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Scaling theory for two-dimensional systems with competing interactions
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We derive an analytic scaling theory for a two-dimensional system in which spontaneous patterns of stripes,
bubbles, and intermediately shaped domains arise due to the competition of short-range attractions and long-
range dipolar repulsions. The theory predicts temperature and domain-size scaling as a function of the relative
repulsion strengthy, the ratio of the repulsive to the attractive coupling constant in the system’s Hamiltonian.
As 7 decreases, the domain size explodes exponentially and the melting temperature for a system of ordered
stripes increases. Our findings shed new light on the phase diagram and critical excitations for the dipolar Ising
ferromagnet or lattice gas and their continuum analogs. We show that the features described by the scaling
theory are insensitive to details like cutoffs for the dipolar interactions and, therefore, should be widely
applicable. Our corresponding states analysis explains the experimentally observed stripe melting upon com-
pression in a Langmuir monolayer. A phenomenological extension of the analytic scaling theory describes how
the system’s behavior is modified in the presence of magnetization or density fluctuations. Fluctuations are
found to suppress domain size and the stripe melting temperature. In regimes where fluctuations are important,
we predict that domain size will decrease with increasing temperature.
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[. INTRODUCTION answer in this paper is the followingee Fig. 1 If a set of
interaction parameterd and A gives rise to domains with a

A variety of two- and three-dimensional systems with particular length scale, is there another set of parameters
competing attractive and repulsive interactions self-organizd(b) and A(b) that gives rise to the same domain configu-
into patterns of stripes, bubbles, and domains of intermediatédtions as the original parameters, only scaled in size by a
shaped1]. Examples of spontaneously modulated materialdactor b? The answer turns out to be affirmative under a
range from ferromagnetic and dielectric compoun@s3] broad range of conditions. The availability of this type of
through Langmuir monolayefd,4—9 to adsorbed monolay- ‘“corresponding states” theory provides valuable informa-
ers on solid surfacg40-13. The bubbles, stripes, and other tion about systems with a highly complex phase diagram and
patterns observed in these materials have been the object @n be tested experimentally, as described below.
many experimental and theoretical studies. These materials Although a body of analytic theorf19,24—-2§ and nu-
form the basis of several promising technologies. For exmerical simulationd29-31 treating modulated phases has
ample, either by direct assembly on a substrate or by transf@ccumulated, the phase diagram and the elementary excita-
from a Langmuir phase, self-assembled monolayers have réions leading to phase transitions in these systems have not
cently been demonstrated to be a feasible route to the fabrbeen completely elucidated. We have recently presented a
cation of surface nanoscale devidad—17. brief report [32] of large-scale numerical simulations of

The occurrence of similar spatial patterns across a widétripe phase melting in an Ising model with additional long-
variety of physical systems has been attributed to a commoffinge dipolar repulsive interactions, one of the basic models
mechanism, the competition of short-range attractive forcefor modulated phases that are stabilized by competing attrac-
and long-range repulsiond,9,18. The long-range repul- tions and repulsions. By “melting” of stripe phases we
sions have been found to be due to actual or effective dipoles
whose interaction energy falls off as® with distance, al- ‘

though in two dimensions the precise form of the repulsive
interaction might not be crucial. Magnetostatic interactions

between spins produce the dipolar repulsion between do- ®

mains in thin ferromagnetic filmf2,3]. Surface polarization ‘, g
is the source of the repulsion in Langmuir monolayers.

[5-9,19,20Q Either surface polarization or accumulation of b=1

elastic energy from lattice mismatch cause actual or effective
dipolar repulsion within adsorbed monolayers on solid sub-
strates[21-23. In most cases the domain length scale is  rig 1. Two configurations are shown, the original configura-
much longer than a molecular one. Therefore, domain forton of domains b=1) and another configuration that is identical to
mation on the mesoscopic level is controlled by a few matetne original except that the domains are scaled in size by a factor
rials parameters and the molecular details of the system rgp>1 is shown here The original system configuration is specified
cede in importance. by a set of domain area¥D,} and contoursC;}. The areas and
We denote the attractive and repulsive interaction parameontours of the scaled domains are indicated{b®;} and{bC;},

eters byJ andA, respectively. The fundamental question we respectively.

b>1
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Il. MODELS FOR MODULATED PHASES
ARISING FROM DIPOLAR INTERACTIONS

In typical self-organizing systems of interest, domain
length scales are much larger than atomic or molecular di-
mensions. Many details of the interaction are not important
on the mesoscopic level, and we concentrate on the funda-
mental ingredients that are required to support modulated
phases, a short-range attraction and a longer-ranged repul-
sion. We take the repulsion to be that between parallel di-
poles, falling off as the third power of distance, because it is
appropriate for both thin ferromagnetic films and Langmuir
monolayers. We consider both continuum and lattice models.
Continuum models are most amenable to analytic theory,

FIG. 2. Representative snapshots from Monte Carlo simulationgncluding the scaling theory developed in this work. It is
[32,52 of the dipolar Ising modelEq. (1)]. (a) Stripe phase(b) important to also consider lattice models, so that we can
isotropic phase, “melted” stripes{c) isotropic phase, elongated make connections between analytic theory and computer
bubble domains{d) isotropic phase, bubble domains. simulations, which are usually performed using lattice mod-

