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Spirals and targets in reaction-diffusion systems
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The existence of spirals and targets is common in reaction diffusion systems of excitable dynamics. I present
a multiple scale perturbation analysis to show the existence of all these patterns near a Hopf bifurcation
boundary in a Turing type reaction-diffusion system.
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In two-dimensional reaction-diffusion systems, rotatio
ally symmetric patterns, known as targets or sinks, an
generalization of them with broken circular symmetry, i.
spirals are being investigated experimentally as well as th
retically @1# in many nonlinear systems. The Belouso
Zabotinsky reaction is a well investigated excitable reacti
diffusion system that shows all these patterns@2–4#. Spirals
are characteristic patterns in slime mold aggregates@5–8#
and are an important observation in cardiac arrythmias@9# as
well. Targets and spirals, which are generally found to fo
around some defects, precede some defect mediated c
commonly known as spiral defect chaos@10,11#. All these
have made the study of the origin and stability@12# of these
patterns a subject of renewed interest. In this paper the e
tence of spirals and targets is reported in the Gie
Meinhardt ~GM! model, representing a reaction-diffusio
system for biological pattern formation. Here I work nea
Hopf bifurcation boundary which separates the Turing st
and a homogeneous steady state from a homogeneous
latory state. The GM model represents a Turing ty
reaction-diffusion system, which to my knowledge, has
been investigated analytically for the existence of targets
spirals.

In general, an investigation of targets in a system st
with the inclusion of an additive inhomogeneity in the pha
equation followed by a Cole-Hopf transformation that giv
the equation the shape of a linear Schro¨dinger equation. The
target is a bound state of the Schro¨dinger equation; it then
remains to obtain the appropriate form of the inhomogen
from a suitable potential. This type of approach has mad
particularly controversial, whether intrinsic targets exist
the vicinity of an oscillatory state or not. There is an expli
solution for spirals in thel-v system due to Hagan@13#. The
l-v system in simpler cases has the structure of a com
Ginzberg-Landau equation without an imaginary part in
coefficient of,2. In his analysis, Hagan was of the opinio
that a spiral of a single branch will only persist if the high
order spirals are unstable. It is also important to note that
spirals obtained in these way are characterized by a quad
dispersion relation. Complex Ginzberg-Landau type am
tude equations and eikonal equations@1#, developed from the
curling up of a line defect, are standard approaches w
which to show spiral patterns. In what follows, we arrive a
linear amplitude equation from the solvability criterion a
plied at first order in a perturbation expansion of the G
model using multiple scales. It is shown subsequently th
general solution of a spiral exists for that amplitude equat
in a region of phase space where a homogeneous oscilla
1063-651X/2001/64~1!/016113~4!/$20.00 64 0161
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state is stable. Targets and stars are shown to be sp
cases. These things occur without any externally impo
local inhomogeity. The other part of the result is obtained
imposing an inhomogeneous distribution on the removal r
of the interacting species; in the asymptotic region this gi
incoming spirals and targets with particular wave numbe

It was Turing who first showed that the interaction of tw
substances, sayA andB, with differerent diffusion rates can
cause steady patterns to form. Two basic properties that
count for the formation of pattern in a Turing system a
local self enhancement and long range inhibition. Local
hancement causes inhomogenieties to grow and long ra
inhibition confines that effect if the antagonist is taken to
fast diffusing. The two speciesA andB constitute a reaction-
diffusion system@14#, known as the GM model:

]A

]t
5Da,2A1ra

A2

~11kaA2!B
2maA1sa , ~1!

]B

]t
5Db,2B1rbA22mbB1sb . ~2!

Here Da and Db are diffusion constants such thatDb
@Da ~the condition for formation of a Turing pattern!, sa
and sb are the basic production terms, andma and mb are
removal rates. All of these parameters are real and posi
The natural pattern formation requiresma!mb to make an
autocatalytic local amplification ofA effective to form steady
patterns@14#. In the above mentioned model,ra andrb are
cross reaction coefficients;ka is a saturation constant, whic
actually plays a role in determining the shape of the patte
and is also real and positive.

The model is simplified by settingka5sB50, to make an
analytic treatment more easy without any loss of the qual
tive nature of the result. Then a change of scale ast̄ 5mat,
l̄ 5Ama /Dal , a5(marb /mbra)A, and b5(ma

2rb /mbra
2)B

allows us to reach the following set of equations@14#:

]a

] t̄
5,̄2a1

a2

b
2a1s, ~3!

]b

] t̄
5,̄2b1m~a22b!. ~4!

HereD5Da /Db , m5ma /mb , s5rbsa /mbra , and,̄2

is the Laplacian operator in a changed length scale.
©2001 The American Physical Society13-1
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steady homogeneous fixed points of the above mentio
equations area05(11s) andb05(11s)2.

