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Spirals and targets in reaction-diffusion systems
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The existence of spirals and targets is common in reaction diffusion systems of excitable dynamics. | present
a multiple scale perturbation analysis to show the existence of all these patterns near a Hopf bifurcation
boundary in a Turing type reaction-diffusion system.
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In two-dimensional reaction-diffusion systems, rotation-state is stable. Targets and stars are shown to be special
ally symmetric patterns, known as targets or sinks, and &ases. These things occur without any externally imposed
generalization of them with broken circular symmetry, i.e.,local inhomogeity. The other part of the result is obtained by
spirals are being investigated experimentally as well as thedmposing an inhomogeneous distribution on the removal rate
retically [1] in many nonlinear systems. The Belousov- Of the interacting species; in the asymptotic region this gives
Zabotinsky reaction is a well investigated excitable reactionincoming spirals and targets with particular wave numbers.
diffusion system that shows all these patteli2s4]. Spirals It was Turing who first showed that the interaction of two
are characteristic patterns in slime mold aggregm] Substances, Sa§( and B, W|th diﬁererent diﬁusion rates can
and are an important observation in cardiac arrythifass cause steady patterns to form. Two basic properties that ac-
well. Targets and spirals, which are generally found to formcount for the formation of pattern in a Turing system are
around some defects, precede some defect mediated chasal self enhancement and long range inhibition. Local en-
commonly known as spiral defect chajgkd,11]. All these hancement causes inhomogenieties to grow and long range
have made the study of the origin and stabilit] of these inhibition confines that effect if the antagonist is taken to be
patterns a subject of renewed interest. In this paper the exi$ast diffusing. The two species andB constitute a reaction-
tence of spirals and targets is reported in the Giererdiffusion systen{14], known as the GM model:

Meinhardt (GM) model, representing a reaction-diffusion

system for biological pattern formation. Here | work near a A D.V2A+ A? AL 0
Hopf bifurcation boundary which separates the Turing state ot @ pa(1+ k,A2)B HalA T Ta,

and a homogeneous steady state from a homogeneous oscil-

latory state. The GM model represents a Turing type

reaction-diffusion system, which to my knowledge, has not E:vazB'i‘pbAz—,ubB-‘r oy (2
been investigated analytically for the existence of targets and

spirals. Here D, and D, are diffusion constants such thBx,

_ In general, an investigat_i(_)n qf targets in a system starts, D, (the condition for formation of a Turing patterro,
with the inclusion of an additive inhomogeneity in the phasey4 oy, are the basic production terms, apg and ,, are

equation followed by a Cole-Hopf transformation that givesiemoya| rates. All of these parameters are real and positive.
the equation the shape of a linear Schnger equation. The  The natural pattern formation requirgs, <, to make an

target is a bound state of the ScHimger equation; it then t5catalytic local amplification of effective to form steady

remains to obtain the appropriate form of the inhomogeneit;_gattems[ﬂ]_ In the above mentioned model, and p,, are

from a suitable potential. This type of approach has made if;,ss reaction coefficientk; is a saturation constant, which

partic_u_layly controve_rsial, whether intrinsic targets exist_ i_n actually plays a role in determining the shape of the pattern,
the vicinity of an oscillatory state or not. There is an explicit ;4 is also real and positive.

solution for spirals in tha - system due to Hagdii3]. The The model is simplified by setting,= o5=0, to make an

\-w system in simpler cases has the structure of a complex,ayytic treatment more easy without any loss of the qualita-
Ginzberg-Landau equation without an imaginary part in the. —
coefficient of V2. In his analysis, Hagan was of the opinion live nature of the result. Then a change of gcale a%at,
that a spiral of a single branch will only persist if the higher | = Vta/Dal, @=(mapp/mppa) A, and b=(uzpn/upps)B
order spirals are unstable. It is also important to note that th@llows us to reach the following set of equatiqas]:
spirals obtained in these way are characterized by a quadratic ,
dispersion relation. Complex Ginzberg-Landau type ampli- aa_gz a

; : : —=Va+-——ato, (3
tude equations and eikonal equati¢h§ developed from the It b
curling up of a line defect, are standard approaches with
which to show spiral patterns. In what follows, we arrive at a b —
linear amplitude equation from the solvability criterion ap- —=V?b+pu(a®—b). (4)
plied at first order in a perturbation expansion of the GM Jt
model using multiple scales. It is shown subsequently that a _
general solution of a spiral exists for that amplitude equation HereD=D_,/Dy, u= s/ py, 0=ppoal tppa, andv?

in a region of phase space where a homogeneous oscillatory the Laplacian operator in a changed length scale. The
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steady homogeneous fixed points of the above mentionec
equations ar@y=(1+0) andby=(1+o)>.

