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Scaling theory for two-dimensional systems with competing interactions

Antitsa D. Stoycheva and Sherwin J. Singer
Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210

~Received 22 January 2001; published 20 June 2001!

We derive an analytic scaling theory for a two-dimensional system in which spontaneous patterns of stripes,
bubbles, and intermediately shaped domains arise due to the competition of short-range attractions and long-
range dipolar repulsions. The theory predicts temperature and domain-size scaling as a function of the relative
repulsion strengthh, the ratio of the repulsive to the attractive coupling constant in the system’s Hamiltonian.
As h decreases, the domain size explodes exponentially and the melting temperature for a system of ordered
stripes increases. Our findings shed new light on the phase diagram and critical excitations for the dipolar Ising
ferromagnet or lattice gas and their continuum analogs. We show that the features described by the scaling
theory are insensitive to details like cutoffs for the dipolar interactions and, therefore, should be widely
applicable. Our corresponding states analysis explains the experimentally observed stripe melting upon com-
pression in a Langmuir monolayer. A phenomenological extension of the analytic scaling theory describes how
the system’s behavior is modified in the presence of magnetization or density fluctuations. Fluctuations are
found to suppress domain size and the stripe melting temperature. In regimes where fluctuations are important,
we predict that domain size will decrease with increasing temperature.

DOI: 10.1103/PhysRevE.64.016118 PACS number~s!: 05.65.1b, 89.75.Kd, 05.50.1q, 68.55.2a
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I. INTRODUCTION

A variety of two- and three-dimensional systems w
competing attractive and repulsive interactions self-organ
into patterns of stripes, bubbles, and domains of intermed
shapes@1#. Examples of spontaneously modulated mater
range from ferromagnetic and dielectric compounds@2,3#
through Langmuir monolayers@1,4–9# to adsorbed monolay
ers on solid surfaces@10–13#. The bubbles, stripes, and oth
patterns observed in these materials have been the obje
many experimental and theoretical studies. These mate
form the basis of several promising technologies. For
ample, either by direct assembly on a substrate or by tran
from a Langmuir phase, self-assembled monolayers have
cently been demonstrated to be a feasible route to the fa
cation of surface nanoscale devices@14–17#.

The occurrence of similar spatial patterns across a w
variety of physical systems has been attributed to a comm
mechanism, the competition of short-range attractive for
and long-range repulsions@1,9,18#. The long-range repul-
sions have been found to be due to actual or effective dip
whose interaction energy falls off asr 23 with distance, al-
though in two dimensions the precise form of the repuls
interaction might not be crucial. Magnetostatic interactio
between spins produce the dipolar repulsion between
mains in thin ferromagnetic films@2,3#. Surface polarization
is the source of the repulsion in Langmuir monolaye
@5–9,19,20# Either surface polarization or accumulation
elastic energy from lattice mismatch cause actual or effec
dipolar repulsion within adsorbed monolayers on solid s
strates@21–23#. In most cases the domain length scale
much longer than a molecular one. Therefore, domain
mation on the mesoscopic level is controlled by a few ma
rials parameters and the molecular details of the system
cede in importance.

We denote the attractive and repulsive interaction par
eters byJ andA, respectively. The fundamental question w
1063-651X/2001/64~1!/016118~13!/$20.00 64 0161
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answer in this paper is the following~see Fig. 1!: If a set of
interaction parametersJ andA gives rise to domains with a
particular length scale, is there another set of parame
J(b) and A(b) that gives rise to the same domain config
rations as the original parameters, only scaled in size b
factor b? The answer turns out to be affirmative under
broad range of conditions. The availability of this type
‘‘corresponding states’’ theory provides valuable inform
tion about systems with a highly complex phase diagram
can be tested experimentally, as described below.

Although a body of analytic theory@19,24–28# and nu-
merical simulations@29–31# treating modulated phases ha
accumulated, the phase diagram and the elementary ex
tions leading to phase transitions in these systems have
been completely elucidated. We have recently presente
brief report @32# of large-scale numerical simulations o
stripe phase melting in an Ising model with additional lon
range dipolar repulsive interactions, one of the basic mod
for modulated phases that are stabilized by competing att
tions and repulsions. By ‘‘melting’’ of stripe phases w

FIG. 1. Two configurations are shown, the original configu
tion of domains (b51) and another configuration that is identical
the original except that the domains are scaled in size by a factob.
(b.1 is shown here.! The original system configuration is specifie
by a set of domain areas$Di% and contours$Ci%. The areas and
contours of the scaled domains are indicated by$bDi% and $bCi%,
respectively.
©2001 The American Physical Society18-1
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ANTITSA D. STOYCHEVA AND SHERWIN J. SINGER PHYSICAL REVIEW E64 016118
mean loss of the twofold orientational order of the stri
phase@Fig. 2~a!# to either a meandering stripe phase@Fig.
2~b!# or a bubble phase@Figs. 2~c! and 2~d!#. ~In two dimen-
sions, the stripe phase does not have true long-ranged o
tational order. Rather, the decay of orientational correlati
switches between algebraic and exponential character a
transition point@25#.! Our work established that, for suffi
ciently large values of the relative repulsion strengthA/J, the
stripe phase disorders via topological defects and, m
likely, is an instance of Kosterlitz-Thouless topological d
fect unbinding @33–37#. Our simulations revealed a clea
trend in which the stripe melting temperature increased
the ratio A/J decreased. The data from simulations we
found to be in agreement with a preliminary version of t
scaling theory, which was presented in our brief report wi
out derivation@32#. In this work, a more general and com
plete version of the scaling theory is derived. As discus
further below, the dependence of the stripe melting temp
ture on the ratioA/J, predicted by our scaling theory, ex
plains an otherwise puzzling feature exhibited by stripe
mains in Langmuir monolayers, namely, the fact that th
disorder upon compression@38#.

The basic model for modulated phases stabilized by d
lar repulsions is introduced in Sec. II, and a family of diffe
ent short-range cutoffs for the dipolar interaction is intr
duced. For domains in which the radius of curvature is mu
larger than a microscopic cutoff length, we can treat the v
ous cutoffs in a unified fashion, exposing possible effe
due to the choice of a cutoff. In Sec. III, scaling relations a
developed for the case in which domain boundaries are s
and the density within domains does not change appreci
with temperature. In other words, we treat the case in wh
the domain shapes fluctuate, but not the density within
mains. Readers not interested in the derivations given in
III can proceed directly to Sec. IV, where we present
predictions of the scaling relations. Finally, in a highly ph
nomenological manner, we explore the case in which
domain densities also change in Sec. V. Those not intere
in the derivation of Sec. V A may find the resulting predi
tions presented in Sec. V B. Conclusions are given in S
VI.

FIG. 2. Representative snapshots from Monte Carlo simulat
@32,52# of the dipolar Ising model@Eq. ~1!#. ~a! Stripe phase;~b!
isotropic phase, ‘‘melted’’ stripes;~c! isotropic phase, elongate
bubble domains;~d! isotropic phase, bubble domains.
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II. MODELS FOR MODULATED PHASES
ARISING FROM DIPOLAR INTERACTIONS

In typical self-organizing systems of interest, doma
length scales are much larger than atomic or molecular
mensions. Many details of the interaction are not import
on the mesoscopic level, and we concentrate on the fun
mental ingredients that are required to support modula
phases, a short-range attraction and a longer-ranged re
sion. We take the repulsion to be that between parallel
poles, falling off as the third power of distance, because i
appropriate for both thin ferromagnetic films and Langm
monolayers. We consider both continuum and lattice mod
Continuum models are most amenable to analytic theo
including the scaling theory developed in this work. It
important to also consider lattice models, so that we c
make connections between analytic theory and comp
simulations, which are usually performed using lattice mo
els ~not to say that lattice models are without use in analy
theory!. We actually begin with lattice models, where micr
scopic cutoffs arise naturally.

