitative accurady]. By building up an Husimi  Perature and cr|t|_cal exponents exist. Thls is followed in Sec.
tree composed of three site triangles the frustration arises itY by the approximation of the phase diagram of the antifer-
a natural way and not only was the qualitatively correctomagnetic, nearest neighbor, Ising model on the square lat-
phase diagram obtained but also one with reasonable quaficeé which has been approximated by a large variety of
titative accuracy When Compared against Monte Car|o apmethod over the last 40 yeaI’S. We Compare our results with
proximation or the recenﬂy proposed hard_spin7 mean_ﬁe'dhe most aCCUrat.e of the.se preVipUS results. Some Concluding
approximation of Berkef5]. remarks appear in the final section.

In all the cases studied thus far the connections made in
the construction of the tree occur at a single site, either the
corners of a square or triangle depending on the system be-
ing approximated. Here we go beyond this restriction by We present the basic method by considering the nearest
making connections at multiple sites. In the manner we moreeighbor, ferromagnetic, Ising model on the square lattice.
closely approximate the local correlations and naturally gerive “levels” of approximation will be obtained in the fol-
better approximations. More importantly we can develop dowing section. Each level of approximation will be based on
very systematic sequence of improving approximations thai tree like structure constructed from basic building blocks.
can then be extrapolated using various methods to obtailihe basic building blocks used in the first three levels are
estimates of the critical temperature within 0.1% or better of
the exact results for our test cases where exact results are a b
known. The sequences are rather brief consisting of only 3 to
5 terms all of which can be obtained using a personal com-
puter. Critical exponents can also be approximated but with
less accuracy.

In both the case of the Cayley tree or the Husimi tree
approach to determine the behavior of the magnetization of FIG. 1. The basic building blocks for the first three levels of the
the central sites of the tree one can use a dynamical systemapproximation of the square lattice system.

Il. BASIC METHOD

C

1063-651X/2001/64.)/0161268)/$20.00 64 016126-1 ©2001 The American Physical Society



JAMES L. MONROE PHYSICAL REVIEW E 64 016126

tem is necessar3] to obtain a qualitatively correct phase
diagram. But even for the ferromagnetic pair interaction sys-
tems if connections are made at more than one site then a
higher-dimensional dynamical system is required. In particu-
lar if connections are made at sites then one has a
(2"-1)-dimensional dynamical system.

One can explicitly see this in our second level approxima-
tion where connections are made at two sites when connect-
ing to a new building block. Then we obtain a three-
dimensional dynamical system. Here in a general way things
are similar to the analysis of Hu, Izmalian, and Oganesyan

FIG. 2. The first generation branch for the second level appl’OXi'[8]' Since we are first interested in Obtaining an approxima_
mation of the square lattice system. tion of the critical temperature and since, in this section, we
o i are dealing with a system involving only ferromagnetic pair
shown in Fig. 1. The systematics of these three lowest levghteractions we know by the Lee-Yang circle theorg®j
building blocks allows one to construct any higher level,ihat this occurs only when the magnetic field is zero. There-
basic building block. A single building block will be denoted ore we seth=0. Using A, to represent the partition func-

as a zeroth generation tree, after one series of connections Wg of the zeroth generation branch we have just the 12 site
have a first generation tree, after two series of connections & stem shown in Fig. (b), and one can write

second generation tree, etc. As an example in Fig. 2 we show
the first generation tree of our second level approximation. Ao=A5 +Ag  +A; T+A, T, 3)

On each vertex of a graph representing one of our trees
we have a spin variable which can take on the valuesl, whereAg” is the quarter of the partition function with the
with o representing the spin variable on thé site. Each  spin values of the two base sites denoted by the superscripts
spin variable interacts with a magnetic figldand each edge « andy. Since all spins can take on the valued thena
of the graph represents a pair interactibipetween the spins = +1 andy=*+1 and there are four possible configurations
on the two vertexes connected by the edge. The Hamiltoniaas indicated in Eq(3). We do not write out these expressions

of the system is because they can be quite lengthy, is made up of the ¥
configurations of the 12 site system and even each of the
A$T, Ag™, Ay, and Ay~ consist of 2° configura-
=-J iogi—h - 1 LS L 0 :
Tt azp 717 Z 7 @) tions. While the expressions are lengthy it takes very

little time for a symbolic manipulation program like
where the first sum is over all edges of the graph and th&ATHEMATICA to obtain such expressions.
second sum is over all vertexes. We use these separatg)” terms when we construct ,

