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Defect statistics in the two-dimensional complex Ginzburg-Landau model

Gene F. Mazenko
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 20 February 2001; published 14 June 2001!

The statistical correlations between defects in the two-dimensional complex Ginzburg-Landau model are
studied in the defect-coarsening regime. In particular the defect-velocity probability distribution is determined
and has the same high velocity tail found for the purely dissipative time-dependent Ginzburg-Landau~TDGL!
model. The spiral arms of the defects lead to a very different behavior for the order parameter correlation
function in the scaling regime compared to the results for the TDGL model.

DOI: 10.1103/PhysRevE.64.016110 PACS number~s!: 05.70.Ln, 64.60.Cn, 64.75.1g, 98.80.Cq
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I. INTRODUCTION

We study here the statistical properties of a collection
point defects generated during the evolution of the tw
dimensional complex Ginzburg-Landau equation~CGLE!
@1–3#. We will be interested in that portion of the parame
space where the CGLE, driven by random initial conditio
has a regime of defect coarsening where the density of
fects falls off with a power law in time. Our interest here
in the statistical properties of these defects and ultima
properties of the associated order parameter driven by
dynamics of the defects. Initially we will focus on the velo
ity distribution of the defects and the spatial correlations
tween defects.

The approach developed here is based on the use of
of topological invariants applicable to a large set of syste
that generate defects as a part of an ordering proces
particular one is led to a clean expression for the velocity
the defect cores in terms of derivatives of the order para
eter field evaluated at the core position. This approach
only allows one to investigate equations of motion obeyed
individual defects, but opens up the possibility of treating
statistical properties of an ensemble of interacting defe
We have, from previous work@4# in the area of phase
ordering kinetics@5#, the analog of the Maxwell velocity
distribution for a collection of phase-ordering defects.

In the defect-coarsening regime for the CGLE, the def
densityn̄(t) scales asL22(t) whereL(t) is a characteristic
length that grows witht, andt is the time of the evolution of
the system starting with random initial conditions. In the
circumstances, as shown in detail below, the defect-velo
probability distribution is given, as in the purely dissipati
time-dependent Ginzburg-Landau~TDGL! case, by

P~V!5GS 3

2D S 1

p v̄2D ~11V2/ v̄2!22, ~1!

where the characteristic velocityv̄'L21 is given explicitly
below. Similarly, the defect-defect equal-time correlati
function has the same form~see below! as found for the
TDGL case. In the case of the correlations between de
densities at different times, we find some rather weak de
tions from the results in the TDGL case.
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These results for the statistical properties of the defe
inspire one to look at the order parameter correlations, us
ideas that have been successful for treating the TDGL c
In this case we find results quite different from the TDG
case. This is due to both the spiral arms and the precess
motion characteristic of defects in the CGLE. The spi
arms render order parameter correlations shorter in ra
compared to the TDGL case, and the order parameter co
lation function shows the behavior'n̄3(t)W„r /L(t)…. The
precessional effects are predicted to be prominent in the t
time order parameter correlation function.

II. BACKGROUND

The complex Ginzburg-Landau equation can be writ
@1# in the form

] tc5b¹2c1~12uucu2!c, ~2!

wherec is a complex field andb andu are complex param-
eters. For the appropriate set of parameters~choice ofb and
u) we find on quenching from an initially disordered sta
that the CGLE generates a set of coarsening point defe
The characteristic distance between the defects incre
with time due to the annihilation process between defe
and antidefects@6#.

For b andu real Eq.~2! reduces to the dissipative TDG
equation which is the most widely studied model for pha
ordering@5#. If we setb5u5 ih in Eq. ~2! and takeh large,
we find that after a simple gauge transformation Eq.~2! re-
duces to

2 i ] tc5¹2c1~12ucu2!c. ~3!

This equation, the nonlinear Schro¨dinger equation~NLSE!
@7#, gives a highly idealized description of the low temper
ture properties of a neutral superfluid. Unlike the TDGL sy
tem, the NLSE supports several conserved quantities. In
ticular the quantity*ddr uc(r ,t)u2 does not change with time
This model supports the same defects as the TDGL mo
but the dynamics of the defects are quite different. Two o
positely charged vortices in the TDGL model move along
line connecting them toward annihilation. In the NLSE t
same two vortices move at right angles to the line connec
them.
©2001 The American Physical Society10-1
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III. DEFECT CHARGED DENSITY AND VELOCITY
FIELDS

The approach developed here allows for a direct conn
tion between a set of field equations, like the comp
Ginzburg-Landau equation satisfied by an order param
field, and the equations of motion of the cores of a set
defects. It has only recently been understood, as discu
below, that these expressions for the defect velocity red
to the same form as found in pattern forming studies us
very different arguments.

