PHYSICAL REVIEW E, VOLUME 64, 016121

Quantum field theory of treasury bonds
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The Heath-Jarrow-MortoriHIM) formulation of treasury bonds in terms of forward rates is recast as a
problem in path integration. The HIM model is generalized to the case where all the forward rates are allowed
to fluctuate independently. The resulting theory is shown to be a two-dimensional Gaussian quantum field
theory. The no arbitrage condition is obtained and a functional integral derivation is given for the price of a
futures and an options contract.
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[. INTRODUCTION sion is given in Sec. Ill. To make the formalism more trans-
parent and accessible to readers not familiar with path

Stochastic calculus is the most widely used mathematicahtegration, the well-known results of the HIM model for the
formalism for modeling financial instrumenf4], followed  price of futures of zero-coupon bonds as well as the price of
by the use of partial differential equatiof3]. The Feynman a European call option and a cap for a zero-coupon bond is
path integral is a formalism based on functional integratiorderived in Sec. IV. Another, and more important reason, for
and is widely used in theoretical physics to model quantunthese rederivations is that the prices of these derivatives are
(random phenomenom3]; it is also ideally suited for study- expressed in a form that can be directly generalized to the
ing stochastic processes arising in finance. In Rpfs5]  case when we model the evolution of the forward rates using
techniques from physics were applied to the study of financequantum field theory.

In Ref.[6] the problem of the pricing of stock options with  |n Sec. VI, a brief review of quantum mechanics and
stochastic volatility was studied analytically and numerically quantum field theory is provided for readers from fields other
using the formalism of path integration. than physics.

In this paper, the path integral approach is applied to the |n Sec. VII, the HIM model is generalized to the case
field of interest rates, also called the forward rates, as emyith independent fluctuations of all the forward rates; the
bodied in the modeling of Treasury bonds. The complexitytheory is seen to consist of a fre€Gaussiah two-
of this problem is far greater than that encountered in thelimensional quantum field theory. The generalized model
study of stocks and their derivatives; the reason being that Bas a new parameter which determines how strongly it devi-

stock at a given instant in time is described by only oneates from the HIM model. The condition of no arbitrage is
stochastic variable undergoing random evolution whereas igerived for the generalized model.

the case of the interest rates it is the entire yield curve which |n Sec. X, the formulas for the prices of futures and op-

is randomly evolving and requires infinitely many indepen-tions of zero-coupon bonds are obtained explicitly for the
dent variables for its description. The theory of quantumGaussian quantum field theory.

fields [7] has been developed precisely to study problems |n Sec. XI some conclusions are discussed as well as pos-
involving infinitely many variables and so we are naturally siple future directions of research.

led to the techniques of quantum field theory in the study of

the interest yield curve.

Treating all the forward (ates as independent random yari— Il. PATH INTEGRAL EORMULATION OF THE HIM
ables has also been studied [B-11], where a stochastic MODEL
partial differential equation in infinitely many variables is
written. The approach based on quantum field theory pro- Bondsare financial instruments of debt that are issued by
posed in this paper is in some sense complimentary to thgovernments and corporations to raise money from the capi-
approach based on stochastic partial differential equationkls market. Bonds have a predetermi@eterministi¢ cash
since the expressions for all financial instruments are forflow; a treasury bond is an instrument for which there is no
mally given as a functional integral. One advantage of theisk of default in receiving the payments, whereas for corpo-
approach based on quantum field theory is that it offers #@ate bonds there is, in principle, such a risk. A treasiggo-
different perspective on financial processes, offers a varietgoupon bondis a risk-free financial instrument that has a
of computational algorithms, and nonlinearities in the for-single cash flow consisting of a fixed payoff of say $1 at
ward rates as well as its stochastic volatility can be incorposome future timeT; its price at timet<T is denoted by
rated in a fairly straightforward manner. P(t,T), with P(T,T)=1.

The Heath-Jarrow-MortokHJM) model[12] is taken as A Treasurycoupon bonds(t,T) has a series of predeter-
the starting point of this paper. In Sec. Il the HIM model ismined cash flows that consist of coupons waritipaid out at
reexpressed in terms of a path integral, and the condition dhcreasing timedl;’s, and with the principal worth. being
no arbitrage is rederived in this formalism. For readers unfapaid at timeT. 5(t,T) is given in terms of the zero-coupon
miliar with the financial concept of arbitrage, a brief discus-bonds by[13]
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K t
B(t,T)zZl c.P(t,T,)+LP(t,T). (2.1

From above we see that a coupon bond is equivalent to a
portfolio of zero-coupon bonds. Hence, if we model the be-
havior of zero-coupon bonds, we automatically have a model
for coupon bonds as well

Consider the forward raté(t,x), which stands for the W (t)
spot (overnigh} interest rate at future time for a contract
entered into at timé<x. The price of a zero-coupon bond
with the value of $1 at maturity is given by

T to
P(t,T)=exp{—f dxf(t,x)}. (2.2
t

Note from its definition, the spot rate for an overnight
loan at soméfuture) time tis r(t) and is given by

=f(t,1). 2.3 A o
rt)="f(t,) 2.3 f aw=11 II ‘/zi dWi(m). (2.8
) ) m=1i=1 TJ -

The forward rate is a stochastic variable. In #dactor
HJM-model[12—14 the time evolution of the forward rates

FIG. 1. IndependenitV(t) random variables in the HIM model.

For notational simplicity we take the limit af—0; note

's given by that for purposes of rigor, the continuum notation is simply a
pr K short hand for taking the continuum limit of the discrete
E(t’x):a(t’XHzl ai(t,X)W(t), (2.4 multiple integrals given above. We have, fort<t,,

PIW,t,,t,]—e>, (2.9

where a(t,x) is the drift velocity term andr;(t,x) are the

deterministic volatility functions of the forward rates. From 1 K
Eq. (2.4 we have So=S[W,ty,t]=— 3. > f dtWwA(t), (2.10
t
f(t,x)=f(t0,x)+f dt’ a(t’,x)
to f dW—>f DW. (2.12)
t
+f dt’ >, oi(t' X)Wi(t). (2.5 The “action” functional Sy is ultralocal with all the vari-
tp =1 ables being decoupled; genericallfDW stands for the

(path integration over all the random variabl&¥(t) that
appear in the problem. The integration variabWggt) are
shown in Fig. 1, where each poirit in the interval t
e[to.t, ] represents an independent random varidiglé).

A path integral approach to the HIM model has been dis-
cussed in15]; the action derived is different than the one

E(Wi(OW;(t'))= 8 8(t—t"). (2.6) given abt_)ve _since a dif_ferent set of variables is used resulting
in an action involving time derivatives.

Note that the forward ratef(t,x) are driven by random A formula that we will repeatedly need is the generating
variablesW,(t) that give the same random “shock” to all functional forW given by the path integral
the forward rates; the volatility functioor(t,x) weighs this

The initial forward ratef (tg,X) is determined from the mar-
ket, and so are the volatility functions (t,x).

