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Solution of the modified Helmholtz equation in a triangular domain and an application
to diffusion-limited coalescence
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A new transform method for solving boundary value problems for linear and integrable nonlinear partial
differential equations recently introduced in the literature is used here to obtain the solution of the modified
Helmholtz equationqxx(x,y)+qyy(x,y)—4B2q(x,y)=0 in the triangular domain €x<L-y=<L, with
mixed boundary conditions. This solution is applied to the problem of diffusion-limited coalescance,
+A=A, in the segment{L/2,L/2), with traps at the edges.
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I. INTRODUCTION Y L L L L
20 Y| FW( 5|0, —osys3,
A new method for solving boundary value problems for
linear and for integrable nonlinear partial differential equa- L L L
tiqns(PDEs) has been intr_oduced recenfll]. Here we apply _ Zq< X, = |+, X, _) =0, ——=x=-
this method to the equation 2 2 2 2 2
Exxt Eyyt ¥(—Ex+E,)=0, (1.2) We rotate and translate the,f) axes, with the mapping

(X,y)—(—y+L/2x+L/2). Equation(1.2) remains invari-
ant, but the domain is now9x<L —y=<L—the isosceles
right triangle with vertices at (0,0), (I0), (L,0)—and the
BCs become

in the triangular domain-L/2=sx<y<L/2, whereE(X,y) is
a scalar function ang is a positive constant. A solution of
Eqg. (1.1 in the semi-infinite wedge €x<Yy has been pre-
sented in [2]. Using the substitution E(x,y)=1

—e Y207%q(x,y), Eqg. (1.1) becomes the modified Helm- q(x,L=x)=0, 0O<x<L, (1.33
holtz equation
%q(x,0)+qy(x,0)=0, O=xs=L, (1.3b
Y
Oxxt ny_4:82qzoa B= ﬁ (1.2
4
504(0y)+a,(0y)=0, Osy<L. (1.39

Equation(1.1) with y=v/D represents the steady state of the
diffusion-limited reactiol’A+ A=A on the line, where thé
particles diffuse with diffusion constam, they merge im-
mediately upon encounter, and split into two particld®e
back reactioh at ratev [3-5]. E(x,y) represents the prob-
abili_ty that the intgrval (,y) is empty. The concentration Zq(x,0)+qy(x,0)=f(x), 0=x<L, (1.3)
profile of the particles is related t&(x,y) through c(x) 2

= —Ey(x,x). Suppose that we limit ourselves to the segment

—L/2=x=<L/2, then the domain of Eql.1) is —L/2<x v

<y=<L/2. The forward reaction is described by the boundary 5a(0y)+a(0y)=f(y), Osys<L,  (1.3¢)
condition (BC) E(x,x)=1. If there are perfect traps at the

edges, x==*L/2, one gets the BCSE,(-L/2y)=0, \yheref(.) is an arbitrary smooth function.

Ey(x,L/2)=0. These BCs transform into the following BCS  \ye will show that: (@ Eq. (1.2 with the BCs(1.39
for Eq. (1.2): ' o e

For the sake of generality, instead of the BLC3b), (1.39
we consider

closed form.(b) Equation(1.2) with the homogeneous BCs
(1.39, (1.3b), (1.30 has only the trivial solutiom(x,y)=0,