For anynth generation system the thermal average of thehe partition function of the first generation tree shown in
spin variable on théth site, i.e., the magnetization of thth  Fig. 2. For example as part df; we will have a class of
site is configuration of the first generation tree where the spins on

the 12 sites of the central or base building block, to which
S ge M the zeroth generation trees are going to be attached, are all
B ' 1 —pH positive. Then we have as the contributionte due to this
<Ui>n_W_An 2 e, 2) specification of the spin values of these 12 sites
e

where the sums are over all configurations, is the stan-
dard partition function, andB=1/(kgT), kg being the

b16(A8—+)3, (4)

where b=exp(8J). The b'® factor is due to the 16 nearest
Boltzmann constant ariflthe temperature. We will be inter- neighbor interactions of the basic building block and each of

++ ;
ested in the behavior of the thermal averages of spins on sitd@€ thréeAq = factors is due to the fact that we have con-
of the central building block of anth generation tree when nected a zeroth generation branch, with their base sites both

n—c, i.e., in the thermodynamic limit. Thermal averages in€9Y&! t°+11’2t° the left, top, and right of our basic building
this limit will be denoted by a pair of brackets without any block. All 27%-1 other configurations specified by setting the
subscript. spin values on the 12 sites of the new basic building b_lopk
As mentioned in the Introduction one can obtain thesé"@" be represented by similar expressions where by similar
thermal averages by a dynamical systems approach. For tf§¢ mean terms involving o the appropriate power and
Cayley tree case see RE6] or [7] and for the Husimi tree Products ofAq ™, Ag —, Ao, andAq, .
case where connections are made at only one site sefliRef. ~ From the above it is clear that; or more importantly
or [2]. In these a one-dimensional dynamical system is ali\1” With againe=*1 andy=*1 can be written in terms
that is necessary to describe the system. For more involvedf a polynomial involvingb, A", Ag~, A, ", and
systems such as the fully frustrated, Ising, antiferromagned, ~ . Of course when we build our second generation tree
on the triangle lattice a higher-dimensional dynamical sysby connecting first generation trees to the left, top, and right
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side of a new basic building block we will need these ex-componentsA2”® wherea=+1, y=+1, andé=+1. In
pressions forA; ", A", A;", and A;~ and in fact the computation of the order parameter one has an expres-
when we begin the construction af,, the partition function  sion similar to Eq(5) but with eight terms in the numerator
for the second generation tree, we have similar considerand 8 terms in the denominator. Similar to what was done for
ations to those involved with ; but it is clear we can write the second level approximation one can divide each of these
A, in terms ofb, A;", A7, A;", andA; andin by A, " this results in a (2-1)- or seven-dimensional
fact in generalA , can be written as a polynomial in terms of map.

b, Af*, Ai5, AT, andA, ;. Therefore we can de-  One can continue to develop larger and larger basic build-
velop a set of recursion relations defining a dynamical sysing blocks with larger numbers of connections resulting in
tem. higher-dimensional maps. As a practical matter the time and

For the determination of the properties of the phase trancomputer memory necessary for the explicit construction of
sition we need to obtain an expression for the thermal averthe maps grows rapidly as the size of the building blocks
age of a spin in our basic building block to which the ( increases. Using a typical year 2000 personal computer we
—1)th generation branches have been attached. If we seleBgve been able to consider five levels of approximation for
as the site of interest the left site of the two base sites of théhe square lattice system.

nth generation tree we can write From a statistical mechanics perspective we are interested
in the infinite generation tree, i.e., in the thermodynamic

ATTHATT=A AT limit, which means from the dynamical systems perspective

(04) ) we are interested in the fixed points of the dynamical system.