A. Spin and lattice gas Hamiltonians

Lattice models may be represented using either spin v
ables (sR561) or particle occupation variables (nR50,1).
It is well known that the two representations are equival
and related to each other by the transformationsR52nR
21. Since there are experimental realizations of modula
phases stabilized by dipole repulsions that correspond
both spin and occupation variables, we introduce the lat
Hamiltonian using both Ising-like spin variables (HIs),

HIs /kBT52J8 (
^R,R8&

sRsR81
A8

2 (
R,R8

sRsR8

uR2R8u3
2h(

R
sR ,

~1!

and lattice gas occupation variables (HLG),

HLG /kBT52J (
^R,R8&

nRnR81
A

2 (
R,R8

nRnR8

uR2R8u3
2m(

R
nR .

~2!

J8 and J are attractive coupling constants,A8 and A are
the dipolar repulsive coupling constants in the lattice gas
spin representation, respectively,h is an external magnetic
field, andm is the chemical potential. The first term in Eq
~1! and~2! captures the effect of short-range attractive int
actions, the second one introduces long-range repulsions
the third takes into account the influence of an external fi
or the chemical potential.

The well-known relations between coupling constants
the two representations are easily derived by substitu
sR52nR21 into Eq.~1! and comparing with Eq.~2!,

J54J8, ~3!

A54A8, ~4!

m[m01dm, ~5!

s

8-2



n

e

n
b

l-

al
.

.
is
er

t
T
n

a
g

te
.

e
in

co

is

o

to

:

er-
ill be
the

ut
sti-
lly
et

ume
d a
icit
f
ce
c-

n a

e

rity
rity
ins is

is
thus

.

t-

SCALING THEORY FOR TWO-DIMENSIONAL SYSTEMS . . . PHYSICAL REVIEW E 64 016118
m052S C3

a3
A82qJ8D , ~6!

dm52h. ~7!

In Eq. ~6!,

C35 (
R8(R85” R)

a3

uR2R8u3
, ~8!

wherea is the nearest-neighbor distance of the lattice.C3 has
the numerical value of 9.033 621 7 for a square lattice a
11.034 175 7 for a triangular lattice@27#. Physically,C3 is
the dimensionless interaction strength of a dipole at sitR
with an infinite two-dimensional array of parallel dipoles.q
is the number of nearest neighbors for a particle at siteR on
the lattice.

B. Continuum limit: Pure domain shape fluctuations

We now proceed to the continuum limit. In this sectio
we suppose that system fluctuations are dominated
changes in domain shapes and not the density~or magneti-
zation for spin systems! within domains. This condition is
very well satisfied for values ofA andJ where it is feasible
to perform simulations for an Ising model with dipolar repu
sions~see Fig. 2!, such as the model governed by Eq.~1!. As
will emerge from the theory below, the domain length sc
increases faster than exponentially as the ratioA/J decreases
Therefore, beyond certain values ofA/J, the domain length
scale becomes larger than any practical simulation size
the workable range ofA/J, the stripe melting temperature
between five and ten times smaller than the critical temp
ture of the bare~without repulsions! Ising model@29,32#. As
a result, nearly all spins have the same orientation and
density or magnetization is constant within each domain.
be fully convinced of this effect, the reader is urged to co
sult our numerical simulation results@29,32# or view anima-
tions from our simulations available electronically@39#. Ex-
perimentally, it also appears that in many instances dom
shapes fluctuate while their density is nearly fixed, althou
typically these data are not reported. We explore the in
esting case of density variationswithin the domains in Sec
V.

We use the symbolsDi to indicate the area andCi for the
contour of domaini. These are the effective degrees of fre
dom when density is fixed within domains and only doma
shapes fluctuate. It is most convenient to approach the
tinuum limit using the lattice gas Hamiltonian of Eq.~2!. The
contribution from attractive interactions within a domain
written as a bulk plus a surface term,

2J (
^R,R8&

nRnR8'2(
i

J
q

2sEDi

dr1(
i

JgE
Ci

dl, ~9!

wheres is the area per lattice site,dl is an element of arc
length, andJg is the line tension. The factorg times a mi-
croscopic length, like the lattice constant, is a number
order unity. Estimates ofg at 0 K are provided in Ref.@27#.
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After the terms involving long-range repulsions are taken
the continuum limit by turning sums over lattice sitesR into
integrals, we obtain the following continuum Hamiltonian

HLG /kBT52Fm1
q

2
JG 1

s (
i
E

Di

dr1gJ(
i
E

Ci

dl

1(
i , j

A

s2EDi

E
Dj

drdr 8v~ ur2r 8u!

1(
i

A

2s2EDi

E
Di

drdr 8v~ ur2r 8u!. ~10!

The interdomain and intradomain dipolar repulsion en
gies are separated in the above equation because they w
treated in a different manner below. They both contain
repulsive interaction potential functionv(ur2r 8u), which ap-
proachesur2r 8u23 as ur2r 8u→`. In the continuum limit,
the ur2r 8u23 repulsion between point dipoles must be c
off at short range to avoid unphysical divergences. Reali
cally, the interaction is cut off because dipoles are rea
finite and not point dipoles, or polar molecules never g
closer than a certain distance because of excluded vol
interactions. Various model calculations have incorporate
short-range cutoff in different ways. Some use an expl
finite-dipole interaction@40,41#. Others impose a distance o
closest approach either by virtue of working on a latti
@27,28,42# or by additional hard disk or hard sphere intera
tions for continuous two-@27,28,43# and three-@44–47# di-
mensional systems. To treat the various cutoff functions i
unified manner, we define a general cutoff functionw(r ) and
cutoff distancea(a;As) such that

v~r !5wS r

aD r 23, ~11!

wherew(r /a)→1 when r @a, and w(r /a) decreases suffi-
ciently rapidly asr→0, to ensure that the integrals over th
dipolar repulsion energy in Eq.~10! remain finite. Without
loss of generality, we take the domains to be the mino
phase and what lies between domains to be the majo
phase. In this case the average separation between doma
comparable to the domain length scale~e.g., stripe width or
bubble diameter! near half coverage, and greater than th
distance at less than half coverage. Since domains are
separated by large distances compared to the cutoffa, we
may setw(ur2r 8u/a)51 in the interdomain energy term
With the substitution of Eq.~11! into Eq. ~10! and taking
w(ur2r 8u/a)51 in the interdomain repulsion term, the la
tice gas Hamiltonian becomes

HLG /kBT52Fm1
q

2
JG 1

s (
i
E

Di

dr1gJ(
i
E

Ci

dl

1(
i , j

A

s2EDi

E
Dj

drdr 8ur2r 8u23

1(
i

A

2s2EDi

E
Di

drdr 8wS ur2r 8u
a D ur2r 8u23.