L L
4 =0, —z=x<z, i.e., the only steady state of the procéss A=A, in a seg-

(1.3b), (1.3¢) has a unique solution that can be expressed in

ment demarcated by traps, is the vacuum—when there are no

particles left—regardless of the magnitudewgfthe rate of

*Email address: benavraham@clarkson.edu the back reactiolA—A+A. (c) For large back reaction
"Permanent address: Department of Mathematics, Imperial Colrates,yL>1, the characteristic relaxation time to the empty,
lege, London SW7 2BZ, UK. Email address: a.fokas@ic.ac.uk ~ absorbing state grows exponentially &/2v2)e"-/?°.
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y 4 Using the boundary conditiond.3) to simplify the expres-
sions forp;(k), we find the following:
Z3 1
p1(K)==50(0,0 +ia(k)yy(—ik)—iF(=ik), keC,
(2.3a
> k)= ! i ik k)—iF(k k
Z, Z, X pa(K)=50a(0,0+ia(—ik)go(k) —iF (k), keC,
(2.3b
FIG. 1. Domain of the modified Helmholtz equation, E#.2). pa(K)=IE(K) iha(—ke(™D), keC, (2.309
. .= h
Let z=x+iy, let a bar denote the complex conjugate ( where
=x—1y), and letz; denote the corners of the domair=@ 1/ B2 y ,
<L-y<L (see Fig. I a(k):E ?+k+§ . E(k)=elk+B20L
z;=L, z,=0, zz=ilL. (1.4 L
F(k)=3 f el At (y)dy, 2.9
0

Il. ANALYSIS OF THE INHOMOGENEOUS PROBLEM

It is shown in Ref.[6] that the general solution of the and the unknown functiong,, ¢, 3 are defined by

modified Helmholtz equation in the above domain can be .
represented as ¢1(k):j elk+ B20xq (x,0)dx,
0

3
1 = dk
Z f ikz—i(B /k)zp]-(k) e

X,¥)=5— € -
WN=om 2 ), ol = f et #0vg(0y)dy,
0

OsxsL-ys<L, (2.1 s

Pa(k)= f \ELe(k*ﬁz""qu( i,L——)ds. (2.5
where /'y, /5, /3, are the rays on the complex plane 0 \/E \/E
defined by argk=0, #/2, 57/4, and oriented from zero to

infinity (see Fig. 2 while the functiong; (k) are defined by ~Indeed, for the derivation of E¢2.33 we usez=x, and we
note that the boundary conditigf.30') implies

Z epai( g2 1 . . ,32 2
(K) = —ikz+i(B°IK)z| — _ dz+it— dﬂ' 1 ) IB
Pitk) Lf 2( b Ay dzHiTradz S @(x.0)~ia,(x0)+i —a(x.0)
. 1 2 |
keC, j=123, z=12. (2.2 =5 0x(x,0) +i %+% a(x,0) = 5 f(x);
€2 * integrating by parts the terms involving, we find Eq.

(2.33. The derivation of Eq(2.3b is similar, where we use
the condition(1.3¢). For the derivation of Eq.2.30 we use
z=iL+x—ix, and we note that the boundary condition
q(x,L =x) =0 impliesq,(x,L —x) —qy(x,L =x)=0.
In order to simplify the analysis, we have assumed that
61 the samefunction f appears in the BC&L.30) and (1.3¢).
This implies that the PDEL.2), the triangular domain, and
the BCs(1.33, (1.3b), (1.3¢) are invariant under the reflec-
tion x«<y, thusq(x,y) =q(y,x). Hence,iy; (k) = »(K).
We introduce the following notations:

Pr(K)=ga(K)=@(K), d(—ke™ ™H=y(-),

/4

ls

FIG. 2. The rays}, in the complex plane, along whiaj(x,y) ) L,
is computed Eq. (2.1)]. Ya(—ke™=y(+), e(kzz)=ek1BTNZ (26
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A. The analysis of the global relation and the known functions5;(k), j=1,2,3, are defined in