For every value of time, the stochastic variableV(t),i
=1,2,... K is an independent Gaussian random variable —
also called white noise — given by

K
“shock” differently for each timet and eaclx. It is precisely . _ 2 . Wity t
this feature that we will generalize later such tiét,x) is 2] tl’tZJ_J DWGX[{; f dtj; ()W (1) f el 2
taken to be anndependentandom variable foeach xand «
each t 1 2,
To write the probability measure fow;(t), note thatt =ex;{§ 241 ftl dtji(t) |. (212

takes values in a finite interval depending on the problem of
interest; we discretize—me, with m=1,2, ... M, and with
W, (t) —W;(m). The probability measure is given by

A=, I o} - 3, wim

Ill. EFFICIENT MARKET, ARBITRAGE
AND MARTINGALE

2.7) Arbitrage— an idea that is central to finance — is a term
for gaining an instantaneous risk-fréguaranteedprofit by
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simultaneously entering into two or more financial transac-
tions — be it in the same market or in two or more different
markets. Since one has risk-free instruments such as treasur  *
bonds, arbitrage means obtaining risk-free retainsvethe
risk-less returns that one can get from the market. T
For example, suppose that at some instant the share of
company is traded at value US$1 in the New York stock
exchange, and at value S$1.8 in Singapore, with the currenc o (t07t¢j' =
conversion being US$2S$1.7. A broker can simulta- !
neously buy 100 shares in New York and sell 100 shares ir f
Singapore making a riskless profit of S$10. Transaction costs !

)

tend to cancel out arbitrage opportunities for small traders,

but for big brokerage houses — which have virtually zero 0 to 7, T

transaction cost — arbitrage is a major source of profits. One

can also see that the price of the share in Singapore will tend FIG. 2. Trapezoidal domaiff for no arbitrage.

to move to a value close to S$1.7 due to the selling of shares

by the arbitrageurs. discounted by the risk-free spot ratét), must be equal to
An efficient markets one in which there are no arbitrage the price of the bond at timg,.

opportunities. In an intuitive manner of speaking, no arbi- We now show that the no arbitrage condition for the for-

trage means that “there is no free lunch.” Arbitrage is theward rates implies that the drift velocity of the forward rates,

mechanism by which the capitals market effectively func-namely,a(t,x) is not an independent quantity, but rather has

tions as an efficient market, and determines the equilibriumo be made a function of its volatility.

“correct” price of any financial instrument. The Martingale condition implies for the zero-coupon
An important result of theoretical finance is the following: bond, analogous to E@3.1) yields

for the price of any financial instrument to be free from any t

ossibility of arbitrage — as is the case for an efficient mar- *
Eet — it >i/s necessagr]y to have a Martingale measure for the P(to, T)=Epty 1,1 eXp[ B fto r(t)dt] Pt ’T)}'
evolution of the financial instrumeft3,1€. The concept of (3.2
a Martingale in probability theory is the mathematical for-
mulation of the concept of a fair game, and is equivalent, invhere the notatiorEy, ,; j[S] denotes the average of the
finance, to the principle of an efficient market. stochastic variableS over the time intervat(,t,). From

Suppose a gambler is playing a game of tossing a fa|[E 29 (2 d(3.2 h that
coin, represented by a discrete random variablgith two 9s.(2:2), (2.9, and(3.2 we have tha

equally likely possible outcomes:1; that is, P(Y=1)

=P(Y=-1)=1. Let X, represent the amount of cash that P(ty,T)= P(tO,T)e*fT“(‘vX)J' DW

the gambler has aften identical throws. That is,X,

=3{,Y;, whereY;’s are random variables all identical to

Y; let x,, denote some specific outcome of random variable XeXP[ _E. Lcri(t,x)wi(t)eso[v"]], 33
X,,. The Martingale condition states that the expected value '

of the cash that the gambler has on the-()th throw must
be equal to the cash that he is holding atritie throw. Or in
equations

ty T
[=["a] ax (34
E[Xn+1|X1:X1,X2:X2, PP !Xﬂ:Xn]:an T to t

Martingale condition. (3.2 On performing theW integrations we obtain from Eg.

(3.3
|

X

where thetrapezoidaldomain7is given in Fig. 2 and

In other words, in a fair game, the gambler — on the average

—_— i . . - l I* T
Witr?lmply leaves the casino with the cash that he came in exp{ f a(t,x)] :exﬂ’ Ef dtz [f dxor (t.x)
' T ty 1 t

(3.5

A. The condition of no arbitrage h b
. » . _ Dropping the integration overwe obtain[13
The Martingale condition applied to the evolution of the ppIng ¢ [13]
forward rates states the following. Suppose that a zero- . 1 K . )
coupon bond that matures at tirfiehas a priceP(ty,T) for J dxa(t,x)== >, j dxai(t,%)] (3.6)
somety<T, and a price, before expiry, ¢(t, ,T) at time t 2= |

t, >1t,5. The Martingale condition states that the price of the
bond att, , evolved backward to timé& and continuously or equivalently
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a(t’X):izl O'i(t,X)J'txdy(Ti(t,y), t T7T)

condition for no arbitrage. (3.7

We see that, as expected, the Martingale condition leads
to the well-known[13] no-arbitrage condition that expresses
the drift velocity of the forward rates in terms of its volatil-
. . - (to, to) (to, T)

Consider the two-factor HIM model with volatilities
given by

X
(Tl(t,X):O'l;(Tz(t,X):O'Ze_}\(x_t). (38)
FIG. 3. DomainA.
The no-arbitrage condition given in E@.7) for this case
yields P(t, T)=A(to,T)e Blto:Dro, (3.13
2

o where A,B>0. One can easily derive from the expression
a(t,x)=ai(x—t)+ Tze‘”(x‘t)(l—e‘”(x“)). (3.9 Y P

above the forward raté(ty,x) for to<x<T.

B. Spot rate models for the forward rates IV. FUTURES PRICING IN THE HJM MODEL

There are two different approaches to the modeling of The future and forward contracts on a zero-coupon bond
forward interest rates. The HIM approach takes the initiaf"® instruments that_are traded in the capitals market. The
forward rate curvef(to,x) as input, and models the future forward and future price oP(t,T), namely,F(to,t, ,T) and
evolution of the entire curve. In the spot rate approach/(to.ts . T), respectively, is the price fixed at timg<t, for
[14,17,18, only the spot rate(t) =f(t,t) is studied, and the having a zero-coupon bond — maturingTat— to be deliv-
entire forward rate curvé(t,x) is derivedfrom the spot rate.  €red to the buyer at timg, <T. _

Typically, a spot rate model is determined by the following The difference in the two instruments is that for a forward

stochastic differential equation contract there is only a single cash flowtat: the expiry
date of the contract . For a futures contract on the other hand
dr(t) there is a continuous cash flow from timgto t, such that
—ar &N +b(nWw(t) (310 gl variations in the price oP(t+dt,T) away fromP(t,T),
for to<t<t, , are settled continuously between the buyer
with the initial condition and the seller, with a final paymentB{t, ,T) at timet,, . If
the time evolution ofP(t,T) was deterministic, it is easy to
r(to)=ro, (3.11)  see that the forward and futures price would be equal.

