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Systematic approximation method for the critical properties of lattice spin systems
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Department of Physics, Beaver Campus, Penn State University, 100 University Drive, Monaca, Pennsylvania 15061-2799

~Received 26 December 2000; published 26 June 2001!

We present an extension of past approximations such as the Bethe approximation where we look at gener-
alized Husimi trees. In doing so we obtain a sequence of ever more accurate approximations. The sequence is
very systematic, and sequences of as few as three points can be extrapolated to give critical temperature
estimates to within 0.1% or better of the exact value for our test cases. In the case of the square lattice, Ising
ferromagnet, where five levels of approximation are obtained, estimates within 0.003% are obtained. Critical
exponents can also be approximated but with much less accuracy. Much of our attention is devoted to the
critical line of the phase diagram of the antiferromagnetic Ising model on the square lattice, where our results
compare very favorably with other approximations. The method is general enough to be applicable to any spin
lattice system where the spin takes on a discrete set of values.
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I. INTRODUCTION

In recent years we have taken a natural step beyond
Bethe approximation, which we take to mean the approxim
tion based on the behavior of a spin variable at the cente
a Cayley tree, to consider Husimi trees. Husimi trees
built up by connecting polygons, e.g., a three-site triang
rather than the two-site edges as done in the Cayley t
This was first done by the author@1,2# to study the phase
diagrams of Ising model systems with interactions involvi
more than two sites where clearly the Cayley tree appro
could not be applied. In addition this was done to appro
mate the phase diagram of the antiferromagnetic Ising mo
on the triangle lattice@3#. This system is the prototypica
frustrated system and the Bethe approximation does not e
give a qualitatively correct phase diagram much less
with any quantitative accuracy@4#. By building up an Husimi
tree composed of three site triangles the frustration arise
a natural way and not only was the qualitatively corre
phase diagram obtained but also one with reasonable q
titative accuracy when compared against Monte Carlo
proximation or the recently proposed hard-spin, mean-fi
approximation of Berker@5#.

In all the cases studied thus far the connections mad
the construction of the tree occur at a single site, either
corners of a square or triangle depending on the system
ing approximated. Here we go beyond this restriction
making connections at multiple sites. In the manner we m
closely approximate the local correlations and naturally
better approximations. More importantly we can develop
very systematic sequence of improving approximations
can then be extrapolated using various methods to ob
estimates of the critical temperature within 0.1% or better
the exact results for our test cases where exact results
known. The sequences are rather brief consisting of only
5 terms all of which can be obtained using a personal co
puter. Critical exponents can also be approximated but w
less accuracy.

In both the case of the Cayley tree or the Husimi tr
approach to determine the behavior of the magnetization
the central sites of the tree one can use a dynamical sys
1063-651X/2001/64~1!/016126~8!/$20.00 64 0161
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approach@6,7# where a discrete, one dimensional map
found and the phase diagram of the system is determine
the behavior of the fixed points, periodic cycles, etc., ass
ated with the map. We use this approach but by mak
connections at more than one site we have multidimensio
dynamical systems which govern the behavior of the sys
rather than the one-dimensional maps arising in the stud
the previous systems. For completeness one should men
that two site connections are also made in Ref.@8# where a
two layer Ising system is studied and connections are th
fore made at two sites.

In the following section we present the general meth
along with some of the extrapolation methods we will us
This is followed by approximating the quintessential te
cases two-dimensional, nearest neighbor, ferromagn
Ising model systems where exact results for the critical te
perature and critical exponents exist. This is followed in S
IV by the approximation of the phase diagram of the antif
romagnetic, nearest neighbor, Ising model on the square
tice which has been approximated by a large variety
method over the last 40 years. We compare our results w
the most accurate of these previous results. Some conclu
remarks appear in the final section.

II. BASIC METHOD

We present the basic method by considering the nea
neighbor, ferromagnetic, Ising model on the square latt
Five ‘‘levels’’ of approximation will be obtained in the fol-
lowing section. Each level of approximation will be based
a tree like structure constructed from basic building bloc
The basic building blocks used in the first three levels

FIG. 1. The basic building blocks for the first three levels of t
approximation of the square lattice system.
©2001 The American Physical Society26-1
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JAMES L. MONROE PHYSICAL REVIEW E 64 016126
shown in Fig. 1. The systematics of these three lowest le
building blocks allows one to construct any higher lev
basic building block. A single building block will be denote
as a zeroth generation tree, after one series of connection
have a first generation tree, after two series of connectio
second generation tree, etc. As an example in Fig. 2 we s
the first generation tree of our second level approximatio

On each vertex of a graph representing one of our tr
we have a spin variables which can take on the values61,
with s i representing the spin variable on thei th site. Each
spin variable interacts with a magnetic fieldh and each edge
of the graph represents a pair interactionJ between the spins
on the two vertexes connected by the edge. The Hamilton
of the system is

H52J(
^ i , j &

s is j2h(
i

s i , ~1!

where the first sum is over all edges of the graph and
second sum is over all vertexes.

