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Quantum field theory of treasury bonds
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The Heath-Jarrow-Morton~HJM! formulation of treasury bonds in terms of forward rates is recast as a
problem in path integration. The HJM model is generalized to the case where all the forward rates are allowed
to fluctuate independently. The resulting theory is shown to be a two-dimensional Gaussian quantum field
theory. The no arbitrage condition is obtained and a functional integral derivation is given for the price of a
futures and an options contract.

DOI: 10.1103/PhysRevE.64.016121 PACS number~s!: 02.50.2r, 05.40.2a
ic

io
um
-

c
h
lly

th
em
it
th
at
n
s
ic
n
m
m
lly
o

ar

is
ro
th

io
fo
th
s
ie
r

po

is
n
fa
s

s-
ath
e
of

d is
for
are
the
ing

nd
er

se
he

del
evi-
is

p-
he

pos-

by
api-

no
o-

a
at

r-

n

I. INTRODUCTION

Stochastic calculus is the most widely used mathemat
formalism for modeling financial instruments@1#, followed
by the use of partial differential equations@2#. The Feynman
path integral is a formalism based on functional integrat
and is widely used in theoretical physics to model quant
~random! phenomenon@3#; it is also ideally suited for study
ing stochastic processes arising in finance. In Refs.@4,5#
techniques from physics were applied to the study of finan
In Ref. @6# the problem of the pricing of stock options wit
stochastic volatility was studied analytically and numerica
using the formalism of path integration.

In this paper, the path integral approach is applied to
field of interest rates, also called the forward rates, as
bodied in the modeling of Treasury bonds. The complex
of this problem is far greater than that encountered in
study of stocks and their derivatives; the reason being th
stock at a given instant in time is described by only o
stochastic variable undergoing random evolution wherea
the case of the interest rates it is the entire yield curve wh
is randomly evolving and requires infinitely many indepe
dent variables for its description. The theory of quantu
fields @7# has been developed precisely to study proble
involving infinitely many variables and so we are natura
led to the techniques of quantum field theory in the study
the interest yield curve.

Treating all the forward rates as independent random v
ables has also been studied in@8–11#, where a stochastic
partial differential equation in infinitely many variables
written. The approach based on quantum field theory p
posed in this paper is in some sense complimentary to
approach based on stochastic partial differential equat
since the expressions for all financial instruments are
mally given as a functional integral. One advantage of
approach based on quantum field theory is that it offer
different perspective on financial processes, offers a var
of computational algorithms, and nonlinearities in the fo
ward rates as well as its stochastic volatility can be incor
rated in a fairly straightforward manner.

The Heath-Jarrow-Morton~HJM! model @12# is taken as
the starting point of this paper. In Sec. II the HJM model
reexpressed in terms of a path integral, and the conditio
no arbitrage is rederived in this formalism. For readers un
miliar with the financial concept of arbitrage, a brief discu
1063-651X/2001/64~1!/016121~16!/$20.00 64 0161
al

n

e.

e
-

y
e
a

e
in
h
-

s

f

i-

-
e

ns
r-
e
a
ty
-
-

of
-

-

sion is given in Sec. III. To make the formalism more tran
parent and accessible to readers not familiar with p
integration, the well-known results of the HJM model for th
price of futures of zero-coupon bonds as well as the price
a European call option and a cap for a zero-coupon bon
derived in Sec. IV. Another, and more important reason,
these rederivations is that the prices of these derivatives
expressed in a form that can be directly generalized to
case when we model the evolution of the forward rates us
quantum field theory.

In Sec. VI, a brief review of quantum mechanics a
quantum field theory is provided for readers from fields oth
than physics.

In Sec. VII, the HJM model is generalized to the ca
with independent fluctuations of all the forward rates; t
theory is seen to consist of a free~Gaussian! two-
dimensional quantum field theory. The generalized mo
has a new parameter which determines how strongly it d
ates from the HJM model. The condition of no arbitrage
derived for the generalized model.

In Sec. X, the formulas for the prices of futures and o
tions of zero-coupon bonds are obtained explicitly for t
Gaussian quantum field theory.

In Sec. XI some conclusions are discussed as well as
sible future directions of research.

II. PATH INTEGRAL FORMULATION OF THE HJM
MODEL

Bondsare financial instruments of debt that are issued
governments and corporations to raise money from the c
tals market. Bonds have a predetermined~deterministic! cash
flow; a treasury bond is an instrument for which there is
risk of default in receiving the payments, whereas for corp
rate bonds there is, in principle, such a risk. A treasuryzero-
coupon bondis a risk-free financial instrument that has
single cash flow consisting of a fixed payoff of say $1
some future timeT; its price at timet,T is denoted by
P(t,T), with P(T,T)51.

A Treasurycoupon bondB(t,T) has a series of predete
mined cash flows that consist of coupons worthci paid out at
increasing timesTi ’s, and with the principal worthL being
paid at timeT. B(t,T) is given in terms of the zero-coupo
bonds by@13#
©2001 The American Physical Society21-1
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B~ t,T!5(
i 51

K

ci P~ t,Ti !1LP~ t,T!. ~2.1!

From above we see that a coupon bond is equivalent
portfolio of zero-coupon bonds. Hence, if we model the b
havior of zero-coupon bonds, we automatically have a mo
for coupon bonds as well

Consider the forward ratef (t,x), which stands for the
spot ~overnight! interest rate at future timex for a contract
entered into at timet,x. The price of a zero-coupon bon
with the value of $1 at maturity is given by

P~ t,T!5expH 2E
t

T

dx f~ t,x!J . ~2.2!

Note from its definition, the spot rate for an overnig
loan at some~future! time t is r (t) and is given by

r ~ t !5 f ~ t,t !. ~2.3!

The forward rate is a stochastic variable. In theK-factor
HJM-model@12–14# the time evolution of the forward rate
is given by

] f

]t
~ t,x!5a~ t,x!1(

i 51

K

s i~ t,x!Wi~ t !, ~2.4!

wherea(t,x) is the drift velocity term ands i(t,x) are the
deterministic volatility functions of the forward rates. Fro
Eq. ~2.4! we have

f ~ t,x!5 f ~ t0 ,x!1E
t0

t

dt8a~ t8,x!

1E
t0

t

dt8(
i 51

K

s i~ t8,x!Wi~ t8!. ~2.5!

The initial forward ratef (t0 ,x) is determined from the mar
ket, and so are the volatility functionss i(t,x).

For every value of timet, the stochastic variableWi(t),i
51,2, . . . ,K is an independent Gaussian random variable
also called white noise — given by

E„Wi~ t !Wj~ t8!…5d i j d~ t2t8!. ~2.6!

Note that the forward ratesf (t,x) are driven by random
variablesWi(t) that give the same random ‘‘shock’’ to a
the forward rates; the volatility functions(t,x) weighs this
‘‘shock’’ differently for each timet and eachx. It is precisely
this feature that we will generalize later such thatf (t,x) is
taken to be anindependentrandom variable foreach xand
each t.

To write the probability measure forWi(t), note thatt
takes values in a finite interval depending on the problem
interest; we discretizet→me, with m51,2, . . . ,M , and with
Wi(t)→Wi(m). The probability measure is given by

P@W#5 )
m51

M

)
i 51

K

expF2
e

2 (
i 51

K

Wi
2~m!G , ~2.7!
01612
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E dW5 )
m51

M

)
i 51

K A e

2pE2`

1`

dWi~m!. ~2.8!