T + - -+ -
Ag "+ An +A T A, Physically what one expects is that for high temperatures the

magnetization of the base sites is zero but as the temperature

By definingx,, , , andz, as . o .
y 9%n» Yn " is lowered the magnetization becomes nonzero. This corre-

AFT A+ AC* sponds to a fixed point behavior where at high temperatures
V— . S 6 there is a single, real valued, fixed poihere may be nu-
n 1 y 1 n - ( ) p

Ay A, A, merous complex valued fixed points but they have no physi-

cal meaning corresponding to zero magnetization but as the

one has temperature is lowered one reaches a point below which two
new attracting fixed points are created and the original fixed

XntVYn—2z,—1 . : : .

(O)=—"""—"7"— 7) point becomes repelling. The two new fixed points corre-

XptYntzpt+l spond to a positive and negative spontaneous magnetization.

This is in fact exactly the behavior one finds.

and one has the three-dimensional mappings For each level of approximation one needs to determine

X, = F(0,X0-1Yn-1:Zn-1)s  Yn=0(0:X0—1,Yn-1:Zn_1), the te_mperaturt_a_ at which this c_hangeover occurs. Strlc_tly
speaking the critical temperature is the temperature at which
Z:=i(b,Xn-1,Yn-1,Zn-1), (8) the fixed point corresponding to zero magnetization is nei-

ther attracting or repelling but neutral. We find the critical

wheren=1. The functionsx,=f(b,X,_1,Yn-1,Zn-1), Y,  témperature in this manner. That is we find the fixed point
=9(b,Xy—1,Yn-1.Zn_1), andz,=j(b,X,_1,Yn_1,Z,—1) are  corresponding to zero magnetization and determine when it
rational functions involving in their numerators and denomi-is @ neutral fixed point. This occurs when the Jacobian of the
nators the polynomials mentioned in the previous paragraphdynamical system’s maximum eigenvalue is 1. Results for
when discussing the partition functions. Again while thethe square lattice approximation as well as a hexagonal lat-
above rational functions are lengthy to write down here theytice approximation are given in the next section.
can be found easily and quickly, at least for the lower level Having a sequence of ever improving approximations of
approximations, using a symbolic manipulation program. the critical temperature such as the above allows one to use

Obviously as one increases the level of approximation thearious extrapolation methods to obtain an improved final
number of configurations which must be summed over in@pproximation to the critical temperature. Using a finite size
creases as well as the number of terms needed to be kepgaling like approach one can write
track of due to the increase in the number of connecting
sites. The fact that there are three rational functions defining T(L)=Tf+aL “1+bL™“2+cL™“3+..., (9
the dynamical system whose properties determine the behav-
ior of the second level, generalized Husimi tree approximawhere T; is the critical temperature for the lattice being
tion of the square lattice comes about because of the fouapproximated,T (L) is the critical temperature for thieth
types of connections to be made, ones involving, {), level approximation and where Owi<w,<wz<--- .
(+,-), (—,+), and (—,—) configurations. When going to Given the critical temperature for fivghree levels of ap-
the next level approximation with the basic building block proximation one can truncate the right hand side to include
shown in Fig. 1c) connections involving three sites are three(two) terms and get an approximation f6f . Since we
made and then one must consider thevalues the three have five(three levels of approximation for the squafieex-
spins on a set of these three sites can take. This necessitategonal lattice we do this in Sec. lll where our results for the
using a three variable superscript and eight partition functiorierromagnetic case are reported.
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Furthermore assuming a relationship such as(gqvari- T0 =Tl (Tl T )
ous authors have developed extrapolation schemes that can ’ ’ ’
be used to geT} . One of these is that of Vanden Broeck n T Tom o
and SchwartzVBS) [10] introduced into statistical mechan- N arml/l 1 el et | 1,
ics by Hamer and Barbgf 1]. The algorithm takes the criti- em-1 Tem=2
cal temperature estimates of the various cluster sizes as input (15
and reduces this set of data to a single more accurate value
through a series of steps. wherem=1 and wherew is a free parameter. Henkel and