It can be shown that the price of the fututgss given by
wherea,b are chosen to have various functional forms, and 13]
W(t) is white noise.
All spot rate models by definition respect the condition of Flo,t , T)= E[toyt*][P(t* D1 (4.1)
no arbitrage. The Martingale condition given in Eg.2),
instead of yielding the no-arbitrage condition as is the cas€"oM Eds.(2.5 and(2.9) we have
for models of the forward rates, is thiefining equatiorfor

T

the forward rates in terms of the spot rate. Flto,t, ,T):f DWex;{—f dxf(t, ,x) [PIW,tg,t, ]
To determine the forward rategty,x), or equivalently, te

the price of the zero coupon borR(t,,T), from the spot (4.2)

rater(t), sett, =T in Eq. (3.2); this changes the trapezoidal B

domainZ, given in Fig.(2), to a(right isoscelestriangular =F(to.ty , T)EXpd 7, 4.3

_domainA given in Fig. 3 —which is_ ?"50 the_ largest domain where the forward price for the same contract is given by
in the study of treasury bonds expiring at timieWe hence [13]

have, from Eq(3.2) and usingP(T,T)=1, the following:
P(tO!t*) .

T
exq’—f r(t)dt]
to
_ _ ) The trapezoidal domaiff splits into a triangle and a rect-
If the functionsa andb in Eg. (3.10 are independent of angle shown in Fig. 4 and yields

the spot rate (t), we have a class of models called tiféine
modelswith the result that T=Ax®R. (4.5

F(to,t, ,T)= Pto. T) (4.4

P(t01T)EE[tO,T] . (312
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= +

FIG. 4. Domain7=domainA, & domainR.

The futures price is defined over tihectangulardomain
R given in Fig. 5 and

t, T
fRE J'to dtft*dx. (4.6)
We have
eprf=e“exr{—f a(t,x) 4.7
R
with
K
e“zf DWexp{—E ai(t,X)Wi(t) e (4.9
i=1 JR
1 K t, T 2
—ex 52}1 fto dt“t*dxm(t,x) , (4.9

where Eq.(4.9) has been obtained by performing the path

integration over th&\V variables using Eq(2.12).
Using the no-arbitrage condition given in E®.7), and
after some simplifications, we obtain from Eg.7) that

K

Qxto,t, , T)=—2,

t, t, T
dtf dXO’i(t,X)f dx'oi(t,x").

to t ty
(4.10

As is expected, the future and forward prices of the zero-
coupon bond are equal if the volatility is zero, that is, the

evolution of the zero-coupon bond is deterministic.

Consider the two-factor HIJIM model with volatilities

given in Eq.(3.8). Equation(4.10 vyields

FIG. 5. DomainR is shaded above.

PHYSICAL REVIEW B4 016121

Qx(to,t, , T)=—03(T—t,)(t, —tg)?

2
02

_ _(1_ ef)\(Tft*))(l_ ef}\(t* 7t0))2,
2\3

(4.11

which is the result given ifl].

V. OPTION AND CAP PRICING IN THE HIM MODEL

Suppose we need the price, at timg of a derivative
instrument of a zero-coupon bo|(t,T) for a contract that
expires att, <T. For concreteness we study the price of a
European call option on a zero-coupon bohti3,14],
namely,C(ty,t, ,T,K); the option has a strike price &fand
exercise time at, >t,.

The final value of the option d,=t, is, as required by
the contract, given by

C(t* 1t* 1T1K):[P(t* IT)_K]+ (51)
=[P(t, , T)—K]Jo(P(t, , T)—K),
(5.2
where the step function is defined by
1 for x>0
1
O(x)= > for x=0 (5.3
0 for x<0.
Forty<t, the price ofC given by
t*
Clto,ty ,T.K)=Epy, ¢ ][ex;{—f dtf(t,t)}
* tO
X[P(t, J)—KL}. (5.4

The expectation value in Ed5.4) is taken by evolving
the payoff functiorf P(t, ,T) — K], backward front, totg,
discounted by stochastic spot ratg) = f(t,t).

Using the identity

1 [+ iz
5(Z)=Z_J_wdpe' , (5.5
we can rewrite Eq(5.4)
+ 00
C(to,t, ,T,K)zf dGV¥(G,t, ,T)(e®—K) .,
(5.6

where
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Y (Gt T)= E[to,t*]

t*
exp[ - fto dtf(t,t))

X 8(In{P(t, , T)—e®h|, (5.7
:ﬁw 25 AgiP(G+Ag) 5.9
Aozln F(to,t* ,T) (59)
Using Egs.(2.9) and(2.5), we have the following:
A _ .
e —ex;{ ona(t,x)+|pra(t,x) JDW
Xex%_f O'i(t,X)Wi(t)
Ao
K
+ipY, f ai(t,X)W,(t) [e%o. (5.10
i R

Note the subtle interplay of the subdomaikg andR in
determining the price of the option. Using E&.12 to per-
form the integrations oveW yields, after considerable sim-

plifications and using the no-arbitrage condition given by Eq.

(3.6), we obtain

2

A=-(p?+ip) (5.1
with
5 EK: ty T 2
q =2 Jto dt[ Jt*dxm(t,x) (5.12

To obtain Eq.(5.11) we have used the identity

f:dt{ jt:dxa(t,x)—iZK1 ftt*dxai(t,x) f:dyai(t,y)}

(5.13

Performing the Gaussian integration in E§.8) yields
v(G,t,,T)

1
2q

2

q2 2
G+J dxf(ty,x)— }

(5.19

Hence from above and E¢6.6) we recover the well-known

ex
S 202

result[19,20Q that the European option on a zero coupon has q

a Black-Scholes-like formula with volatility given by.
For the two-factor HIM model given in E(B.8) we have

PHYSICAL REVIEW E 64 016121

2

0'2 _ B
=a§(T—t*)2(t* —tg) + E(l_e MT-t,))2

X (1—e MLty

(5.1

A capis a financial instrument for reducing ones exposure
to interest rate fluctuations, and guarantees a maximum in-
terest rate for borrowings over a fixed time.cap fixes the
maximum interest for a fixed period frotp to t, +T; the
buyer of the instrument then pays for this period the maxi-
mum of the London interbank offered rate=L(t, ,t,
+T) or the cap ratK. The cap is exercised at tinig and
the payments are made, in arrears, at timpe-T. Let the
principal amount bé/; the value of the cag at timet, is
then given by

C(t, t, ,T)=VT(L—K), . (5.16
We have in terms of the forward ratgs)]
T+,
TL(t, ,t*+T)=exp{f dxf(t, ,x)|—1, (5.17
——1 1 51
TP(t t+T) T .18
The price of theC at timety<<t, is given by
t*
Clto.t, ,TK)=VEp + ) exp{—f dtf(t,t)]
* tO
—1 1-TK
P, L+ N
(5.19