For anynth generation system the thermal average of
spin variable on thei th site, i.e., the magnetization of thei th
site is

^s i&n5
( s ie

2bH

( e2bH
5Ln

21( s ie
2bH, ~2!

where the sums are over all configurations,Ln is the stan-
dard partition function, andb51/(kBT), kB being the
Boltzmann constant andT the temperature. We will be inter
ested in the behavior of the thermal averages of spins on
of the central building block of annth generation tree when
n→`, i.e., in the thermodynamic limit. Thermal averages
this limit will be denoted by a pair of brackets without an
subscript.

As mentioned in the Introduction one can obtain the
thermal averages by a dynamical systems approach. Fo
Cayley tree case see Ref.@6# or @7# and for the Husimi tree
case where connections are made at only one site see Re@1#
or @2#. In these a one-dimensional dynamical system is
that is necessary to describe the system. For more invo
systems such as the fully frustrated, Ising, antiferromag
on the triangle lattice a higher-dimensional dynamical s

FIG. 2. The first generation branch for the second level appr
mation of the square lattice system.
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tem is necessary@3# to obtain a qualitatively correct phas
diagram. But even for the ferromagnetic pair interaction s
tems if connections are made at more than one site the
higher-dimensional dynamical system is required. In parti
lar if connections are made atn sites then one has
(2n-1)-dimensional dynamical system.

One can explicitly see this in our second level approxim
tion where connections are made at two sites when conn
ing to a new building block. Then we obtain a thre
dimensional dynamical system. Here in a general way thi
are similar to the analysis of Hu, Izmalian, and Oganes
@8#. Since we are first interested in obtaining an approxim
tion of the critical temperature and since, in this section,
are dealing with a system involving only ferromagnetic p
interactions we know by the Lee-Yang circle theorem@9#
that this occurs only when the magnetic field is zero. The
fore we seth50. UsingL0 to represent the partition func
tion of the zeroth generation branch we have just the 12
system shown in Fig. 1~b!, and one can write

L05L0
111L0

121L0
211L0

22 , ~3!

whereL0
ag is the quarter of the partition function with th

spin values of the two base sites denoted by the supersc
a andg. Since all spins can take on the values61 thena
561 andg561 and there are four possible configuratio
as indicated in Eq.~3!. We do not write out these expression
because they can be quite lengthy.L0 is made up of the 212

configurations of the 12 site system and even each of
L0

11 , L0
12 , L0

21 , and L0
22 consist of 210 configura-

tions. While the expressions are lengthy it takes ve
little time for a symbolic manipulation program lik
MATHEMATICA to obtain such expressions.

We use these separateL0
ag terms when we constructL1,

the partition function of the first generation tree shown
Fig. 2. For example as part ofL1 we will have a class of
configuration of the first generation tree where the spins
the 12 sites of the central or base building block, to wh
the zeroth generation trees are going to be attached, ar
positive. Then we have as the contribution toL1 due to this
specification of the spin values of these 12 sites

b16~L0
11!3, ~4!

whereb[exp(bJ). The b16 factor is due to the 16 neares
neighbor interactions of the basic building block and each
the threeL0

11 factors is due to the fact that we have co
nected a zeroth generation branch, with their base sites
equal to11, to the left, top, and right of our basic buildin
block. All 212-1 other configurations specified by setting t
spin values on the 12 sites of the new basic building blo
can be represented by similar expressions where by sim
we mean terms involvingb to the appropriate power an
products ofL0

11 , L0
12 , L0

21 , andL0
22 .

From the above it is clear thatL1 or more importantly
L1

ag with againa561 andg561 can be written in terms
of a polynomial involving b, L0

11 , L0
12 , L0

21 , and
L0

22 . Of course when we build our second generation t
by connecting first generation trees to the left, top, and ri

i-
6-2
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SYSTEMATIC APPROXIMATION METHOD FOR THE . . . PHYSICAL REVIEW E 64 016126
side of a new basic building block we will need these e
pressions forL1

11 , L1
12 , L1

21 , and L1
22 and in fact

when we begin the construction ofL2, the partition function
for the second generation tree, we have similar consid
ations to those involved withL1 but it is clear we can write
L2 in terms of b, L1

11 , L1
12 , L1

21 , and L1
22 and in

fact in generalLn can be written as a polynomial in terms
b, Ln21

11 , Ln21
12 , Ln21

21 , andLn21
22 . Therefore we can de

velop a set of recursion relations defining a dynamical s
tem.