~12!
8-3



c
a

e
iz

n
i
b

y
nt
te
r

l t
a

ut
in

-
at
l-

a,
ton

en

ANTITSA D. STOYCHEVA AND SHERWIN J. SINGER PHYSICAL REVIEW E64 016118
C. Cutoff functions

To gauge how the choice of cutoff for the dipole intera
tions @see Eq.~11!# affects the scaling properties, sever
cutoffs that have been used previously in the literature~the
citations are by no means exhaustive! and other reasonabl
forms are given here. We have enforced a similar normal
tion for all the choices:v(r )→r 23 and w(r /a)→1 as r
→`.

~1! Sharp cutoff@27,28,42#

wS r

aD5uS r

a
21D5H 0, r ,a

1, r .a,
~13!

v~r !5uS r

a
21D r 235H 0, r ,a

r 23, r .a.
~14!

~2! Finite dipole@40,41#,

wS r

aD52S r

aD 3F 1

r /a
2

1

A~r /a!211
G , ~15!

v~r !5
2

a2 F1

r
2

1

Ar 21a2G . ~16!

~3! Modified dipole 1@9,48#,

wS r

aD5@~r /a!2211#23/2, ~17!

v~r !5@r 21a2#23/2. ~18!

~4! Modified dipole 2

wS r

aD5@~r /a!2311#21, ~19!

v~r !5@r 31a3#21. ~20!

~5! Modified dipole 3

wS r

aD5@~r /a!2111#23, ~21!

v~r !5@r 1a#23. ~22!

III. SCALING RELATIONS: PURE DOMAIN SHAPE
FLUCTUATIONS

We consider the energetics of two domain configuratio
a starting configuration, and another configuration which
identical in every way except that the domains are scaled
a factorb ~Fig. 1!. The original configuration is indicated b
b51, and the coupling constants, in lattice gas represe
tion, that give rise to the original configuration are deno
as J(1), A(1), andm(1). We seek coupling constants fo
the scaled system,J(b), A(b), andm(b), for which the en-
ergy cost of fluctuations of the scaled domains is identica
the energy differences in the original system. Since we
01611
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examining the limit in which domain shapes fluctuate, b
not the density within domains, the system energy is given
terms of integrals over the domain areas$Di% and domain
contours$Ci%. The symbols$bDi% and $bCi% indicate the
areas and contours of domains scaled by a factorb.

We begin by writing the HamiltonianHLG(b) for the
scaled system in terms of domain contours and areas

HLG~b!/kBT52Fm~b!1
q

2
J~b!G 1

s (
i
E

bDi

dr1gJ~b!

3(
i
E

bCi

dl1(
i , j

A~b!

s2 E
bDi

E
bDj

drdr 8

3ur2r 8u231(
i

A~b!

2s2

3E
bDi

E
bDi

drdr 8wS ur2r 8u
a D ur2r 8u23.

~23!

Terms that do not containw(ur2r 8u/a) scale trivially

E
bDi

dr5b2E
Di

dr , ~24!

E
bCi

dl5bE
Ci

dl, ~25!

E
bDi

E
bDj

drdr 8ur2r 8u235bE
Di

E
Dj

drdr 8ur2r 8u23.

~26!

The intradomain repulsion termEintra(b), the last term on
the right hand side of Eq.~23!, contains the physically non
trivial scaling information. Following the same steps th
give Eq. ~26!, the cutoff function in the intradomain repu
sion term turns intow„ur2r 8u/(a/b)…, and the Hamiltonian
for the scaled systems becomes

HLG~b!/kBT52Fm~b!1
q

2
J~b!G b2

s (
i
E

Di

dr1bgJ~b!

3(
i
E

Ci

dl1(
i , j

bA~b!

s2 E
Di

E
Dj

drdr 8

3ur2r 8u231(
i

bA~b!

2s2

3E
Di

E
Di

drdr 8wS ur2r 8u
a/b D ur2r 8u23. ~27!

Eventually, we will match the coefficient of each are
contour, and dipole repulsion integral in the scaled Hamil
HLG(b) to the corresponding coefficient inHLG(1). At this
point we can only make one match, the relation betwe
8-4



n

om

-

n
ver

de-

toff

ec.

the
r
e

con-

II

SCALING THEORY FOR TWO-DIMENSIONAL SYSTEMS . . . PHYSICAL REVIEW E 64 016118
A(b) andA(1). If we demand that the interdomain repulsio
in HLG(b) be equal to the corresponding term inHLG(1),
then

bA~b!5A~1!. ~28!

To make further progress, we have to tackle the more c
plicated intradomain repulsion term.

To relateEintra(b) to Eintra(1), wecast the rescaled cut
off function in Eq.~27! in the following form, thereby defin-
ing a new functionDw(ur2r 8u/a,b),

wS ur2r 8u
a/b D5wS ur2r 8u

a D1DwS ur2r 8u
a

,bD . ~29!

The functionDw(r /a,b) is a short-range function ofr, most
prominent fora/b,r ,a. The behavior ofDw(r /a,b) for
several cutoff functions is shown in Fig. 3.

The intradomain dipolar repulsion energy becomes

Eintra~b!5(
i

bA~b!

2s2 E
Di

drE
Di

dr 8wS ur2r 8u
a D ur2r 8u23

1(
i

bA~b!

2s2 E
Di

drE
Di

dr 8DwS ur2r 8u
a

,bD
3ur2r 8u23

5Eintra~b51!1(
i

bA~b!

2s2 E
Di

drE
Di

dr 8

3DwS ur2r 8u
a

,bD ur2r 8u23. ~30!

In the last step, we have substituted the relation of Eq.~28!
and recognized the first term asEintra(b51). We can re-

FIG. 3. Plots ofDw(r /a,b), as defined in Eq.~29!, for the five
cutoff functions given in Sec. II C. A scale factor ofb53 is chosen
for illustration. The functionDw(r /a,b) vanishes forr @a, en-
abling the small domain curvature approximation made in Sec.
01611
-

write the r 8 integral within Di in the above equation as a
integral over the entire system area minus an integral o
values ofr 8 that lie outside domainDi , which we denote by
D” i .

Eintra~b!5Eintra~b51!1(
i

bA~b!

2s2 E
Di

drE dr 8

3DwS ur2r 8u
a

,bD ur2r 8u232(
i

bA~b!

2s2

3E
Di

drE
D” i

dr 8DwS ur2r 8u
a

,bD ur2r 8u23.

~31!

Consider the second term in the above equation. We
fine a new function

DC3~b![
1

sE dr 8DwS ur2r 8u
a

,bD a3

ur2r 8u3

5
2a3p

s E
0

`

drr 22DwS r

a
,bD . ~32!

Because the cutoff functions depend on distance and cu
parameter in the combinationr /a, DC3(b) evaluates to (b
21) times a constant for each of the cutoffs defined in S
II C

DC3~b!5
2a3p

s E
0

`

drr 22FwS ur2r 8u
a/b D2wS ur2r 8u

a D G
5

2a2p

s
~b21!E

0

`

dxx22w~x!. ~33!

Since DC3(b) is independent ofr , the second term of
Eintra(b) in Eq. ~31! becomes

DC3~b!(
i

bA~b!

2a3s
E

Di

dr . ~34!