The scales of variableA and B are now changed such
that the fixed point is at the origin. Here | introducer

+ery, t=ty+er, and 6=€Y29. The order parameters in

multiple scales are expanded as # 7
A=A+ 2Ap+ —— —, (5) |
B=e€B;+€’B,+———, ® B TS 2. ]

wheree<1. Now, in multiple scales, I find, t®(e€),
0 002 004 006 008 01 012 014 016 018 02

d 19 9 1| 1l-o 1
Ro - E Foroﬂ_ro—'—r_z ﬁ . (1+ 0)2 FIG. 1. Phase diagram as obtained from a linear stability analy-
0 sis of the modelEqgs.(3) and(4)] in u-D space. The lines marked
9 1 4 9 1 92 1 and 3 enclose the stationary patterned state, where the region over
—2u(l+o) —— {— oo —+ 5 —|tu the line marked 2 is steady homogeneous. In this figure the dotted
o [Todro “dfo 15 a6 horizontal line is the boundany = w4, below which a steady oscil-
A latory state exists. The perturbation analysis has been done about
« Bl -0. 7 the line u= u,.
! boundary for the system. Figure 1 shows the phase diagram
Equation(17) has a solution of the form obtained from the linear stability analysj44,15. Now,
sinceo<1 for the growth of a solution, an oscillatory insta-
(Al LA T)( al) etto ®) bility is created somewhere above the boundary=(1
B D7 b, ' —o)/(1+ o), but the solution grows below this line.
. The explicit form of the oscillatory solution i®(e) is
where« is given by
l1-o Al)zA(r o TF Jemorce, (0
1o ™ 1l/1-¢ 2 g, W2 B, LU\ 2u[1+ 0] '
a= = +,u) - 9 o
2 2[\1+0o 1+o where, at the boundaryu=u,=(1-0)/(1+0) and

a=in=[i/(1+0)][2(1-0)—(1—o)*]*2
The real part ofx grows whenu<(1—o)/(1+ o), which is Let us try to solve the equation at the next order i.e., at
the boundary that separates a Turing patterned region and@(€?), keepingu = uq with an O(e€) variation ., such that
steady homogeneous state from the homogeneous oscillatopy= uo+ €1 Whereu, can be a function of space and time.
state, as shown in Ref§14,15 i.e., the Hopf-bifurcation So, inO(€?),

9 1 9 g 1 &
_—t — —ry—+— —
aT ro &I’O O&I’l rg (9»82

+ (nonlinear terms). (11

e .
B> g 1 9 g 1 B

——t = —Tg—t+ = —| -
aT ro &ro Oérl rg &62 K1

2u1(1+0) {

Now, since the operatdr has eigenstates with zero eigen- where  f(o)=[(1—0)?—2(1-0)—n?(1+0)?]=—2(1

values, the solvability criterion applied to Ed.1) results in  —¢)(1+ o).
an amplitude equation Thusf (o) is negative for BZo<<1. Now, coming back to
the original scale, Eq.12) takes the shape
@—i%jL iaZ_A_ 4n2,LL1(1+0')2(1—0')A JA 1A 1 PA 4n’uy(1+0)*(1-o)
It Todl1 13 99% f(0)?—4n3(1—g?)? T 1207 CHg)2-and(1-o?)?
~ 2nuqf(o)(1+0) dnp(1+0)’(1—0o
o Wl A, (12) rieDpadro)l=o) (13

f()2—4n%(1— 2)? o) = an2(1—o?)?
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Equation (13) has a general solution in the form of a

spiral, with and without any space vatiation n, and solu-

PHYSICAL REVIEW &4 016113

The form of (r) suggests that oscillations along the ra-
dius will be closer and closer asgrows, and consequently

tions for the star, target, sink, etc. exist as special cases ofill be averaged out to make the system homogeneous at
that solution under varied conditions, as shown in the follow-arger. An intrinsic target will result if we sein=0 in Eq.

ing.
Let us try a solution of the form
A:eytK(r)ei(wt+ 1//(r)+m0), (14)
which is the general solution of a spiral, whareis a real
number known as a spiral number, apds the time rate of

growth. Now, inserting this into Eq.13) and equating the
imaginary and real parts, respectively, we obtain

ap(r) dnu,(1+0)’(l—0) |
= ! 5 —wlr (15)
and
1 9A(r) { an’p,(1+0)3(1-o)] m?
A(r) or D r
(16)
Equation(16) can be rewritten as
1 9A(r)  4nPuy(l+o0)3(l-o) m?
== —€ -
7 rA(r) or D r2
17

From the above equation it is clear that an intrinsic spiral

will grow for negativeu,, i.e., the solution will grow below

the lineu= ug where a homogeneous oscillatory state exists

(16). On the other hand, we will obtain an intrinsic oscillat-
ing star with an oscillation frequencyw=e([4nu(1
+0)?(1-0)]/D), since in this casel(r) is set to zero.
These patterns are called intrinsic, sinee is taken to be
uniform in space.