els (not to say that lattice models are without use in analytic
mean loss of the twofold orientational order of the stripetheory). We actually begin with lattice models, where micro-
phase[Fig. 2a)] to either a meandering stripe phd$dg.  scopic cutoffs arise naturally.
2(b)] or a bubble phasfFigs. 2c) and Zd)]. (In two dimen-
sions, the stripe phase does not have true long-ranged orien-
tational order. Rather, the decay of orientational correlations ] ] . ) )
switches between algebraic and exponential character at the Lattice models may be represented using either spin vari-
transition point[25].) Our work established that, for suffi- ables §g=*1) or particle occupation variables¢=0,1).
ciently large values of the relative repulsion strengytd, the It is well known that the two representations are equivalent
stripe phase disorders via topological defects and, mogind related to each other by the transformatis=2ng
likely, is an instance of Kosterlitz-Thouless topological de-—1. Since there are experimental realizations of modulated
fect unbinding[33—37. Our simulations revealed a clear Phases stabilized by dipole repulsions that correspond to
trend in which the stripe melting temperature increased aB0th spin and occupation variables, we introduce the lattice
the ratio A/J decreased. The data from simulations wereHamiltonian using both Ising-like spin variable(),
found to be in agreement with a preliminary version of the N s
scaling theory, which was presented in our brief report with- —_ s ROR"
out derivation[32]. In this work, a more general and com- His/keT=~ <RZR,> SrSr/ T 5 RE;‘, IR-R'|3 h2 sq,
plete version of the scaling theory is derived. As discussed ' ’ (1)
further below, the dependence of the stripe melting tempera-
ture on the ratioA/J, predicted by our scaling theory, ex- and lattice gas occupation variabled, (),
plains an otherwise puzzling feature exhibited by stripe do- A
mains in Langmuir monolayers, namely, the fact that they NRNR/
disorder upon compressigB8]. HiclkgT=~J E NRNR+ 5 z E 2 .

. . ) (RR') RR' |[R—R’ R

The basic model for modulated phases stabilized by dipo- )
lar repulsions is introduced in Sec. Il, and a family of differ-
ent short-range cutoffs for the dipolar interaction is intro- J’ andJ are attractive coupling constani; and A are
duced. For domains in which the radius of curvature is muchhe dipolar repulsive coupling constants in the lattice gas and
larger than a microscopic cutoff length, we can treat the varispin representation, respectively,is an external magnetic
ous cutoffs in a unified fashion, exposing possible effectgield, andu is the chemical potential. The first term in Egs.
due to the choice of a cutoff. In Sec. Ill, scaling relations are(1) and(2) captures the effect of short-range attractive inter-
developed for the case in which domain boundaries are shagtions, the second one introduces long-range repulsions, and
and the density within domains does not change appreciablje third takes into account the influence of an external field
with temperature. In other words, we treat the case in whictor the chemical potential.
the domain shapes fluctuate, but not the density within do- The well-known relations between coupling constants in
mains. Readers not interested in the derivations given in Sethe two representations are easily derived by substituting
[ll can proceed directly to Sec. IV, where we present thesy=2nz—1 into Eq.(1) and comparing with Eg(2),
predictions of the scaling relations. Finally, in a highly phe-

A. Spin and lattice gas Hamiltonians

nomenological manner, we explore the case in which the J=4)', 3
domain densities also change in Sec. V. Those not interested
in the derivation of Sec. V A may find the resulting predic- A=4A’, (4)
tions presented in Sec. V B. Conclusions are given in Sec.
VI M=ot Ou, ()
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C3 ! ’
Ho=2 — A —qJ |, (6)
a
Spu=2h. (7
In Eq. (6),
a3
Cs 8

R(R£R) [R—R|®

wherea is the nearest-neighbor distance of the latti€ghas

the numerical value of 9.033621 7 for a square lattice and

11.034 1757 for a triangular lattide7]. Physically,Cj is
the dimensionless interaction strength of a dipole at Rite
with an infinite two-dimensional array of parallel dipoleg.
is the number of nearest neighbors for a particle atRite
the lattice.

B. Continuum limit: Pure domain shape fluctuations

We now proceed to the continuum limit. In this section,

we suppose that system fluctuations are dominated b

changes in domain shapes and not the der{sitynagneti-
zation for spin systemswithin domains. This condition is
very well satisfied for values oh andJ where it is feasible
to perform simulations for an Ising model with dipolar repul-
sions(see Fig. 2, such as the model governed by Ef). As

PHYSICAL REVIEW E 64 016118

After the terms involving long-range repulsions are taken to
the continuum limit by turning sums over lattice sif@snto
integrals, we obtain the following continuum Hamiltonian:

73 Jyereny [ o

HLG /kBT: -

q
mt EJ

A
+ —Zf J drdr'v(jr—r’|)

i<j o

A

The interdomain and intradomain dipolar repulsion ener-
gies are separated in the above equation because they will be
treated in a different manner below. They both contain the
repulsive interaction potential functiar(|r —r’|), which ap-
proachegr—r’|~2 as|r—r’|—o. In the continuum limit,
the |[r—r’| 2 repulsion between point dipoles must be cut
off at short range to avoid unphysical divergences. Realisti-
cally, the interaction is cut off because dipoles are really
finite and not point dipoles, or polar molecules never get
¥loser than a certain distance because of excluded volume
interactions. Various model calculations have incorporated a
short-range cutoff in different ways. Some use an explicit
finite-dipole interactiorf40,41. Others impose a distance of
closest approach either by virtue of working on a lattice
[27,28,423 or by additional hard disk or hard sphere interac-

will emerge from the theory below, the domain length scaletions for continuous twof27,28,43 and three{44—47 di-

increases faster than exponentially as the ratibdecreases.
Therefore, beyond certain values AfJ, the domain length

mensional systems. To treat the various cutoff functions in a
unified manner, we define a general cutoff functiefr) and

scale becomes larger than any practical simulation size. Ioutoff distancea(a~ o) such that

the workable range oA/J, the stripe melting temperature is

between five and ten times smaller than the critical tempera-

ture of the bardwithout repulsionglsing model[29,32. As

a result, nearly all spins have the same orientation and the
density or magnetization is constant within each domain. To_
be fully convinced of this effect, the reader is urged to con-y

sult our numerical simulation resulf29,32 or view anima-
tions from our simulations available electronicalB9]. Ex-

v(r)=w|—=|r 3, (11)

wherew(r/a)—1 whenr>a, andw(r/a) decreases suffi-
ciently rapidly asr—0, to ensure that the integrals over the
ipolar repulsion energy in Eq10) remain finite. Without
loss of generality, we take the domains to be the minority
hase and what lies between domains to be the majority

perimentally, it also appears that in many instances domaihase. |n this case the average separation between domains is

shapes fluctuate while their density is nearly fixed, although

omparable to the domain length scédeg., stripe width or

typically these data are not reported. We explore the interhypple diametérnear half coverage, and greater than this

esting case of density variatiomgthin the domains in Sec.
V.
We use the symbol®; to indicate the area ar@ for the

contour of domain. These are the effective degrees of free-

distance at less than half coverage. Since domains are thus
separated by large distances compared to the catoiffe

may setw(|r—r’|/a)=1 in the interdomain energy term.
With the substitution of Eq(11) into Eq. (10) and taking

dom when density is fixed within domains and only domainw(|r—r’|/a)=1 in the interdomain repulsion term, the lat-
shapes fluctuate. It is most convenient to approach the cortice gas Hamiltonian becomes

tinuum limit using the lattice gas Hamiltonian of Eg). The
contribution from attractive interactions within a domain is
written as a bulk plus a surface term,

~J > nghpi~-—2, Jif dr+ >, Jyf dl, (9
<R,R’> i 20— Di i Ci

where o is the area per lattice sitél is an element of arc
length, andlvy is the line tension. The factoy times a mi-

croscopic length, like the lattice constant, is a number of

order unity. Estimates of at 0 K are provided in Ref27].