The approach developed here is motivated by addres
the question: What is the probability of finding a defect
distancer from an antidefect? In work on phase-orderi
kinetics @8# we developed methods that are convenient
handling such questions. A motivating factor was the re
ization that in treating statistical properties of defects o
does not want to work with formal structures which requ
an explicit treatment in terms of the defect positions. T
leads to problems of specification of initial conditions. I
stead we looked for a way of implicitly finding the position
of the defects using the order parameter fieldc itself.

Let us consider the case of two dimensions where
have point defects. The case of line defects can also
treated@9,10# using these ideas but will be discussed el
where. The basic idea is that the positions of defects
located by the zeros@11–13,8# of the order parameter field
c. Suppose, instead of the positionsr i(t) we want to write
our description in terms of the zeros ofc(r ,t). It is not
difficult to see that the defect charged density has the
representations

r~r ,t !5d~c~r ,t !!D~r ,t !5(
i 51

N

qid„r2r i~ t !… ~4!

whereqi5D(r i)/uD(r i)u561, andD(r ) is the Jacobian as
sociated with the change of variables from the set of de
positions to the fieldc:

D5
i

2!
em1m2

¹m1
c¹m2

c* , ~5!

where we sum over them i , em1m2
is the two-dimensiona

antisymmetric tensor, and summation over repeated ind
is implied. For later reference, the unsigned defect densit
given byn(r ,t)5ur(r ,t)u.

For systems where only unit charges are present,r is the
topological charge density. Notice thatqi is well defined
even for systems like classical fluids where the circulat
associated with a defect is not quantized.

The dynamical implications of this approach are simp
If indeed topological charge is conserved then we would
pect the charge density to obey a continuity equation. It w
shown in Ref.@4# thatr satisfies a continuity equation of th
form

] tr52“•~rv!, ~6!

where the defect velocity fieldv is given explicitly by
01611
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Dva52
i

2 (
b

eab~ċ¹bc* 2ċ* ¹bc!. ~7!

HereD is defined by Eq.~5! and we must remember thatv is
multiplied by the defect-core-locatingd function in r in Eq.
~6!. Equation ~7! gives one an explicit expression for th
defect-velocity field expressed in terms of derivatives of
order parameter. This expression for the defect veloc
seems to be very general. Notice that we have not spec
the form of the equation of motion for the order paramet
only that the order parameter be complex andd52. For the
CGLE, our expression for the defect velocity reduces to

Dva52
i

2 (
b

eab~b¹2c¹bc* 2b* ¹2c* ¹bc!. ~8!

Does this expression for the velocity agree with our exp
tations for known cases? Let us assume that we have a d
of chargem at the origin of our two dimensional system an
write the order parameter in the formc5Reiu (R5r umuew

and u5mf1uB), where againr and f are the cylindrical
coordinates relative to the core at the origin. It is then
straightforward bit of calculus to show that the veloci
given by Eq.~8! reduces to

va52b9S ¹auB1
m

umu (
b

eab¹bwD
22b8S ¹aw2

m

umu (
b

eab¹buBD . ~9!

If we ignore the contributions due to the variation in th
amplitude w, Eq. ~9! reduces @14# to va52b9¹auB
1b8(m/umu)(beab¹buB . The first term is the only contri-
bution in the NLSE case and states that a vortex moves w
the local superfluid velocity@15#. The second term is the
Peach-Koehler@16# term first found in this context by Ka
wasaki @17#. These are the results from the phase-field
proach and lead, for example, to the same type of interac
between two vortices as found in fluids. The velocity of
single isolated vortex is zero. For a set of two isolated v
tices one has the expected behavior for the TDGL and NL
cases.

For our purposes here the more important point is to c
sider the work of To¨rnkvist and Schro¨der @18#. Using meth-
ods of differential geometry, they looked at the derivation
the form of the velocity of a defect in the case of the CGL
They comment, ‘‘The evolution of a system with~spiral!
vortices may be described in terms of the defects, or fi
ments, along with values of the fields’’R andu ‘‘at positions
away from the defects of filaments. Such a separation
collective coordinates and field variables is nontrivial, a
the present work comprises the first exact treatment of
kind for a dissipative system.’’ The final equation they o
tain, in our notation here and for two-dimensional systems
precisely given by Eq.~9!. Thus the velocity given by Eq.~9!
reproduces the most sophisticated results obtained u
other methods.
0-2
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IV. AUXILIARY FIELD METHOD

A. Overview

How can we use these expressions forr and v(c) to
compute the measurable statistical properties of an evol
CGLE system? We will use a generalization of an appro
mate method which has led to good results for the TD
case. The basic idea is to assume that there is mapping
the order parameter field onto an auxiliary fieldm that shares
the same zeros asc in space. In particular, we requir
r@c#5r@m# andv@c#5v@m#, where again we use the resu
that the velocity is multiplied by a defect-zero-findingd
function. These requirements are not very constraining s
they only require thatc be proportional tom for small m
with corrections that are cubic inm. It has been convenien
to think of m(x) as a two-vector whose magnitude gives t
distance fromx to a defect core. Thus, as discussed in m
detail below, near the core we can take Rec5mx and
Im c5my .