For the determination of the properties of the phase tr
sition we need to obtain an expression for the thermal a
age of a spin in our basic building block to which then
21)th generation branches have been attached. If we s
as the site of interest the left site of the two base sites of
nth generation tree we can write

^sa&5
Ln

111Ln
122Ln

212Ln
22

Ln
111Ln

121Ln
211Ln

22
. ~5!

By definingxn , yn , andzn as

xn5
Ln

11

Ln
22

, y5
Ln

12

Ln
22

, zn5
Ln

21

Ln
22

~6!

one has

^sa&5
xn1yn2zn21

xn1yn1zn11
~7!

and one has the three-dimensional mappings

xn5 f ~b,xn21 ,yn21 ,zn21!, yn5g~b,xn21 ,yn21 ,zn21!,

zn5 j ~b,xn21 ,yn21 ,zn21!, ~8!

where n>1. The functionsxn5 f (b,xn21 ,yn21 ,zn21), yn
5g(b,xn21 ,yn21 ,zn21), andzn5 j (b,xn21 ,yn21 ,zn21) are
rational functions involving in their numerators and denom
nators the polynomials mentioned in the previous paragra
when discussing the partition functions. Again while t
above rational functions are lengthy to write down here th
can be found easily and quickly, at least for the lower le
approximations, using a symbolic manipulation program.

Obviously as one increases the level of approximation
number of configurations which must be summed over
creases as well as the number of terms needed to be
track of due to the increase in the number of connect
sites. The fact that there are three rational functions defin
the dynamical system whose properties determine the be
ior of the second level, generalized Husimi tree approxim
tion of the square lattice comes about because of the
types of connections to be made, ones involving (1,1),
(1,2), (2,1), and (2,2) configurations. When going to
the next level approximation with the basic building blo
shown in Fig. 1~c! connections involving three sites a
made and then one must consider the 23 values the three
spins on a set of these three sites can take. This necess
using a three variable superscript and eight partition func
01612
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agd where a561, g561, andd561. In

the computation of the order parameter one has an exp
sion similar to Eq.~5! but with eight terms in the numerato
and 8 terms in the denominator. Similar to what was done
the second level approximation one can divide each of th
by Ln

222 this results in a (23-1)- or seven-dimensiona
map.

One can continue to develop larger and larger basic bu
ing blocks with larger numbers of connections resulting
higher-dimensional maps. As a practical matter the time
computer memory necessary for the explicit construction
the maps grows rapidly as the size of the building bloc
increases. Using a typical year 2000 personal computer
have been able to consider five levels of approximation
the square lattice system.

From a statistical mechanics perspective we are intere
in the infinite generation tree, i.e., in the thermodynam
limit, which means from the dynamical systems perspect
we are interested in the fixed points of the dynamical syst
Physically what one expects is that for high temperatures
magnetization of the base sites is zero but as the tempera
is lowered the magnetization becomes nonzero. This co
sponds to a fixed point behavior where at high temperatu
there is a single, real valued, fixed point~there may be nu-
merous complex valued fixed points but they have no ph
cal meaning! corresponding to zero magnetization but as
temperature is lowered one reaches a point below which
new attracting fixed points are created and the original fix
point becomes repelling. The two new fixed points cor
spond to a positive and negative spontaneous magnetiza
This is in fact exactly the behavior one finds.

For each level of approximation one needs to determ
the temperature at which this changeover occurs. Stri
speaking the critical temperature is the temperature at wh
the fixed point corresponding to zero magnetization is n
ther attracting or repelling but neutral. We find the critic
temperature in this manner. That is we find the fixed po
corresponding to zero magnetization and determine whe
is a neutral fixed point. This occurs when the Jacobian of
dynamical system’s maximum eigenvalue is 1. Results
the square lattice approximation as well as a hexagonal
tice approximation are given in the next section.