HLG/kBT: -

q
mt EJ

%T EI derJr yJZi Lm

i<] o

A
+ — drdr’w
Z ZO'ZJDi fDi (

A
+> —Zf f drdr’|r—r'| 73

r=r]

—)|r—r’|‘3.

a

(12
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C. Cutoff functions examining the limit in which domain shapes fluctuate, but
To gauge how the choice of cutoff for the dipole interac-N0t the density within domains, the system energy is given in
tions [see Eq.(11)] affects the scaling properties, several t€rms of integrals over the domain are@s;} and domain
cutoffs that have been used previously in the literatdne ~ contours{Ci;. The symbols{bD;} and {bC;} indicate the
citations are by no means exhausiiamd other reasonable a'€@s and contours of domains scaled by a fator

forms are given here. We have enforced a similar normaliza- We begin by writing the Hamiltoniart{, g(b) for the
tion for all the choicesw(r)—r 3 and w(r/a)—1 asr scaled system in terms of domain contours and areas

— 00,
q 1
(1) Sharp cutofff27,28,42 Hia(b)/kgT=~| u(b)+ 5(b)| =3 fdeH 73(b)
(r 1) {o, r<a w3 '
wi—|=0lZ>-1]= A(b
al \a Lor=a, <3 [ a3y 22 )j drdr’
T Jbg <) o? Jop, Joo,
9(r 1) T 14
v(r)= a r= I’ig, r>a. (14) ><|r—r’|73+2A(b)
T 202
(2) Finite dipole[40,41],
, fr=r| .
; 3 1 15 bep- bDdrdr W( 3 [r—r'| 3.
W —_ = — — ], I I
a al |rla  \[r/a)®+1 (23)
) 2|1 1 16 Terms that do not contaiw(|r —r’|/a) scale trivially
v ol ey —
2|1 Pta?
=b? 24
(3) Modified dipole 1[9,48], o, 0T P fpidr’ (24)
r
W(g =[(r/a)~2+1] 7%, (7 dlzbf dI, (25
b G
v(r)=[r?+a?] %2 (18
Ny _r'|—3= e __¢?]—3
(&) Modified dipole 2 pri bDjdrdr Ir—r’| beiijdrdr [r—r'| 2.
(26)
r
= -3 -1
W(a) =[(rfa)~=+1]"7, (19 The intradomain repulsion tert;;a(b), the last term on
the right hand side of Eq23), contains the physically non-
v(r)=[r3+a% L (20) trivial scaling information. Following the same steps that
give Eq.(26), the cutoff function in the intradomain repul-
(5) Modified dipole 3 sion term turns intav(|r —r'|/(a/b)), and the Hamiltonian
for the scaled systems becomes
r
w(—)=[(r/a)1+ 1173, (21) )
a q b
H c(b)/kgT=— ,u(b)+§J(b) ;E_ f dr+byJ(b)
v(r)=[r+a] 3. (22) i o
bA(b) )
lll. SCALING RELATIONS: PURE DOMAIN SHAPE XZ fc.dHiZj 2 L) fDdrdr
FLUCTUATIONS ' Y
We consider the energetics of two domain configurations, X|r=r'|73+> bA(b)
a starting configuration, and another configuration which is T 207

identical in every way except that the domains are scaled by ,

a factorb (Fig. 1). The original configuration is indicated by XJ f drdr’w(lr_r |)|r—r’|‘3 27
b=1, and the coupling constants, in lattice gas representa- D, J D) al/b '

tion, that give rise to the original configuration are denoted

asJ(1), A(1), andu(1). We seek coupling constants for Eventually, we will match the coefficient of each area,
the scaled systend(b), A(b), andw(b), for which the en-  contour, and dipole repulsion integral in the scaled Hamilton
ergy cost of fluctuations of the scaled domains is identical tdH, o(b) to the corresponding coefficient i, g(1). At this

the energy differences in the original system. Since we arpoint we can only make one match, the relation between

016118-4
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2 4 6 8 10
r/a

FIG. 3. Plots ofAw(r/a,b), as defined in Eq(29), for the five
cutoff functions given in Sec. Il C. A scale factorlof 3 is chosen
for illustration. The functionAw(r/a,b) vanishes forr>a, en-

abling the small domain curvature approximation made in Sec. lIl.

A(b) andA(1). If we demand that the interdomain repulsion

in H_g(b) be equal to the corresponding term) g(1),
then

bA(b)=A(1). (28

PHYSICAL REVIEW E 64 016118

write ther’ integral within D; in the above equation as an
integral over the entire system area minus an integral over
values ofr’ that lie outside domaif®; , which we denote by
D,.

|ntra(b) Elntra

[r—r’'] ) bA(b)
X A bljr—r'|73-
w|— [r—r’| Z 2
r=r’| .
xf drj dr’Aw| ——,b|[r—r'] 73
D D a
(31

Consider the second term in the above equation. We de-
fine a new function

=l )@

a 1

a

AC4(b)= fdrA

r=r'?

2adw (= r
= f drrzAw(—,b).
g 0 a

Because the cutoff functions depend on distance and cutoff
parameter in the combinatiaria, AC5(b) evaluates to If
—1) times a constant for each of the cutoffs defined in Sec.

(32

To make further progress, we have to tackle the more comH C

plicated intradomain repulsion term.

To relateE;a(b) to Ejha(1), wecast the rescaled cut-

off function in Eq.(27) in the following form, thereby defin-
ing a new functiomAw(|r—r’|/a,b),
).