Equations(2.3) expressp;(k) in terms of the unknown t€Ms off as follows:

functionse(—ik), ¢(k), and(+). These functions satisfy

the global condition Elepj(k)=0 [6]. This equation, and 1 ) )
its complex conjugate, are Ga(k)= A(k)a(_k){[E(k)+A(_'k)E('k)]
a(k)e(—ik)+ a(—ik)o(k)+E(K) ¢(+) X[F(—ik)—A(—ik)F(ik)]
=F(k)+F(-ik), keC, (2.7 +[1—A(=iK)][A(—ik)E(ik)F (k)
a(K)@(ik) + a(ik) e(k) +E(K) ¢(—) +EKF(—K)]}. (2.133
=F(k)+F(ik), keC. (2.8 F(k)+F (k)
Followin i i Ga(k)= ———=5— (2.13b
g Ref.[6] we supplement these equations with a(ik)

the equations obtained from Eq&.7) and(2.8) by using the
transformations in the complek plane, which invariantly 1
leave thepairs {¢(—ik),e(ik)} and {#(+),4(—)}. The _ _ N Af -
first pair is invariant undek— —k, and the second pair is Gs(k) A(k){[1 AGOILF(=ik) = A(=ik) (k)]
invariant undefk— —ik,k—ik}. Using the latter transfor-
mations, Eqs(2.7) and(2.9) yield

a(—ik)e(—K)+a(=K)e(—ik) +E(—ik)y(—)

=F(—ik)+F(-k), keC, (2.9 Indeed, Eq.(2.11h is Eq. (2.8). Eliminating ¢(—k) from
Egs.(2.9), (2.10, we find

+[1-A(—iK)]J[F(K)—AK)F(—=K)]}.
(2.139

a(ik)@(—k)+a(=Kk)e(ik) +E(ik) ¢(+)
=F(ik)+F(—k), keC. (2.10 a(=K)e(—ik) +E(=ik) (=) = A(=ik)[ a(=Kk) ¢(ik)

. _ +E(ik)y(+)]

Equations(2.7)—(2.10 are invariant undek— —k, thus we

do not obtain any additional equations using this transforma- =F(—ik)+F(—=k) —A(—ik)[F(ik)+F(—=k)].
tion. Equationg2.7)—(2.10 are the basic equations needed (2.14
for the determination of the unknown functions(k), '
¢(—ik), ¥(+). The analysis of the basic equations leads to

a matrix Riemann-Hilbert problem. However, in what fol- Replacing in this equation(ik) by Eqg.(2.8) and comparing
lows we will show that this problem can be bypassed, andvith Eq.(2.7), we find Eq.(2.119. Replacingy(+) in terms
thatq(x,y) can be obtained using onblgebraic manipula- of ¢(—) in Eq. (2.14, using Eq.(2.119, we find Eq.

tions of the basic equations. (2.113. . .
Equations(2.7)—(2.10 imply that ¢(—ik), ¢(K), ¢(+) Equation(2.1) expressesj(x,y) in terms of p;(k), and
can be expressed in terms @fik) and ¢(—): Egs.(2.3) and(2.11) expressp;(k) in terms of theunknown

functionse(ik), (—), and the known function§;(k). The

i i . E(k) o known functions give rise to the contribution
QD(—Ik):A(—Ik)(p(Ik)‘l'W[A(—Ik) E(Ik)
~ECTO1()+ Gall), (2113 G(x.y>=2if e(k.2.2 (k9 Gy(k)~F(~ik) e
ml/, k
_ ek E(K) 1 B dk
oK)=~ ik #0R ~ ik ¥(7) G20, +2—f (k2. a( - iK)Gak) ~ F(K)T -
(2.11h (RS
A(—iK)E(K)+A(K)E(—ik) +if e(k,z,2)E(k)G (k)ﬂ( (2.19
Y(+)= A(K) Y(=)+Ga(k), 2m) " Tk '
(2.110

In what follows we will show that, by using appropriate con-
where tour rotations, the integrals involving the functioggik),
™ ¥(—) can be evaluated in terms of residues. Furthermore,
o _ . . these residues can be computed in terms of the functions
a(—k)’ Ak =E(l) + Al)A(= Tk E(ik), Gj(k). For the justification of these rotations we use the
(2.12  following facts(see Fig. 3.

A(k)=
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e(k,z,2)E(k), e(k,z,zZ)E(—ik), are
ml2<argk<5m/4, 5w/l

(i) e(kz32),
bounded for G<argk<w/2,
<argk<2r, respectively.