Using the notation of Hamer and Barbgtl] one has Patkos[14] were the first to use the algorithm in the area of
given a sequence of valud@s(L) which converge to a lim- critical phenomena. Later Henkel and Schiits| examined
iting value T* one forms a table of approximants T the characteristics of this algorithm in a number of settings.
denoted by[L,N] where[L,0]=T.(L) and the N+1)th  The choice ofw in any particular application can be prob-
column of approximants is generated from tieh and (N lematic and this was one of the aspects of the algorithm

—1)th columns via the formula discussed in Ref.15]. There it is suggested that one define
1 a, e =2|Tem = Teml, (16)
+ _
[LN+1]—[L,N] [L,N=1]—[L,N] (e} was defined without the absolute value signs but they
1 1 are needed to minimizeﬁ#’) to get some idea of the reliabil-

(10 ity of the approximation. Henkel and Schytt5] also state

= +
[L+INJ=[LN] - [L=1N]=[L,N] that in the limiti—o one should expect

with (L~ 1]=. [TemTel=<lefll, an
The above defines a broad class of transformations based ’

on the definition ofay. For the case where the sequenceyhere T, is the exact value. Most importantly Henkel and
converges as in Eq9) Barber and Hamefr12] show that @ gopytz suggest that “minimizing(!) gives an intrinsic crite-

good choice for the value afy to be rion for choosingw” [16]. However, we find that this pro-
cedure cannot be used in most cases, because in most cases

an=— [1-(=DM] (11) including this one, one can find valuesa»fvvhereeE;’ equals
2 zero thereby producing a result with apparently no error.
Also in cases where one knows the exact value of the quan-
forN=0,1,2 ... .This is what will be used in the following tity being approximated it is seen these valuesvoflo not
section. give particularly good results. We will further address the

In addition to the VBS extrapolation method we use aissue ofw when we present our results for the ferromagnetic
method of Bulirsch and StogiBST) [13]. Again we start case in the next section.
with a sequence of valuek.(L). The algorithm allows one As for estimates of the critical exponents since one can
to construct a table of extrapolants much like the VBSnumerically find, knowing the fixed point values, the spon-

method. FolL=1,2,3,4,5 we have taneous magnetization as a function af<T.)/T. for T
<T. or the magnetization as a function of the magnetic field
T%o at T=T. then one can use the coherent anomaly method
’ 1 (hereafter CAM of Suzuki[16] to approximate the critical
Tea exponentsy, B, andé. Specifically one has for the sponta-
Ti,o Ti,z neous magnetization of tHeth approximationrmg(L)
2 1
e fes L)=my(L)|e|¥2  wh T Tl g
Tg,o Tg,z Té,A ms(L)=my(L)[e|"%,  where 6_W. (18)
y ¢l . c3 The quantitye is to the power 1/2, which is the classical
Teo Tee value of the critical exponen®. Quantities similar tang(L)
T4 can be defined for the magnetization at the critical tempera-
15 ' 12 ture as a function of the magnetic fietd,(L) and for the
c0 (12) zero field susceptibilityy(L). Suzuki[16] defines these as
. the coherent anomalies and shows these coefficients are re-
and theT; , are computed from lated to the nonclassical critical exponents by
T¢-1=0, (13 myL=[TL) =TI (L) =[T(L)-T5,
T o=Te(n), (14) me(L)~[Te(L)—T¥]s (0= 3)B(G-1], (19
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TABLE |. Critical temperatures and coherent anomalies for thesquare(see Fig. 1 for the first three leveland by the sym-
five Ievels_of approximation of the ferromagnetic system on themetry of the system the magnetization of any of these four
square lattice. sites is the same. Since these sites are at the very center of
our generalized Husimi tree it is the magnetization of one of