This term in the scaled system HamiltonianHLG(b) will
contribute to the chemical potential when equated with
HamiltonianHLG(1) of the original system. The reason fo
the notation ‘‘DC3(b)’’ becomes apparent if we consider th
continuum approximation to the lattice sum in Eq.~8!,

C35 (
R8(R85” R)

a3

uR2R8u3
'

1

sE dr 8wS ur2r 8u
a D a3

ur2r 8u3

~35!

5
1

b22s
E dr 8wS ur2r 8u

a/b D ~a/b!3

ur2r 8u3
. ~36!

The second integral in the above equation repeats the
tinuum expression for the constantC3, this time for a lattice

I.
8-5
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TABLE I. Integrals from five dipole cutoff functions introduced in Sec. II C that determine sca
properties.DC3(b) andG(b) are defined in Eqs.~32! and ~41!, respectively.

w(R/a) Sharp cutoff Finite dipole Mod. dipole 1 Mod. dipole 2 Mod. dipole

DC3(b) (2pa2/s)(b21) (4pa2/s)(b21) (2pa2/s)(b21) „4p2a2/(3A3s)…(b21) (pa2/s)(b21)
G(b) 2ln b 2ln b 2ln b 2ln b 2ln b
c

Eq

e
r

th

n
rd

-

,
n
f

be
ant
l

di-

-

ter
r
asE
constanta/b. Using both Eqs.~35! and ~36! to interpret
DC3(b) as defined in Eq.~32!, we find that

DC3~b!'~b21!C3 . ~37!

As shown in Table I, the five different cutoffs defined in Se
II C produce coefficients of (b21) in DC3(b) within a fac-
tor of order unity of each other and, as expected from
~37!, clustered about the exact lattice value ofC3 @27,28#.

In the third term in Eq.~31!, r must be withinDi , r 8 lies
outside Di , and yet Dw(ur2r 8u/a,b) is short ranged, as
shown in Fig. 3. It follows that the major contribution to th
this term comes fromr andr 8 both near the domain contou
Ci . Now consider the integral overr 8 for fixed r . If the
radius of curvature of the contour is large compared to
lattice constanta, then over the range ofr 8 where the inte-
grand is nonzero, the contour is essentially straight. I
small domain curvature approximation, we use the coo
nate system shown in Fig. 4. The location ofr is specified by
x, running along the contour, andy, the perpendicular dis
tance from the contour. Similarly, the location ofr 8 is speci-
fied byx8 andy8. Within our small curvature approximation
the integral overx becomes an integral over the domain co
tourCi , and the remainder of the integral is independent ox.
Therefore,

Eintra~b!5Eintra~b51!1(
i

bA~b!

2a3s
DC3~b!E

Di

dr

2(
i

bA~b!

2s2
G~b!E

Ci

dl, ~38!

where

FIG. 4. Coordinate system used to evaluate the third term of
~31!.
01611
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G~b!5E
0

`

dyE
2`

`

dx8E
2`

0

dy8

DwSAx822~y2y8!2

a
,bD

@x822~y2y8!2#3/2

~39!

5E
0

`

dyE
y

`

drr E
2cos21(y/r )

cos21(y/r )
dfDwS r

a
,bD r 23. ~40!

After performing the integral overf, switching the order of
integration overy and r and performing ther integration in
closed form, we obtain

G~b!52E
0

`

drr 21DwS r

a
,bD . ~41!

G(b) is equal to 2 lnb for any choice of the cutoff func-
tion that depends on the separationr through the combina-
tion r /a and is normalized so thatw(r /a)→1 for large r.
~The normalization is not really a restriction, since it can
imposed by a suitable redefinition of the coupling const
A.! The value ofG(b) is calculated by inserting the origina
definition ~29! of Dw(r /a,b) into Eq. ~39!, taking care to
express the integral as a limit, since both terms below
verge separately

G~b!5 lim
R→`

2E
0

R

drr 21FwS r

a/bD2wS r

aD G
5 lim

R→`

2F E
0

bR/a

dxx21w~x!2E
0

R/a

dxx21w~x!G
5 lim

R→`

2E
R/a

bR/a

dxx21w~x!. ~42!

We can replacew(x) by unity in the above expression be
causeR is arbitrarily large

G~b!5 lim
R→`

2E
R/a

bR/a

dxx21

5 lim
R→`

2F lnS b
R

a D2 lnS R

a D G
52 lnb. ~43!

SinceG(b) is the same for a wide class of single-parame
cutoff functions andDC3(b) differs by a constant of orde
unity, the derived energy scaling relations for the lattice g
acquire a general validity.

q.
8-6
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Substituting the result of Eq.~38! into the Hamiltonian of
the scaled system, we obtain

HLG~b!/kBT52Fm~b!1
q

2
J~b!G b2

s (
i
E

Di

dr1bgJ~b!

3(
i
E

Ci

dl1(
i , j

bA~b!

s2 E
Di

E
Dj

drdr 8

3ur2r 8u231Eintra~b51!1DC3~b!

3(
i

bA~b!

2a3s
E

Di

dr2(
i

G~b!
bA~b!

2s2 E
Ci

dl.

~44!

All terms proportional to*Ci
dl in the scaled system

HamiltonianHLG(b) are equated with the surface tension
the original HamiltonianHLG(1), yielding a scaling relation
for the attractive coupling constant,

J~b!5
1

b
J~1!1

A~1!

2bgs2
G~b!. ~45!

Knowing the scaling relations forA(b) andJ(b), both of
which are inversely proportional to the temperature, it is p
sible to deduce the scaling relation for the temperatu
independent parameterh(b)[A(b)/J(b), the relative repul-
sion strength,

1

h~b!
5

1

h~1!
1

G~b!

2gs2
. ~46!

From the above equation, we expressG(b) in terms ofh(b)

G~b!52gs2F 1

h~b!
2

1

h~1!G , ~47!

and using Eq.~43!, we obtain an expression for the scalin
parameterb in terms ofh(b)

b5expH gs2F 1

h~b!
2

1

h~1!G J . ~48!

Combining the scaling relation forh(b) and the result of the
above equation, the scaling relation forJ(b) becomes

J~b!5J~1!expH 2gs2F 1

h~b!
2

1

h~1!G J h~1!

h~b!
. ~49!

In order to find the scaling relation for the chemical p
tential m(b), we equate the coefficients of*Di

dr before and
after rescaling to obtain

2Fm~1!1
q

2
J~1!G52Fm~b!1

q

2
J~b!Gb21DC3~b!

A~1!

2a3
.

~50!
01611
-
-

Introducingdm(b) from Eq. ~5!, the deviation of the chemi-
cal potential from its value at half coverage, and requiri
that the continuum approximation be consistent with
definition of dm(b) by invoking Eq.~37!, we obtain a scal-
ing relation for the chemical potential,

dm~b!5
1

b2
dm~1!. ~51!

We can transfer the scaling relations derived for the
tice gas to a spin system with the help of the relations of E
~3!–~7!. First we note that the parameterh(b) is equivalent
for both systems

hLG~b![
A~b!

J~b!
5

4A8~b!

4J8~b!
[h Is~b![h~b!. ~52!

The scaling relations for the spin Hamiltonian couplin
constantsA8(b) andJ8(b) follow trivially,

A8~b!5b21A8~1!, ~53!

J8~b!5J8~1!expH 2gs2F 1

h~b!
2

1

h~1!G J h~1!

h~b!
. ~54!