The main assumption@9# in the theory is that the fieldm is
Gaussian and the variance inm is determined by requiring
that the defect charge density continuity equation be satis
on average:

]Grr~12!

]t1
52“1•^r~1!v~1!r~2!&[GJr~12!, ~10!

where

Grr~12!5^r~1!r~2!& ~11!

and r(1)5r(t1 ,x1). With these assumptions and assum
tions about the initial conditions, one can work out all of t
statistical properties of the defects includingGrr(12) and the
defect-velocity probability distribution function defined by

n̄P~V![^urud~V2v@c#!&. ~12!

Corrections to this Gaussian approximation can be inve
gated using methods of the type developed in Refs.@19,20#.

The procedure then is to first computeGrr(12) and
GJr(12) assuming thatm is a Gaussian field. This will give
Grr(12) andGJr(12) as functions of the auxiliary field cor
relation function

Cab~12!5^ma~1!mb~2!&, ~13!

wherea and b take on the valuesx and y. Inserting these
results forGrr(12) andGJr(12) back into Eq.~10! gives an
equation forC(12). It will turn out that this equation for
C(12) can be solved analytically. This result can then be
back into the result forGrr(12) to obtain an explicit expres
sion for the defect density correlation function. As part
this calculation we obtain the average defect densityn̄
5^uru&. Finally we can carry out the average over the Gau
ian variablem to obtainP(V) as a function ofC(12), and in
turn obtain an explicit expression forP(V).
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B. ExpressingGrr in terms of C

The defect density in the defect-defect correlation fun
tion defined by Eq.~11! can be written explicitly in terms of
the Gaussian auxiliary fieldm in the form

r~1!5
1

2
em1m2

en1n2
¹m1

mn1
~1!¹m2

mn2
~1!d„m~1!…

~14!

and we sum over all the indicesn and m. In the isotropic
case, worked out previously, the evaluation ofGrr for the
n-vector model for the general case ofn5d was facilitated
by the decomposition of the average forGrr into a product
of averages corresponding to each component. This dec
position is not possible here because the complex co
cients in the CGLE couple the components of the order
rameter as the system evolves. We need a more gen
approach. This more general approach involves using
general identity valid for Gaussian fields:

^mn~1!F@m#&5(
n8

E dt2d2x2Cnn8~12!K d

dmn8~2!
F@m#L .

~15!

Using this result for all of the fields inGrr acted upon by a
gradient in Eq.~11!, one can bring all the gradients outsid
the average. This generates many terms that are produc
the matrixC and averages proportional to the quantities

G~12!5^d„m~1!…d„m~2!…& ~16!

and

Gn1n2
~12!5K ]

]mn1
~1!

d„m~1!…
]

]mn2
~2!

d„m~2!…L ,

~17!

and similar higher order derivatives of thed functions which
do not contribute to the final result.

A key assumption in the evaluation ofGrr is that the
system is isotropic in space and we can write

Cnn8~12!5Cnn8~r ,t1t2!, ~18!

¹m
(1)Cnn8~12!5Cnn8

8 ~12! r̂ m , ~19!

and

¹m
(1)¹m8

(2)Cnn8~12!52@Cnn8
L

~12!2Cnn8
T

~12!# r̂ m r̂ m8

2Cnn8
T

~12!dmm8 , ~20!

wherer5x12x2, and

Cnn8
L

~12![Cnn8
9 ~12!, ~21!

Cnn8
T

~12![
1

r
Cnn8

8 ~12!, ~22!
0-3
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GENE F. MAZENKO PHYSICAL REVIEW E 64 016110
and the primes indicate derivatives with respect tor. Using
these results one can then carry out the sums over the sp
coordinate labels, them ’s in Grr , to obtain

Grr~12!5Grr
(1)~12!1Grr

(2)~12!, ~23!

where

Grr
(1)~12!5G~12!en1n2

en
18n

28
Cn1n

18
L

~12!Cn2n
28

T
~12! ~24!

and

Grr
(2)~12!52en1n2

en
18n

28
Gs2s1

~12!

3Cn1s1
8 ~12!Cs2n

28
8 ~12!Cn2n

18
T

~12!. ~25!

It is easy to evaluate, using the results from the Appen
the remaining averages over the auxiliary field:

Gs2s1
~12!5D2Cs2s1

~12!G~12!, ~26!