Level approximation Te my(L) me(L) these sites which we have used to caIcuIeTtg(L) and
1 2770783 2540892  1.557678 m,(L).
2 2.566925  3.071698  2.024774 Using the values reported in Table | as data for our ex-
3 2482781  3.464550  2.391354 ftrapolation procedures we find the following results. First, if
4 2436614  3.783494  2.700819 we truncate the right hand side of H§) after the third term
5 2407311  4.056260  2.973345 we have five unknowns to solve for, one beifig Since we

have five levels of approximations we can find these five
— — unknowns and in particular we find fof, the value of
To determinemy(L) and m,(L) we numerically determine 2 269127.. which differs from Onsager's exact result by
the magnetization a=0 andT<T(L) and then ah#0  |ags than 0.003%. Because in the case of the hexagonal lat-
and T=T¢(L), respectively. Fory(L) we use(see Suzuki tice we have only three levels of approximation we consider
[16]) this situation for the square lattice to see the level of accu-
— 3 racy obtained. Using data frobm=1, 2, and 3 levels and the
L)= me(L) (20) first two terms on the right hand side of E@®) we have
X mg(L)2" T.=2.19126, while using data from levels 2, 3, and 4 we
have T,=2.24096, and finally using data from levels 3, 4,

Prior to presenting our results we need to mention a finand 5 givesT.=2.25360. As expected using the higher level
technical item that concerns the final step in the constructio@pproximations results in more accurate estimatek, afith
of the tree. Rather than have two base sites that interact witthe last estimate within 0.7% of the exact value.
only two nearest neighbor sites we complete our tree in the Our second and third set of results makes use of the VBS
most symmetric manner possible and consider a centrand BST approaches. All five levels of approximation are
building block wherenth generation branches are connectedused in both cases. With the VBS approach we obtain a
to all four sides of the central building block. For the case oncritical estimate off ;=2.26373. This gives a value approxi-
the square lattice approximation this then gives a structurenately 0.2% from the exact value. The BST result shows one
where all sites except the boundary sites have four nearesf the problems with this approach. As mentioned earlier
neighbor interactions. It is in this manner that the magnetiwith this approach we have a free parameterlf Eq. (9)
zations leading to the coherent anomalies are calculated. consisted of only the first two terms then the choicewof

should be the valu@; as shown in Ref[15] however for

IIl. RESULTS FOR THE FERROMAGNETIC CASES more complex and realistic situations its choice is unclear. In

our use of the five levels of data and the truncation of(Ep.

In Table | we present the results of our five levels oftg include the first three terms we fing,=0.93895. Using
approximation of the square lattice system. In particular, fokhis as our value fow we obtain for the critical temperature
each of the five levels of approximation used we have listeGstimate 2.27040 off by approximately 0.05% from the exact
the critical temperature$ (L) and the coherent anomalies value. Thus given the five levels of approximation from our
m¢(L) andm,(L). There is some choice in determining the systematic series we obtain estimatesTgfwithin 0.2% or

mg(L) andm,(L) values. While we complete the construc- less of the exact value. _

tion of our system in the most symmetric manner possible, so We now use the CAM which has the advantage of not
that in the completed system all sites except boundary site@nly giving us an estimate of the critical temperature but also
have a coordination number of four, nevertheless we do nde critical exponents. Critical exponents are generally more

have translational symmetry and hence the valuﬁgﬂ_) d|ff|cult .to approximate g_nd our results confirm this. To ob-
— . . ) . .., tain estimates for the critical exponerds v, and s we use
andm(L) depend on which site or sites of our basic build-

) . . N the three CAM relationships given in E4.9) along with Eq.
ing block we use in the calculation of the magnetization. '”(18). Only three levels can be used in each determination so

all our basic building blocks there is a central, four site,, " hove results using =1,2,3, L=2,3,4, andL=3,4,5.
These results are presented in Table Ill. Here the worst ap-
roximation for the critical temperature of the nine values is
.2664 which differs from the exact value by only 0.2%. For
the critical exponents unfortunately the estimates are not
nearly so accurate with percent errors ranging from approxi-

TABLE Il. Critical temperatures and coherent anomalies for the
three levels of approximation of the ferromagnetic system on thg
hexagonal lattice.

evel approximation T ms(L) me(L) mately 1.6% fory to 11.2% forg.
1 1.728218 3.113132 2.350285 We now consider the hexagonal lattice. Our basic build-
2 1.640906 3.784388 3.088127 ing blocks for the first two levels are shown in Fig. 3 and
3 1.605865 4.278950 3.663006 results for three levels of approximation are given in Table

Il. Note in the case of the hexagonal lattice that our approxi-
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TABLE Ill. CAM results for the critical temperature and critical TABLE IV. CAM results for the critical temperature and critical
exponents for the ferromagnetic system on the square lattice. exponents for the ferromagnetic system on the hexagonal lattice.