Through Eqs.~7! and ~51!, the scaling relation for the
external field in the spin Hamiltonian is

h~b!5b22h~1!. ~55!

IV. PREDICTIONS FROM THE SCALING RELATIONS

A. Scaling of the domain size and stripe melting
temperature

The scaling theory creates a mapping from points o
phase diagram governed by relative repulsion strengthh(1)
to points on the phase diagram governed byh(b). This map-
ping links points in parameter space that exhibit identi
domain behavior except for a change in overall dom
length scaleb. Points within the various phases as well
points at phase boundaries, are all mapped to new locat
upon the scaling transformation. It suffices to follow the ev
lution of points at phase boundaries of theh(1) phase dia-
gram to determine the phase boundaries of the phase dia
for h(b), so most of the ensuing discussion focuses on s
ing of points at phase boundaries. For example, by mapp
a system undergoing stripe melting~Fig. 2! at h(1) to a
system undergoing the same transition with rescaled str
at h(b), we find the dependence of the stripe melting po
on the relative repulsion strengthh.

Our scaling theory, in agreement with previous calcu
tions @27,28,49–51# indicates that as the relative repulsio
strengthh5A/J decreases, the domain size explodes m
rapidly than exponentially@Eq. ~48!#. This behavior is shown
in Fig. 5. New predictions are obtained by considering
scaling behavior of the coupling constants precisely at
stripe melting point. Of particular interest is the stripe me
ing temperature as a function ofh, Tm(h). According to
Eqs. ~49! and ~54!, the stripe melting temperatureTm(h)
8-7
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ANTITSA D. STOYCHEVA AND SHERWIN J. SINGER PHYSICAL REVIEW E64 016118
rises with decreasing relative repulsion strengthh ~Fig. 6!.
Our preliminary comparison of Eq.~54! with numerical
simulations exhibits excellent agreement@32#. The behavior
of the stripe melting temperature predicted by Eqs.~49! or
~54! also explains why a Langmuir monolayer has been
served to melt upon compression, as discussed in Sec
While we focus on the scaling behavior of a system at
stripe melting point in Fig. 6, we emphasize that the scal
relations are applicable to any region of the phase diag
where the system configuration can be specified in term
the domain shapes.

The theory of Sec. III is restricted to domain shape flu
tuations in the absence of density fluctuations. Regime
very smallh @high Tm(h)#, where magnetization~density!
fluctuations become significant, must be considered se
rately. A modified version of our scaling theory that tak

FIG. 5. The domain length scaleb explodes more rapidly than
exponentially with decreasing relative repulsion strengthh, as il-
lustrated by a plot of the scaling parameterb vs h.

FIG. 6. Phase diagram for the Ising model with long-range
pulsive interactions in theT-h plane as predicted by the scalin
relations for temperature (T51/J), Eq. ~54!, at the stripe melting
point. Stripe melting temperature rises steeply as the relative re
sion strength h5A/J decreases. Snapshots from simulatio
@32,52# are displayed to illustrate typical ordered and melted str
configurations.
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into account this feature is presented in Sec. V.

B. Temperature-magnetization or temperature-density phase
diagrams

Previous numerical simulations@29–31# indicate that the
stripe phase gives way to an isotropic bubble phase as
magnetization becomes nonzero in spin lattice models
coverage departs from 1/2 in the lattice gas. TheT-h or T-m
phase diagram exhibits an isotropic/stripe coexistence lin
the shape of a dome. The zero-field or half-coverage st
melting point is located at the top of the dome. The inter
of the dome is a stripe phase with twofold order~not a co-
existence region!, which may appear similar to Fig. 2~a!.
Outside the dome is an isotropic phase, either melted str
above the dome@Fig. 2~b!# or bubbles~possibly elongated!
on either side@Fig. 2~c! and 2~d!#. Mean-field theory@19,26#
and the self-consistent field theory of Brazovskiiˇ @24# also
predict an isotropic/stripe coexistence line in the shape o
dome.

If the shape of the isotropic/stripe coexistence line
known from theory or experiment at one relative repulsi
strengthh, then the scaling theory of Sec. III makes use
predictions about the coexistence curve at other values oh.
For lack of more definite input from theory or experimen
we choose an arbitrary two-parameter form of the coex
ence curve to illustrate the scaling relations derived in S
III. Adopting the spin representation and lettingTm(h) stand
for the stripe/isotropic transition temperature as a function
h, that is, the coexistence curve, we consider the sim
power relation,

uTm~h50!2Tm~h!uz5C tanh~h!. ~56!

Several values of the exponentz were explored. The con
stantC was chosen to reproduce simulation data at the va
of h we adopted forb51. Equations~51! and ~55! predict
the scaling behavior of the chemical potential or exter
magnetic field, respectively. Combining these results w
the scaling relation for temperature, Eqs.~49! and ~54!, we
can predict how the coexistence curve evolves ash is modi-
fied. Phase diagrams for several chosen values of the e
nentz and a range ofh ’s are shown in Fig. 7, all exhibiting
similar qualitative behavior: ash decreases, the top of th
dome rises because the stripe melting temperature at
field increases, as discussed in Sec. IV A. However,
width of the stripe phase portion of the phase diagr
shrinks as a consequence of Eq.~55!, which indicates that
the field h decreases upon scaling to larger domain len
scales. The behavior predicted by Eq.~55! will be tested
against computer simulations in a forthcoming work@52#.

V. HIGH TEMPERATURE PHENOMENOLOGICAL
THEORY

The scaling relations discussed until this point assu
that the temperature remains sufficiently low so that o
domain shapes fluctuate, but not the magnetization or den
within domains. The range of validity of the pure shape flu
tuation theory is extensive, including all regions of the pha

-

l-

e
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SCALING THEORY FOR TWO-DIMENSIONAL SYSTEMS . . . PHYSICAL REVIEW E 64 016118
diagram which, so far, are amenable to computer simula
@29,32#. However, it is of interest to speculate as to wh
may occur when the temperature is sufficiently high to p
mit patches of overturned spins, or in lattice gas langua
vacancies in the majority phase and appreciable vapor p
sure in the minority phase. We expect density fluctuation
occur simultaneously with shape fluctuations when the te
perature begins to approach the critical temperature of
Ising model without repulsions. This is a considerably mo
complicated situation, and we do not have a detailed the
for coupled domain shape and density fluctuations in
high-temperature region.

In this section we explore the effects of density fluctu
tions in a phenomenological way. Rather than truly coupl
domain shape and density fluctuations,~speaking now in lat-
tice gas language! we assume that the densities of the min
ity component (̂n&1 inside domains! and majority compo-
nent (̂ n&0 between domains! each vary with temperature a
if they were part ofhypothetical uniform phasesin coexist-
ence, and eventually coalesce as the temperature reac
critical value associated with the hypothetical unifor
phases. Approximating the density fluctuations within a
outside of domains as though they were characteristic of
form phases is motivated by the steep rise in domain size
stripe melting temperature ash decreases. This approxima
tion will cease to be valid when the correlation length f
density fluctuations becomes comparable to the dom
length scale.

As the critical point of the hypothetical uniform phases
approached from below,

Dn[^n&12^n&0}tb, t[
Tc2T

Tc
5

J2Jc

J
. ~57!