(M—W
=w
a

The functionAw(r/a,b) is a short-range function af most
prominent fora/b<r<a. The behavior ofAw(r/a,b) for
several cutoff functions is shown in Fig. 3.

The intradomain dipolar repulsion energy becomes

IR
2 b:((:;)fpidrfpidr’Aw<|r_ar,| ,b)

[r—r’|
alb

(29

intra

X|r—r'|"3
Einra(b=1)+ dr | dr’
i D; D;
XA g b)|l’ | 3_ (30)

In the last step, we have substituted the relation of (26)
and recognized the first term &,2(b=1). We can re-

r=rfy
“alb

r=r’|

ACs(h)= a

2a377jw _2{
drr
o Jo

2a’m

(b—l)J:dxx‘Zw(x). (33

Since AC4(b) is independent ofr, the second term of
Eintra(b) in Eqg. (31) becomes

AC4( (34

This term in the scaled system Hamiltonidfy g(b) will
contribute to the chemical potential when equated with the
Hamiltonian’H, (1) of the original system. The reason for
the notation ‘AC3(b)” becomes apparent if we consider the
continuum approximation to the lattice sum in E§),

a® 1 r—r’ a®
S Y g L
win R-R 0 a v
(35
1 Jd' [r=r'|\ (a/b)® 36
= r'w .
b~2¢ alb J|r—r'3

The second integral in the above equation repeats the con-
tinuum expression for the constadg, this time for a lattice
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TABLE I. Integrals from five dipole cutoff functions introduced in Sec. Il C that determine scaling
propertiesAC5(b) andG(b) are defined in Eq9432) and(41), respectively.

w(R/a) Sharp cutoff Finite dipole Mod. dipole 1 Mod. dipole 2 Mod. dipole 3
AC4(b) (2ma%lo)(b—1) (4ma%o)(b—1) (2ma/o)(b—1) (47%a2(3y30))(b—1) (wa%a)(b—1)
G(b) 2Inb 2Inb 2Inb 2Inb 2Inb
constanta/b. Using both Eqgs.(35) and (36) to interpret WXZ=(y—y")2
ACjz(b) as defined in Eq(32), we find that . . 0 Aw| —— b
G(b)=f dyf dx’f dy'— ;
AC4(b)~(b—1)Cj. (37) o Jow Joo [x'2—(y—y")?]¥
(39
As shown in Table 1, the five different cutoffs defined in Sec. . . .
Il C produce coefficients ofq{—1) in AC5(b) within a fac- :f dyf drr | €570 dqﬁAW(L,b)r_?’. (40)
tor of order unity of each other and, as expected from Eg. 0 y —cos (y/r) a

(37), clustered about the exact lattice value@f[27,29.

In the third term in Eq(31), r must be withinD;, r’ lies  After performing the integral oves, switching the order of
outside D;, and yetAw(|r—r’|/a,b) is short ranged, as integration overy andr and performing the integration in
shown in Fig. 3. It follows that the major contribution to the closed form, we obtain
this term comes from andr’ both near the domain contour
G . Now consider the integral Ova_T’ for fixed r. If the G(b)zszdrr‘lAw<£,b). (41)
radius of curvature of the contour is large compared to the 0 a
lattice constang, then over the range af where the inte-
grand is nonzero, the contour is essentially straight. In a G(b) is equal to 2 Irb for any choice of the cutoff func-
small domain curvature approximation, we use the coordition that depends on the separatiothrough the combina-
nate system shown in Fig. 4. The locatiorraé specified by ~ tion r/a and is normalized so that(r/a)—1 for larger.

X, running along the contour, ang the perpendicular dis- (The normalization is not really a restriction, since it can be
tance from the contour. Similarly, the locationrdfis speci-  imposed by a suitable redefinition of the coupling constant
fied byx’ andy’. Within our small curvature approximation, A.) The value ofG(b) is calculated by inserting the original
the integral ovex becomes an integral over the domain con-definition (29) of Aw(r/a,b) into Eq. (39), taking care to
tourC; , and the remainder of the integral is independent of €express the integral as a limit, since both terms below di-

Therefore, verge separately
bA(b) G(b)=li ZfRd -1 i '
= lim rr s wl —|—w| =
Enia(b) = Epia(b=1)+ 3 o AC(b) [ ar a2, ab) 3
i 2a°c D,
bR/a 1 R/a 1
bA(b =lim 2 j dxx™ W(X)—f dxx™*w(x)
-> ( )G(b)f dl, (39 R | JO 0
i 20'2 Ci
) bR/a 1
Where =FL[T1W ZL/a dxx™ *w(x). (42
inside domain D We can replacev(x) by unity in the above expression be-
causeR is arbitrarily large
(%, y) _ bRa
yl domain contour C G(b):R“m Zlea dx?
=i ZI(bR IR)
FELY) —R[nw nibz/—Inl3
range of Aw(lr_ vl b)
€ a =2Inb. (43)

SinceG(b) is the same for a wide class of single-parameter
cutoff functions andAC;(b) differs by a constant of order

FIG. 4. Coordinate system used to evaluate the third term of Equnity, the derived energy scaling relations for the lattice gas
(31). acquire a general validity.

outside domain D
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Substituting the result of Eq38) into the Hamiltonian of  Introducingéw(b) from Eq.(5), the deviation of the chemi-
the scaled system, we obtain cal potential from its value at half coverage, and requiring
) that the continuum approximation be consistent with the
B q b definition of Su(b) by invoking Eq.(37), we obtain a scal-
Hia(b)/keT= _[“(b)’L E‘](b)} Z fDideyJ(b) ing relation for the chemical potential,

g
bA(b 1
x>, f di+ > (2)f J drdr’ Sp(b)=— Su(1). (51)
T Jg <i o° JpJop b
X|r—=r"| 73+ Ejnra(b=1)+AC4(b) We can transfer the scaling relations derived for the lat-

tice gas to a spin system with the help of the relations of Egs.
bA(b) bA(b) (3)—(7). First we note that the paramets(b) is equivalent
X2, Lidr—Z G~ fcidl' for both systems

T 2a’c
(44) A(b) 4A’(b)