G~12!5
D2

~2p!2
, ~27!

where D is defined by Eq.~A10!. ExpressingCnn8(12) in
terms ofC0(12) andD(12), as given by Eq.~A2!, and doing
the sums over then ’s, we find after some rearrangement t
result for the defect density correlation function:

Grr~12!5
1

~2p!2

1

r

d

dr
~QgT

2!, ~28!

where

gT
25~12 f T

2!21, ~29!

f T5Af 0
21D0

2, ~30!

f 05
C0

AS0~1!S0~2!
, ~31!

D05
D

AS0~1!S0~2!
, ~32!

whereS0( i )5C0( i i ) and

Q5~ f 08!21~D08!2. ~33!

We still need to determine the auxiliary field correlatio
functionsC0 andD. It is easy to see that the result given b
Eq. ~28!, in the isotropic limit whereD50, reduces to the
result first reported by Halperin@13#

Grr~12!5
1

r

d

dr
~h2!, ~34!

where
01611
tial

,

h5
gTf 08

2p
. ~35!

C. Satisfying conservation of topological charge

The calculation of the current contribution ofGJr on the
right-hand side of Eq.~10! is much the same as forGrr

except for terms that involve the on-site correlation functi

S(2)~1!5
1

2
^@¹m~1!#2&52@¹2C0~r ,t1t1!# r 50 . ~36!

GJr is also proportional to the factor@1/(2p)2#(1/r )d/dr
and, after performing an integration overr, we obtain the
averaged conservation law, given by Eq.~10!, which can be
rewritten as

]

]t1
~QgT

2!52b8M12b9N, ~37!

where

M5gT
4Q~v0~1!1 f 0¹2f 01D0¹2D0!1gT

2~ f 08¹
2f 08

1D08¹
2D08! ~38!

and

N5gT
4Q~ f 0¹2D02D0¹2f 0!1gT

2~ f 08¹
2D081D08¹

2f 08!,
~39!

and we have introduced the time-dependent quantity

v0~1!5
S(2)~1!

S0~1!
52@¹2f 0~r ,t1t1!# r 50 . ~40!

Equation ~37! looks very complicated but simplifies if we
replacef 0 andD0 with

f 05 f T cosV ~41!

and

D05 f T sinV. ~42!

Then Eq.~37! can be rewritten as

gTf T8@gT~2 ḟ T2R!#81gT
4 f T~V8!2~2 ḟ T2R!

1gT
2V8@2 f T

2V̇82 f T8S1 f TS8#50, ~43!

where

R52b8v0~1! f T12b8A12b9B, ~44!

S522b8B12b9A, ~45!

and

A5¹2f T2 f T~¹V!2, ~46!

B52“ f T•“V1 f T¹2V. ~47!
0-4
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A solution to Eq.~43! is given by

2 ḟ T5R ~48!

and

2 f T
2V̇85 f T8S2 f TS8. ~49!

This last equation can be reduced to

2 f TV̇52S. ~50!

The set of coupled equations given by Eqs.~48! and~50! are
equivalent to the equations forf 0 andD0 given by

ḟ 05b8~v0~1!1¹2! f 01b9¹2D0 ~51!

and

Ḋ05b8~v0~1!1¹2!D02b9¹2f 0 . ~52!

This is the set of equations that must be solved s
consistently to obtain the unknown quantitiesf 0 , D0, and
v(1).

D. Auxiliary field correlation function

Equations~51! and~52! are reduced to a set of differentia
equations in time if we Fourier transform in space and pu
the time labels explicitly:

]

]t1
f 0~q,t1t2!5a~q,t1! f 0~q,t1t2!2bqD0~q,t1t2!,

~53!

]

]t1
D0~q,t1t2!5a~q,t1!D0~q,t1t2!1bqf 0~q,t1t2!,

~54!

where

a~q,t1!5b8~v0~ t1!2q2! ~55!

and

bq5b9q2. ~56!

Equations~53! and ~54! need to be solved together with th
symmetry condition

f ~q,t1 ,t2!5 f 0~q,t1 ,t2!1 iD0~q,t1 ,t2!5 f * ~2q,t2 ,t1!
~57!

and the initial condition

f ~q,t0 ,t0!52pl 2e2(ql )2/2[g~q!. ~58!

This particular choice of initial conditions, corresponding
an initial correlation lengthl , is very convenient since al
integrals can be carried out analytically for all times. Fina
we must remember the normalization that follows from t
definition of f (12) given by Eqs.~31! and ~32!:
01611
f-

n

f ~11!5E d2q

~2p!2
f ~q,t1 ,t1!51. ~59!

It is not difficult to construct the appropriate solution give
by

f ~q,t1 ,t2!5R~ t1 ,t0!R~ t2 ,t0!g~q!

3e2b8q2(t11t222t0)eibq(t12t2), ~60!

where

R~ t1 ,t0!5expS b8E
t0

t1
dtv0~t! D . ~61!