For notational simplicity we take the limit ofe→0; note
that for purposes of rigor, the continuum notation is simply
short hand for taking the continuum limit of the discre
multiple integrals given above. We have, fort1,t,t2,

P@W,t1 ,t2#→eS0, ~2.9!

S0[S0@W,t1 ,t2#52
1

2 (
i 51

K E
t1

t2
dtWi

2~ t !, ~2.10!

E dW→E DW. ~2.11!

The ‘‘action’’ functionalS0 is ultralocal with all the vari-
ables being decoupled; generically,*DW stands for the
~path! integration over all the random variablesW(t) that
appear in the problem. The integration variablesWi(t) are
shown in Fig. 1, where each pointt in the interval t
P@t0,t* # represents an independent random variableWi(t).

A path integral approach to the HJM model has been d
cussed in@15#; the action derived is different than the on
given above since a different set of variables is used resul
in an action involving time derivatives.

A formula that we will repeatedly need is the generati
functional forW given by the path integral

Z@ j ,t1 ,t2#5E DW expH (
i 51

K E
t1

t2
dt j i~ t !Wi~ t !J eS0[W,t1 ,t2]

5expF1

2 (
i 51

K E
t1

t2
dt j i

2~ t !G . ~2.12!

III. EFFICIENT MARKET, ARBITRAGE
AND MARTINGALE

Arbitrage— an idea that is central to finance — is a ter
for gaining an instantaneous risk-free~guaranteed! profit by

FIG. 1. IndependentW(t) random variables in the HJM model.
1-2



ac
n
s

o
c
n

-
s
os
r
ro
n

en
r

e
bi
he
c

iu

g:
ny
ar
th

r-
, i

fa

at

o
bl
lu

ag

e
r

he

r-
s,
as

n

e

.
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simultaneously entering into two or more financial trans
tions — be it in the same market or in two or more differe
markets. Since one has risk-free instruments such as trea
bonds, arbitrage means obtaining risk-free returnsabovethe
risk-less returns that one can get from the market.

For example, suppose that at some instant the share
company is traded at value US$1 in the New York sto
exchange, and at value S$1.8 in Singapore, with the curre
conversion being US$15S$1.7. A broker can simulta
neously buy 100 shares in New York and sell 100 share
Singapore making a riskless profit of S$10. Transaction c
tend to cancel out arbitrage opportunities for small trade
but for big brokerage houses — which have virtually ze
transaction cost — arbitrage is a major source of profits. O
can also see that the price of the share in Singapore will t
to move to a value close to S$1.7 due to the selling of sha
by the arbitrageurs.

An efficient marketis one in which there are no arbitrag
opportunities. In an intuitive manner of speaking, no ar
trage means that ‘‘there is no free lunch.’’ Arbitrage is t
mechanism by which the capitals market effectively fun
tions as an efficient market, and determines the equilibr
‘‘correct’’ price of any financial instrument.

An important result of theoretical finance is the followin
for the price of any financial instrument to be free from a
possibility of arbitrage — as is the case for an efficient m
ket — it is necessary to have a Martingale measure for
evolution of the financial instrument@13,16#. The concept of
a Martingale in probability theory is the mathematical fo
mulation of the concept of a fair game, and is equivalent
finance, to the principle of an efficient market.

Suppose a gambler is playing a game of tossing a
coin, represented by a discrete random variableY with two
equally likely possible outcomes61; that is, P(Y51)
5P(Y521)5 1

2 . Let Xn represent the amount of cash th
the gambler has aftern identical throws. That is,Xn

5( i 51
n Yi , whereYi ’s are random variables all identical t

Y; let xn denote some specific outcome of random varia
Xn . The Martingale condition states that the expected va
of the cash that the gambler has on the (n11)th throw must
be equal to the cash that he is holding at thenth throw. Or in
equations

E@Xn11uX15x1 ,X25x2 , . . . ,Xn5xn#5xn ,

Martingale condition. ~3.1!

In other words, in a fair game, the gambler — on the aver
— simply leaves the casino with the cash that he came
with.

A. The condition of no arbitrage

The Martingale condition applied to the evolution of th
forward rates states the following. Suppose that a ze
coupon bond that matures at timeT has a priceP(t0 ,T) for
somet0,T, and a price, before expiry, ofP(t* ,T) at time
t* .t0. The Martingale condition states that the price of t
bond att* , evolved backward to timet0 and continuously
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discounted by the risk-free spot rater (t), must be equal to
the price of the bond at timet0.

We now show that the no arbitrage condition for the fo
ward rates implies that the drift velocity of the forward rate
namely,a(t,x) is not an independent quantity, but rather h
to be made a function of its volatility.

The Martingale condition implies for the zero-coupo
bond, analogous to Eq.~3.1! yields

P~ t0 ,T!5E[ t0 ,t
*

]FexpH 2E
t0

t
* r ~ t !dtJ P~ t* ,T!G ,

~3.2!

where the notationE[ t0 ,t
*

]@S# denotes the average of th

stochastic variableS over the time interval(t0 ,t* ). From
Eqs.~2.2!, ~2.5!, and~3.2! we have that

P~ t0 ,T!5P~ t0 ,T!e2*T a(t,x)E DW

3expH 2(
i
E

T
s i~ t,x!Wi~ t !eS0[W]J , ~3.3!

where thetrapezoidaldomainT is given in Fig. 2 and

E
T
[E

t0

t
* dtE

t

T

dx. ~3.4!

On performing theW integrations we obtain from Eq
~3.3!

expH ET
a~ t,x!J 5expH 1

2Et0

t
* dt(

i
F E

t

T

dxs i~ t,x!G2J .

~3.5!

Dropping the integration overt we obtain@13#

E
t

T

dxa~ t,x!5
1

2 (
i 51

K F E
t

T

dxs i~ t,x!G2

, ~3.6!

or equivalently

FIG. 2. Trapezoidal domainT for no arbitrage.
1-3
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a~ t,x!5(
i 51

n

s i~ t,x!E
t

x

dys i~ t,y!,

condition for no arbitrage. ~3.7!

We see that, as expected, the Martingale condition le
to the well-known@13# no-arbitrage condition that express
the drift velocity of the forward rates in terms of its volati
ity.

Consider the two-factor HJM model with volatilitie
given by

s1~ t,x!5s1 ;s2~ t,x!5s2e2l(x2t). ~3.8!

The no-arbitrage condition given in Eq.~3.7! for this case
yields

a~ t,x!5s1
2~x2t !1

s2
2

l
e2l(x2t)~12e2l(x2t)!. ~3.9!

B. Spot rate models for the forward rates

There are two different approaches to the modeling
forward interest rates. The HJM approach takes the in
forward rate curvef (t0 ,x) as input, and models the futur
evolution of the entire curve. In the spot rate approa
@14,17,18#, only the spot rater (t)5 f (t,t) is studied, and the
entire forward rate curvef (t,x) is derivedfrom the spot rate.
Typically, a spot rate model is determined by the followi
stochastic differential equation

dr~ t !

dt
5a~r !1b~r !W~ t ! ~3.10!

with the initial condition

r ~ t0!5r 0 , ~3.11!

wherea,b are chosen to have various functional forms, a
W(t) is white noise.

All spot rate models by definition respect the condition
no arbitrage. The Martingale condition given in Eq.~3.2!,
instead of yielding the no-arbitrage condition as is the c
for models of the forward rates, is thedefining equationfor
the forward rates in terms of the spot rate.