M= 3 =
All terms  proportional tofcdl in the scaled system J(b) 43'(b)

Hamiltonian’®, s(b) are equated with the surface tensionin = The scaling relations for the spin Hamiltonian coupling

the original Hamiltoniar{ (1), yielding a scaling relation constantsA’ (b) andJ’ (b) follow trivially
for the attractive coupling constant, '

=ns(b)=n(b). (52

A'(b)=b"*A"(1), (53
J(b)—lJ(1)+ Ad) G(b) (45
b 2bvo? : oy 1 B 21_1“71(1)
vo J'(b) J(l)exp{ vo 70 2D 70 (59

Knowing the scaling relations fok(b) andJ(b), both of . .
which are inversely proportional to the temperature, it is pos- tThrOlIJ?.hlqus;[(g) and (E'l)’ .tl?e scaling relation for the
sible to deduce the scaling relation for the temperature®*'€Mal fi€id in the spin Hamiftonian 15
o e Parameteb) =AR)I(B). the relatve repu- h(b)=b~h(1). (55)

1 1 G(b) IV. PREDICTIONS FROM THE SCALING RELATIONS

7(b) - 7(1) + 2702' (46) A. Scaling of the domain size and stripe melting
temperature
From the above equation, we expré&x&) in terms of5(b) The scaling theory creates a mapping from points on a
phase diagram governed by relative repulsion strength)
G(b) =202 ——— L 47) to poir_1ts on the phase diagram governedip). T_hi_s map-
n(b)  p(1)]| ping links points in parameter space that exhibit identical

domain behavior except for a change in overall domain
and using Eq(43), we obtain an expression for the scaling length scaleb. Points within the various phases as well as

parameteb in terms of z(b) points at phase boundaries, are all mapped to new locations
upon the scaling transformation. It suffices to follow the evo-
o 1 1 lution of points at phase boundaries of thél) phase dia-
b=exp yo 70) (D (48) gram to determine the phase boundaries of the phase diagram

for n(b), so most of the ensuing discussion focuses on scal-
Combining the scaling relation foj(b) and the result of the ing of points at phase boundaries. For example, by mapping

above equation, the scaling relation fib) becomes a system undergoing stripe meltiri§ig. 2) at (1) to a
system undergoing the same transition with rescaled stripes
| 1 1 7(1) at n(b), we find the dependence of the stripe melting point
J(b)=J(1)exp —yo 70 2| 7(b) 4 on the relative repulsion streng

Our scaling theory, in agreement with previous calcula-
In order to find the scaling relation for the chemical po- tions [27,28,49-5] indicates that as the relative repulsion

tential u(b), we equate the coefficients @, dr before and strengthn=A/J decreases, the domain size explodes more
after rescaling to obtain : rapidly than exponentialljEq. (48)]. This behavior is shown

in Fig. 5. New predictions are obtained by considering the

scaling behavior of the coupling constants precisely at the

b2+AC3(b)@. stripe melting point. Of particular interest is the stripe melt-
2as ing temperature as a function af, T,,(7»). According to
(50 Egs. (49 and (54), the stripe melting temperaturg.,( )

u(1)+ gm)}: ~| u(b)+33(b)
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into account this feature is presented in Sec. V.

B. Temperature-magnetization or temperature-density phase
diagrams

W

Previous numerical simulatiorjg9—-31] indicate that the
stripe phase gives way to an isotropic bubble phase as the
magnetization becomes nonzero in spin lattice models, or
coverage departs from 1/2 in the lattice gas. Thik or T-u
phase diagram exhibits an isotropic/stripe coexistence line in
the shape of a dome. The zero-field or half-coverage stripe
0 . . L melting point is located at the top of the dome. The interior

0.1 0.2 0.3 04 of the dome is a stripe phase with twofold ordaot a co-
existence region which may appear similar to Fig.(&.
n Outside the dome is an isotropic phase, either melted stripes
above the doméFig. 2(b)] or bubbles(possibly elongated
on either sid¢Fig. 2(c) and 2d)]. Mean-field theory19,26|
and the self-consistent field theory of Brazovdki] also
predict an isotropic/stripe coexistence line in the shape of a
dome.

If the shape of the isotropic/stripe coexistence line is
known from theory or experiment at one relative repulsion
strength#, then the scaling theory of Sec. Ill makes useful

bpredictions about the coexistence curve at other values of
\iror lack of more definite input from theory or experiment,
dve choose an arbitrary two-parameter form of the coexist-
nce curve to illustrate the scaling relations derived in Sec.
I. Adopting the spin representation and lettifig,(h) stand
pr the stripe/isotropic transition temperature as a function of
, that is, the coexistence curve, we consider the simple

logjo(b)
[\

f—
T

FIG. 5. The domain length scaleexplodes more rapidly than
exponentially with decreasing relative repulsion strengthas il-
lustrated by a plot of the scaling paramelevs 7.

rises with decreasing relative repulsion strengttiFig. 6).
Our preliminary comparison of Eq54) with numerical
simulations exhibits excellent agreem¢82]. The behavior
of the stripe melting temperature predicted by E@®) or
(54) also explains why a Langmuir monolayer has been o
served to melt upon compression, as discussed in Sec.

stripe melting point in Fig. 6, we emphasize that the scalin

relations are applicable to any region of the phase diagra

where the system configuration can be specified in terms

the domain shapes. .
The theory of Sec. Ill is restricted to domain shape fluc-POWer relation,

tuations in the absence of density fluctuations. Regimes of —0) I_

very small 5 [high T.,(7)], where magnetizatiofdensity [Tn(h=0)=Tn(M}*=C tanfth). (58

fluctuations become significant, must be considered sepaeayeral values of the exponeptwere explored. The con-
rately. A modified version of our scaling theory that takesgiantc was chosen to reproduce simulation data at the value
of » we adopted fob=1. Equationg51) and (55) predict

the scaling behavior of the chemical potential or external
magnetic field, respectively. Combining these results with
4t the scaling relation for temperature, E¢49) and (54), we

can predict how the coexistence curve evolvesas modi-

fied. Phase diagrams for several chosen values of the expo-
3r IR nent{ and a range of’'s are shown in Fig. 7, all exhibiting
2
1

similar qualitative behavior: ag decreases, the top of the
dome rises because the stripe melting temperature at zero
field increases, as discussed in Sec. IVA. However, the
_@ width of the stripe phase portion of the phase diagram
% shrinks as a consequence of Ef5), which indicates that
SN . . . . the field h decreases upon scaling to larger domain length
scales. The behavior predicted by E&5) will be tested
0.15 02 025 0.3 0.35 0.4 against computer simulations in a forthcoming ws2].