(i) E(—K)E(ik) and (—) are bounded for— /4
<argk<3w/4, while E(K)E(—ik)#(—) is bounded for
3mld<argk<7mw/4.

(i) A(k)~E(k), k—0 and k—o, in —x/4<argk
<3ml4; A(k)~E(ik), k—0 and k—oe, in 3w/4<argk
<7ml4.

Indeed, sincex=0 andy=0, e(k,z,z) is bounded both at
k=0 andk=<c in the first quadrant of the compléxplane.
Since — w/2<arg(z—z3)<—w/4, it follows that if 7/2
<argk<5w/4, then O<argk(z—z3)<w. Hence exfk(z
—23)—iB%Ik(z—z5)] is bounded both d=0 andk=; using
z3=IiL, this exponential equals(k,z,z)E(k). Similar con-
siderations apply te(k,z,z) E(—ik).

AK)=E(K)[E(KE(=ik)+AK)A(=ik)]. If —=/4
<argk<3w/4, E(K)E(—ik) is exponentially large ak
=0 andk=«, andA(k)~E(k). Similarly, if 3w/4<argk
<7ml4, E(K)E(—ik) is exponentially small, and\(k)
~E(ik)A(K)A(—1k) ~E(ik).

y(—) involves —[ke '™+ (B%/k)e ™4, thus it is
bounded for —w/4<argk<3w/4. Similarly for
E(K)E(—ik) ¥ ().

The contribution of the integral along;, due to the terms

involving ¢(—) [see Eq(2.119], gives rise to two integrals:

one involving e(k,z,z) A(K)E(—ik)E(K) ¢(—)/kA(K), and

one involvinge(k,z,z) A(—ik)E(k)?y(—)/kA(K). The first

integral is bounded in B/4<argk<2s, while the second
integral is bounded inr/2<argk<5w/4. Indeed, the inte-
grand of the first integral is dominated by

[e(k,z,2) E(—ik)I[E(K)E(—ik)g(—)],

57

T —
5 ~argk<— - [e(k,z2)E(—ik)J[¥(-)],

7
T< argk<2r,

PHYSICAL REVIEW E64 016114

2

k) Ak) ~ E(k)
) - E(-K)E(ik)
e(k zZ)E(K) l, AW~EGON 9

g/ e(k,zZ)B(-ik)

E(K)E(-ik)¥(-)
3 .
FIG. 3. Regions wheree(k,z,2), e(k,z,z)E(k), e(k,z,2)E
(=ik), ¥(—), E(K)E(—ik)¢(—) are bounded, and dominant be-

havior of A (k).

Hence, the integral along’;, due to the terms involving
Y(—), equals an integral along/; involving
e(k,z,2) A(K)E(—Ik)E(K) ¢(—)/kA(k), an integral along
/7, involving e(k,z,z) A(—ik)E(k)?/kA(k), and a contribu-
tion due to residues, which will be computed belmee Egs.
(2.19bh and(2.199]. Combining these integrals with the in-
tegrals due top(—ik) and to ¢(k) [see Egs(2.113 and
(2.11bh], we find

1 _
Ji(xy)= Zf/zu/le(k,z,Z)

Lo (dk
x| 50,0+ a(K)A(=ik)g(ik) |-,

2
(2.19
1 e(k,z,2) .
Jo(Xy) = Ef—/zu/lWA(k)A(_ ik)E(k)
) dk
XE(IK) () 1 2.17)

Fork in the first quadrant of the compléoplane,E(k)/A(K)

is dominated by 1, and each of the tere(%,z,2), ¢(ik),
E(ik), #(—) is bounded. Thus, both, andJ, can be com-
puted in terms of residues.

The definition ofA(k) implies

(k+Ap)(k+Ay)

A== A (k=4

and each of the brackets is bounded. Similarly, the integrand

of the second integral is dominated by

T

_ 37
[e(k,z.2E(K)][¢(—)], S <argk<—,-;

3

— 5
[e(k 2D ERERE(- KU -)], Z<ark<—,

and each of the brackets is bounded.