It is straightforward to take the inverse Fourier transform
Eq. ~60! with the result

f ~12!5R~ t1 ,t0!R~ t2 ,t0!S l 2

L̃2D e2(r /L̃)2/2, ~62!

where

L̃25l 214b8T22ib9~ t12t2! ~63!

and

T5
t11t2

2
. ~64!

We must stop here and satisfy the constraint given by
~59!. We have from Eq.~62!

15R2~ t1 ,t0!S l 2

L2D , ~65!

where

L2~ t1!5L̃2~ t1 ,t1!5l 214b8t1 . ~66!

Equation~65! serves as an equation forv0(t1) which can be
easily solved to give

v0~ t1!5
2

L2~ t1!
5

2

l 214b8t1

. ~67!

Using Eq.~65! to expressR(t1 ,t0) in terms ofL(t1), we find

f ~12!5F~ t1 ,t2!
1

12 iv
e2(r /L̃)2/2, ~68!

where

F~ t1 ,t2!5
L~ t1!L~ t2!

L2~T!
~69!

and
0-5
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v5
2b9~ t12t2!

L2~T!
. ~70!

This last definition implies

L̃25L2~T!~12 iv! ~71!

and

f ~12!5F~ t1 ,t2!
e2 iz

12 iv
e2y2/2, ~72!

where

y25
x2

11v2
, ~73!

x5r /L~T!, ~74!

and

z5
1

2
vy2. ~75!

There are a number of comments relevant to this result
f (12) given by Eq.~68!. First note that there is consistenc
between the definition ofv0(t) given by Eq.~40! and the
solution for f that leads to Eq.~67!. For equal timest15t2
5t, we have

f ~r ,t !5e2x2/2, ~76!

which is of the same form as in the purely dissipative c
@20,21# with a characteristic lengthL'Ab8t. If we look at
the on-siter 50 autocorrelation function,

f ~0,t1 ,t2!5F~ t1 ,t2!
11 iv

11v2
, ~77!

we can write fort1 ,t2@t0,

F~ t1 ,t2!5SAt1t2

T D l0

. ~78!

For t1@t2 , v approaches a constant and the nonequilibri
exponentl0 for F also governsf (0,t1 ,t2) and is given by
l051, which is the same@20# as for the TDGL case forn
5d52.

The main result here is that for nonequal times the au
iary field correlation function shows an oscillatory behavi
One of our chief goals below is discuss the possibility
observing this phenomenon. We note here thatf (12) does
obey a form of scaling fort1 ,t2@t0:

f ~12!5 f ~x,t!5F~t!
e2 iz(x,t)

12 iv~t!
e2(1/2)x2/[11v2(t)] ,

~79!

wheret5t1 /t2,
01611
r

e

l-
.
f

F~t!5
2At

11t
, ~80!

v~t!5
b9

b8
S t21

t11D , ~81!

and

z~x,t!5
1

2

v~t!x2

11v2~t!
. ~82!

Rather than discussing this result forf (12) in more detail, it
is prudent to remember thatf (12) is not itself directly ob-
servable. Thus let us turn back to observables and their
pendence onf (12). We delay discussing the details of th
oscillations in f (12) until after discussing how this feed
back into the determination of observables.

V. DEFECT-DEFECT CORRELATION FUNCTION

A. General result

Given the explicit solution forf (12), Eq. ~79!, we can
return to the evaluation of the density correlation functi
Grr(12) given by Eq.~28!. The input we need for its deter
mination isgT

22512F2, where

F25u f u25
F2

11v2
e2x2/(11v2) ~83!

and

Q5~ f 08!21~D08!25
x2F2

L2~11v2!
. ~84!

Inserting these results forgT andQ back into Eq.~28! gives

Grr~12!5
F2~t!

2p2L4~T!@11v2~t!#
gS x2

11v2~t!
D , ~85!

where

g~s!5
es~12s!2F2~t!

@es2F2~t!#2
. ~86!

In analyzingGrr(12) we must be careful to distinguish th
equal-time case from the unequal-time case.

B. The equal-time case

If t15t25t andt51, the density correlation function ca
be written as

Grr~r ,t !5
1

2p2L4~ t !
g~x!, ~87!

where
0-6
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g~x!5
ex2

~12x2!21

~ex2
21!2

. ~88!

This is the same result found in the purely dissipative cas
is known@13# that the conservation of topological charge f
equal times requires one to include in the defect-defect
relation function the correlation of a defect with itself:

G̃rr~r ,t !5d~r !n̄~ t !1Grr~r ,t !, ~89!

wheren̄(t) is the average defect density. Then conservat
of topological charge is given by

E d2r G̃rr~r ,t !50. ~90!

Inserting Eq.~89! into Eq. ~90! gives

n̄~ t !52E d2r Grr~r ,t !. ~91!

However, using the form given by Eq.~28! we can do the
integral in Eq.~91! and obtain for the average defect dens

n̄~ t !5 lim
r→0

QgT
2

2p
5

1

2pL2~ t !
. ~92!