n

V. HIGH TEMPERATURE PHENOMENOLOGICAL

FIG. 6. Phase diagram for the Ising model with long-range re- THEORY
pulsive interactions in th@-» plane as predicted by the scaling . . . . . .
relations for temperatureT(= 143), Eq. (54), at the stripe melting The scaling relations discussed until this point assume

point. Stripe melting temperature rises steeply as the relative repufhat the temperature remains sufficiently low so that only
sion strength =A/J decreases. Snapshots from simulationsdomain shapes fluctuate, but not the magnetization or density

[32,57 are displayed to illustrate typical ordered and melted stripewithin domains. The range of validity of the pure shape fluc-
configurations. tuation theory is extensive, including all regions of the phase
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themselves functions of because the presence of repulsions
will serve to decreas&.. This can be seen including both
attractive and repulsive interactions in the effective fielek
within Curie-Weiss theory

m=tanh h+ hgyy), (58)

0604-02" 02 04 06 heff:(qy _A/CS/aS)m:J’(q_ 77C3/a3)m- (59

According to Eq.(58), increasingzn produces a linear de-
crease in the critical temperature

1 Cs7

T =3 )=q(1——3). (60)
FIG. 7. Qualitative phase diagrams in tfietanhh plane ob- o7 qa
tained by scaling the stripe-isotropic coexistence curve, (E6)-
This curve is chosen for purpose of illustration. The same trends a . .
obtained for three different values of the exponent% (top), % adopt the Ilnear_ dependen.C(.a'Qf on 7 but explore different
(middle), and$ (bottom, which give domes flatter than parabolic, vglu_es _of the linear coeffment. In th_e following, note the
parabolic, and steeper than parabolic, respectively. The coexistenEiStinction betweer,, the stripe melting temperature, and
curves are drawn for the sequencezp¥alues 0.270, 0.285, 0.300, T., the temperature at which the magnetizatidensity dif-
0.325, 0.350, and 0.370. The placement of curves for the diffeyent ference vanishes between majority and minority phases,
in all three panels is as indicated for the bottom panel. treated as hypothetical uniform phases. The depression of the

. ) ) _ critical point with increasing repulsion has been previously
diagram which, so far, are amenable to computer simulatiopredicted by Piniet al. [53] for a three-dimensional hard
[29,32. However, it is of interest to speculate as to Whatsphere fluid with Yukawa-type attractive interactions and an
may occur when the temperature is sufficiently high to peryqgitional Yukawa-type repulsion. Their calculations were

mit patches of overturned spins, or in lattice gas languageappropriate for a uniform system in the absence of domains.
vacancies in the majority phase and appreciable vapor pres-

sure in the minority phase. We expect density fluctuations to
occur simultaneously with shape fluctuations when the tem-
perature begins to approach the critical temperature of the Since our energy expression will become more complex
Ising model without repulsions. This is a considerably morethan in Sec. Ill, we maintain simplicity by not considering
complicated situation, and we do not have a detailed theorthe external field or chemical potential here. This has no
for coupled domain shape and density fluctuations in theeffect on the scaling relations we derive fband A and is
high-temperature region. equivalent to working in a constant magnetization or con-
In this section we explore the effects of density fluctua-stant particle number ensemble, in which case we can omit
tions in a phenomenological way. Rather than truly couplingterms proportional t&rsg or 2rng. Besides the densities,
domain shape and density fluctuatiofgpeaking now in lat- {(n); and({n),, fluctuations within domains also change the
tice gas languagave assume that the densities of the minor-surface tension. We expect that the surface tension is con-
ity component (n), inside domainsand majority compo- trolled by the distance from the critical pointntroduced in
nent (n), between domainseach vary with temperature as EQq. (57), which in turn depends upon the scaling parameter
if they were part othypothetical uniform phasda coexist- b: y=y(t(b)). The Hamiltonian for the lattice gas allowing
ence, and eventually coalesce as the temperature reache$oadensity fluctuations is given by
critical value associated with the hypothetical uniform
phases. Approximating the density fluctuations within and A(1)
outside of domains as though they were characteristic of uni- HLG(l)/kBT:J(l)V(l)Ei fc_dl + ?[An(l)]z
form phases is motivated by the steep rise in domain size and '

e do not expect Eq60) to be very accurate, so below we

A. Scaling relations in the presence of density fluctuations

stripe melting temperature ag decreases. This approxima- , ,
tion will cease to be valid when the correlation length for X ; L) L}drdr v([r=r'])
density fluctuations becomes comparable to the domain P
length scale. 1
As the critical point of the hypothetical uniform phases is +3 EI ID fDdrdr'v(|r—r’|) . (6D
approached from below, e
T.-T J-J. The interdomain and intradomain dipole repulsion energies,
An=(n);—(n)xt?, t= T =3 - (7 insquare brackets, are obtained by subtracting a uniform
Cc

background of densityn),. Working at fixed overall mag-
Before proceeding further we note thBt or J., the critical  netization or density, this contributes a constant to the en-
parameters of hypothetical coexisting uniform phases, arergy. The configuration-dependent part of the dipole repul-
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sion energy depends on tHéferencein densitiesAn, of the
minority and majority components.

Following the same approach as in Sec. Ill, we introduce

v(r)=w(r/a)r 3 in the above Hamiltonian and substitute

w(r/a)—1 in the interdomain dipolar repulsion term

A(1)

[An(1)]?