To determine the forward ratesf (t0 ,x), or equivalently,
the price of the zero coupon bondP(t0 ,T), from the spot
rater (t), sett* 5T in Eq. ~3.2!; this changes the trapezoid
domainT, given in Fig.~2!, to a ~right isosceles! triangular
domainD given in Fig. 3 —which is also the largest doma
in the study of treasury bonds expiring at timeT. We hence
have, from Eq.~3.2! and usingP(T,T)51, the following:

P~ t0 ,T![E[ t0 ,T]FexpH 2E
t0

T

r ~ t !dtJ G . ~3.12!

If the functionsa andb in Eq. ~3.10! are independent o
the spot rater (t), we have a class of models called theaffine
modelswith the result that
01612
ds

f
l

h

d

f

e

P~ t0 ,T!5A~ t0 ,T!e2B(t0 ,T)r 0, ~3.13!

where A,B.0. One can easily derive from the expressi
above the forward ratef (t0 ,x) for t0,x,T.

IV. FUTURES PRICING IN THE HJM MODEL

The future and forward contracts on a zero-coupon bo
are instruments that are traded in the capitals market.
forward and future price ofP(t,T), namely,F(t0 ,t* ,T) and
F(t0 ,t* ,T), respectively, is the price fixed at timet0,t* for
having a zero-coupon bond — maturing atT — to be deliv-
ered to the buyer at timet* ,T.

The difference in the two instruments is that for a forwa
contract there is only a single cash flow att* : the expiry
date of the contract . For a futures contract on the other h
there is a continuous cash flow from timet0 to t* such that
all variations in the price ofP(t1dt,T) away fromP(t,T),
for t0,t,t* , are settled continuously between the buy
and the seller, with a final payment ofP(t* ,T) at timet* . If
the time evolution ofP(t,T) was deterministic, it is easy to
see that the forward and futures price would be equal.

It can be shown that the price of the futuresF is given by
@13#

F~ t0 ,t* ,T!5E[ t0 ,t
*

]@P~ t* ,T!# . ~4.1!

From Eqs.~2.5! and ~2.9! we have

F~ t0 ,t* ,T!5E DW expF2E
t
*

T

dx f~ t* ,x!GP@W,t0 ,t* #

~4.2!

5F~ t0 ,t* ,T!expVF , ~4.3!

where the forward price for the same contract is given
@13#

F~ t0 ,t* ,T!5
P~ t0 ,T!

P~ t0 ,t* !
. ~4.4!

The trapezoidal domainT splits into a triangle and a rect
angle shown in Fig. 4 and yields

T5D0% R. ~4.5!

FIG. 3. DomainD.
1-4
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The futures price is defined over therectangulardomain
R given in Fig. 5 and

E
R

[E
t0

t
* dtE

t
*

T

dx. ~4.6!

We have

expVF5eVexpF2E
R

a~ t,x!G ~4.7!

with

eV5E DW expF2(
i 51

K E
R

s i~ t,x!Wi~ t !GeS0 ~4.8!

5expH 1

2 (
i 51

K E
t0

t
* dtF E

t
*

T

dxs i~ t,x!G2J , ~4.9!

where Eq.~4.9! has been obtained by performing the pa
integration over theW variables using Eq.~2.12!.

Using the no-arbitrage condition given in Eq.~3.7!, and
after some simplifications, we obtain from Eq.~4.7! that

VF~ t0 ,t* ,T!52(
i 51

K E
t0

t
* dtE

t

t
* dxs i~ t,x!E

t
*

T

dx8s i~ t,x8!.

~4.10!

As is expected, the future and forward prices of the ze
coupon bond are equal if the volatility is zero, that is, t
evolution of the zero-coupon bond is deterministic.

Consider the two-factor HJM model with volatilitie
given in Eq.~3.8!. Equation~4.10! yields

FIG. 4. DomainT5domainD0 % domainR.

FIG. 5. DomainR is shaded above.
01612
-

VF~ t0 ,t* ,T!52s1
2~T2t* !~ t* 2t0!2

2
s2

2

2l3
~12e2l(T2t

*
)!~12e2l(t

*
2t0)!2,

~4.11!

which is the result given in@1#.

V. OPTION AND CAP PRICING IN THE HJM MODEL

Suppose we need the price, at timet0, of a derivative
instrument of a zero-coupon bondP(t,T) for a contract that
expires att* ,T. For concreteness we study the price of
European call option on a zero-coupon bond@13,14#,
namely,C(t0 ,t* ,T,K); the option has a strike price ofK and
exercise time att* .t0.

The final value of the option att05t* is, as required by
the contract, given by

C~ t* ,t* ,T,K !5@P~ t* ,T!2K#1 ~5.1!

[@P~ t* ,T!2K#u„P~ t* ,T!2K…,
~5.2!

where the step function is defined by

u~x!5H 1 for x.0

1

2
for x50

0 for x,0.

~5.3!

For t0,t* the price ofC given by

C~ t0 ,t* ,T,K !5E[ t0 ,t
*

] H expF2E
t0

t
* dt f~ t,t !G

3@P~ t* ,T!2K#1J . ~5.4!

The expectation value in Eq.~5.4! is taken by evolving
the payoff function@P(t* ,T)2K#1 backward fromt* to t0,
discounted by stochastic spot rater (t)5 f (t,t).

Using the identity

d~z!5
1

2pE2`

1`

dpeipz, ~5.5!

we can rewrite Eq.~5.4!

C~ t0 ,t* ,T,K !5E
2`

1`

dGC~G,t* ,T!~eG2K !1 ,

~5.6!

where
1-5
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C~G,t* ,T!5E[ t0 ,t
*

]FexpH 2E
t0

t
* dt f~ t,t !J

3d„ln$P~ t* ,T!2eG%…G , ~5.7!

5E
2`

1` dp

2p
eLeip(G1L0), ~5.8!

L05 ln F~ t0 ,t* ,T!. ~5.9!

Using Eqs.~2.9! and ~2.5!, we have the following:

eL5expF2E
D0

a~ t,x!1 ipE
R

a~ t,x!G E DW

3expF2E
D0

s i~ t,x!Wi~ t !

1 ip(
i

K E
R

s i~ t,x!Wi~ t !GeS0. ~5.10!

Note the subtle interplay of the subdomainsD0 andR in
determining the price of the option. Using Eq.~2.12! to per-
form the integrations overW yields, after considerable sim
plifications and using the no-arbitrage condition given by E
~3.6!, we obtain

L52
q2

2
~p21 ip ! ~5.11!

with

q25(
i 51

K E
t0

t
* dtF E

t
*

T

dxs i~ t,x!G2

. ~5.12!

To obtain Eq.~5.11! we have used the identity

E
t0

t
* dtF E

t
*

T

dxa~ t,x!2(
i 51

K E
t

t
* dxs i~ t,x!E

t
*

T

dys i~ t,y!G
5

1

2
q2. ~5.13!

Performing the Gaussian integration in Eq.~5.8! yields

C~G,t* ,T!

5A 1

2pq2
exp2

1

2q2 H G1E
t
*

T

dx f~ t0 ,x!2
q2

2 J 2

.

~5.14!

Hence from above and Eq.~5.6! we recover the well-known
result@19,20# that the European option on a zero coupon h
a Black-Scholes-like formula with volatility given byq.

For the two-factor HJM model given in Eq.~3.8! we have
01612
.

s

q25s1
2~T2t* !2~ t* 2t0!1

s2
2

2l3
~12e2l(T2t

*
)!2

3~12e22l(t
*

2t0)!. ~5.15!