This is the expected result if scaling holds. One can also
n̄(t) by direct computation and obtain

n̄~ t !5
v0~ t !

4p
, ~93!

wherev0 is defined by Eq.~40! and given in this approxi-
mation by Eq.~67!. We see that the two determinations
n̄(t) agree.

C. The unequal-time case

For the casetÞ1, we have that the conservation of top
logical charge holds directly forGrr(12) since

E d2r Grr~12!52 lim
r→0

QgT
2

2p
50. ~94!

The final step follows sinceQ'r 2 for small r and gT
2 is

regular in this limit. If we setr 50 in Grr(12) given by Eq.
~85! we obtain

Grr~0,t1 ,t2!5
1

2p2L4~T!

1

@11v2~t!#

4t

~12t!2
. ~95!

We see that this quantity blows up att→1 signaling the
existence of thed function atr 50 obtained for equal times
Thus we see that the limitsr→0 andt→1 do not commute.
01611
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VI. DEFECT VELOCITY PROBABILITY DISTRIBUTION
FUNCTION

The defect-velocity probability distribution function is de
fined by

n̄~ t !P~V![^ur~c!ud~V2v@c#!&5^ur~m!ud~V2v@m# !&.
~96!

One of the main results from the last section is that at eq
times the auxiliary field probability distribution is isotropi
and has the same form as in the purely dissipative case.
means that we obtain the same result here as found in
@4# and given earlier by Eq.~1!, where the characteristic
velocity v̄(t) is given by

v̄~ t !52~b8!2
S(4)~ t !

v0~ t !
~97!

with

S(4)~ t !5¹4f ~r ,t !ur 502v0
2~ t !, ~98!

and using the explicit results forf (r ,t) given by Eq.~76! we
obtain

v̄~ t !5
4~b8!2

L2~ t !
. ~99!

The result forP(V) given by Eq.~1! indicates that the prob
ability of finding a defect with a large velocity decreas
with time. However, since this distribution falls off only a
V24 for largeV only the first moment beyond the normaliz
tion integral exists. This seems to imply the existence o
source of large velocities. Assuming that the large velocit
of defects can be associated with the final collapse of a
fect structure~defect-antidefect pair annihilation for poin
defects!, Bray @22# used general scaling arguments to obta
the same large velocity tail given by Eq.~1!.

One probe of the defect dynamics is to study the corre
tion between two defects including the correlation betwe
their velocities. The two-defect velocity probability distribu
tion, P@V1 ,V2 ,r # gives the probability that two defects sep
rated by a distancer have velocitiesV1 ,V2. This quantity
was determined in Ref.@23# and since it is an equal-time
quantity the results found there hold here. The physical
sults from the calculation@23# of this quantity for the TDGL
model, carried out in detail forn5d52 using the same ap
proximations as indicated above, are relatively simple
state. For a given separationr, the most probable configura
tion corresponds, as expected, to a state with zero total
locity and a nonzero relative velocity only along the ax
connecting the defects:V152V2[v x̂. Moreover, there is a
definite most probable nonzero value forv5vmax for a given
value of r. The most striking feature of these results is th
for small r the most probable velocity goes asvmax5k/r and
k52.19 in dimensionless units defined in Ref.@23#.
0-7
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VII. ORDER PARAMETER CORRELATION FUNCTION

Thus far we have focused on the statistical properties
the defects in the system and found results forGrr andP(V)
which are very similar to the purely dissipative case. O
rather small differences arise when one looks at uneq
times. Unfortunately neither of these quantities probes
full phase dependence of the auxiliary field correlation fu
tion which shows interesting oscillations in space at uneq
times. We show here that this phase dependence ma
probed via the order parameter correlation function evalua
at unequal times. Indeed this quantity, within the appro
mate treatment given here, is quite different from the pur
dissipative case even at equal times.

The order parameter correlation function is defined by

Cc~12!5^c* ~2!c~1!&, ~100!

and our approach toward its evaluation will be to find t
relationship between the order parameter and the auxil
field m. In Sec. IV we required thatc be proportional tom
for smallm near the core of a defect. In evaluating Eq.~100!
we need a more general mapping. The procedure we will
here has been successful in the purely dissipative case@24#.
Picking up on the point made in Sec. IV, we choosem(x) to
represent the distance fromx to the closest defect. Thi
physical picture can be realized by constructingc(m) as a
solution to the equation for a single stationary defect:

b¹m
2 c1~11 iv12uucu2!c50, ~101!

wherem serves as the coordinate andv1 is the oscillatory
frequency. In the purely dissipative case,b real andv150,
one has for field points well away from a defect core

c~m!5c0eif(m), ~102!

where, for a defect of chargen,

f~m!5n tan21~my /mx!. ~103!