Having a sequence of ever improving approximations
the critical temperature such as the above allows one to
various extrapolation methods to obtain an improved fi
approximation to the critical temperature. Using a finite s
scaling like approach one can write

Tc~L !5Tc* 1aL2v11bL2v21cL2v31•••, ~9!

where Tc* is the critical temperature for the lattice bein
approximated,Tc(L) is the critical temperature for theLth
level approximation and where 0,v1,v2,v3,••• .
Given the critical temperature for five~three! levels of ap-
proximation one can truncate the right hand side to inclu
three~two! terms and get an approximation forTc* . Since we
have five~three! levels of approximation for the square~hex-
agonal! lattice we do this in Sec. III where our results for th
ferromagnetic case are reported.
6-3
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JAMES L. MONROE PHYSICAL REVIEW E 64 016126
Furthermore assuming a relationship such as Eq.~9! vari-
ous authors have developed extrapolation schemes tha
be used to getTc* . One of these is that of Vanden Broec
and Schwartz~VBS! @10# introduced into statistical mechan
ics by Hamer and Barber@11#. The algorithm takes the criti
cal temperature estimates of the various cluster sizes as
and reduces this set of data to a single more accurate v
through a series of steps.

Using the notation of Hamer and Barber@11# one has
given a sequence of valuesTc(L) which converge to a lim-
iting value Tc* one forms a table of approximants toTc*
denoted by@L,N# where @L,0#5Tc(L) and the (N11)th
column of approximants is generated from theNth and (N
21)th columns via the formula

1

@L,N11#2@L,N#
1

aN

@L,N21#2@L,N#

5
1

@L11,N#2@L,N#
1

1

@L21,N#2@L,N#
~10!

with @L,21#[`.
The above defines a broad class of transformations b

on the definition ofaN . For the case where the sequen
converges as in Eq.~9! Barber and Hamer@12# show that a
good choice for the value ofaN to be

aN52
@12~21!N#

2
~11!

for N50,1,2, . . . . This is what will be used in the following
section.

In addition to the VBS extrapolation method we use
method of Bulirsch and Stoer~BST! @13#. Again we start
with a sequence of valuesTc(L). The algorithm allows one
to construct a table of extrapolants much like the VB
method. ForL51,2,3,4,5 we have

Tc,0
1

Tc,1
1

Tc,0
2 Tc,2

1

Tc,1
2 Tc,3

1

Tc,0
3 Tc,2

2 Tc,4
1

Tc,1
3 Tc,3

2

Tc,0
4 Tc,2

3

Tc,1
4

Tc,0
5 ~12!

and theTc,q
n are computed from

Tc,21
n 50, ~13!

Tc,0
n 5Tc~n!, ~14!
01612
an
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Tc,m
n 5Tc,m21

n11 1~Tc,m21
n11 2Tc,m21

n !

3F S n

n1mD S 12
Tc,m21

n11 2Tc,m21
n

Tc,m21
n11 2Tc,m22

n11 D 21G21

,

~15!

wherem>1 and wherev is a free parameter. Henkel an
Patkos@14# were the first to use the algorithm in the area
critical phenomena. Later Henkel and Schutz@15# examined
the characteristics of this algorithm in a number of settin
The choice ofv in any particular application can be prob
lematic and this was one of the aspects of the algorit
discussed in Ref.@15#. There it is suggested that one defin

em
( i )52uTc,m

i 112Tc,m
i u, ~16!

(em
( i ) was defined without the absolute value signs but th

are needed to minimizeem
( i )) to get some idea of the reliabil

ity of the approximation. Henkel and Schutz@15# also state
that in the limit i→` one should expect

uTc,m
i 2Tcu<uem

( i )u, ~17!

whereTc is the exact value. Most importantly Henkel an
Schutz suggest that ‘‘minimizingem

( i ) gives an intrinsic crite-
rion for choosingv ’’ @16#. However, we find that this pro
cedure cannot be used in most cases, because in most
including this one, one can find values ofv whereem

( i ) equals
zero thereby producing a result with apparently no err
Also in cases where one knows the exact value of the qu
tity being approximated it is seen these values ofv do not
give particularly good results. We will further address t
issue ofv when we present our results for the ferromagne
case in the next section.

As for estimates of the critical exponents since one c
numerically find, knowing the fixed point values, the spo
taneous magnetization as a function of (T2Tc)/Tc for T
,Tc or the magnetization as a function of the magnetic fi
at T5Tc then one can use the coherent anomaly met
~hereafter CAM! of Suzuki @16# to approximate the critica
exponentsa, b, andd. Specifically one has for the sponta
neous magnetization of theLth approximationms(L)

ms~L !5m̄s~L !u«u1/2, where e5
T2Tc~L !

Tc~L !
. ~18!