It is interesting to observe that a spatial variationgof
like w1=Pr/(Q+r), whereP andQ are arbitrary constants,
can, in the asymptotic regiofie., r>Q), makey(r) a lin-
ear function ofr and can give some values to other constants
as well. In the asymptotic region, as defined above, we can
approximatew, as u;=P—PQ/r, so from Egs.(15 and
(16) it is obvious that if the oscillation frequenay is set
equal toe([4nu,(1+ 0)?(1— o) P]/D), then

201 _
w(r):_€4n,u1(l+0'|)3 (1 O')PQr.

(20

Thus an incoming target solution may exist with an ampli-
tude
A(r)=e°", (21)

where C=e([4n?(1+ 0)?%(1—0)PQ]/D), with a growth
rate y=—e([4n°P(1+0)?(1—0)]/D). Now to make y
positive, we have to mak® negative; on the other hand,
depending upon the sign @), the target is an incoming or
outgoing one.

A similar type of analysis shows that if we take another
term in the expansion oft; in the asymptotic regiong,

Numerical analysis reveals the existence of patterns with. P—PQ/r+PQ¥2r2 and a selection of spiral number
spatiotemporal variations due to nonlinear effects in the ’

above mentioned region of phase spEld. Integrating Egs.
(15 and(16),

201
sry—g| A+l d=a) oy g
2 D
and
2 201 _
Ar)=MrP ex;{ﬂy-l—e‘m ,LL1(1+D0') (1-0) rz)’

(19

where D=f(0)2—4n?(1—0?)?=4(1-0)?(1+ 0)q1—-(1
—o)/(1+ )], p=m? is a number, andN andM are arbi-
trary constants.

4n*(1+0)%(1-0)PQ*  PQ?

2 _
D 620

m°=—e

(22)

results in a spiral. Now to make?, a positive numbeP
should be made negative. However, that, on the other hand,
would change the growth rate téve Thus this type of
spiral can only be incoming witlQ<0 to avoid any expo-
nential growth of the amplitude.

In conclusion, the existence of intrinsic spirals and targets
in a region of phase space where an oscillatory solution is
stable is a most important observation. This is due not only
to the fact that such a modéhe GM model, representing
biological systems, provides an interesting analytical predic-
tion, but also because it predicts the generation of intrinsic
spiral and target instabilities. There is a large question of

Equations(18) and(19) indicate the existence of an oscil- \yhether spirals or targets can form intrinsically in a system
latory solution as well as a steady solution. Since the expoyr not. It has mostly been seen that these patterns form

nent in Eq.(19) can always be made negative, keepipg

positive, ande™" is a faster decaying function thaR, the
amplitude will not diverge at infinity. Equation&8) and

around some local inhomogeneity. In the present work it was
shown that such instabilities can indeed develop without any
local perturbation. In the present work, since the spirals are

(19 also indicate that though steady spirals and targets arebtained in the next higher order from those of targets, in the
possible solutions, there must be a solution which representsxpansion of inhomogeneoys; spirals should form in a
an oscillatory star whewi(r) is set to zero. The oscillation region closer to the origin than the region in space where

frequencyw= e([4nu,(1+ o)?(1—0)]/D).

incoming targets or shocks are formed. The spirals and tar-
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gets, as obtained from a linear Sctiimger equation type validity for the asymptotic solution further away from the
phase equation, are characterized by a quadratic dispersianigin. It can also be argued that since the result comes on a
relation [1]; however, in the present results the dispersionarge ¢ scale, lower spiral numbers would be preferable.
relation is linear. Nothing can be said about whether spirals

of higher numbem will be unstable or not. Here, from Eq. | acknowledge useful discussions and help that | received
(21), we see that, to maken large we have to mak®Q*  from my research supervisor Professor J. K. Bhattacherjee,
large. A largeP and Q, in turn, will not only make the and thank him for carefully going through this manuscript
amplitudeA(r) fall faster but will also push the region of before submission.
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