=ijwdHF(H)(eH—1—TK)+ .
(5.20

Carrying out an analysis similar to the one done for the
pricing of the European call option we obtain, as in Eq.
(5.19 (note the minus sign af)

'H)=¥(—H,t, , T+t,) (5.21)
1 1 T+t,
= SeXp) — = —H+f dx
27TQCap 2qcap L
q2 2
X f(tg,X) — ;ap} ] (5.22

with gc,p for the two-factor model given, similar to Eq.
(5.19, by

2

()
o= o TAL, —t0)+2—(1 e M2(1-e 2ty

(5.23
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The above formula shows that a cap is equivalent to a
European put option on the zero-coupon boRt, ,t,
+T). For acapletthe timeT is taken to be small so that

L(t, ,t, +T)="f(t, ,t,), and in Eq.(5.22 we have t
T+t*
f de(to,X)sz(to,t*), (524)
o
qgapzT2 U%(t* —to)+ Z(l_eiz)\(t* tO))}-
(5.25 xi,ti)
VI. QUANTUM MECHANICS AND QUANTUM FIELD
THEORY 0 x
Since some readers may not be familiar with the concept P(zo < z < 2o + dz) = |(20,1)|%dz

of a quantum field the following is a brief description. We _ _ i .
first discuss the case of quantum mechanics, and then show FIG. 6. Quantum particle simultaneously taking all possible
how the concept of a quantum field is a natural generaliza‘-’Irtual paths from ;,t;) to (x;,ty).
tion of quantum mechanics.

Consider the position of a partick(t) as a function of ~With the boundary conditiox(t;) =x; andx(tz) =X,. The
time t. Let the particle be experimentally observed to be atfunctiona) integration given in Eq(6.2) can be thought of
positionx, at timet; and at positiorx, at timet,. How does  as summing oveall possible pathshat the quantum particle
one describe the evolution of the particle in quantum mecan take between pointg andx,, and hence the term path
chanics? As is well known, there are three independent antfitegration. One can think of the quantum partisleulta-
equivalent descriptions of quantum mechanics. We discusgeouslytaking, in a virtual sense, all the possible paths from
quantum evolution in Euclidean time, as this makes the conXy t0 X,.
nection to finance more straightforward. The quantum virtual paths are figuratively shown in Fig.

In the Schrodinger representation of quantum mechanic8, together with the interpretation of the Schrodinger wave
[21], the probability for the particle to be found in the inter- function as determining the probability for the particle to
val [x,x+dx] for any time te[t;,t,] is given by found near some point
|(x,t)|?dx. In other words, the probability for the particle ~ The “action” Sis a functional of the paths, and can be
to be found, at timd, in the neighborhood of pointy is  constructed from the Hamiltonidd. A general form for the

given by action is given by
P(Xo<X<Xo+dX)=|i(Xq,t)|2dx. (6.2
) 1t dx\?
The complex valued functiony(x,t) is the Schrdinger S=—§f d | g7 VOO, (6.3
wave function. E

The second quantum description is provided by the

Heisenberg operator equatiof&l] in which the position, whereV/(x) is the potential that the particle is moving in.
momentum, energy, and so on of the particle are considered The formalism of quantum mechanics is based on conven-
to be noncommuting operators acting on the Hilbert space ofonal mathematics of partial differential equations and func-
physical states. The probability amplitude for making a tran+jonal analysis. The infinite dimensional integration measure
sition from its initial position to its final position is given by given by Ht1<t<t2ff§dx(t) can be given a rigorous, mea-

the square of the absolute value of the transition ampl'tUdeSure theoretic, definition as the integration over all continu-

— H 2 _ ~ .

namely, [(X;|e”™|x)|*, where 7=t,—t;, and H is the s but nowhere differentiable, paths running between
Hamiltonian operator driving the evolution of the q“ant“mpointsxl andx,.
particle. - o o In Feynman’s representation of quantum mechanics, one

The third description of the quantum particle is given by compytes thenatrix elementof operators using functional
the Feynman path integré,7]. In this representation, the jntegration, and hence the structure of the Hilbert space of
position of the particle(t) at each instartte [t;,t5] is cON-  gtates; and the noncommuting operator algebra acting on this
sidered to be amdependent random variabl&he transition space, and so on, is present only in an implicit manner.
amplitude(x,|e”™|x;) is obtained by integrating over pos-  We have discussed the quantum mechanical evolution of
sible values of all the random variableét), and yields the a single particle, and it is not too difficult to see that the

Feynman path integréB,7] given by formalism extends without much change to thatMNofpar-
ticles.
(x |e—Tﬁ|X )= H f+wdx(t)es (6.2) Suppose we are interested in studying how an extended
2 ! ty<t<t, J—o object, say astring, undergoes quantum evolution? How do
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Equations(6.2) and (6.5 that define quantum mechanics
é(to, ) and quantum field theory, respectively, look deceptively
similar. In quantum mechanics, at any instgythere is only
one random variable(ty), whereas for a quantum field,

/ there arenfinitely manyrandom variables, since faach x
the string coordinateb(ty,X) is an independent random vari-
/ N able. More precisely, for a single particle the Hilbert space of
states for quantum mechanics depends on one variable,
FIG. 7. A typical string configuration. namely is given by|x), whereas for a single fiels, the

field’s Hilbert space depends on infinitely many independent

we describe the quantum dynamics of such an object? Theariables given by the infinite tensor produdip)
formalism of quantum field theorfy’] has been developedto =g __,_,__ . |#(x)).
answer this question. We see that quantum mechanics is a system with a finite

For simplicity, consider a nonrelativistieone dimen- number of random variables, whereas a field theory has in-
siona) string, and let its displacement from equilibrium at finitely many independent random variables. This, in es-
time t and at positiorx be denoted byp(t,x), as shown in  sence, is the difference between quantum mechanics and
Fig. 7 for a particular instant,. The string’s position is  quantum field theory.
called afield, in this case, the string field. From a more mathematical point of view there is no mea-

Let the initial string position at time; be given by sure theoretic interpretation of the  expression
¢1(x)= ¢(t1,Xx), and the final position at timg be given by Ht1<t<t2H7W<x<+00ftoozd¢(tix)' The only rigorous defini-
$2(X) = ¢(t2,x). Suppose the string has mass per unitlengthion of Eq. (6.6) is to limit the volume of spacetime to be
given byp, and string tensiofenergy per unit lengthgiven finjte and then discretize space time so that the infinite di-
by T. A general expression for the action of the string, mensional integration given in E46.6) is reduced to an

namely, Sqing is given by[7] ordinary finite dimensional multiple integral. @inite) con-
2 tinuum limit of a nonlinear field theory defined on a finite
1t +oo d . . L . .
Sauing=— 5 | dt dxp| — and discrete spacetime is in general possible only if the ac-
2)y — ot tion Sdefines a theory that is renormalizable. The procedure

9 of renormalization has as yet no mathematically rigorous
1 ty +o0 (9¢ . . . .