T B é Y T B é Y
Using T¢(L) levels 1, 2,3 2.2664 0.134 Using To(L) andES(L) 1.5197 0.140
Td levels 2, 3,4 2.2676 0.135 Using To(L) andEC(L) 1.5180 16.6
UsingT,(L) levels 1, 2,3 2.2665 14.38
and levels 2, 3,4 2.2672 14.18
m(L) levels 3,4, 5 2.2690 13.78 tion (the first two levels of which are shown in Fig) &
UsingT¢(L) levels1,2,3 2.2666 1.786  might be more appropriate to use the square root of the num-
and levels 2, 3,4 2.2668 1.786 ber of lattice sites in a building block. With this for our
x(L) levels 3, 4,5 2.2684 1.779 values ofL we obtain the much better estimate of 1.5206

differing from the exact result by just over 0.1%. Results
found using the CAM on the data involving the hexagonal

mation scheme consists of building blocks whose conned@tice are given in Tables Ill and IV. The result fog are
tions are quite different from those used in the square lattic¥€"y 900d with the worst estimate being off by 0.15% of the
example. In particular, connections are made along edge§,xaCt result and the average of all six estimates d|1_°fer|ng
hence rather than a site being shared by two building block0m the exact value by only 0.04%. Again the errors in the
the interaction is also. This results in even the simplest con€Stimates of the critical exponent values are much greater
nection involving two sites and every increasingly highertha” for the critical temperature and range from 3 to 12 %.

level of approximation having a connection involving two
more sites not one more site as in the square Iatti_ce Caseyy RESULTS FOR THE ANTIFERROMAGNETIC CASE
This results in the dimension of the dynamic system increas-
ing more rapidly. For this reason and to a lesser extent the In this section we present the results for the antiferromag-
fact that the number of sites involvé6, 18, and 36 sites for netic, Ising model, on the square lattice. For this system there
the first three levelsincreases more rapidly in the hexagonalis a critical line in then-T plane and it is this critical line we
lattice series than in the square lattice series we have onhyish to approximate. Unlike the two earlier systems investi-
three levels of approximation. At the third level approxima-gated there are no exact results for this system. However,
tion for the hexagon lattice we have a 63%¢21) dimen- there have been twenty or more approximations over the last
sional dynamical system. It should be noted that variougt0 years. We compare our results to five of the most accurate
symmetries exist which allows one to significantly reduceof these approximations.
the dimensions of the mapping. These symmetries were used We have for eight different temperature values running
for both lattice systems studied to reduce the amount of confrom 0.10 to 2.00 found the value of the critical magnetic
puter memory and computation time necessary to obtain oufeld. Actually the critical line is symmetric about tlieaxis
results(see further comments in Sec).V and we need only look &>0. This has been done for five
Results using the first two terms of E@), the VBS ap- levels of approximation just as was done for the square lat-
proach, and the BST approac¢hgain takingw=0.93895) tice, ferromagnetic case. These results are presented in Table
give critical temperature estimates of 1.494, 1.58237, an¥. The square lattice is a bipartite lattice and we haveAan
1.51929, respectively. As in the case of the square latticand B sublattice. When we build up our trees we must dis-
the BST results are the most accurate of these three apnguish between connections Btsublattice sites from con-
proaches with only a 0.05% error from the exact value ofnections afA sublattice sites. This results in the doubling of
1.518651 - - . The method better handles short sequences dhe dimensions of the dynamical systems generated at the
input as mentioned in Henkel and Sch{t5]. In the case of various levels. This is similar to what occurred in our ap-
Eq. (9) we have used.=1, 2, and 3 to obtain the estimate proximation[3] of the triangle lattice, Ising, antiferromagnet
of 1.494 following what was done for the square lattice.only there because of having, B, and C sublattice sites
HoweverL should reflect the size of the system and it doeghere is a tripling of the dimensions of the dynamical system.
for these values in the case of the square building block but Here we look at the staggered magnetization as the order
with the building blocks used for the hexagonal approxima-parameter for a given temperature there is an attracting fixed
point corresponding to zero staggered magnetization for suf-
a b ficiently large magnetic field but as the magnetic field value
is decreased this fixed point becomes repelling and two new
fixed points appear corresponding to nonzero staggered mag-
netization. It is the value of the magnetic field where this
change from an attracting to a repelling fixed point is made
that is recorded in Table V.
FIG. 3. The basic building blocks for the first two levels of the ~ Based on the results presented in Table V we use both the
approximation of the hexagonal lattice system. VBS and BST approaches to find our best estimates for the
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TABLE V. Critical magnetic field values for various temperatures for the five levels of approximation of
the antiferromagnetic system on the square lattice.