(k+Aq)(k—Ap)

SN WiTy W

Alz%(lﬂ),

Ag= (—1+1),

so the poles oA(—ik) and A(k) occur atA;, A,, and at
A1, —A,, respectively. Similarly, the poles d@&(ik) and
A(—k) occur at— A, —A,, and — A4, A,, respectively.
Using these facts it follows that
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3
q(x,y>=cs<x,y)+]_§l R(x,Y)+P(xy), (2.18

whereG(x,y) is defined by Eq(2.19, P(x,y) is the contri-
bution toJ; andJ, due to the poles of(k)A(—ik) and of
A(K)A(—ik)?, and theR; are defined as follows:

PHYSICAL REVIEW B4 016114

Ry= i3, S 'ZE)A(M?E(—WJ)E(M;)
! A ()

(i)

e(—A5,2,2)

“2A(CAy

E(—=AE(iA)¢(—Ap),

_ (2.199
< e(ki,2,2)A(k)A(—ik)’E(k{)E(ik;)
R=i> — T y(«yp, #(k), A’(k) denote
] KJA (Kj)
— ) P(k) = g(—ke '™, AK=—g— (@20
. e()\] ,Z,Z)A(—)\J)E()\J)
Ry=—i> ; #(N))
] NAT(N) and «j, \j, p; denote the zeros ofA(k) in O<argk
— <wl2, wl4<argk<5w/4, 5m/4<argk<2r, respectively.
+26(A2'Z'Z) E(A,)20(A,), (2.199  Multiplying Eq. (2.110 by A(k) and evaluating the resulting
A(A») expression akj={x; \;,u;}, we find
|
[1=Ak)I[F(=ikj) —A(=ikj)F(ik) ]+ [1=A(=ik)) ][F (k) —Ak)F(=k;)]
Pk = i i i Jé(k.) i i i 2 s(k)#0, (2.21
i
|
where Il. PHYSICAL PROBLEM
S(K)=A(—iK)E(K)+A(K) E(—ik). (2.22 The physical problem corresponds to the homogeneous

Noting that a(k)=(k+A)(k—Ay)/2k, «a(ik)=—(k
—Aq)(k—A5)/2ik, and evaluating Eq(2.8) at k=A,, we
find ¥(A,). Similarly, evaluating Eq(2.9 at k=—A, we
find Y(—A,):

P(A)=E(—A)[F(A)+F(iAy)],

. _ (2.23
(= A =E(—iA)[F(A)+F(iA)].

The term P(x,y) arises froma(k)A(—ik) in J4, and
A(K)A(—ik)?/A(k) [A(k)#0] in J,, each of which has a

simple pole atkk=A ;. Evaluation of the pertaining residues

yields
P(x,y)=2e(A1,z,2)[a(Ay) @(iA) +E(ADP(A)].
Evaluating Eq(2.8) atk=A 4, we find
a(A)@(iA) +E(A P(A)=F(A)+F(iAy).
Thus,

P(x,y)=2e(A1,2,2)[F(A))+F(iA)]. (2.29

In summary, assume tha(k;) #0, wherek; is a zero of
A(k), and 8(k), A(k) are defined by Eqgs(2.12, (2.22,
respectively. Themg(x,y) is given by Eq.(2.18, where
G(x,y) is defined by Eq(2.19, P(x,y) is defined by Eq.
(2.24, andRj(x,y), j=1,2,3, are defined by Eq¢2.19,
with ¢(k;), ¥(Ay), ¥(—A,) defined by Eqs(2.21), (2.23.