A cap is a financial instrument for reducing ones exposu
to interest rate fluctuations, and guarantees a maximum
terest rate for borrowings over a fixed time. Acap fixes the
maximum interest for a fixed period fromt* to t* 1T; the
buyer of the instrument then pays for this period the ma
mum of the London interbank offered rateL[L(t* ,t*
1T) or the cap rateK. The cap is exercised at timet* and
the payments are made, in arrears, at timet* 1T. Let the
principal amount beV; the value of the capC at time t* is
then given by

C~ t* ,t* ,T!5VT~L2K !1 . ~5.16!

We have in terms of the forward rates@9#

TL~ t* ,t* 1T!5expF E
t
*

T1t
* dx f~ t* ,x!G21, ~5.17!

5
1

P~ t* ,t* 1T!
21. ~5.18!

The price of theC at time t0,t* is given by

C~ t0 ,t* ,T,K !5VE[ t0 ,t
*

]FexpH 2E
t0

t
* dt f~ t,t !J

3S 1

P~ t* ,t* 1T!
212TKD

1
G ,

~5.19!

5VE
2`

1`

dHG~H !~eH212TK!1 .

~5.20!

Carrying out an analysis similar to the one done for t
pricing of the European call option we obtain, as in E
~5.14! ~note the minus sign ofH)

G~H !5C~2H,t* ,T1t* ! ~5.21!

5A 1

2pqcap
2

expH 2
1

2qcap
2 F2H1E

t
*

T1t
* dx

3 f ~ t0 ,x!2
qcap

2

2 G2J ~5.22!

with qcap for the two-factor model given, similar to Eq
~5.15!, by

qcap
2 5s1

2T2~ t* 2t0!1
s2

2

2l3
~12e2lT!2~12e22l(t

*
2t0)!.

~5.23!
1-6
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QUANTUM FIELD THEORY OF TREASURY BONDS PHYSICAL REVIEW E64 016121
The above formula shows that a cap is equivalent t
European put option on the zero-coupon bondP(t* ,t*
1T). For a caplet the time T is taken to be small so tha
L(t* ,t* 1T). f (t* ,t* ), and in Eq.~5.22! we have

E
t
*

T1t
* dx f~ t0 ,x!.T f~ t0 ,t* ! , ~5.24!

qcap
2 .T2Fs1

2~ t* 2t0!1
s2

2

2l
~12e22l(t

*
2t0)!G .

~5.25!

VI. QUANTUM MECHANICS AND QUANTUM FIELD
THEORY

Since some readers may not be familiar with the conc
of a quantum field, the following is a brief description. We
first discuss the case of quantum mechanics, and then s
how the concept of a quantum field is a natural general
tion of quantum mechanics.

Consider the position of a particlex(t) as a function of
time t. Let the particle be experimentally observed to be
positionx1 at timet1 and at positionx2 at timet2. How does
one describe the evolution of the particle in quantum m
chanics? As is well known, there are three independent
equivalent descriptions of quantum mechanics. We disc
quantum evolution in Euclidean time, as this makes the c
nection to finance more straightforward.

In the Schrodinger representation of quantum mecha
@21#, the probability for the particle to be found in the inte
val @x,x1dx# for any time tP@ t1 ,t2# is given by
uc(x,t)u2dx. In other words, the probability for the particl
to be found, at timet, in the neighborhood of pointx0 is
given by

P~x0,x,x01dx!5uc~x0 ,t !u2dx. ~6.1!

The complex valued functionc(x,t) is the Schro¨dinger
wave function.

The second quantum description is provided by
Heisenberg operator equations@21# in which the position,
momentum, energy, and so on of the particle are consid
to be noncommuting operators acting on the Hilbert spac
physical states. The probability amplitude for making a tra
sition from its initial position to its final position is given b
the square of the absolute value of the transition amplitu
namely, u^x2ue2tĤux1&u2, where t5t22t1, and Ĥ is the
Hamiltonian operator driving the evolution of the quantu
particle.

The third description of the quantum particle is given
the Feynman path integral@3,7#. In this representation, th
position of the particlex(t) at each instanttP@ t1 ,t2# is con-
sidered to be anindependent random variable. The transition
amplitude^x2ue2tĤux1& is obtained by integrating over pos
sible values of all the random variablesx(t), and yields the
Feynman path integral@3,7# given by

^x2ue2tĤux1&5 )
t1,t,t2

E
2`

1`

dx~ t !eS ~6.2!
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with the boundary conditionx(t1)5x1 and x(t2)5x2. The
~functional! integration given in Eq.~6.2! can be thought of
as summing overall possible pathsthat the quantum particle
can take between pointsx1 andx2, and hence the term pat
integration. One can think of the quantum particlesimulta-
neouslytaking, in a virtual sense, all the possible paths fro
x1 to x2.

The quantum virtual paths are figuratively shown in F
6, together with the interpretation of the Schrodinger wa
function as determining the probability for the particle
found near some pointx.

The ‘‘action’’ S is a functional of the paths, and can b
constructed from the HamiltonianĤ. A general form for the
action is given by

S52
1

2Et1

t2
dtF S dx

dt D
2

1V~x!G , ~6.3!

whereV(x) is the potential that the particle is moving in.
The formalism of quantum mechanics is based on conv

tional mathematics of partial differential equations and fun
tional analysis. The infinite dimensional integration meas
given by ) t1,t,t2

*2`
1`dx(t) can be given a rigorous, mea

sure theoretic, definition as the integration over all contin
ous, but nowhere differentiable, paths running betwe
pointsx1 andx2.

In Feynman’s representation of quantum mechanics,
computes thematrix elementsof operators using functiona
integration, and hence the structure of the Hilbert space
states, and the noncommuting operator algebra acting on
space, and so on, is present only in an implicit manner.

We have discussed the quantum mechanical evolutio
a single particle, and it is not too difficult to see that t
formalism extends without much change to that ofN par-
ticles.

Suppose we are interested in studying how an exten
object, say astring, undergoes quantum evolution? How d

FIG. 6. Quantum particle simultaneously taking all possib
virtual paths from (xi ,t i) to (xf ,t f).
1-7
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BELAL E. BAAQUIE PHYSICAL REVIEW E 64 016121
we describe the quantum dynamics of such an object?
formalism of quantum field theory@7# has been developed t
answer this question.

For simplicity, consider a nonrelativistic~one dimen-
sional! string, and let its displacement from equilibrium
time t and at positionx be denoted byf(t,x), as shown in
Fig. 7 for a particular instantt0. The string’s position is
called afield, in this case, the string field.

Let the initial string position at timet1 be given by
f1(x)5f(t1 ,x), and the final position at timet2 be given by
f2(x)5f(t2 ,x). Suppose the string has mass per unit len
given byr, and string tension~energy per unit length! given
by T. A general expression for the action of the strin
namely,Sstring is given by@7#

Sstring52
1

2Et1

t2
dtE

2`

1`

dxrS ]f

]t D 2

2
1

2Et1

t2
dtE

2`

1`

dxFTS ]f

]x D 2

1V~f!G
[Skinetic1Spotential, ~6.4!

where, as expected,V(f) is the potential of the fieldf. In
analogy with quantum mechanics, we allow forall possible
string positionsto occur at each instant of the string’s ev
lution. Hence we need to integrate over all possible val
for the string’s position at each pointx and for each instantt.

Let the dynamics of the field be determined by the Ham
tonian of the string given byĤstring, and which can be de
rived from the string actionSstring. The initial and final quan-
tum state vectors of the~string! field is given by uf1&
5 ^ 2`,x,1`uf(x)& and uf2&5 ^ 2`,x,1`uf8(x)&, re-
spectively.