__J dtf dx T(— +V(¢)} definition, and, in general, the entire formalism of quantum
2y, — 2 field theory lies beyond the scope of conventional and rigor-

ous mathematics.

= Suinetic Spotential (6.4 If the actionSis only a quadratic function of the quantum

field ¢, the theory is said to be a free fiel@aussiaj and

one can take the continuum limit without having to address

the problem of renormalization. Fortunately, for the model

Qroposed for the forward rates, the action will be quadratic.

where, as expected,(¢) is the potential of the fieldp. In
analogy with qguantum mechanics, we allow &if possible
string positionsto occur at each instant of the string’s evo-
lution. Hence we need to integrate over all possible value
for the string’s position at each poirtand for each instarit
Let the dynamics of the field be determined by the Hamil- ~ VII. THE ACTION FOR THE FORWARD RATES

tonian of the string given by sying, and which can be de-  As mentioned earlier, in the HIM model the fluctuations
rived from the string actioSgying. The initial and final quan- in the forward rates at a given tintere given by “shocks”
tum state vectors of théstring field is given by|[#1)  Wi(t) that are delivered to the entire curfig,x) by random
=® woyerol®(X) AN [h)=® woyein|d'(X)), re-  variables that do not depend on the maturity direction
spectively. Clearly, a more general evolution of the instantaneous for-
We hence have, in analogy with quantum mechanics, thafard rate would be to let the whole curve evolve randomly,
the quantum field theory of the string fiele(t,x) is defined  that is to letall the forward rates— that is, f(t,x) for each
by the Feynman path integral, and yields the transition amx and t fluctuateindependentlyThe only constraint imposed

plitude [7] on the random evolution of the forward rates is that, at every
: instant, the condition ofio arbitragebe valid.
Z=(po|e” Mstind 1), (6.5 At any instant, there exist in the market forward rates for

a duration ofTg in the future; so, for example, tfrefers to
_ e present time, then one has forward rates fragtill time
—I1<1_[t<t2 _m<1:[<+m f_w d(t.X)exPSsuing (6.6 to+ Teg in the future. In the markeT ¢y is at least about 30
years, and hence we halgg>30 years. In general, at any
with boundary conditions given byp,(x)=¢(t;,X) and timet, all the forward rates exist till timé+ Teg [22]. The
d2(X) = p(t5,X). The object{(t,x)} is called aquantum forward rates at any instantis denoted byf(t,x), with t
field, since — unlike a classical string which has a determi-<x<t+Trg, and is called thdéorward rate curve
nate and fixed value for everyandt — the quantum field Since at any instant there are infinitely many forward
takesall possible valuegor eachx andt. rates, we need an infinite number of independent variables to
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with the LagrangianC[ f] given by
k L[ F]= Linedd F1+ Epotentia[ f], (7.2

af (t,x 2
) 1 (¢9t )—a(t,x)

T 2T|:R (T(t,X)

I . (to, to + Trr)

af(t,x) 2
10| a2

+E X —a(t,x) . (73

!
I
'
)
v
'
|
'
|
'
|
|
|

0 to to l+ Trr X
The initial condition is given by
FIG. 8. Domain of the forward rates.
t:to, t0<X<t0+TFR:

describe its random evolution. As discussed in Sec. VI, the
generic quantity describing such a system is a quantum field
[7]. For modeling the forward rates and treasury bonds, w:
consequently need to study a two-dimensional quantum fiel
on a finite Euclidean domain.

We hence consider the forward rates to bejuantum
field, that is, f(t,x) is taken to be anndependentandom
variable for eachx and each. For notational simplicity we
keep botht and x continuous; in Appendix A, a case with
both t and x discrete is analyzed and the continuum limit
discussed in some detail.

f(tg,x): initial forward rate curve (7.9

nd the fieldf (t,x) on the rest of the boundary points of the
emi-infinite parallelograr® are integration variables.
Comparing Eqs(6.4) and(7.2), we see that the forward
rates behave like éguantum string, with a time and space
dependent drift velocity(t,x), an effective mass given by
1/o(t,x), and string tension proportional toz7.
The quantum field theory is defined by integrating over all
configurations off (t,x) and yields

For the sake of concreteness, consider the forward rates
starting from some timé, to the infinite future, that is, with Z=f Dfest, (7.9
t=o. Since all the forward ratef(t,x) are always for the
future, we havex>t; hence the quantum fielf(t,x) is de- Foo
fined on the domain in the shape of a semi-infinite parallelo- f Df=(t]_)[7) f df(t,x). (7.6)
X) € —o

gram P that is bounded by parallel lines=t and x=Tgg

tTnt]e'”ditrg‘zti?r?t‘;!tgh‘gﬁrfti‘r?gi a”8d ItE)\)//etrhe gf‘rﬁgghg‘ ;gﬁ]am Note thateSl)/ Z is the probability for different field con-
T 9. ©. Ty point figurations to occur when the functional integral o¥ét,x)

P represents an independent integration varidbtex), and fs performed

shows the enormous increase over the HIM random variable The presence of the second term in the action given in Eq.

W,(t) given in Fig. 1. P

To define an action for the forward rates, we first need 4;}33;?;:;;%3?661#35}?igtf:g{gdﬂéitpg; 222?8%232 of the
kinetic term, as is common to all field theories, and which, The action given in Eq(7.1) is suitable for studying- the
;or eﬁmﬂi}\)ls glvder: 't?} Etcﬁ?d')f by Skigeﬁc't Smhce we Ifjn_c;)[/v formal properties of the forward rates. However it is often
rom the modet that the Torward rates have a arl Ye'simpler for computational purposes to change variables. Let
locity a(t,x) and volatility o(t,x), these have to appear di- 4 ) he a two-dimensional quantum field; we use the HIM

rectly in the action for the forward rates. . :
. . han f variables to expreast,x) in terms of the forwar
The analog of a potential for the forward rates is to let theC ange of variables to expre&ét,x) in terms of the forward

forward rates store “energy” in the shape of the curve; toratesf(t,x), namely;
represent this property of the forward rates considered as a of
string, we introduce a new paramejey which is the analog —(t,X) = a(t,x)+ o(t,x)A(t,X). (7.7
of string tension and which quantifies the strength of the at
ig&ﬁgﬁt;oﬁgfe;hpzé?mgtrdir:attﬁs |'ir:n§?(e);2%'ﬁzitﬁm ddl- The Jacobian of the above transformation is a constant and
recover the HIM model. The simplest term that can contropence’ up to a constant
the fluctuations in the direction is the gradient of (t,x)
with respect tax. The action for the forward rates that gen- f Df—>f DA. (7.8
eralizes the HIM action of E¢2.10), is given by
The quantum field theory is defined by a functional integral
. it over all variabledA(t,x); the values ofA(t,x) on the bound-
gf]= dtf FRdX,C[f]Ef £f] (7.1) ary of P are integration variables; this yields the partition
o Jt P function
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Z= f DAeSAL (7.9

where the action in terms of th&(t,x) field is given by

1 (= (t+Ter 1 [dA(t,x)\?
SA]=- ZTFRJ;Odtft dxi A%(t,x)+ Pl ) ]
(7.10
=f LIA]. (7.11)
P