0_2

Hia(1)/keT=3(1) 7(1) 2 jcd|+

i<j

x| > f drdr'jr—r'|73

1 |r—r’|>
+5 drdr’ —r'| 3.
ZZJDiJDi r rw( 3 [r—r’| }
(62)
We rescale the system by a factor
bA(b
H_s(b)/kgT=bJ(b)y(b) >, f di+ (2)[An(b)]2
i Ci g
X EJ j drdr’|r—r’|73
1<] D; DJ
1 =] -
+§Z fDiJDidrdr W( /b )|r—r| }
(63)

The scaling relation foA(b) is obtained by equating the

PHYSICAL REVIEW B4 016118

a?y(b a?y(1
y(b) _ y(1) 2]_ .
7(b)[An(b)]2  n(1)[An(1)]

We substitute the above results into Ef6) to obtain the
scaling relation ford(b),

2

1 7(1) 69

b 7(b)

An(b)
An(1)

J(b)=J(1

which reduces to the low-temperature result of &4) when
(nN)1=1,(n)=0.

B. Consequences of density fluctuations

Expressiong67) and(69) give a system of equations that
predict the stripe melting temperature as a functiom dfito
the region where density fluctuations begin to be significant,
but not beyond the point where the correlation length ap-
proaches the domain size To obtain explicit expressions
we requireAn(t) and y(t), which, for lack of better input,
we estimate using exact solutions for the Ising model. This
gives the correct low-temperature limits afh(t) and y(t),
and the correct scaling behavior @as>T.(7), or equiva-
lently t— 0. Since our numerical simulations were performed
for the triangular lattice, we used the corresponding analytic
expression$54,55 although the choice of lattice makes no
qualitative difference. Recall that, based on mean-field esti-
mates, we expeck.(») to be a linearly decreasing function

coefficients of the interdomain dipolar repulsion terms beforedf 7 [Eq. (60)]. By comparison with our numerical simula-

[Eq. (62)] and afte{Eq. (63)] rescaling,

An(b)]?

An(1)

A(1)=bA(b) (64)

This reduces to our low-temperature result of E2p) when
we set(n);=1, (n),=0.
To find a temperature-dependent scaling relatiorJ{d),

tions [32] we know that the mean-field estimate, EGO),
predicts a far too drastic decreaseTof with ». Therefore,

we adopt the form
Te(m)=T(0)[1-an], (70)

where T;(0) is the critical temperature of the bare Ising
model atz=0. Since we observe virtually no density fluc-

we compare the coefficients of the surface tension terms bduations in regions of the phase diagram accessible to simu-

fore and after rescaling,

1 A(b) 2
5 (1) =J(b)y(b)— ——G(b)[An(b)]*, (69
20
which gives
1 G(b) A )
J<b)7(b)‘53(1)7(1)+202b[ n(1)]°A(1). (66)

lations, we can put an approximate upper boundpwhich
turns out to bew=<1.75 for the triangular lattice.

Using the Ising model estimates for the behavioAof(t)
and y(t), we find that density fluctuations suppress the
growth of the domain length scale with decreasingas
exhibited in Fig. 83). This trend stems from the different
critical exponents for the two quantitiean(t)~t*® and
y(t)~tt. Hence density fluctuations cause domain wall en-
ergy to vanish more rapidly than the repulsive energy, there-
fore allowing smaller domain size than in the absence of
density fluctuations. Tracking the evolution of the domain

The above results imply the following scaling relation for the|ength scale with temperature at fixe we see that the

relative repulsion strengthy,

1 v 1 ¥
7(b) [An(b)]?  7(1) [An(1)]?

G(b)

202

(67)

Introducing G(b) =2 In(b) in the above expression, we ob-
tain a high-temperature phenomenological expressiot,for

domains shrink as temperature is increased, as shown in Fig.
8(b). This effect at fixedn was first described theoretically
by Keller and McConnel[56], who also confirmed the effect

in experiments on a Langmuir monolayer. Whether or not
the shrinkage of domains is observed below the stripe melt-
ing temperature depends on the valuexpfFor larger#,
Tm<T., density fluctuations will still be negligible near,
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300

a)

200
<

100} ™

FIG. 9. Scaling of the stripe melting temperature as a function
of # in the cases of no magnetizatiédensity fluctuations within
domains (solid curve, and magnetizatior(density fluctuations
within domains as described by the phenomenological theory of
Sec. V(dot-dashed curye The parametew in Eq. (70) is taken to
be 1.75 in these calculations.

05 06 07 08 09 1
T Density fluctuations also suppress the stripe melting tem-
FIG. 8. (a) Scaling of the parametds as a function ofy, ac-  Perature.T, with and without density fluctuations are com-
counting for magnetizatioridensity fluctuations within domains Pared in Fig. 9. This effect, like the suppression of the do-
according to the phenomenological theory of Sec(dét-dashed ~Main length scale, is driven by the fact thay decreases
curve and without fluctuationgsolid curve. (b) Domain length ~ more rapidly thamAn with the onset of density fluctuations.
scaleb as a function of temperature at fixed The contraction of ~As a result, theeffectives, a ratio of repulsions€An?) to
the domain size with temperature is shown fpr 0.1 (solid curvg,  attractions ¢ y), is larger than the actuaj in the presence
7=0.08 (dashed curvg and =0.05 (dot-dashed curyeassuming  of density fluctuations. One can understand the behavior of
that at »=0.37, as expectedand observed in simulations T _ in Fig. 9 as a modification of Fig. 7 in which the points

[29,32,52) for larger , the domain length scale is independent of are pulled to effective; values that are larger than the actual
temperature belowr,. The data show that systems at smaller val- , ya|ues.