We hence have, in analogy with quantum mechanics,
the quantum field theory of the string fieldf(t,x) is defined
by the Feynman path integral, and yields the transition a
plitude @7#

Z[^f2ue2tĤstringuf1&, ~6.5!

5 )
t1,t,t2

)
2`,x,1`

E
2`

1`

df~ t,x!exp~Sstring! ~6.6!

with boundary conditions given byf1(x)5f(t1 ,x) and
f2(x)5f(t2 ,x). The object$f(t,x)% is called aquantum
field, since — unlike a classical string which has a determ
nate and fixed value for everyx and t — the quantum field
takesall possible valuesfor eachx and t.

FIG. 7. A typical string configuration.
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Equations~6.2! and ~6.5! that define quantum mechanic
and quantum field theory, respectively, look deceptiv
similar. In quantum mechanics, at any instantt0 there is only
one random variablex(t0), whereas for a quantum field
there areinfinitely manyrandom variables, since foreach x
the string coordinatef(t0 ,x) is an independent random var
able. More precisely, for a single particle the Hilbert space
states for quantum mechanics depends on one varia
namely is given byux&, whereas for a single fieldf, the
field’s Hilbert space depends on infinitely many independ
variables given by the infinite tensor productuf&
5 ^ 2`,x,1`uf(x)&.

We see that quantum mechanics is a system with a fi
number of random variables, whereas a field theory has
finitely many independent random variables. This, in
sence, is the difference between quantum mechanics
quantum field theory.

From a more mathematical point of view there is no me
sure theoretic interpretation of the expressi
) t1,t,t2

)2`,x,1`*2`
1`df(t,x). The only rigorous defini-

tion of Eq. ~6.6! is to limit the volume of spacetime to b
finite, and then discretize space time so that the infinite
mensional integration given in Eq.~6.6! is reduced to an
ordinary finite dimensional multiple integral. A~finite! con-
tinuum limit of a nonlinear field theory defined on a fini
and discrete spacetime is in general possible only if the
tion Sdefines a theory that is renormalizable. The proced
of renormalization has as yet no mathematically rigoro
definition, and, in general, the entire formalism of quantu
field theory lies beyond the scope of conventional and rig
ous mathematics.

If the actionS is only a quadratic function of the quantum
field f, the theory is said to be a free field~Gaussian!, and
one can take the continuum limit without having to addre
the problem of renormalization. Fortunately, for the mod
proposed for the forward rates, the action will be quadra

VII. THE ACTION FOR THE FORWARD RATES

As mentioned earlier, in the HJM model the fluctuatio
in the forward rates at a given timet are given by ‘‘shocks’’
Wi(t) that are delivered to the entire curvef (t,x) by random
variables that do not depend on the maturity directionx.
Clearly, a more general evolution of the instantaneous
ward rate would be to let the whole curve evolve random
that is to letall the forward rates— that is, f (t,x) for each
x and t, fluctuateindependently. The only constraint imposed
on the random evolution of the forward rates is that, at ev
instant, the condition ofno arbitragebe valid.

At any instantt, there exist in the market forward rates fo
a duration ofTFR in the future; so, for example, ift refers to
present timet0, then one has forward rates fromt0 till time
t01TFR in the future. In the market,TFR is at least about 30
years, and hence we haveTFR.30 years. In general, at an
time t, all the forward rates exist till timet1TFR @22#. The
forward rates at any instantt is denoted byf (t,x), with t
,x,t1TFR , and is called theforward rate curve.

Since at any instantt there are infinitely many forward
rates, we need an infinite number of independent variable
1-8
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QUANTUM FIELD THEORY OF TREASURY BONDS PHYSICAL REVIEW E64 016121
describe its random evolution. As discussed in Sec. VI,
generic quantity describing such a system is a quantum
@7#. For modeling the forward rates and treasury bonds,
consequently need to study a two-dimensional quantum fi
on a finite Euclidean domain.

We hence consider the forward rates to be aquantum
field; that is, f (t,x) is taken to be anindependentrandom
variable for eachx and eacht. For notational simplicity we
keep botht and x continuous; in Appendix A, a case wit
both t and x discrete is analyzed and the continuum lim
discussed in some detail.

For the sake of concreteness, consider the forward r
starting from some timet0 to the infinite future, that is, with
t5`. Since all the forward ratesf (t,x) are always for the
future, we havex.t; hence the quantum fieldf (t,x) is de-
fined on the domain in the shape of a semi-infinite paralle
gram P that is bounded by parallel linesx5t and x5TFR
1t in the maturity direction, and by the linet5T0 in the
time direction, as shown in Fig. 8. Every point in the doma
P represents an independent integration variablef (t,x), and
shows the enormous increase over the HJM random vari
Wi(t) given in Fig. 1.

To define an action for the forward rates, we first nee
kinetic term, as is common to all field theories, and whic
for example, is given in Eq.~6.4! by Skinetic. Since we know
from the HJM model that the forward rates have a drift v
locity a(t,x) and volatility s(t,x), these have to appear d
rectly in the action for the forward rates.

The analog of a potential for the forward rates is to let
forward rates store ‘‘energy’’ in the shape of the curve;
represent this property of the forward rates considered
string, we introduce a new parameterm, which is the analog
of string tension and which quantifies the strength of
fluctuations of the forward rates in the time-to-maturity d
rection x. We expect that, in the limit ofm→0, we should
recover the HJM model. The simplest term that can con
the fluctuations in thex direction is the gradient off (t,x)
with respect tox. The action for the forward rates that ge
eralizes the HJM action of Eq.~2.10!, is given by

S@ f #5E
t0

`

dtE
t

t1TFR
dxL@ f #[E

P
L@ f # ~7.1!

FIG. 8. Domain of the forward rates.
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with the LagrangianL@ f # given by

L@ f #5Lkinetic@ f #1Lpotential@ f #, ~7.2!

52
1

2TFR

F H ] f ~ t,x!

]t
2a~ t,x!

s~ t,x!
J 2

1
1

m2
H ]

]x
S ] f ~ t,x!

]t
2a~ t,x!

s~ t,x!
D J 2G . ~7.3!

The initial condition is given by

t5t0 , t0,x,t01TFR :

f ~ t0 ,x!: initial forward rate curve ~7.4!

and the fieldf (t,x) on the rest of the boundary points of th
semi-infinite parallelogramP are integration variables.

Comparing Eqs.~6.4! and ~7.2!, we see that the forward
rates behave like a~quantum! string, with a time and space
dependent drift velocitya(t,x), an effective mass given by
1/s(t,x), and string tension proportional to 1/m2.

The quantum field theory is defined by integrating over
configurations off (t,x) and yields

Z5E D f eS[ f ] , ~7.5!

E D f 5 )
(t,x)eP

E
2`

1`

d f~ t,x!. ~7.6!

Note thateS[ f ] / Z is the probability for different field con-
figurations to occur when the functional integral overf (t,x)
is performed.

The presence of the second term in the action given in
~7.1! seems to be justified from the phenomenology of
forward rates@23# and is not ruled out by no arbitrage.

The action given in Eq.~7.1! is suitable for studying the
formal properties of the forward rates. However it is oft
simpler for computational purposes to change variables.
A(t,x) be a two-dimensional quantum field; we use the HJ
change of variables to expressA(t,x) in terms of the forward
ratesf (t,x), namely;

] f

]t
~ t,x!5a~ t,x!1s~ t,x!A~ t,x!. ~7.7!

The Jacobian of the above transformation is a constant
hence, up to a constant

E D f→E DA. ~7.8!