Before proceeding further we note thatTc or Jc , the critical
parameters of hypothetical coexisting uniform phases,

FIG. 7. Qualitative phase diagrams in theT-tanhh plane ob-
tained by scaling the stripe-isotropic coexistence curve, Eq.~56!.
This curve is chosen for purpose of illustration. The same trends
obtained for three different values of the exponentz, 1

3 ~top!, 1
2

~middle!, and 5
6 ~bottom!, which give domes flatter than paraboli

parabolic, and steeper than parabolic, respectively. The coexist
curves are drawn for the sequence ofh values 0.270, 0.285, 0.300
0.325, 0.350, and 0.370. The placement of curves for the differeh
in all three panels is as indicated for the bottom panel.
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themselves functions ofh because the presence of repulsio
will serve to decreaseTc . This can be seen including bot
attractive and repulsive interactions in the effective fieldhe f f
within Curie-Weiss theory

m5tanh~h1he f f!, ~58!

he f f5~qJ82A8C3 /a3!m5J8~q2hC3 /a3!m. ~59!

According to Eq.~58!, increasingh produces a linear de
crease in the critical temperature

Tc~h!5
1

Jc~h!
5qS 12

C3h

qa3 D . ~60!

We do not expect Eq.~60! to be very accurate, so below w
adopt the linear dependence ofTc on h but explore different
values of the linear coefficient. In the following, note th
distinction betweenTm , the stripe melting temperature, an
Tc , the temperature at which the magnetization~density! dif-
ference vanishes between majority and minority phas
treated as hypothetical uniform phases. The depression o
critical point with increasing repulsion has been previou
predicted by Piniet al. @53# for a three-dimensional hard
sphere fluid with Yukawa-type attractive interactions and
additional Yukawa-type repulsion. Their calculations we
appropriate for a uniform system in the absence of doma

A. Scaling relations in the presence of density fluctuations

Since our energy expression will become more comp
than in Sec. III, we maintain simplicity by not considerin
the external field or chemical potential here. This has
effect on the scaling relations we derive forJ and A and is
equivalent to working in a constant magnetization or co
stant particle number ensemble, in which case we can o
terms proportional to(RsR or (RnR . Besides the densities
^n&1 and ^n&0, fluctuations within domains also change th
surface tension. We expect that the surface tension is c
trolled by the distance from the critical pointt introduced in
Eq. ~57!, which in turn depends upon the scaling parame
b: g5g„t(b)…. The Hamiltonian for the lattice gas allowin
for density fluctuations is given by

HLG~1!/kBT5J~1!g~1!(
i
E

Ci

dl1
A~1!

s2
@Dn~1!#2

3F(
i , j

E
Di

E
Dj

drdr 8v~ ur2r 8u!

1
1

2 (
i
E

Di

E
Di

drdr 8v~ ur2r 8u!G . ~61!

The interdomain and intradomain dipole repulsion energ
in square brackets, are obtained by subtracting a unifo
background of densitŷn&0. Working at fixed overall mag-
netization or density, this contributes a constant to the
ergy. The configuration-dependent part of the dipole rep

re

ce
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sion energy depends on thedifferencein densities,Dn, of the
minority and majority components.

Following the same approach as in Sec. III, we introdu
v(r )5w(r /a)r 23 in the above Hamiltonian and substitu
w(r /a)→1 in the interdomain dipolar repulsion term

HLG~1!/kBT5J~1!g~1!(
i
E

Ci

dl1
A~1!

s2
@Dn~1!#2

3F(
i , j

E
Di

E
Dj

drdr 8ur2r 8u23

1
1

2 (
i
E

Di

E
Di

drdr 8wS ur2r 8u
a D ur2r 8u23G .

~62!

We rescale the system by a factorb

HLG~b!/kBT5bJ~b!g~b!(
i
E

Ci

dl1
bA~b!

s2
@Dn~b!#2

3F(
i , j

E
Di

E
Dj

drdr 8ur2r 8u23

1
1

2 (
i
E

Di

E
Di

drdr 8wS ur2r 8u
a/b D ur2r 8u23G .

~63!

The scaling relation forA(b) is obtained by equating th
coefficients of the interdomain dipolar repulsion terms bef
@Eq. ~62!# and after@Eq. ~63!# rescaling,

A~1!5bA~b!FDn~b!

Dn~1!G
2

. ~64!

This reduces to our low-temperature result of Eq.~28! when
we set^n&151, ^n&050.

To find a temperature-dependent scaling relation forJ(b),
we compare the coefficients of the surface tension terms
fore and after rescaling,

1

b
J~1!g~1!5J~b!g~b!2

A~b!

2s2
G~b!@Dn~b!#2, ~65!

which gives

J~b!g~b!5
1

b
J~1!g~1!1

G~b!

2s2b
@Dn~1!#2A~1!. ~66!

The above results imply the following scaling relation for t
relative repulsion strengthh,

1

h~b!

g~b!

@Dn~b!#2
5

1

h~1!

g~1!

@Dn~1!#2
1

G~b!

2s2
. ~67!

IntroducingG(b)52 ln(b) in the above expression, we ob
tain a high-temperature phenomenological expression fob,
01611
e

e

e-

b5expH s2g~b!

h~b!@Dn~b!#2
2

s2g~1!

h~1!@Dn~1!#2J . ~68!

We substitute the above results into Eq.~66! to obtain the
scaling relation forJ(b),

J~b!5J~1!
1

b

h~1!

h~b! FDn~b!

Dn~1!G
2

, ~69!

which reduces to the low-temperature result of Eq.~54! when
^n&151, ^n&050.

B. Consequences of density fluctuations

Expressions~67! and~69! give a system of equations tha
predict the stripe melting temperature as a function ofh into
the region where density fluctuations begin to be significa
but not beyond the point where the correlation length
proaches the domain sizeb. To obtain explicit expressions
we requireDn(t) andg(t), which, for lack of better input,
we estimate using exact solutions for the Ising model. T
gives the correct low-temperature limits ofDn(t) andg(t),
and the correct scaling behavior asT→Tc(h), or equiva-
lently t→0. Since our numerical simulations were perform
for the triangular lattice, we used the corresponding anal
expressions@54,55# although the choice of lattice makes n
qualitative difference. Recall that, based on mean-field e
mates, we expectTc(h) to be a linearly decreasing functio
of h @Eq. ~60!#. By comparison with our numerical simula
tions @32# we know that the mean-field estimate, Eq.~60!,
predicts a far too drastic decrease ofTc with h. Therefore,
we adopt the form

Tc~h!5Tc~0!@12ah#, ~70!

where Tc(0) is the critical temperature of the bare Isin
model ath50. Since we observe virtually no density fluc
tuations in regions of the phase diagram accessible to si
lations, we can put an approximate upper bound ona, which
turns out to bea&1.75 for the triangular lattice.