In the purely dissipative case, insertion of Eq.~102! for
c(m) into Eq. ~100! and carrying out the Gaussian avera
over m leads to the result@25#

Cc~12!5c0
2f E

0

1

dz
~12z2!1/2

~12z2f 2!1/2
~104!

with f (12) given by Eq.~68! with v50. This approximate
result has been rather extensively tested in the TDGL c
@26#.

In the CGLE case we have a different and interest
element. There is a range of parameters where one has s
defects. Thus, unlike the TDGL case, one has spatial st
ture associated with individual defects beyond the core
particular Hagan@27# showed that the far-field solution o
Eq. ~101! is given by

c„m~x!…5c0ei [f(x)1qm(x)] , ~105!
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whereq is the wave number of the spiral arms asympto
cally far from the defect core andc05c0(q). q depends on
the particular parameters of the CGLE as discussed
Hagan. While there are values for whichq vanishes, as in the
TDGL limit, we will assume that we work in a region o
parameter space whereqÞ0.

Using this set of mappings the order parameter correla
function is given by

Cc~12!5c0
2^e2 i [f(2)1qm(2)]ei [f(1)1qm(1)]&

5c0
2 D2

~2p!2E d2x~1!d2x~2!

3ei (f12f2)eiq[x(1)2x(2)]e2A/2, ~106!

whered2x( i )5x( i )dx( i )df( i ) for i 51,2. The actionA and
determinantD are given in the Appendix. In particularA is
given by Eq.~A13! in terms of polar coordinates and w
have, more explicitly,

Cc~12!5c0
2 D2

~2p!2E0

`

x~1!dx~1!

3E
0

`

x~2!dx~2!eiq[x(1)2x(2)]

3exp S 2
1

2 (
i

x2( i )W0( i ) D J„x~1!,x~2!…,

~107!

where the angular integrations are given by

J„x~1!,x~2!…5E
0

2p

df~1!E
0

2p

df~2!

3ei [f(1)2f(2)]eD2CTx(1)x(2)cos[f(1)2f(2)2u]

~108!

and u is defined by tanu5D/C0. Shifting the angular inte-
grations we see that theu dependence factors out:

J„x~1!,x~2!…52peiuE
0

2p

df eifeD2CTx(1)x(2)cosf.

~109!

If we change integration variables fromx( i ) to

yi5AW0~ i !x~ i !, ~110!

we can rewrite Eq.~107! in the form

Cc~12!5c0
2 f

f T
gT

22E
0

`

y1dy1E
0

`

y2dy2

3e2(y1
2
1y2

2)/2ei (q1y12q2y2)

3
1

2pE0

2p

df eifef Ty1y2 cosf, ~111!
0-8
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where

qi5qAS0~ i !gT
21 . ~112!

Notice that the phase dependence of the auxiliary field c
relation function is isolated in the overall factor off in Eq.
~111!. The integral overf in Eq. ~111! gives a modified
Bessel function, but for our purposes we need only
power-series result:

1

2pE0

2p

df eifef Ty1y2 cosf5 (
k50

`
1

k! ~k11!! S f Ty1y2

2 D 2k11

~113!

and

Cc~12!5c0
2 f

2
gT

22(
k50

`
1

k! ~k11!! S f T

2 D 2k

Jk~q1!Jk* ~q2!,

~114!

where

Jk~q1!5E
0

`

ydy e2y2/2eiq1yy2k11. ~115!

In the limit q→0 Eq. ~114! does, after some manipulation
reduce to the result found in the TDGL case forn52. Note
that forqÞ0, except forr 5ur12r2u very small,qi , given by
Eq. ~112!, is becoming increasingly large withAS0( i )
'L(t i). This means we need evaluateJk(qi) only for large
qi . Evaluation ofJk(qi) for largeqi is facilitated by writing

Jk~qi ,a!5E
0

`

ydy e2ay2
eiqiyy2k11,

whereJk(qi)5Jk(qi ,1/2). We have then

Jk~qi ,a!5S 2
]

]aD k11

J~qi ,a! ~116!

and

J~qi ,a!5E
0

`

dy e2ay2
eiqiy5A p

2a
e2qi

2/4a1 iJ9~qi ,a!.

~117!

We see that the real part ofJ is exponentially small for large
qi

2 . However, it is easy to see that for largeqi

J9~qi ,a!5
1

qi
1

2a

qi
3

1
3~2a!2

qi
5

1•••. ~118!

This means that the leading nonexponential contribution
the order parameter correlation function comes fromJ0(q1)
and is given to leading order by

J0~q1 ,a!5S 2
]

]aD i
2a

qi
3

1•••52
2i

qi
3

1•••. ~119!
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Inserting this result back into Eq.~114! we obtain

Cc~12!5c0
2 f

2
gT

22J0~q1!J0* ~q2!