ues of » show the strongest temperature dependence. The param-
etera in Eq. (70) is taken to be 1.75 in these calculations.
VI. DISCUSSION
and virtually no change in domain size with temperature be- pegpite the relative simplicity of the dipolar Ising model
low T, will occur. Alternatively, whenTy, approachesc  and analogous continuum models, they exhibit a rich variety
there will be noticeable shrinkage with increasing temperayf physical behavior. The phase diagram and the elementary
ture belowTr,. This effect is discussed further in the con- excitations that govern its phase transitions are not com-
cluding section. . _ pletely understood at present. Together with large-scale
Itis useful to be cognizant of the behavior of our expres-gimylations[32], the scaling theory presented in this work
sions in the limit of vanishingy, even though they lose their pegins to organize at least some of the behavior of these
physical validity beforen reaches zero, when the correlation models with competing attractions and dipolar repulsions,
length ¢ of density fluctuations becomes comparable to theyarticularly the phase diagram at larger relative repulsion
domain length scale predicted by E§8). In the small  strengthy=A/J. Here the stripe melting temperature is well
limit, if An~t”, then Eqs(67), (69), and(70) predict that  pelow the bare Ising model critical temperature and density
fluctuations within domains are infrequent. The scaling
n=t?®  (small 7). (71  theory derived in Sec. IIl of this work predicts how the stripe
melting temperature will vary withy. We have already made
a preliminary comparison with numerical resyl&2] and in
a forthcoming publication will make a more extensive check
of the theory, including the predictions about nonzero fields
[52].
y(t) " Some of the phase diagram is known to be sensitive to
— 5 (72 details of the cutoff functions used at short range forrth&
7 An(D)] repulsive potential and, in continuum models, to precisely
how the line tension is treatd@7,28. An example is the
According to Eqs.(67), (69), and(70) b is finite at =0, bubble to stripe phase transition at low temperature
whereas it strongly diverges in the absence of density flucf27,28,57,58 However, the family of results we derive here
tuations. While our phenomenological theory can be trustedhrough scaling relations will be insensitive to these details.
to predict that density fluctuations cause an initial deviationWhen the domain radius of curvature is much larger than the
of b toward smaller values, the theory is not valid all the waymicroscopic cutoff length, we showed in Sec. Ill that the
to »=0. Possible implications of the smajl behavior are scaling relations are insensitive to the precise form of the
discussed in the concluding section. cutoff functionw(r/a). This is reflected in the behavior of

As a consequence, the exponent in &8) has the following
small » behavior:
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the functionsG(b), which is completely independent of validity to very smallz, predicts that the domain width
w(r/a), and ACy(b), which depends orw(r/a) only  remains finite for ally. An interesting cross over will occur
through a constant prefactor. Hence, one of the predictions af higher levels of theory or more extensive simulations con-
our work is that the scaling relations should be obeyed by dirm thatb remains finite or diverges less rapidly théras
variety of physical systems so long as they are governed by,—0. If ¢ increases to the magnitude lothen a transition
short-ranged attractions and long-ranged repulsions. from twofold stripe order to an isotropic phase, driven by
Our scaling theory explains the otherwise perplexing ex-overturned spins within domains, will preempt the defect-
perimental observatiof88] that stripe melting in a Langmuir meditated stripe melting observed for higher values;ah
monolayer is induced by compression. Compressing theur simulations[32]. In other words, the mechanism and
monolayer increases the surface dipole density and thereforéture of the stripe melting transition will change at a certain
increases the parametér The magnitude of attractions be- crossover value ofy. We speculated about this possibility in
tween surfactants in the monolayer, characterizedJpy our previous work, where a tentative phase diagram is given
would be expected to remain unaffected or possibly eveh32l- _
decrease if neighboring surfactants are driven from their There is another consequence of the theory of Sec. V that
equilibrium separation by the compression. Hence compredl@y be quite amenable to experimental test. Since the do-
sion effectively increases the relative repulsion strength Main length scalé is suppressed by density fluctuations, we
On the phase diagram of Fig. 6, increasingat constant expect that doma_uns,_nc allowed to equilibrate, will shrink as
temperature drives the system from the stripe pHimseer thg temperature is ralse_d at consta;mAt.Iow temperature,
left of the figure across the melting line to the isotropic SPIN OF densﬂy_fluctuapons are negligible and the dom_aln
phase(upper right. length scale will be given by the_ pure _sh_ape fluc_tuat|on
The last section of this work explores the smalbehav- the(_)ry of Sgc. lll. Then as fluct.ua}tlons W|th|n_doma|ns are
ior of the dipolar Ising model in a phenomenological way. €XCited at higher temperatureswill instead be given by the
The hallmark of the small; regime is the increase in the Smaller value predicted by the shaped magnetization/
stripe melting temperature to the point where it is a signifi-d€nsity fluctuation theory of Sec. V. This trend presupposes
cant fraction of the bare Ising model critical temperature.that temperature has no oyher_ effect on the system besides
Now spin fluctuationgoverturned spinswithin domains will domain shape an_d magnetization/density fluctuatlons. If, for
start to play a role. Our phenomenological theory treats th€*@mPple, increasing temperature caused a change in molecu-
magnetizatior(or, in lattice gas language, densityithin the ar orientation within a Langmuir monolayer, the conse-

domains as if they were that of hypothetical coexisting uni-duences for domain size could be more complicated. Another

form phases in the absence of domain formation. This ap(_:aveat is that the system must be in equilibrium. The effect

proach will be successful when the correlation lengtfor ~ MY not be observed if exchange of particles between do-
magnetization or density fluctuations within domains is™Mans is slow and domains remain at a metastable size.
much less than the width of the domains. We can therefore ' this work, we have shown that a scaling theory built on
predict that the stripe melting temperature and domain widtf? continuum treatment of a spin or lattice gas model with
will be suppressed by spin fluctuations at tesetof spin long-range dipolar repul_smns is capable of predicting many
fluctuation effects. The physical origin for the suppression Oifeabtlures of tr_'g’ phase dlfagram. Thg theory should r?e aﬁpr{
the domain width by fluctuations, as first noted by Keller and®@p'€ to & wide range of systems because, even though the

McConnell[56], is clear: surface tension decreases more rapdiPolar interactions require a short-range cutoff, the impor-

idly than the magnetization or density difference betweerfaNt scaling relgtions are independent of the prec!se nature of
majority and minority phases as a critical point is ap_the cutoff function. While many features of the dipolar spin
proached. The system will accommodate more total domaif’0d€! aré now understood, the region of the phase diagram
boundary length, and thus smaller domains in the presence th_e limit of vamshmg ’eP“_'S'OF‘ strength remains a chal-
fluctuations within domains. enging area for future investigations.

The situation is less clear whepbecomes small, and the
stripe melting temperature rises to the point whérap-
proached, that is, when the correlation length for spin fluc-  Acknowledgment is made to the donors of The Petroleum
tuations becomes comparable to the domain width. Th&esearch Fund, administered by the ACS, for support of this
theory of Sec. V A predicts that the domain width is sup-research and to the Ohio Supercomputer Center for compu-
pressed by fluctuations, and when carried past its region dhtional resources.
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