The quantitye is to the power 1/2, which is the classic
value of the critical exponentb. Quantities similar tom̄s(L)
can be defined for the magnetization at the critical tempe
ture as a function of the magnetic fieldmc(L) and for the
zero field susceptibilityx(L). Suzuki @16# defines these as
the coherent anomalies and shows these coefficients ar
lated to the nonclassical critical exponents by

m̄s~L !'@Tc~L !2Tc* #b21/2, x̄~L !'@Tc~L !2Tc* #12g,

m̄c~L !'@Tc~L !2Tc* #d2g(d23)/[3(d21)]. ~19!
6-4
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SYSTEMATIC APPROXIMATION METHOD FOR THE . . . PHYSICAL REVIEW E 64 016126
To determinem̄s(L) and m̄c(L) we numerically determine
the magnetization ath50 andT,Tc(L) and then athÞ0
and T5Tc(L), respectively. Forx̄(L) we use~see Suzuki
@16#!

x̄~L !5
m̄c~L !3

m̄s~L !2
. ~20!

Prior to presenting our results we need to mention a fi
technical item that concerns the final step in the construc
of the tree. Rather than have two base sites that interact
only two nearest neighbor sites we complete our tree in
most symmetric manner possible and consider a cen
building block wherenth generation branches are connec
to all four sides of the central building block. For the case
the square lattice approximation this then gives a struc
where all sites except the boundary sites have four nea
neighbor interactions. It is in this manner that the magn
zations leading to the coherent anomalies are calculated

III. RESULTS FOR THE FERROMAGNETIC CASES

In Table I we present the results of our five levels
approximation of the square lattice system. In particular,
each of the five levels of approximation used we have lis
the critical temperaturesTc(L) and the coherent anomalie
m̄s(L) andm̄c(L). There is some choice in determining th
m̄s(L) and m̄c(L) values. While we complete the constru
tion of our system in the most symmetric manner possible
that in the completed system all sites except boundary s
have a coordination number of four, nevertheless we do
have translational symmetry and hence the value ofm̄s(L)
andm̄c(L) depend on which site or sites of our basic bui
ing block we use in the calculation of the magnetization.
all our basic building blocks there is a central, four s

TABLE I. Critical temperatures and coherent anomalies for
five levels of approximation of the ferromagnetic system on
square lattice.

Level approximation Tc m̄s(L) m̄c(L)

1 2.770783 2.540892 1.557678
2 2.566925 3.071698 2.024774
3 2.482781 3.464550 2.391354
4 2.436614 3.783494 2.700819
5 2.407311 4.056260 2.973345

TABLE II. Critical temperatures and coherent anomalies for
three levels of approximation of the ferromagnetic system on
hexagonal lattice.

Level approximation Tc m̄s(L) m̄c(L)

1 1.728218 3.113132 2.350285
2 1.640906 3.784388 3.088127
3 1.605865 4.278950 3.663006
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square~see Fig. 1 for the first three levels! and by the sym-
metry of the system the magnetization of any of these f
sites is the same. Since these sites are at the very cent
our generalized Husimi tree it is the magnetization of one

these sites which we have used to calculatem̄s(L) and

m̄c(L).
Using the values reported in Table I as data for our

trapolation procedures we find the following results. First
we truncate the right hand side of Eq.~9! after the third term
we have five unknowns to solve for, one beingTc . Since we
have five levels of approximations we can find these fi
unknowns and in particular we find forTc the value of
2.269127••• which differs from Onsager’s exact result b
less than 0.003%. Because in the case of the hexagona
tice we have only three levels of approximation we consi
this situation for the square lattice to see the level of ac
racy obtained. Using data fromL51, 2, and 3 levels and the
first two terms on the right hand side of Eq.~9! we have
Tc52.19126, while using data from levels 2, 3, and 4 w
haveTc52.24096, and finally using data from levels 3,
and 5 givesTc52.25360. As expected using the higher lev
approximations results in more accurate estimates ofTc with
the last estimate within 0.7% of the exact value.

Our second and third set of results makes use of the V
and BST approaches. All five levels of approximation a
used in both cases. With the VBS approach we obtai
critical estimate ofTc52.26373. This gives a value approx
mately 0.2% from the exact value. The BST result shows
of the problems with this approach. As mentioned ear
with this approach we have a free parameterv. If Eq. ~9!
consisted of only the first two terms then the choice ofv
should be the valuev1 as shown in Ref.@15# however for
more complex and realistic situations its choice is unclear
our use of the five levels of data and the truncation of Eq.~9!
to include the first three terms we findv150.93895. Using
this as our value forv we obtain for the critical temperatur
estimate 2.27040 off by approximately 0.05% from the ex
value. Thus given the five levels of approximation from o
systematic series we obtain estimates ofTc within 0.2% or
less of the exact value.