Temperature First level Second level Third level Fourth level Fifth level
approx. approx. approx. approx. approx.

0.1000 - - 3.9658737 3.9535046 3.9482128 3.9451893 3.9432202
0.2500 - - 3.9146842 3.8837614 3.8705319 3.8629732 3.8580506
0.5000 - - 3.8291128 3.7672380 3.7407626 3.7256352 3.7157833
0.854449635 3.6965658 3.5895826 3.5436203 3.5173337 3.5002049
1.0000-- 3.6298789 3.5027626 3.4479148 3.4165128 3.3690378
1.5000-- 3.3054913 3.0953012 3.0019620 2.9580392 2.9126861
1.924363127 2.8554956 2.5360157 2.3866082 2.2982119 2.2393348
2.0000-- 2.7512629 2.4040987 2.2392320 2.1408287 2.0748739

critical magnetic field. These values are presented in Tabléne for this model have been given by Wang and Kim
VI along with the results from five other approximation [21,22 and Tarasenko, Jastrabik, Nieto, and Uehj2§].
methods which we briefly describe. The first of these ap-The first of these uses the zeros of a pseudopartition func-
proximations is due to Muller-Hartmann and Zittaftz7]  tion, their relation to the free energy, and Griffith’'s smooth-
(denoted MHZ in Table VIl and is based on their interface ness postulate to obtain the following equation for the critical
method. This gives an analytic expression for the critical lindine:

which was initially conjectured to be exact since it was

known to be exact foh=0. This has subsequently been 48131 = o289l cosRT £(1hD) 1+ sinkr £ (1h 21
shown not to be the case. Nevertheless the results are quite © € cosif(In)1+sintrLf(|AD], (2D
accurate.

Following the results of Muller-Hartmann and Zittartz in Where 3. is the critical value foh=0. The functionf(|h)
Table VI are the results of Wu and Wa8] and the closely must be determined. Wand and Kii#2] give two approxi-
associated results of Blote and W19]. These are results mations forf(|h[). We present only the most accurate
that take as their starting point some estimates of critical
points along theh-T line by Blote and den Nij§20] who f(|n|)~0.542578h| +0.0034874h|2— 0.0035329|3.
used finite size scaling and a large scale computer calculation (22)
involving the calculation of the eigenvalues of the transfer
matrix for strips of widths up to 16 sites to obtain the critical
temperature for four different values of the magnetic field.
These results were used by Wu and \Mi8] to obtain a
closed form expression for the critical line. Blote and Wu
[19] go back to the finite-size scaling approach of Blote an
den Nijs[20] but look at more points along the T critical

Wang and Kim use two numerical results as input in order to
determine the numerical coefficients of the above polyno-
mial. First they use the numerical value for the slope of the
ritical line at T=0 andh=4 determined by Baxteet al.
24]. The authors were apparently unaware of the more ac-
line curve and use widths up to 20 sites across. Based 0(];1ura(11tehresullts g‘; :fam:jeglarRz and BIOEEdSJI‘D Sec%n_d tEey
these results they rule out the polynomial expression of Rei?sne the value ok found by Rapaport an on_[ﬁ | in the -
[18] and produce one of their own. Results based on these 'OWINg equa_tlon which describes the behavior of the criti-
polynomials or the direct finite size scaling results are pre—Cal line neam=0
sented in columns 6 and 7 of Table VI.