Note that Egs(7.7) and(7.10 can easily be generalized
to theK-factor case by introducing-independent and iden-
tical quantum fieldsA;(t,x). The forward rates are then de-
fined by the equation

of K
a—t(t,x):a(t,x)+§1 o (6, X)A(t,X). (7.12

For simplicity, we will only analyze the one-factor model.
It is shown in Eq.(A16) that if we define

t+TeR
W(t)=j dxA(t,x), (7.13
t
then, foru—0, we have
1 ©
S[A]HS():—EJ dtWA(1), (7.14
to
f DA—>I DW. (7.15

From Eq.(2.10 and above we see that we recover the

HJIM model in thex—0 limit. We see from Eq(7.13 that

PHYSICAL REVIEW E 64 016121

We evaluateZ[ J] exactly in Appendix B, and from Eq.
(B17)

1(= t+TER
Z[J]=exp§ dtf dxdx J(t,x)
to t

XD(x,x";t,Ter)J(t,x"). (8.2

The propagatoD(x,x";t,Tgg) is given, forh=x—t,\’
=x'—t, from Eq.(B19) by

D(x,X";t,Ter)

_ MR inhu(Tene Vst gh ) 00— 1)
SinN(uTrr) PR a

+sinhu(Tegr—A')sin(w\) O(N"—N\)

1

Ter
W[Z“’”‘(KT)

2 COSH(T

+

+sinh(u\)sinh(u\”)

T
xeosm<)\’—?

+sinhM(TFR—)\)sinhM(TFR—)\’)] (8.3

Note the important property of the propagator
D(x,x";t,Tgg) that it dependnly on the variables. and
\'. This property of the propagator implies that all the prop-
erties of the future rates depend only on the how long in the
future we are looking at, and not at what instant

To understand the significance of the propagator
D(x,x";t,T) note that the correlator of the fiel(t,x), for

the HIM model is a drastic truncation of the full field theory, to<<t,t’ <to+Tgg, is given by
and only considers the fluctuations of the average value of

the quantum fieldA(t,x); it in effect “freezes-out” all the
other fluctuations ofA(t,x).

If one thinks of the fieldA(ty,x) at some instant, as
giving the position of a “string”[8,9], then in the HIM
model this string is taken to be rgid string. The action
S[A] given in Eq.(7.10 allowsall the degrees of freedom of

the field A(ty,x) to fluctuate independently and can be

thought of as a “string” with string tension equal tod; in

E(A(t,X)A(t’,x"))= %f DAeSAIA(t, x)A(t,x")

(8.4
=5(t—t")D(X,x";t,Tegr). (8.5

In other wordsD (x,x’;t,T) is a measure of the effect the
value of field A(t,x) at maturity timex has onA(t,x"),

this language the HIJM model considers the forward rat%amely on its value at another maturity.

curve to be a string with infinite tension and hence rigid.

VIIl. PROPAGATOR OF THE FORWARD RATES

The moment generating functional for the quantum field

theory is given by the Feynman path integral as

z[J]=%J DAexp[ thdtJtHTFRde(t,X)A(t,X)}eS[A]-
8.

SinceD(x,x";t,Tgr) looks fairly complicated, we exam-
ine it in a few extreme limits, and obtain
D(x,x";t,Ter)

1+0(u?),

~ 1 ,
> uTrre XS Terd(x—x"),  m—e.

n—0

(8.6
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=3 (t*7 T)

t ¥ o
’ \(to, T)

1
|
|
1
|
|
|
1
|
'
1
|
1

t+ Trr X

0 to t, T

FIG. 9. Domain for no arbitrage contained in the domain of the

forward rates.

We see that, as expected, in the limit@f-0 all the fluc-

PHYSICAL REVIEW B4 016121

We have
T 1 (T
dea(t,x)zzf dxdX o(t,x)D(x,X";t, Ter) o (t,x").
t t
9.3

The no-arbitrage condition has to hold for any treasury
bond maturing at any time&=T. Hence, we differentiate
above expression with respectTpand obtain the generali-
zation of Eq.(3.7) given by

a(t,x)=cr(t,x)Jde’D(x,x’;t,TFR)cr(t,x’). (9.9
t

From the empirical study of forward rate cury@8] there

tuations in thex direction are “frozen,” that is, are exactly s evidence that the HIM model is not adequate, since no

correlated; in other words the values A&ft,x) for different

arbitrage implies that the drift terma(t,x) is quadratic in the

maturities are all the same, and this is the limit of the HJMvo|at|||ty’ and which is inconsistent with data; [[QS] an

model.

additional term is added that reflects the market price of risk.

The propagator above has a simple interpretation for they the approach of field theory, the additional terms due to

case ofu—oo. If the field A(t,x) has some value at poirt

then the field at “distances™—u~ t<x’<x+pu~1 will

tend to have the same value, whereas for other values$ of

the propagator could provide a better model of no arbitrage
for the drift term.
We have the following limiting behavior

the field will have arbitrary values. Hence we see that in the

limit of ©—0 the fluctuations in the time-to-maturity di-
rection are strongly correlated within maturity time 2,
which is thecorrelation timeof the forward rates.

Define

t+TeR
j(t):J dxJ(t,x). (8.7
t
We have from Eqs(8.2), (8.6), and(8.7) that
. . 1=
lim Z[]]=exp§f dtj?(1), (8.9
u—0 to

which is the result obtained earlier in E@.12).

IX. CONDITION OF NO ARBITRAGE

We now derive the no-arbitrage condition for the action «(t,x)=
S A]. Equation(3.2) for the Martingale is unchanged; gen-

eralizing Egs(3.3) and (3.5 we have

1
— _ JpL [A]
expLa(t,x) Zf DAexp( fTa(t,x)A(t,x)]e
(9.2

1t T
=exp§ dtf dxdX o(t,x)
to t

XD(X,X";1,Ter)o(t,x"). (9.2

Note the trapezoidal domaih determining the condition

U(t,X)fXdX’O'(t,X’), u—0
t
a(t,X)= 1 (9.5

ETFRUZ(LX),

.0

Note the equation fow(t,x) given above that the case for
pu=0e is quite dis-similar from that of the HIM model given
in Eq. (3.7), which is the case for=0. The expression for
a(t,x) given in Eq.(9.4) for w# 0 continuously interpolates
between the extreme values @f=0 andu=o°.

For the case of the one-factor model we have the exact
result that

oiTrR exf —2u(Ter—x+1)]—e 200

2 1—e 2¢Ter

(9.6

The limiting behavior for the one-factor model, which also
directly follows from Eq.(9.5), is given by

O'E(X—t) u—0
a(t,x)=1 1 9.7

EaiTFR .