5c0
2 f

2
gT

22 4

~q1q2!3

5
c0

2

q6

2 f gT
4

@S0~1!S0~2!#3/2
. ~120!

The scaled portion of the order parameter correlation fu
tion for xÞ0 can be written as

W~x,t!5
q6

c0
2

S0
3/2~ t1!S0

3/2~ t2!Cc~12!52 f gT
4 . ~121!

For tÞ1, the correlation function depends strongly onh
5b9/b8 via v. This is not true at equal times whereh
5b9/b8 does not appear in the scaling function. FortÞ1 the
oscillations inf are now clear in the order parameter corr
lation function. Writing out the real and imaginary parts w
obtain

W85
2F

A11v2

1

~12F2!2
@cosz1v sinz#, ~122!

W95
2F

A11v2

1

~12F2!2
@2sinz1v cosz#, ~123!

whereF is given by Eq.~83! andv andz by Eqs.~81! and
~82!. We are interested in the oscillations associated withh
5b9/b8Þ0. These are most clearly manifested inW9 and
characterized by the zeros at

v5tanz0 . ~124!

The first zero as a function of scaled distance is given b

x0
2521

4

3
v21••• ~125!

for small v and

x0
25pv221~1/v! ~126!

for largev.

VIII. CONCLUSIONS

By using some different ideas about how to character
defect dynamics, we have shown how one can determ
local expressions for the defect density and defect velocit
terms of derivatives of the order parameter fields. These
act results were then used to derive approximate results
the defect-defect density correlation function, defect-veloc
probability distribution, and order parameter correlati
functions. Within these approximations, which work well f
the purely dissipative case, we find that the results for
0-9
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defect-defect density correlation function and the defe
velocity probability distribution are substantially unchang
from the TDGL case. Thus these results seem robust.
results for the two-time auxiliary field correlation functio
indicate some interesting oscillations of its phase as a fu
tion of scaled distance. Since the defect-defect density
relation function depends only on the amplitude of the a
iliary field correlation function these oscillations are n
present. In the last section we have seen that some rem
of these oscillations is present in the order parameter co
lation function. However, another different element for t
order parameter correlation function is that the spiral ar
for the defects render the interactions between different s
tial points much shorter range than for the purely dissipa
case. Thus for different spatial points at equal times the o
parameter correlation function is down by a factor ofn̄3(t)
relative to the TDGL case. All these results can be tested
numerical simulation.
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APPENDIX

In the purely dissipative case all correlations are isotrop

Cnn8~ i j !5^mn~ i !mn8~ j !&5dnn8C0~ i j !, ~A1!

where (i , j )5(1,2). In the complex case, over time, the re
and imaginary components of the order parameter are mi
and this requires that we treat the more general correla
function for the auxiliary field

Cnn8~ i j !5dnn8C0~ i j !1enn8e i j D~12!, ~A2!

which satisfies the required symmetry for classical fields

Cnn8~ i j !5Cn8n~ j i ! ~A3!

if C0( i j )5C0( j i ). Thus the variance of the Gaussian fieldm
is determined by the two independent functionsC0(12) and
D(12).

We will be concerned with various two-point averag
over m of the general form

CAB~12!5^A„m~1!!B~m~2!…&

5E d2x~1!d2x~2!A„x~1!…B„x~2!…F~x~1!,„x~2!…,

~A4!

where the two-point probability distribution is given by
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F„x~1!,„x~2!…5^d~x~1!2m~1!!d~x~2!2m~2!!&

5E d2k~1!

~2p!2

d2k~2!

~2p!2
expS i(

j
k~ j !•x~ j !D

3expS 2
1

2 (
nn8

(
i j

kn~ i !kn8~ j !Cnn8~ i j !D
5

1

~2p!2

1

~detC!1/2
e2A/2, ~A5!

where the argument of the exponential is given by

A5(
nn8

(
i j

xn~ i !xn8~ j !Wnn8~ i j ! ~A6!

and the matrixW is the inverse ofC defined by

(
gk

Wng~ ik !Cgn8~k j !5dnn8d i j . ~A7!

W is given explicitly by

Wnn8~ i j !5dnn8D
22Fd i j S S0~1!S0~2!

S0~ i !
1C0D2C0G

2enn8e i j D
22D, ~A8!

where

S0~ i !5C0~ i i !, ~A9!

D225S0~1!S0~2!2CT
2 , ~A10!

CT
25C0

21D2, ~A11!

and finally

detC5D24. ~A12!

If we expressx( i )5xi(cosfi ,sinfi), the argument of the
exponential in the distribution takes on the simple form

A5(
i

xi
2W0~ i !22D22CTx1x2 cos~f12f22u!,

~A13!

where

C05CT cosu, ~A14!

D5CT sinu, ~A15!

and

W0~ i !5D22
S0~1!S0~2!

S0~ i !
5S0

21~ i !gT
22 . ~A16!
0-10
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