Two very recent approaches to approximating the critical T.(h)=T¢(0)[1— ah?]+0(h?%). (23

TABLE VI. A comparison of results for the antiferromagnetic system on the square lattice.

T BST BST VBS MHZ Wu and Blote and Wang and  T,J,N,
(w=0.92484) ©=0.93895) [17] Wu [18] Wu [19] Kim [22] andU [23]
0.100 3.93307 3.93318 3.93467 3.93069 3.93329 3.93330 3.93372 3.96483
0.250 3.83269 3.83297 3.83668 3.82671 3.83324 3.83334 3.83582 3.88802
0.500 3.66506 3.66561 3.67280 3.65309 3.66611 3.66614 3.67589 3.72636
0.853449635 3.41418 3.41491 3.42529 3.39233 3.41346 3.41380 3.43583 3.43914
1.000 3.29303 3.29391 3.30570 3.26843 3.29200 3.29261 3.31764 3.29923
1.500 2.73243 2.73396 2.74868 2.70401 2.73094 2.73176 2.75099 2.70149
1.924363127 1.92565 1.92788 1.94166 1.90214 1.92436 1.92436 1.92695 1.93176
2.000 1.71629 1.71872 1.73093 1.69490 1.71492 1.71499 1.71512 1.73878
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Again the authors were apparently unaware of the value for=0.853449635 case which is another value investigated by
« found by Kaufmar]{27] which is accurate to an additional Blote and Wu using finite size scaling but is not a tempera-
five figures. Using these more accurate values we obtain fdure value considered directly by Wu and \W8]. Thus the
f(|h|) h value given in column 6 is from Wu and Wu’s polynomial
expression and one sees the discrepancy with the finite size
f(|h])~0.5426784h| +0.0034370f|*—0.0035266|° scaling value. The difference between the two values being

(24) approximately the same size as the difference between the

which improves the results of Wang and Kiia2] particu- Husimi tree results and the Blote and Wu result.
larly in the region neah=0. We present these modified
results column 8 of Table V.

Finally the results of Tarasenko, Jastrabik, Nieto, and Ue- In the preceding two sections we have established the
bing [23] who use real-space renormalization group tech-accuracy of our methods beginning with comparisons with
nigues with two types of majority rules are presented in theexact results for the ferromagnetic case and then with com-
last column of Table VI. parisons with a number of other approximations for the an-

For the full range of temperature values our results showtiferromagnetic case. But any approximation needs to be
in the second and third columns are among the most accurajedged not only on its accuracy but also the amount of time
available. These results are based on the five levels of agnd facilities required to get the approximations and also on
proximation along with the BST extrapolation method. Weits ability to handle more than a select set of systems. In
have used two values ab: one, w=0.93895, is the value these regards we mention first, that all calculations were per-
mentioned in the previous section, and the other, formed on a personal computé400 MHz, 256 Mbyte
=0.92484, is the value ab (to five figure accuragywhich ~ RAM) with the most lengthy calculations, those involving

when used with the five levels for the ferromagnetic systenm_ (L) taking approximately 10 h for the=5 case. Second,
and the BST method gives the corréy, that found by the method is in theory applicable to any discrete spin sys-
Onsager, for the ferromagnetic system. Of course this is alsam on a lattice as then the methods outlined in Sec. Il can be
the correctT, value for the antiferromagnetic case whien applied to construct the appropriate map. However, the
=0. We also present the results after using the VBS aplarger the number of allowed spin values the more rapidly
proach which again shows the BST approach to be the supéhe dimensions of the dynamical system increase, thereby
rior method. limiting the number of levels one may be able to effectively

For the best comparison of the approximations we look ahandle. Nevertheless as mentioned earlier even a single level
T=1.924363127 where Blote and Wi9] through extensive where connections are made at a single site may be enough
finite size scaling calculations obtdir=1.924363127 so that to model rather complex phase diagrams as in the case of
T=hin this case. In this case using either value of our awo frustrated systemg3]. We have here fixed our attention on
values our results are the closest to the Blote and Wu valueather simple systems where we investigated the accuracy
of all approximations. We also point out thél  achievable by this systematic approach.
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