Note that in the limit ofu—0, we recover the HIM re-

of no arbitrage is nested inside the domain of the forwardsult.

ratesP, as shown in Fig. 9.

We have from Eqgs(7.7) and(9.4) that
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2
o1 TeR

Qxtot, T)=———-(1-e #7%)
4

(s, t)
- X{2u(t, —tg)+e 2"t -1}

(10.9

to """

(to, t9) : ((to, T) i For the price of a European call opti@, a calculation
| 5 ! similar to the one carried out in Sec. IV gives the same
| '; i formula for ¥ (G) given in Eq.(5.14 with g? given in Eq.
| ! ! i (5.12 replaced by

0 to t:, ’II‘ t‘;‘TFH X K ‘ T
2= *dtf dxdx o(t,x)D(x,x";t, Ter) oi(t,x").
FIG. 10. Domain for the futures price. a izl to te 7i{tx)D( FR)7i(t.X")
(10.5
t
f(t,x):f(to,x)+f dt’ oj(t’,x) We have
t
° K
« o, ty T )
Xj dyD(ny;t,iTFR)Ui(t,iy) ||m q :TFRE:L . dt . dXO',(X,t) (106)
t’ H—® - 0 *
+ tdt'oi(t’,X)Ai(t',X). 9.9 For the one-factor model we have, fogg>T, that
to
2
o1TER (T
9?=——[4p(t, —to){u(T—t,) +e ¥ t)—1}
X. FUTURES AND OPTION PRICING du
We derive the futures and options pricing using quantum +e 2T L) g 2m(T-t) 4 (] — e AT kL))
field theory. For the two-factor model all the expressions can Cou(t, ~tg)
be obtained exactly; the results for the=0 limit are the X(1-e * )] (10.9
same as the HIM model; we will explicitly give the results . .
only the one-factor model. Note for both the futures and option prices, the presence

Equation(4.7) for the futures priceF for the case of the ©f # is like adding another factor to the model. ,
field theory model for the forward rates only changes the !f We are interested in pricing any path dependent option
formula for Q. From Eq.(4.8), and for the domain® andP  ©F other derivatives, it is not sufficient to know only the

given in equation below — and as shown in Fig. 10 — wePropagatorD(x,x";t,Teg); the full structure of the action
have S A] is then required.

For example, the payoff function of an Asian option at
time ty on a zero-coupon bonE(t,T) with exercise timd,,
is given by

e9=%J DAexp{ - fRchr(t,x)A(t,x)efPE [A]}, (10.1)

glP(*,T)]= (10.8

1 [t
f dtP(t,T)—K
t 0

t~k_0t

+

1t T
=exp[§J dtj dxd%a(t,x)D(x,x’;t,TFR)a(t,x’)}.
Yo L Another example is the price of a European call option on

(10.2 a coupon bond(t,T) given in Eq.(2.1); the payoff function
is given by
Using the no-arbitrage conditiai®.4) we obtain the gen-
eralization of Eq.(4.10 as given by o[ Bl=[B(t, ,T)—K],. (10.9

Koy t . The payoff functiong[ A] in both the cases above is path

_ * * A / dependent. Expressing all the zero-coupon bonds in terms of
Qxltoti T) 2, to dtﬁ dxoi(t.x) ft*dx the quantum fieldA(t,x), the prices of such path dependent
options at timet, are given by

i=1

XD(x,X";t, Ter) o (t,x"). (10.3

1 Ly
, C(to,t, ,T,K :—J DAex —J dtr(t) |g[A]eSAL
For the one-factor model, withr;# 0, we have, fofTgg (to s ) VA { to ( )}g[ ]
ST, (10.10
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The computation above can only be performed numerithe Department of Physics, Harvard University, for their
cally [24]; for this the functional integral oveA(t,x) has to  kind hospitality.
be discretized, which is briefly discussed in Appendix A.
APPENDIX A: LATTICE FORMULATION

XI. CONCLUSIONS We present a rigorous treatment _of th_e quantum field
theory of the forward rates. The main idea is to truncate the

We have reformulated the theory of treasury bonds infull functional integral given in Eq(6.6) into a finite dimen-
terms of path integration. The HIM model has a simple patlsional multiple integral by replacing the continuous domain

integral realization with an ultralocal action. Equations for p by a finite set of lattice points in a discrete dom&nThe
the no-arbitrage condition as well as the evaluation of future§\,ay this is done is to discretize the continuous plahéto

and options were shown to be calculable in a straightforwarg, finite |attice. One can then discuss more rigorously the
manner using path integration. The motivation for rederivingeontinuum limit as the limit of the lattice theory.

the well-known results of the HIM model was first to under-  \we discretize the domairP into a lattice of discrete
stand the path integral formulation of the quantities of inter-,5ints. et ¢,x)— (me,na), wheree is an infinitesimal time
est in finance, and second to generalize these quantities to tE?ep anda is an infinitesimal in thex direction. Truncate the

ca?ehgf ?Jii?tﬂ?f:éeltljdtaieo?rybf reasury bonds is more ensemi-infinite domairP given in Fig. 8 into a finite discretize
eral thaqn the HIM model;yin particulgr, the correlationg OfdomainP, with an upper limit in the time direction given by
fluctuations of the forward rates can be easily modeled to bg/] €. Let N:TFR/a anq _mO:tO/G; ) _ _
finite in the field theory whereas in the HIM modsl the ~ The discrete and finite domaif is bounded in the time
fluctuations are exactly correlated. From the point of view ofdirection bym=mq andm=M, and in the maturity direction
finance, it is unreasonable to assume that the all forwary Me=na andna=me+Na. The integers take values in
rates fluctuate identically as in the HIM-model. The multi-the discrete domaif®, and are given by
factors in HIM model are an attempt to model the finite R
correlation in the time to maturity that should exist for the P={m=my,my+1,...M—1;
forward rates, and that is more efficiently captured using a
finite tension in the field theory model.

We considered a Gaussian model for the field theory gen- e fonward rates and quantum field yield on discretiza-
eralization of the HIM model as this is the simplest extenyion
sion, and also because the model could be solved exactly. In

na=me,me+a, ...Mme+Na}. (A1)

particular, the formulas for the futures, cap and option price f(t,x)—f(me,na)="f,,, (A2)
of treasury bonds were derived and involved nontrivial cor-
relations in the volatility of the model. A(t,x)—A(me,na)=An,, (A3)

We can generalize the model to account for stochastic o
volatility of the forward rates. This entails introducing an- and similarly fore ando-.

other quantum field for modeling the fluctuations of volatil-  From Eq.(7.7) we have
ity, and is similar to the quantum mechanical treatment of ¢ P . Ad
volatility for a single security6]. Stochastic volatility makes m+1n= fmn+ €mnt €0mpAmn, (Ad)

the system highly nonlinear. The best way of modeling trea-
sury bonds in practice is a computational and empirical ques-
tion [25,26. A detailed empirical study of the model for the o
treasury bonds and forward rates proposed in this paper, in- initial forward rate curve. (A5)

cluding calibration and consistency checks, is treated in Using finite differences to discretize derivatives, we ob-

some detail if27]. .
For the more theoretical aspects of finance, the methodof—aln from Eq.(7.10, that

fmo,n:nzmo,m0+1, .o N+mg:

ogy of field theory certainly adds to the ways of studying and . M-1 (N+m
understanding the stochastic processes that drive the capitals Al=— — A2
market. SA] 2(N+1) m:EmO ,;m mn
N+m—1
I _ 2
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—my) independent variables; hence all the techniques useful

for evaluating finite-dimensional integrals can be used for

performing the integration oveX,,,,.