We now use the CAM which has the advantage of n
only giving us an estimate of the critical temperature but a
the critical exponents. Critical exponents are generally m
difficult to approximate and our results confirm this. To o
tain estimates for the critical exponentsb, g, andd we use
the three CAM relationships given in Eq.~19! along with Eq.
~18!. Only three levels can be used in each determination
we have results usingL51,2,3, L52,3,4, andL53,4,5.
These results are presented in Table III. Here the worst
proximation for the critical temperature of the nine values
2.2664 which differs from the exact value by only 0.2%. F
the critical exponents unfortunately the estimates are
nearly so accurate with percent errors ranging from appro
mately 1.6% forg to 11.2% forb.

We now consider the hexagonal lattice. Our basic bu
ing blocks for the first two levels are shown in Fig. 3 an
results for three levels of approximation are given in Ta
II. Note in the case of the hexagonal lattice that our appro
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mation scheme consists of building blocks whose conn
tions are quite different from those used in the square lat
example. In particular, connections are made along ed
hence rather than a site being shared by two building blo
the interaction is also. This results in even the simplest c
nection involving two sites and every increasingly high
level of approximation having a connection involving tw
more sites not one more site as in the square lattice c
This results in the dimension of the dynamic system incre
ing more rapidly. For this reason and to a lesser extent
fact that the number of sites involved~6, 18, and 36 sites fo
the first three levels! increases more rapidly in the hexagon
lattice series than in the square lattice series we have
three levels of approximation. At the third level approxim
tion for the hexagon lattice we have a 63 (2621) dimen-
sional dynamical system. It should be noted that vario
symmetries exist which allows one to significantly redu
the dimensions of the mapping. These symmetries were u
for both lattice systems studied to reduce the amount of c
puter memory and computation time necessary to obtain
results~see further comments in Sec. V!.

Results using the first two terms of Eq.~9!, the VBS ap-
proach, and the BST approach~again takingv50.93895)
give critical temperature estimates of 1.494, 1.58237,
1.51929, respectively. As in the case of the square lat
the BST results are the most accurate of these three
proaches with only a 0.05% error from the exact value
1.518651••• . The method better handles short sequence
input as mentioned in Henkel and Schutz@15#. In the case of
Eq. ~9! we have usedL51, 2, and 3 to obtain the estima
of 1.494 following what was done for the square lattic
HoweverL should reflect the size of the system and it do
for these values in the case of the square building block
with the building blocks used for the hexagonal approxim

FIG. 3. The basic building blocks for the first two levels of th
approximation of the hexagonal lattice system.

TABLE III. CAM results for the critical temperature and critica
exponents for the ferromagnetic system on the square lattice.

Tc b d g

Using Tc(L) levels 1, 2, 3 2.2664 0.134
and levels 2, 3, 4 2.2676 0.135

m̄s(L) levels 3, 4, 5 2.2696 0.139

Using Tc(L) levels 1, 2, 3 2.2665 14.38
and levels 2, 3, 4 2.2672 14.18

m̄c(L) levels 3, 4, 5 2.2690 13.78

Using Tc(L) levels 1, 2, 3 2.2666 1.786
and levels 2, 3, 4 2.2668 1.786

x̄(L) levels 3, 4, 5 2.2684 1.779
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tion ~the first two levels of which are shown in Fig. 3! it
might be more appropriate to use the square root of the n
ber of lattice sites in a building block. With this for ou
values ofL we obtain the much better estimate of 1.52
differing from the exact result by just over 0.1%. Resu
found using the CAM on the data involving the hexagon
lattice are given in Tables III and IV. The result forTc are
very good with the worst estimate being off by 0.15% of t
exact result and the average of all six estimates differ
from the exact value by only 0.04%. Again the errors in t
estimates of the critical exponent values are much gre
than for the critical temperature and range from 3 to 12 %

IV. RESULTS FOR THE ANTIFERROMAGNETIC CASE

In this section we present the results for the antiferrom
netic, Ising model, on the square lattice. For this system th
is a critical line in theh-T plane and it is this critical line we
wish to approximate. Unlike the two earlier systems inves
gated there are no exact results for this system. Howe
there have been twenty or more approximations over the
40 years. We compare our results to five of the most accu
of these approximations.