Using the Ising model estimates for the behavior ofDn(t)
and g(t), we find that density fluctuations suppress t
growth of the domain length scale with decreasingh, as
exhibited in Fig. 8~a!. This trend stems from the differen
critical exponents for the two quantities,Dn(t);t1/8 and
g(t);t1. Hence density fluctuations cause domain wall e
ergy to vanish more rapidly than the repulsive energy, the
fore allowing smaller domain size than in the absence
density fluctuations. Tracking the evolution of the doma
length scale with temperature at fixedh, we see that the
domains shrink as temperature is increased, as shown in
8~b!. This effect at fixedh was first described theoreticall
by Keller and McConnell@56#, who also confirmed the effec
in experiments on a Langmuir monolayer. Whether or n
the shrinkage of domains is observed below the stripe m
ing temperature depends on the value ofh. For largerh,
Tm!Tc , density fluctuations will still be negligible nearTm
8-10
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SCALING THEORY FOR TWO-DIMENSIONAL SYSTEMS . . . PHYSICAL REVIEW E 64 016118
and virtually no change in domain size with temperature
low Tm will occur. Alternatively, whenTm approachesTc
there will be noticeable shrinkage with increasing tempe
ture belowTm . This effect is discussed further in the co
cluding section.

It is useful to be cognizant of the behavior of our expre
sions in the limit of vanishingh, even though they lose the
physical validity beforeh reaches zero, when the correlatio
length j of density fluctuations becomes comparable to
domain length scale predicted by Eq.~68!. In the smallh
limit, if Dn;tb, then Eqs.~67!, ~69!, and~70! predict that

h}t2b ~small h!. ~71!

As a consequence, the exponent in Eq.~68! has the following
small h behavior:

g~ t !

h@Dn~ t !#2
;t1/2. ~72!

According to Eqs.~67!, ~69!, and ~70! b is finite at h50,
whereas it strongly diverges in the absence of density fl
tuations. While our phenomenological theory can be trus
to predict that density fluctuations cause an initial deviat
of b toward smaller values, the theory is not valid all the w
to h50. Possible implications of the smallh behavior are
discussed in the concluding section.

FIG. 8. ~a! Scaling of the parameterb as a function ofh, ac-
counting for magnetization~density! fluctuations within domains
according to the phenomenological theory of Sec. V~dot-dashed
curve! and without fluctuations~solid curve!. ~b! Domain length
scaleb as a function of temperature at fixedh. The contraction of
the domain size with temperature is shown forh50.1 ~solid curve!,
h50.08 ~dashed curve!, andh50.05 ~dot-dashed curve! assuming
that at h50.37, as expected~and observed in simulation
@29,32,52#! for largerh, the domain length scale is independent
temperature belowTm . The data show that systems at smaller v
ues ofh show the strongest temperature dependence. The pa
etera in Eq. ~70! is taken to be 1.75 in these calculations.
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Density fluctuations also suppress the stripe melting te
perature.Tm with and without density fluctuations are com
pared in Fig. 9. This effect, like the suppression of the d
main length scaleb, is driven by the fact thatg decreases
more rapidly thanDn with the onset of density fluctuations
As a result, theeffectiveh, a ratio of repulsions (}Dn2) to
attractions (}g), is larger than the actualh in the presence
of density fluctuations. One can understand the behavio
Tm in Fig. 9 as a modification of Fig. 7 in which the poin
are pulled to effectiveh values that are larger than the actu
h values.

VI. DISCUSSION

Despite the relative simplicity of the dipolar Ising mod
and analogous continuum models, they exhibit a rich vari
of physical behavior. The phase diagram and the elemen
excitations that govern its phase transitions are not co
pletely understood at present. Together with large-sc
simulations@32#, the scaling theory presented in this wo
begins to organize at least some of the behavior of th
models with competing attractions and dipolar repulsio
particularly the phase diagram at larger relative repuls
strengthh5A/J. Here the stripe melting temperature is we
below the bare Ising model critical temperature and den
fluctuations within domains are infrequent. The scali
theory derived in Sec. III of this work predicts how the strip
melting temperature will vary withh. We have already made
a preliminary comparison with numerical results@32# and in
a forthcoming publication will make a more extensive che
of the theory, including the predictions about nonzero fie
@52#.

Some of the phase diagram is known to be sensitive
details of the cutoff functions used at short range for ther 23

repulsive potential and, in continuum models, to precis
how the line tension is treated@27,28#. An example is the
bubble to stripe phase transition at low temperat
@27,28,57,58#. However, the family of results we derive he
through scaling relations will be insensitive to these deta
When the domain radius of curvature is much larger than
microscopic cutoff length, we showed in Sec. III that t
scaling relations are insensitive to the precise form of
cutoff function w(r /a). This is reflected in the behavior o

-
m-

FIG. 9. Scaling of the stripe melting temperature as a funct
of h in the cases of no magnetization~density! fluctuations within
domains ~solid curve!, and magnetization~density! fluctuations
within domains as described by the phenomenological theory
Sec. V~dot-dashed curve!. The parametera in Eq. ~70! is taken to
be 1.75 in these calculations.
8-11
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the functionsG(b), which is completely independent o
w(r /a), and DC3(b), which depends onw(r /a) only
through a constant prefactor. Hence, one of the prediction
our work is that the scaling relations should be obeyed b
variety of physical systems so long as they are governed
short-ranged attractions and long-rangedr 23 repulsions.

Our scaling theory explains the otherwise perplexing
perimental observation@38# that stripe melting in a Langmui
monolayer is induced by compression. Compressing
monolayer increases the surface dipole density and there
increases the parameterA. The magnitude of attractions be
tween surfactants in the monolayer, characterized byJ,
would be expected to remain unaffected or possibly e
decrease if neighboring surfactants are driven from th
equilibrium separation by the compression. Hence comp
sion effectively increases the relative repulsion strengthh.
On the phase diagram of Fig. 6, increasingh at constant
temperature drives the system from the stripe phase~lower
left of the figure! across the melting line to the isotrop
phase~upper right!.

The last section of this work explores the smallh behav-
ior of the dipolar Ising model in a phenomenological wa
The hallmark of the smallh regime is the increase in th
stripe melting temperature to the point where it is a sign
cant fraction of the bare Ising model critical temperatu
Now spin fluctuations~overturned spins! within domains will
start to play a role. Our phenomenological theory treats
magnetization~or, in lattice gas language, density! within the
domains as if they were that of hypothetical coexisting u
form phases in the absence of domain formation. This
proach will be successful when the correlation lengthj for
magnetization or density fluctuations within domains
much less than the widthb of the domains. We can therefor
predict that the stripe melting temperature and domain w
will be suppressed by spin fluctuations at theonsetof spin
fluctuation effects. The physical origin for the suppression
the domain width by fluctuations, as first noted by Keller a
McConnell@56#, is clear: surface tension decreases more r
idly than the magnetization or density difference betwe
majority and minority phases as a critical point is a
proached. The system will accommodate more total dom
boundary length, and thus smaller domains in the presenc
fluctuations within domains.

The situation is less clear whenh becomes small, and th
stripe melting temperature rises to the point wherej ap-
proachesb, that is, when the correlation length for spin flu
tuations becomes comparable to the domain width. T
theory of Sec. V A predicts that the domain width is su
pressed by fluctuations, and when carried past its regio
h
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validity to very smallh, predicts that the domain widthb
remains finite for allh. An interesting cross over will occu
if higher levels of theory or more extensive simulations co
firm that b remains finite or diverges less rapidly thanj as
h→0. If j increases to the magnitude ofb then a transition
from twofold stripe order to an isotropic phase, driven
overturned spins within domains, will preempt the defe
meditated stripe melting observed for higher values ofh in
our simulations@32#. In other words, the mechanism an
nature of the stripe melting transition will change at a cert
crossover value ofh. We speculated about this possibility i
our previous work, where a tentative phase diagram is gi
@32#.