The quantum field theory is defined by a functional integ
over all variablesA(t,x); the values ofA(t,x) on the bound-
ary of P are integration variables; this yields the partitio
function
1-9
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Z5E DAeS[A] , ~7.9!

where the action in terms of theA(t,x) field is given by

S@A#52
1

2TFR
E

t0

`

dtE
t

t1TFR
dxH A2~ t,x!1

1

m2 S ]A~ t,x!

]x D 2J
~7.10!

5E
P
L@A#. ~7.11!

Note that Eqs.~7.7! and ~7.10! can easily be generalize
to theK-factor case by introducingK-independent and iden
tical quantum fieldsAi(t,x). The forward rates are then de
fined by the equation

] f

]t
~ t,x!5a~ t,x!1(

i 51

K

s i~ t,x!Ai~ t,x!. ~7.12!

For simplicity, we will only analyze the one-factor model.
It is shown in Eq.~A16! that if we define

W~ t !5E
t

t1TFR
dxA~ t,x!, ~7.13!

then, form→0, we have

S@A#→S052
1

2Et0

`

dtW2~ t !, ~7.14!

E DA→E DW. ~7.15!

From Eq. ~2.10! and above we see that we recover t
HJM model in them→0 limit. We see from Eq.~7.13! that
the HJM model is a drastic truncation of the full field theor
and only considers the fluctuations of the average value
the quantum fieldA(t,x); it in effect ‘‘freezes-out’’ all the
other fluctuations ofA(t,x).

If one thinks of the fieldA(t0 ,x) at some instantt0 as
giving the position of a ‘‘string’’ @8,9#, then in the HJM
model this string is taken to be arigid string. The action
S@A# given in Eq.~7.10! allowsall the degrees of freedom o
the field A(t0 ,x) to fluctuate independently and can b
thought of as a ‘‘string’’ with string tension equal to 1/m2; in
this language the HJM model considers the forward r
curve to be a string with infinite tension and hence rigid.

VIII. PROPAGATOR OF THE FORWARD RATES

The moment generating functional for the quantum fi
theory is given by the Feynman path integral as

Z@J#5
1

ZE DAexpH E
t0

`

dtE
t

t1TFR
dxJ~ t,x!A~ t,x!J eS[A] .

~8.1!
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We evaluateZ@J# exactly in Appendix B, and from Eq
~B17!

Z@J#5exp
1

2Et0

`

dtE
t

t1TFR
dxdx8J~ t,x!

3D~x,x8;t,TFR!J~ t,x8!. ~8.2!

The propagatorD(x,x8;t,TFR) is given, for l5x2t,l8
5x82t, from Eq. ~B19! by

D~x,x8;t,TFR!

5
mTFR

sinh~mTFR! F sinhm~TFR2l!sinh~ml8!u~l2l8!

1sinhm~TFR2l8!sinh~ml!u~l82l!

1
1

2 cosh2S mTFR

2 D H 2coshmS l2
TFR

2 D

3coshmS l82
TFR

2 D1sinh~ml!sinh~ml8!

1sinhm~TFR2l!sinhm~TFR2l8!J G . ~8.3!

Note the important property of the propagat
D(x,x8;t,TFR) that it dependsonly on the variablesl and
l8. This property of the propagator implies that all the pro
erties of the future rates depend only on the how long in
future we are looking at, and not at what instantt.

To understand the significance of the propaga
D(x,x8;t,T) note that the correlator of the fieldA(t,x), for
t0,t,t8,t01TFR , is given by

E„A~ t,x!A~ t8,x8!…5
1

ZE DAeS[A]A~ t,x!A~ t8,x8!

~8.4!

5d~ t2t8!D~x,x8;t,TFR!. ~8.5!

In other words,D(x,x8;t,T) is a measure of the effect th
value of field A(t,x) at maturity timex has onA(t,x8),
namely, on its value at another maturityx8.

SinceD(x,x8;t,TFR) looks fairly complicated, we exam
ine it in a few extreme limits, and obtain

D~x,x8;t,TFR!

.H 11O~m2!, m→0

1

2
mTFRe2mux2x8u→TFRd~x2x8!, m→`.

~8.6!
1-10
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QUANTUM FIELD THEORY OF TREASURY BONDS PHYSICAL REVIEW E64 016121
We see that, as expected, in the limit ofm→0 all the fluc-
tuations in thex direction are ‘‘frozen,’’ that is, are exactly
correlated; in other words the values ofA(t,x) for different
maturities are all the same, and this is the limit of the HJ
model.

The propagator above has a simple interpretation for
case ofm→`. If the field A(t,x) has some value at pointx,
then the field at ‘‘distances’’x2m21,x8,x1m21 will
tend to have the same value, whereas for other values ox8
the field will have arbitrary values. Hence we see that in
limit of m→0 the fluctuations in the time-to-maturityx di-
rection are strongly correlated within maturity timem21,
which is thecorrelation timeof the forward rates.

Define

j ~ t !5E
t

t1TFR
dxJ~ t,x!. ~8.7!

We have from Eqs.~8.2!, ~8.6!, and~8.7! that

lim
m→0

Z@ j #5exp
1

2Et0

`

dt j2~ t !, ~8.8!

which is the result obtained earlier in Eq.~2.12!.

IX. CONDITION OF NO ARBITRAGE

We now derive the no-arbitrage condition for the acti
S@A#. Equation~3.2! for the Martingale is unchanged; gen
eralizing Eqs.~3.3! and ~3.5! we have

expE
T
a~ t,x!5

1

ZE DAexpH 2E
T
s~ t,x!A~ t,x!J e*PL [A]

~9.1!

5exp
1

2Et0

t
* dtE

t

T

dxdx8s~ t,x!

3D~x,x8;t,TFR!s~ t,x8!. ~9.2!

Note the trapezoidal domainT determining the condition
of no arbitrage is nested inside the domain of the forw
ratesP, as shown in Fig. 9.

FIG. 9. Domain for no arbitrage contained in the domain of
forward rates.
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We have

E
t

T

dxa~ t,x!5
1

2Et

T

dxdx8s~ t,x!D~x,x8;t,TFR!s~ t,x8!.

~9.3!

The no-arbitrage condition has to hold for any treasu
bond maturing at any timex5T. Hence, we differentiate
above expression with respect toT, and obtain the generali
zation of Eq.~3.7! given by

a~ t,x!5s~ t,x!E
t

x

dx8D~x,x8;t,TFR!s~ t,x8!. ~9.4!

From the empirical study of forward rate curves@23# there
is evidence that the HJM model is not adequate, since
arbitrage implies that the drift terma(t,x) is quadratic in the
volatility, and which is inconsistent with data; in@23# an
additional term is added that reflects the market price of r
In the approach of field theory, the additional terms due
the propagator could provide a better model of no arbitra
for the drift term.

We have the following limiting behavior

a~ t,x!.H s~ t,x!E
t

x

dx8s~ t,x8!, m→0

1

2
TFRs2~ t,x!, m→.`

~9.5!

Note the equation fora(t,x) given above that the case fo
m5` is quite dis-similar from that of the HJM model give
in Eq. ~3.7!, which is the case form50. The expression for
a(t,x) given in Eq.~9.4! for mÞ0 continuously interpolates
between the extreme values ofm50 andm5`.

For the case of the one-factor model we have the ex
result that

a~ t,x!5
s1

2TFR

2 F11
exp@22m~TFR2x1t !#2e22m(x2t)

12e22mTFR
G .

~9.6!