We have for eight different temperature values runn
from 0.10 to 2.00 found the value of the critical magne
field. Actually the critical line is symmetric about theh axis
and we need only look ath.0. This has been done for fiv
levels of approximation just as was done for the square
tice, ferromagnetic case. These results are presented in T
V. The square lattice is a bipartite lattice and we have aA
and B sublattice. When we build up our trees we must d
tinguish between connections atB sublattice sites from con
nections atA sublattice sites. This results in the doubling
the dimensions of the dynamical systems generated at
various levels. This is similar to what occurred in our a
proximation@3# of the triangle lattice, Ising, antiferromagne
only there because of havingA, B, and C sublattice sites
there is a tripling of the dimensions of the dynamical syste

Here we look at the staggered magnetization as the o
parameter for a given temperature there is an attracting fi
point corresponding to zero staggered magnetization for
ficiently large magnetic field but as the magnetic field va
is decreased this fixed point becomes repelling and two n
fixed points appear corresponding to nonzero staggered m
netization. It is the value of the magnetic field where th
change from an attracting to a repelling fixed point is ma
that is recorded in Table V.

Based on the results presented in Table V we use both
VBS and BST approaches to find our best estimates for

TABLE IV. CAM results for the critical temperature and critica
exponents for the ferromagnetic system on the hexagonal lattic

Tc b d g

Using Tc(L) andm̄s(L) 1.5197 0.140

Using Tc(L) andm̄c(L) 1.5180 16.6

Using Tc(L) and x̄(L) 1.5164 1.81
6-6
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TABLE V. Critical magnetic field values for various temperatures for the five levels of approximatio
the antiferromagnetic system on the square lattice.

Temperature First level Second level Third level Fourth level Fifth leve
approx. approx. approx. approx. approx.

0.1000••• 3.9658737 3.9535046 3.9482128 3.9451893 3.943220
0.2500••• 3.9146842 3.8837614 3.8705319 3.8629732 3.858050
0.5000••• 3.8291128 3.7672380 3.7407626 3.7256352 3.715783
0.854449635 3.6965658 3.5895826 3.5436203 3.5173337 3.50020
1.0000̄ 3.6298789 3.5027626 3.4479148 3.4165128 3.369037
1.5000̄ 3.3054913 3.0953012 3.0019620 2.9580392 2.912686
1.924363127 2.8554956 2.5360157 2.3866082 2.2982119 2.23933
2.0000̄ 2.7512629 2.4040987 2.2392320 2.1408287 2.074873
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critical magnetic field. These values are presented in Ta
VI along with the results from five other approximatio
methods which we briefly describe. The first of these
proximations is due to Muller-Hartmann and Zittartz@17#
~denoted MHZ in Table VI! and is based on their interfac
method. This gives an analytic expression for the critical l
which was initially conjectured to be exact since it w
known to be exact forh50. This has subsequently bee
shown not to be the case. Nevertheless the results are
accurate.

Following the results of Muller-Hartmann and Zittartz
Table VI are the results of Wu and Wu@18# and the closely
associated results of Blote and Wu@19#. These are results
that take as their starting point some estimates of crit
points along theh-T line by Blote and den Nijs@20# who
used finite size scaling and a large scale computer calcula
involving the calculation of the eigenvalues of the trans
matrix for strips of widths up to 16 sites to obtain the critic
temperature for four different values of the magnetic fie
These results were used by Wu and Wu@18# to obtain a
closed form expression for the critical line. Blote and W
@19# go back to the finite-size scaling approach of Blote a
den Nijs @20# but look at more points along theh-T critical
line curve and use widths up to 20 sites across. Based
these results they rule out the polynomial expression of R
@18# and produce one of their own. Results based on th
polynomials or the direct finite size scaling results are p
sented in columns 6 and 7 of Table VI.

Two very recent approaches to approximating the criti
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line for this model have been given by Wang and K
@21,22# and Tarasenko, Jastrabik, Nieto, and Uebing@23#.
The first of these uses the zeros of a pseudopartition fu
tion, their relation to the free energy, and Griffith’s smoot
ness postulate to obtain the following equation for the criti
line:

e4buJu5e4bcuJu cosh2@ f ~ uhu!#1sinh2@ f ~ uhu!#, ~21!

wherebc is the critical value forh50. The functionf (uhu)
must be determined. Wand and Kim@22# give two approxi-
mations forf (uhu). We present only the most accurate

f ~ uhu!'0.542578uhu10.0034874uhu220.00353295uhu3.
~22!