There is another consequence of the theory of Sec. V
may be quite amenable to experimental test. Since the
main length scaleb is suppressed by density fluctuations, w
expect that domains, if allowed to equilibrate, will shrink
the temperature is raised at constanth. At low temperature,
spin or density fluctuations are negligible and the dom
length scale will be given by the pure shape fluctuat
theory of Sec. III. Then as fluctuations within domains a
excited at higher temperatures,b will instead be given by the
smaller value predicted by the shapeand magnetization/
density fluctuation theory of Sec. V. This trend presuppo
that temperature has no other effect on the system bes
domain shape and magnetization/density fluctuations. If,
example, increasing temperature caused a change in mo
lar orientation within a Langmuir monolayer, the cons
quences for domain size could be more complicated. Ano
caveat is that the system must be in equilibrium. The eff
may not be observed if exchange of particles between
mains is slow and domains remain at a metastable size.

In this work, we have shown that a scaling theory built
a continuum treatment of a spin or lattice gas model w
long-range dipolar repulsions is capable of predicting ma
features of the phase diagram. The theory should be ap
cable to a wide range of systems because, even though
dipolar interactions require a short-range cutoff, the imp
tant scaling relations are independent of the precise natur
the cutoff function. While many features of the dipolar sp
model are now understood, the region of the phase diag
in the limit of vanishing repulsion strength remains a ch
lenging area for future investigations.
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@8# H. Möhwald, Thin Solid Films159, 1 ~1988!.
@9# H. M. McConnell, Annu. Rev. Phys. Chem.42, 171 ~1991!.

@10# K. Kern, H. Niehus, A. Schatz, P. Zeppenfeld, J. Goerge,
G. Comsa, Phys. Rev. Lett.67, 855 ~1991!.

@11# J. H. Weaver, Nav. Res. Rev.43, 16 ~1991!.
@12# H. Hörnis, J. R. West, E. H. Conrad, and E. Elliatiogˇlu, Phys.

Rev. B47, 13 055~1993!.
@13# S. Müller, P. Bayer, C. Reischl, K. Heinz, B. Feldmann, H

Zillgen, and M. Wuttig, Phys. Rev. Lett.74, 765 ~1995!.
@14# C. M. Knobler and D. K. Schwartz, Curr. Opin. Colloid Inte

face Sci.4, 46 ~1999!.
@15# J. K. Cox, A. Eisenberg, and R. B. Lennox, Curr. Opin. C

loid Interface Sci.4, 52 ~1999!.
@16# R. Wang, A. N. Parikh, J. D. Beers, A. P. Shreve, and

Swanson, J. Phys. Chem. B103, 10 149~1999!.
@17# S. H. Choi, K. L. Wang, M. S. Leung, G. W. Stupian, N

Preser, S. W. Chung, G. Markovich, S. H. Kim, and J.
Heath, J. Vac. Sci. Technol.B17, 1425~1999!.

@18# C. M. Knobler and R. C. Desai, Annu. Rev. Phys. Chem.43,
207 ~1992!.

@19# D. Andelman, F. Broc¸hard, and J.-F. Joanny, J. Chem. Ph
86, 3673~1987!.

@20# M. Seul and M. J. Sammon, Phys. Rev. Lett.64, 1903~1990!.
@21# O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joa

nopoulos, Phys. Rev. Lett.61, 1973~1988!.
@22# D. Vanderbilt, O. L. Alerhand, R. D. Meade, and J. D. Joa

nopoulos, J. Vac. Sci. Technol. B7, 1013~1989!.
@23# D. Vanderbilt, Surf. Rev. Lett.4, 811 ~1997!.
@24# S. A. Brazovskiı˘, Zh. Eksp. Teor. Fiz.68, 175 ~1975! @Sov.

Phys. JETP41, 85 ~1975!#.
@25# J. Toner and D. R. Nelson, Phys. Rev. B23, 316 ~1981!.
@26# T. Garel and S. Doniach, Phys. Rev. B26, 325 ~1982!.
@27# M. M. Hurley and S. J. Singer, J. Phys. Chem.96, 1938

~1992!.
@28# M. M. Hurley and S. J. Singer, J. Phys. Chem.96, 1951

~1992!.
@29# M. M. Hurley and S. J. Singer, Phys. Rev. B46, 5783~1992!.
@30# I. Booth, A. B. MacIsaac, J. P. Whitehead, and K. De’Be

Phys. Rev. Lett.75, 950 ~1995!.
01611
d

.

.

.

-

-

@31# J. Arlett, J. P. Whitehead, A. B. MacIsaac, and K. De’Be
Phys. Rev. B54, 3394~1996!.

@32# A. D. Stoycheva and S. J. Singer, Phys. Rev. Lett.84, 4657
~2000!.

@33# J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp. Ph
7B, 373 ~1978!.

@34# D. J. Thouless, Phys. Rep.13, 93 ~1974!.
@35# J. M. Kosterlitz, J. Phys. C7, 1046~1974!.
@36# J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
@37# J. M. Kosterlitz and D. J. Thouless, J. Phys. C5, 124 ~1972!.
@38# M. Seul and V. S. Chen, Phys. Rev. Lett.70, 1658~1993!.
@39# Animations of our simulations of an Ising model with add

tional dipolar repulsions can be viewed at http
chemistry.ohio-state.edu/;singer/DipolarIsingSimulations.

@40# P. Muller and F. Gallet, J. Phys. Chem.95, 3257~1991!.
@41# D. P. Jackson, R. E. Goldstein, and A. O. Cebers, Phys. Re

50, 298 ~1994!.
@42# R. Kretschmer and K. Binder, Z. Phys. B34, 375 ~1979!.
@43# M. A. Mayer and T. K. Vanderlick, Phys. Rev. E55, 1106

~1997!.
@44# R. K. Kalia and P. Vashishta, J. Phys. C14, L643 ~1981!.
@45# D. Levesque, G. N. Patey, and J. J. Weis, Mol. Phys.34, 1077

~1977!.
@46# G. N. Patey, D. Levesque, and J. J. Weis, Mol. Phys.45, 733

~1982!.
@47# M. E. van Leeuwen and B. Smit, Phys. Rev. Lett.71, 3991

~1993!.
@48# H. M. McConnell and R. de Koker, J. Phys. Chem.96, 6820

~1992!.
@49# H. M. McConnell, D. Keller, and H. Gaub, J. Phys. Chem.90,

1717 ~1986!.
@50# D. J. Keller, H. M. McConnell, and V. T. Moy, J. Phys. Chem

90, 2311~1986!.
@51# H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A.86, 3452

~1989!.
@52# A. D. Stoycheva and S. J. Singer~unpublished!.
@53# D. Pini, G. Jialin, A. Parola, and L. Reatto, Chem. Phys. Le

327, 209 ~2000!.
@54# L. Onsager, Phys. Rev.65, 117 ~1944!.
@55# P. G. Watson, Proc. Phys. Soc. London91, 940 ~1967!.
@56# S. L. Keller and H. M. McConnell, Phys. Rev. Lett.82, 1602

~1999!.
@57# T. C. Halsey, Phys. Rev.48, R673~1993!.
@58# K.-O. Ng and D. Vanderbilt, Phys. Rev. B52, 2177~1995!.
8-13