The limiting behavior for the one-factor model, which als
directly follows from Eq.~9.5!, is given by

a~ t,x!.H s1
2~x2t ! m→0

1

2
s1

2TFR m→`.
~9.7!

Note that in the limit ofm→0, we recover the HJM re-
sult.

We have from Eqs.~7.7! and ~9.4! that
1-11
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f ~ t,x!5 f ~ t0 ,x!1E
t0

t

dt8s i~ t8,x!

3E
t8

x

dyD~x,y;t8,TFR!s i~ t8,y!

1E
t0

t

dt8s i~ t8,x!Ai~ t8,x!. ~9.8!

X. FUTURES AND OPTION PRICING

We derive the futures and options pricing using quant
field theory. For the two-factor model all the expressions c
be obtained exactly; the results for them50 limit are the
same as the HJM model; we will explicitly give the resu
only the one-factor model.

Equation~4.7! for the futures priceF for the case of the
field theory model for the forward rates only changes
formula forV. From Eq.~4.8!, and for the domainsR andP
given in equation below — and as shown in Fig. 10 — w
have

eV5
1

ZE DAexpH 2E
R

dxs~ t,x!A~ t,x!e*PL [A]J , ~10.1!

5expH 1

2Et0

t
* dtE

t
*

T

dxdx8s~ t,x!D~x,x8;t,TFR!s~ t,x8!J .

~10.2!

Using the no-arbitrage condition~9.4! we obtain the gen-
eralization of Eq.~4.10! as given by

VF~ t0 ,t* ,T!52(
i 51

K E
t0

t
* dtE

t

t
* dxs i~ t,x!E

t
*

T

dx8

3D~x,x8;t,TFR!s i~ t,x8!. ~10.3!

For the one-factor model, withs1Þ0, we have, forTFR
@T,

FIG. 10. Domain for the futures price.
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VF~ t0 ,t* ,T!52
s1

2TFR

4m2
~12e2m(T2t

*
)!

3$2m~ t* 2t0!1e22m(t
*

2t0)21% .

~10.4!

For the price of a European call optionC , a calculation
similar to the one carried out in Sec. IV gives the sam
formula for C(G) given in Eq.~5.14! with q2 given in Eq.
~5.12! replaced by

q25(
i 51

K E
t0

t
* dtE

t
*

T

dxdx8s i~ t,x!D~x,x8;t,TFR!s i~ t,x8!.

~10.5!

We have

lim
m→`

q25TFR(
i 51

K E
t0

t
* dtE

t
*

T

dxs i
2~x,t !. ~10.6!

For the one-factor model we have, forTFR@T, that

q25
s1

2TFR

4m2
@4m~ t* 2t0!$m~T2t* !1e2m(T2t

*
)21%

1e22m(T2t
*

)2e22m(T2t0)12~12e2m(T2t
*

)!

3~12e22m(t
*

2t0)!#. ~10.7!

Note for both the futures and option prices, the prese
of m is like adding another factor to the model.

If we are interested in pricing any path dependent opt
or other derivatives, it is not sufficient to know only th
propagatorD(x,x8;t,TFR); the full structure of the action
S@A# is then required.

For example, the payoff function of an Asian option
time t0 on a zero-coupon bondP(t,T) with exercise timet*
is given by

g@P~*, T!#5F 1

t* 2t0
E

t0

t
* dtP~ t,T!2KG

1

. ~10.8!

Another example is the price of a European call option
a coupon bondB(t,T) given in Eq.~2.1!; the payoff function
is given by

g@B#5@B~ t* ,T!2K#1 . ~10.9!

The payoff functiong@A# in both the cases above is pa
dependent. Expressing all the zero-coupon bonds in term
the quantum fieldA(t,x), the prices of such path depende
options at timet0 are given by

C~ t0 ,t* ,T,K !5
1

ZE DAexpF2E
t0

t
* dtr~ t !Gg@A#eS[A] .

~10.10!
1-12
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The computation above can only be performed num
cally @24#; for this the functional integral overA(t,x) has to
be discretized, which is briefly discussed in Appendix A.

XI. CONCLUSIONS

We have reformulated the theory of treasury bonds
terms of path integration. The HJM model has a simple p
integral realization with an ultralocal action. Equations f
the no-arbitrage condition as well as the evaluation of futu
and options were shown to be calculable in a straightforw
manner using path integration. The motivation for rederiv
the well-known results of the HJM model was first to und
stand the path integral formulation of the quantities of int
est in finance, and second to generalize these quantities t
case of quantum field theory.

The quantum field theory of treasury bonds is more g
eral than the HJM model; in particular, the correlation
fluctuations of the forward rates can be easily modeled to
finite in the field theory whereas in the HJM modelall the
fluctuations are exactly correlated. From the point of view
finance, it is unreasonable to assume that the all forw
rates fluctuate identically as in the HJM-model. The mu
factors in HJM model are an attempt to model the fin
correlation in the time to maturity that should exist for t
forward rates, and that is more efficiently captured usin
finite tension in the field theory model.

We considered a Gaussian model for the field theory g
eralization of the HJM model as this is the simplest ext
sion, and also because the model could be solved exactl
particular, the formulas for the futures, cap and option pr
of treasury bonds were derived and involved nontrivial c
relations in the volatility of the model.

We can generalize the model to account for stocha
volatility of the forward rates. This entails introducing a
other quantum field for modeling the fluctuations of volat
ity, and is similar to the quantum mechanical treatment
volatility for a single security@6#. Stochastic volatility makes
the system highly nonlinear. The best way of modeling tr
sury bonds in practice is a computational and empirical qu
tion @25,26#. A detailed empirical study of the model for th
treasury bonds and forward rates proposed in this paper
cluding calibration and consistency checks, is treated
some detail in@27#.

For the more theoretical aspects of finance, the metho
ogy of field theory certainly adds to the ways of studying a
understanding the stochastic processes that drive the ca
market.
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APPENDIX A: LATTICE FORMULATION

We present a rigorous treatment of the quantum fi
theory of the forward rates. The main idea is to truncate
full functional integral given in Eq.~6.6! into a finite dimen-
sional multiple integral by replacing the continuous doma
P by a finite set of lattice points in a discrete domainP̂. The
way this is done is to discretize the continuous planext into
a finite lattice. One can then discuss more rigorously
continuum limit as the limit of the lattice theory.

We discretize the domainP into a lattice of discrete
points. Let (t,x)→(me,na), wheree is an infinitesimal time
step anda is an infinitesimal in thex direction. Truncate the
semi-infinite domainP given in Fig. 8 into a finite discretize
domainP̂, with an upper limit in the time direction given b
Me. Let N5TFR /a andm05t0 /e.

The discrete and finite domainP̂ is bounded in the time
direction bym5m0 andm5M , and in the maturity direction
by me5na and na5me1Na. The integers take values i
the discrete domainP̂, and are given by

P̂5$m5m0 ,m011, . . .M21;

na5me,me1a, . . .me1Na%. ~A1!

The forward rates and quantum field yield on discretiz
tion

f ~ t,x!→ f ~me,na![ f mn , ~A2!

A~ t,x!→A~me,na![Amn , ~A3!

and similarly fora ands.
From Eq.~7.7! we have

f m11n5 f mn1eamn1esmnAmn , ~A4!

f m0 ,n :n5m0 ,m011, . . . ,N1m0 :

initial forward rate curve. ~A5!

Using finite differences to discretize derivatives, we o
tain from Eq.~7.10!, that

S@A#52
e

2~N11! (
m5m0

M21 H (
n5m

N1m

Amn
2

1
a

m2 (
n5m

N1m21

~Amn112Amn!
2J , ~A6!