The scales of variablesA and B are now changed suc
that the fixed point is at the origin. Here I introducer 5r 0

1er 1 , t̄ 5t01et, and u5e1/2q. The order parameters i
multiple scales are expanded as

A5eA11e2A21222, ~5!

B5eB11e2B21222, ~6!

wheree,1. Now, in multiple scales, I find, toO(e),

S ]

]t0
2DF 1

r 0

]

]r 0
r 0

]

]r 0
1

1

r 0
2

]2

]u2G2
12s

11s

1

~11s!2

22m~11s!
]

]t0
2F 1

r 0

]

]r 0
r 0

]

]r 0
1

1

r 0
2

]2

]u2G1m
D

3S A1

B1
D 50. ~7!

Equation~17! has a solution of the form

S A1

B1
D 5A~r 1 ,q,t!S a1

b1
D eat0, ~8!

wherea is given by

a5

12s

11s
2m

2
6

1

2 F S 12s

11s
1m D 2

2
8m

11sG1/2

. ~9!

The real part ofa grows whenm,(12s)/(11s), which is
the boundary that separates a Turing patterned region a
steady homogeneous state from the homogeneous oscill
state, as shown in Refs.@14,15# i.e., the Hopf-bifurcation
n-
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boundary for the system. Figure 1 shows the phase diag
obtained from the linear stability analysis@14,15#. Now,
sinces,1 for the growth of a solution, an oscillatory insta
bility is created somewhere above the boundarym05(1
2s)/(11s), but the solution grows below this line.

The explicit form of the oscillatory solution inO(e) is

S A1

B1
D 5A~r 1 ,q,t!S a1m

2m@11s#
D eat01c.c., ~10!

where, at the boundary,m5m05(12s)/(11s) and
a5 in5@ i /(11s)#@2(12s)2(12s)2#1/2.

Let us try to solve the equation at the next order i.e.,
O(e2), keepingm5m0 with an O(e) variationm1 such that
m5m01em1 wherem1 can be a function of space and tim
So, inO(e2),

FIG. 1. Phase diagram as obtained from a linear stability an
sis of the model@Eqs.~3! and~4!# in m-D space. The lines marked
1 and 3 enclose the stationary patterned state, where the region
the line marked 2 is steady homogeneous. In this figure the do
horizontal line is the boundarym5m0, below which a steady oscil-
latory state exists. The perturbation analysis has been done a
the linem5m0.
LS A2

B2
D 5S F2

]

]t
1

1

r 0

]

]r 0
r 0

]

]r 1
1

1

r 0
2

]2

]q2G 0

2m1~11s! F2
]

]t
1

1

r 0

]

]r 0
r 0

]

]r 1
1

1

r 0
2

]2

]q2G2m1
D S A1

B1
D 1~nonlinear terms). ~11!
Now, since the operatorL has eigenstates with zero eige
values, the solvability criterion applied to Eq.~11! results in
an amplitude equation

]A

]t
5

1

r 0

]A

]r 1
1

1

r 0
2

]2A

]q2
2

4n2m1~11s!2~12s!

f ~s!224n2~12s2!2
A

2 i
2nm1f ~s!~11s!

f ~s!224n2~12s2!2
A, ~12!
where f (s)5@(12s)222(12s)2n2(11s)2#522(1
2s)(11s).

Thus f (s) is negative for 0,s,1. Now, coming back to
the original scale, Eq.~12! takes the shape

]A

]t
5

1

r

]A

]r
1

1

r 2

]2A

]u2
2e

4n2m1~11s!2~12s!

f ~s!224n2~12s2!2
A

1 i e
4nm1~11s!2~12s!

f ~s!224n2~12s2!2
A. ~13!
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SPIRALS AND TARGETS IN REACTION-DIFFUSION SYSTEMS PHYSICAL REVIEW E64 016113
Equation ~13! has a general solution in the form of
spiral, with and without any space vatiation inm1, and solu-
tions for the star, target, sink, etc. exist as special case
that solution under varied conditions, as shown in the follo
ing.

Let us try a solution of the form

A5egtĀ~r !ei (vt1c(r )1mu), ~14!

which is the general solution of a spiral, wherem is a real
number known as a spiral number, andg is the time rate of
growth. Now, inserting this into Eq.~13! and equating the
imaginary and real parts, respectively, we obtain

]c~r !

]r
5Fe 4nm1~11s!2~12s!

D
2vG r ~15!

and

1

Ā~r !

]Ā~r !

]r
5Fg1e

4n2m1~11s!2~12s!

D G r 1
m2

r
.

~16!

Equation~16! can be rewritten as

g5
1

rĀ~r !