BCs, i.e.,f=0. In this case EQq(2.189 vyields q(x,y)=0.
Thus, we only need to consider the assumption #{#t,)
#0. If this assumption is violated then the equatiad(k,,)
=0 andé(k,)=0 can be rewritten in the form

A(ik,)2E(—iky)?=1, (3.1a

A(—Kkqy)%E(kp)?=1. (3.1b
Equations(3.1) do not have a solution for generic values of
v. Indeed, consider first the limit of infinite back reaction
rate, yL —oo. Inspection of Eqs(3.1) in this limit yields the
asymptotic solutiork,,=* A, = A,. If there exists a steady
state other thamj(x,y)=0, then it would also exist forL
large but finite. We therefore seek solutions(8f1) of the
form k=k,,+ €. Such solutions do not exist: Using,= A,
Eq. (3.19 yields e=(1/4L)(—1+i)—to first order in
e—while Eg. (3.1b yields the contradictory resuli
=(1/4L)(+1—i). The other values ok, lead to similar
contradictory results. Thus, the only solution to the physical
problem isq(x,y)=0, which corresponds to the trivial case
of the vacuum, when no particles are left in the system.
Finally, consider the relaxation of the system into the ab-
sorbing empty state. Instead of E4.1), we need to study
Exxt Eyy+ ¥(—Ex+E))=E,, (3.2
wherer=Dt is a rescaled time parameter. We turn this into
an eigenvalue problem, by writing E(X,y,t)=1
—e 77~ "20™Xq_(x,y). This results in an equation far,
identical to Eq.(1.2), valid over the same domain, but with
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48%2=1+2— . The BCs for this equation are identical to Eq. action rates. Although the lack of a transition cannot be es-
(1.3). We have already seen that the problem admits no zertablished from numerical simulations, especially in view of
eigenvalue:qy(x,y)=0. The analysis fore>0 proceeds the long relaxation times foyL large, previous work had
along the same lines. Once again, the critical issue is whethesuggested that a transition does not take pl&@te

there exist solutions of Eq$3.1). This time the asymptotic While the mean-field approach of E¢3.3 fails to de-
solution for yL—o is k.= (y/4)+1=i(1—40/y)'?], scribe theA+ A=A system on the line, it is interesting to
(y/4)[ £ (1—40/y)Y?+i]. A perturbation analysis shows speculate about higher dimensions. Imagine the process tak-

that solutions exist for finiteyL<1, provided thato  ing place in an infinited-dimensional spacex(,X,, . . . Xq)
~2v%e” "2, The relaxation time to the empty state is there-with absorbing walls aix,=*+L/2. Is there a dimension
fore (Do) =(D/2v?)e’"'?P. above which the mean-field description is valid? If so, what

It is instructive to compare our analysis A#-A=A to s that dimension? Unfortunately, the method of empty inter-
the mean-field result. The reaction-diffusion equation for thevals employed ind=1 does not generalize for highdr A
steady state of the process, in a segment demarcated by trapslated problem, of the propagation of the stable phase of the
is A+ A=A process into an unstable empty region, has been

studied by numerical simulationd.0]. It was found there
Dpxxtkip—kp?=0, —L/2<x<L/2, (3.3  that the mean-field picturéin this case, the well-known
propagation of a Fisher fronapplies above the critical di-
mensiond.= 3, but the issue is still controversial. It would
be interesting to see d.=3 is also the critical dimension in
the present problem.

wherep(x) is the local particle density; is the rate of the
back reactiolA— A+ A, k; is the rate ofA+A—A, and the
traps impose the BCg(*L/2)=0. This equation predicts a
transition from an empty statep&0) to an active statep(
>0), whenk; exceeds a certain critical valy&,8]. Our
exact analysis shows that in the actual system of one-

dimensional coalescence the noise destroys the transition and We thank Professor L. Glasser and Professor D. Kessler
the only existing steady state is the empty state. The norfor useful discussions, and Professor A. C. Newell for im-
trivial steady state of the mean-field case is echoed in thportant suggestions. We gratefully acknowledge the NSF
exponentially large relaxation time found for large back re-(D.b.-A.) and the EPRSCA.S.F) for support of this work.
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