E dA5 )
m5m0

M21

)
n5m

N1m E
2`

1`

dAmn . ~A7!

Note the functional integral over the fieldA(t,x) has been
reduced to afinite-dimensionalmultiple integral over the
Amn variables, which in the above case consists ofN(M
1-13
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2m0) independent variables; hence all the techniques us
for evaluating finite-dimensional integrals can be used
performing the integration overAmn .

To achieve the correct normalization, one in fact need
keep track of the constants that correctly normalize*dA in
Eq. ~A7!. Instead, one simply redefines the action by

eS[A]→ eS[A]

Z
, ~A8!

Z[E dAeS[A] . ~A9!

All the constants in*dA cancel out; and more importantly
the expressioneS/Z is correctly normalized to be interprete
as a probability distribution, and hence can be used
Monte Carlo studies of this theory. The action given in E
~A6! is the starting point for any simulations that are r
quired of the model including the pricing of path depend
derivatives; there are well-known numerical algorithms d
veloped in physics for numerically studying quantum fie
@24#.

We explicitly solve for the case ofm→0 to see how the
HJM model emerges. Form→0, the second term in the ac
tion gives a product ofd functions and we have

eS[A]5eS0 )
m5m0

M21

)
n5m

N1m21

d~Amn112Amn!, ~A10!

S052
e

2~N11! (
m5m0

M21

(
n5m

N

Amn
2 . ~A11!

Consider evaluating a typical expression likeZ in Eq.
~8.2!. For eachm, there areN integration variablesAmn ;
from Eq. ~A10! we see that there are only (N21) d func-
tions, leaving, for everym, only one variable, sayAmm un-
restricted. For simplicity, we takee5a; hence we have

Z5 )
m5m0

M21 A e

2pE dAmmeS0, ~A12!

S052
e

2 (
m5m0

M21

Amm
2 . ~A13!

Defining W(m)5Amm, we see from Eqs.~2.9! that we
have recovered the HJM model. We can equivalently c
sider

W~m!5 (
n5m

N1m

Amn ~A14!

and we have

lim
m→0

W~m!→Amm. ~A15!

Taking the continuum limit, we see that the field theo
in the m→0,M→0 limit reduces to
01612
ul
r

t

r
.
-
t
-

-

,

S0→2
1

2Et0

`

dtW2~ t !, ~A16!

W~ t !5E
t

t1TFR
dxA~ t,x!. ~A17!

For the general case ofmÞ0, from Eq.~A6!, taking the
continuum limit of e→0,a→0,M→` we obtain the ex-
pected result that

S@A#52
1

2TFR
E

t0

`

dtE
t

t1TFR
dx

3H A2~ t,x!1
1

m2 S ]A~ t,x!

]x D 2J , ~A18!

E DA5 )
(t,x)eP

E dA[ lim
e→0,a→0,M→`

)
mn

E dAmn ,

~A19!

Z5E DAeS[A] . ~A20!

APPENDIX B: GENERATING FUNCTIONAL Z†J‡

Since the generating functionalZ@J# is of central impor-
tance in studying the quantum field theory, for completen
we briefly discuss its derivation; all these results are w
known in physics@7# and this derivation is intended for read
ers from other disciplines.

Recall

Z@J#5
1

ZE DAeS[A,J] , ~B1!

S@A,J#5E
t0

`

dtE
t

t1TFR
dxJ~ t,x!A~ t,x!1S@A#. ~B2!

SinceS@A,J# is quadratic functional of the fieldA(t,x),
to perform the functional integration over the field, all w
need to do is to find the specific configuration ofA(t,x), say
a(t,x) which maximizesS@A,J#; due to our choice of nor-
malizationZ@J# depends only ona(t,x).

Since there is no coupling in the time directiont, we study
the solutiona(t,x) separately for eacht, and on the finite
line intervalt,x,t1TFR . We first study the case for which
the boundary values of the fieldA(t,x) are fixed, that is
considerA(t,t)5p and A(t,t1TFR)5p8 to be held fixed;
we will later integrate overp,p8 as is required for the evalu
ation ofZ@J#. We henceforth suppress the time variablet for
notational convenience.

The ‘‘classical’’ ~deterministic! field configuration
a(t,x)[a(x) is defined by

dS@a,J#

dA~ t,x!
50, ~B3!
1-14
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a~x5t !5p;a~x5t1TFR!5p8. ~B4!

Doing a change of variablesA(t,x)5B(t,x)1a(t,x) and
a functional Taylors expansion we have, from Eq.~B3!

S@A1a,J#5Scl@a,J#1S̃@B#. ~B5!

Note that due to boundary conditions given in Eq.~B4!,
S̃@B# is independent ofp,p8,J. The functional integral over
the B(t,x) variables gives only an overall constant that c
be ignored, and hence we have

Z@J#5
1

ZE2`

1`

dpdp8eScl[a,J] . ~B6!

We now determinea(x); from Eq. ~B3! we have

1

m2

]2a~x!

]x2
2a~x!1TFRJ~x!50, ~B7!

a~ t !5p,a~ t1TFR!5p8;t,x,t1TFR . ~B8!

Since Eq.~B7! is a linear, the solution fora(x) is given by a
sum of the solutions of the homogeneous and inhomo
neous equations; it can be verified that

a~x!5
1

sinh~mTFR!
@aH~x!1aIH~x!# ~B9!

with the homogeneous solution given by

aH~x!5psinhm~TFR1t2x!1p8sinhm~x2t ! ~B10!

and the inhomogeneous solution given by

aIH~x!5mTFRE
t

t1TFR
dx8@u~x2x8!sinhm~TFR1t2x!

3sinhm~x82t !1u~x82x!sinhm~TFR1t2x8!

3sinhm~x2t !#J~x8!. ~B11!

The ‘‘classical’’ action is given by

Scl@a,J#5S1@p,p8;J#1S2@J# ~B12!

with

S1@p,p8;J#52
1

2msinh~mTFR!
@cosh~mTFR!

3~p21p82!22pp8#

1
TFR

sinh~mTFR!
@pQ1p8P#, ~B13!
01612
e-

where

P5E
t

t1TFR
dxsinhm~x2t !J~x!, ~B14!

Q5E
t

t1TFR
dxsinhm~TFR1t2x!J~x!, ~B15!

and

S2@J#5
mTFR

2

sinh~mTFR!
E

t

t1TFR
dxdx8u~x2x8!

3sinhm~TFR1t2x!sinhm~x82t !J~x!J~x8!.

~B16!

Performing the Gaussian integrations overp,p8 and re-
storing the time variablet yields

Z@J#5
eS2[J]

Z E dpdp8eS1[ p,p8;J] ~B17!

5exp
1

2Et0

`

dtE
t

t1TFR
dxdx8J~ t,x!

3D~x,x8;t,TFR!J~ t,x8!. ~B18!

From Eqs.~B12!, ~B13!, and~B16! we have, definingl5x
2t andl85x82t, and after some simplifications

D~x,x8;t,TFR!

5
mTFR

sinh~mTFR! F sinhm~TFR2l!sinh~ml8!u~x2x8!

1sinhm~TFR2l8!sinh~ml!u~x82x!

1
1

2cosh2S mTFR

2 D H 2coshmS l2
TFR

2 D

3coshmS l82
TFR

2 D1sinh~ml!sinh~ml8!

1sinhm~TFR2l!sinhm~TFR2l8!J G . ~B19!
1-15
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