So—— = dt\/\/2(t) (A16)

To achieve the correct normalization, one in fact need not

keep track of the constants that correctly normalizid in
Eqg. (A7). Instead, one simply redefines the action by

eSIAl
e —, (A8)

W(t)= ftHTFRdxA(t,x). (A7)

For the general case @f#0, from Eq.(A6), taking the
continuum limit of e—=0,a—0M—x we obtain the ex-

pected result that

1 fx t+TeR
Al=— dtf dx
SA] 2Ty, Y,

JA(t,X)
ox

zEf dAelAl (A9)

All the constants infdA cancel out; and more importantly,

the expressioe® Z is correctly normalized to be interpreted

as a probability distribution, and hence can be used for
Monte Carlo studies of this theory. The action given in Eq.
(A6) is the starting point for any simulations that are re-
quired of the model including the pricing of path dependent
derivatives; there are well-known numerical algorithms de-

x{ A(t, x)+— ) ] (A18)
,u

fDA=]'[

(t,x)eP

fdAE im 1 fdAmn,

e—0,a—0M—c MN

veloped in physics for numerically studying quantum fields (A19)
[24].

We explicitly solve for the case gi—0 to see how the Sl
HJM model emerges. Fqi—0, the second term in the ac- Z= J DAe (A20)

tion gives a product ob functions and we have

M-1 N+m-1 APPENDIX B: GENERATING FUNCTIONAL Z[J]

SIA] _
€ eSOmHnO nH O(Amnt1~Amn),  (AL0) Since the generating function[ J] is of central impor-
tance in studying the quantum field theory, for completeness
1 N we briefly discuss its derivation; all these results are well
Sy=— 2(N+1) mz Em A2 (A11)  known in physicg7] and this derivation is intended for read-

ers from other disciplines.

Consider evaluating a typical expression likein Eq. Recall

(8.2). For eachm, there areN integration variablesA,,;
from Eqg. (A10) we see that there are onl\WN1) 6 func-
tions, leaving, for everyn, only one variable, say,,, un-
restricted. For simplicity, we take=a; hence we have

\/ fdAmmeSo
m=mg

ZA

mmO

Z[J]= ;J DAeSA (B1)

SA,J]= wdtfHTFRde(t,x)A(t,x)nL SA]. (B2
t

(A12) fo

Since §[A,J] is quadratic functional of the fiel&(t,x),
to perform the functional integration over the field, all we
need to do is to find the specific configurationA{ft,x), say
a(t,x) which maximizesy A,J]; due to our choice of nor-
malizationZ[ J] depends only om(t,x).

Since there is no coupling in the time directipnve study
the solutiona(t,x) separately for each and on the finite
line intervalt<x<t+ Tgg. We first study the case for which
N+m the boundary values of the field(t,x) are fixed, that is

(A13)

Defining W(m)=A,, we see from Eqs(2.9) that we
have recovered the HIM model. We can equivalently con:
sider

W(m)= >, Amn (A14)  considerA(t,t)=p and A(t,t+Teg)=p’ to be held fixed;
n=m we will later integrate ovep,p’ as is required for the evalu-
ation ofZ[ J]. We henceforth suppress the time variatier

and we have notational convenience.

. The ‘“classical” (deterministi¢ field configuration

lim W)= A (A5 a(t,x)=a(x) is defined by

Taking the continuum limit, we see that the field theory, 6 a,J] -0 (B3)

in the u—0,M—0 limit reduces to SA(t,x)

016121-14
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a(x=t)=p;a(x=t+Tegr)=p’. (B4)

Doing a change of variable(t,x) =B(t,x) +a(t,x) and

a functional Taylors expansion we have, from Hg?3)

SA+a,J]=S.[a,J]+9B]. (B5)

Note that due to boundary conditions given in Eg4),

§[B] is independent op,p’,J. The functional integral over
the B(t,x) variables gives only an overall constant that can

be ignored, and hence we have

+

dpdp eSelaJ1, (B6)

—o0

1
Z[J] = Z

We now determin&(x); from Eq. (B3) we have

1 d%a(x)
_2 > _a(X)+TFRJ(X):O, (B?)
Mmoo oX

Since Eq.(B7) is a linear, the solution foa(x) is given by a
sum of the solutions of the homogeneous and inhomoge-

neous equations; it can be verified that

a(x) [ap(X)+a(X)] (B9)

~ sin(uTeR)

with the homogeneous solution given by
ay(x)=psinhu(Ter+t—x)+p’sinhu(x—t) (B10)
and the inhomogeneous solution given by

t+T

aIH(X):MTFRJt FRdX'[H(X_X’)Sinhﬂ(TFR"‘t_X)

X sinhu(x' —t)+ 6(x’ —x)sinhu(Tegg+t—x")

X sinhu(x—1)]J(x"). (B11)
The “classical” action is given by
Sala,J]=Si[p,p"; ]+ S J] (B12)
with
Sip,p’;d]=— m[cosmﬂ'm)
X (p?+p'?)—2pp']

P _[pQep'Pl (B3

sinh(uTeg) '

PHYSICAL REVIEW B4 016121

where

t+TeR
sz dxsinhu(x—1)J(x), (B14)
t
t+TeR
Q=f dxsinhu(Teg+t—x)J(X), (B15)
t
and
1= pTER ‘+TFRd dx .
SlJ1= sinf(uTegr) Jt xdx 6(x=x")
X sinhu(Teg+t—x)sinhu(x’ —1)J(x)I(X").
(B16)

Performing the Gaussian integrations oyep’ and re-
storing the time variablé yields

Sl ,
Z[J]= — Jdpdp’esl[p*p Jl (B17)
1(~ t+TeR
=exps dtf dxdx J(t,x)
2]y, Jt
XD(nyr;t!TFR)J(tIX’)' (818)

From Egs.(B12), (B13), and(B16) we have, defining. =x
—t and\’=x’'—t, and after some simplifications

D(x,x";t,Ter)

HTER . . , ,
:m sinhu(Ter—N)sinh(u\") 6(x—x")

+sinhu(Teg—N")sinh(u\) O(X' —X)

1 Trr
W[Z”SW(AT)

J’_
Zcosﬁ( >

T
><cosm()\’—ﬂ

5 +sinh( u\)sinh( u\ ")
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