]Ā~r !

]r
2e

4n2m1~11s!2~12s!

D
2

m2

r 2
.

~17!

From the above equation it is clear that an intrinsic sp
will grow for negativem1, i.e., the solution will grow below
the linem5m0 where a homogeneous oscillatory state exis
Numerical analysis reveals the existence of patterns w
spatiotemporal variations due to nonlinear effects in
above mentioned region of phase space@14#. Integrating Eqs.
~15! and ~16!,

c~r !5
1

2 Fe 4nm1~11s!2~12s!

D
2vG r 21N ~18!

and

Ā~r !5Mr p expS 1

2 Fg1e
4n2m1~11s!2~12s!

D G r 2D ,

~19!

where D5 f (s)224n2(12s2)254(12s)2(11s)2@12(1
2s)/(11s)#, p5m2 is a number, andN and M are arbi-
trary constants.

Equations~18! and~19! indicate the existence of an osci
latory solution as well as a steady solution. Since the ex
nent in Eq.~19! can always be made negative, keepingg

positive, ande2r 2
is a faster decaying function thanr p, the

amplitude will not diverge at infinity. Equations~18! and
~19! also indicate that though steady spirals and targets
possible solutions, there must be a solution which repres
an oscillatory star whenc(r ) is set to zero. The oscillation
frequencyv5e„@4nm1(11s)2(12s)#/D….
01611
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The form ofc(r ) suggests that oscillations along the r
dius will be closer and closer asr grows, and consequentl
will be averaged out to make the system homogeneou
large r. An intrinsic target will result if we setm5o in Eq.
~16!. On the other hand, we will obtain an intrinsic oscilla
ing star with an oscillation frequencyv5e„@4nm1(1
1s)2(12s)#/D…, since in this casec(r ) is set to zero.
These patterns are called intrinsic, sincem1 is taken to be
uniform in space.

It is interesting to observe that a spatial variation ofm1
like m15Pr/(Q1r ), whereP andQ are arbitrary constants
can, in the asymptotic region~i.e., r @Q), makec(r ) a lin-
ear function ofr and can give some values to other consta
as well. In the asymptotic region, as defined above, we
approximatem1 as m15P2PQ/r , so from Eqs.~15! and
~16! it is obvious that if the oscillation frequencyv is set
equal toe„@4nm1(11s)2(12s)P#/D…, then

c~r !52e
4nm1~11s!2~12s!PQ

D
r . ~20!

Thus an incoming target solution may exist with an amp
tude

Ā~r !5eCr, ~21!

where C5e„@4n2(11s)2(12s)PQ#/D…, with a growth
rate g52e„@4n2P(11s)2(12s)#/D…. Now to make g
positive, we have to makeP negative; on the other hand
depending upon the sign ofQ, the target is an incoming o
outgoing one.

A similar type of analysis shows that if we take anoth
term in the expansion ofm1 in the asymptotic region,m1
5P2PQ/r 1PQ2/2r 2, and a selection of spiral number

m252e
4n2~11s!2~12s!PQ2

D
52e

PQ2

2s
~22!

results in a spiral. Now to makem2, a positive numberP
should be made negative. However, that, on the other h
would change the growth rate to1ve. Thus this type of
spiral can only be incoming withQ,0 to avoid any expo-
nential growth of the amplitude.

In conclusion, the existence of intrinsic spirals and targ
in a region of phase space where an oscillatory solution
stable is a most important observation. This is due not o
to the fact that such a model~the GM model!, representing
biological systems, provides an interesting analytical pred
tion, but also because it predicts the generation of intrin
spiral and target instabilities. There is a large question
whether spirals or targets can form intrinsically in a syst
or not. It has mostly been seen that these patterns f
around some local inhomogeneity. In the present work it w
shown that such instabilities can indeed develop without
local perturbation. In the present work, since the spirals
obtained in the next higher order from those of targets, in
expansion of inhomogeneousm1 spirals should form in a
region closer to the origin than the region in space wh
incoming targets or shocks are formed. The spirals and
3-3
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A. BHATTACHARYAY PHYSICAL REVIEW E 64 016113
gets, as obtained from a linear Schro¨dinger equation type
phase equation, are characterized by a quadratic dispe
relation @1#; however, in the present results the dispers
relation is linear. Nothing can be said about whether spi
of higher numberm will be unstable or not. Here, from Eq
~21!, we see that, to makem large we have to makePQ2

large. A largeP and Q, in turn, will not only make the
amplitudeĀ(r ) fall faster but will also push the region o
v

01611
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validity for the asymptotic solution further away from th
origin. It can also be argued that since the result comes o
largeu scale, lower spiral numbers would be preferable.
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