Wang and Kim use two numerical results as input in orde
determine the numerical coefficients of the above poly
mial. First they use the numerical value for the slope of
critical line at T50 andh54 determined by Baxteret al.
@24#. The authors were apparently unaware of the more
curate results of Kamieniarz and Blote@25#. Second they
used the value ofa found by Rapaport and Domb@26# in the
following equation which describes the behavior of the cr
cal line nearh50

Tc~h!5Tc~0!@12ah2#1O~h4!. ~23!
483
802
636
3914
923
149
3176
878
TABLE VI. A comparison of results for the antiferromagnetic system on the square lattice.

T BST BST VBS MHZ Wu and Blote and Wang and T,J,N,
(v50.92484) (v50.93895) @17# Wu @18# Wu @19# Kim @22# andU @23#

0.100 3.93307 3.93318 3.93467 3.93069 3.93329 3.93330 3.93372 3.96
0.250 3.83269 3.83297 3.83668 3.82671 3.83324 3.83334 3.83582 3.88
0.500 3.66506 3.66561 3.67280 3.65309 3.66611 3.66614 3.67589 3.72
0.853449635 3.41418 3.41491 3.42529 3.39233 3.41346 3.41380 3.43583 3.4
1.000 3.29303 3.29391 3.30570 3.26843 3.29200 3.29261 3.31764 3.29
1.500 2.73243 2.73396 2.74868 2.70401 2.73094 2.73176 2.75099 2.70
1.924363127 1.92565 1.92788 1.94166 1.90214 1.92436 1.92436 1.92695 1.9
2.000 1.71629 1.71872 1.73093 1.69490 1.71492 1.71499 1.71512 1.73
6-7
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JAMES L. MONROE PHYSICAL REVIEW E 64 016126
Again the authors were apparently unaware of the value
a found by Kaufman@27# which is accurate to an additiona
five figures. Using these more accurate values we obtain
f (uhu)

f ~ uhu!'0.5426784uhu10.00343704uhu220.00352666uhu3
~24!

which improves the results of Wang and Kim@22# particu-
larly in the region nearh50. We present these modifie
results column 8 of Table V.

Finally the results of Tarasenko, Jastrabik, Nieto, and U
bing @23# who use real-space renormalization group te
niques with two types of majority rules are presented in
last column of Table VI.

For the full range of temperature values our results sho
in the second and third columns are among the most accu
available. These results are based on the five levels of
proximation along with the BST extrapolation method. W
have used two values ofv: one, v50.93895, is the value
mentioned in the previous section, and the other,v
50.92484, is the value ofv ~to five figure accuracy! which
when used with the five levels for the ferromagnetic syst
and the BST method gives the correctTc , that found by
Onsager, for the ferromagnetic system. Of course this is
the correctTc value for the antiferromagnetic case whenh
50. We also present the results after using the VBS
proach which again shows the BST approach to be the s
rior method.

For the best comparison of the approximations we look
T51.924363127 where Blote and Wu@19# through extensive
finite size scaling calculations obtainh51.924363127 so tha
T5h in this case. In this case using either value of our twov
values our results are the closest to the Blote and Wu v
of all approximations. We also point out theT
a

ev

pl
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50.853449635 case which is another value investigated
Blote and Wu using finite size scaling but is not a tempe
ture value considered directly by Wu and Wu@18#. Thus the
h value given in column 6 is from Wu and Wu’s polynomi
expression and one sees the discrepancy with the finite
scaling value. The difference between the two values be
approximately the same size as the difference between
Husimi tree results and the Blote and Wu result.

V. CONCLUSIONS

In the preceding two sections we have established
accuracy of our methods beginning with comparisons w
exact results for the ferromagnetic case and then with c
parisons with a number of other approximations for the
tiferromagnetic case. But any approximation needs to
judged not only on its accuracy but also the amount of ti
and facilities required to get the approximations and also
its ability to handle more than a select set of systems.
these regards we mention first, that all calculations were p
formed on a personal computer~400 MHz, 256 Mbyte
RAM! with the most lengthy calculations, those involvin
m̄c(L) taking approximately 10 h for theL55 case. Second
the method is in theory applicable to any discrete spin s
tem on a lattice as then the methods outlined in Sec. II can
applied to construct the appropriate map. However,
larger the number of allowed spin values the more rapi
the dimensions of the dynamical system increase, ther
limiting the number of levels one may be able to effective
handle. Nevertheless as mentioned earlier even a single
where connections are made at a single site may be eno
to model rather complex phase diagrams as in the cas
frustrated systems@3#. We have here fixed our attention o
rather simple systems where we investigated the accu
achievable by this systematic approach.
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