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Defect statistics in the two-dimensional complex Ginzburg-Landau model
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The statistical correlations between defects in the two-dimensional complex Ginzburg-Landau model are
studied in the defect-coarsening regime. In particular the defect-velocity probability distribution is determined
and has the same high velocity tail found for the purely dissipative time-dependent Ginzburg-(BDdzL)
model. The spiral arms of the defects lead to a very different behavior for the order parameter correlation
function in the scaling regime compared to the results for the TDGL model.
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[. INTRODUCTION These results for the statistical properties of the defects,
inspire one to look at the order parameter correlations, using

We study here the statistical properties of a collection ofideas that have been successful for treating the TDGL case.
point defects generated during the evolution of the two-n this case we find results quite different from the TDGL
dimensional complex Ginzburg-Landau equati@@GLE) case. This is due to both the spiral arms and the precessional
[1-3]. We will be interested in that portion of the parametermotion characteristic of defects in the CGLE. The spiral
space where the CGLE, driven by random initial conditionsarms render order parameter correlations shorter in range,
has a regime of defect coarsening where the density of desompared to the TDGL case, and the order parameter corre-
fects falls off with a power law in time. Our interest here is |ation function shows the behavi@pﬁ‘?‘(t)W(r/L(t)). The
in the statistical properties of these defects and ultimatelyrecessional effects are predicted to be prominent in the two-
properties of the associated order parameter driven by th@me order parameter correlation function.
dynamics of the defects. Initially we will focus on the veloc-
ity distribution of the defects and the spatial correlations be-
tween defects.

The approach developed here is based on the use of a setThe complex Ginzburg-Landau equation can be written
of topological invariants applicable to a large set of system$1] in the form
that generate defects as a part of an ordering process. In
particular one is led to a clean expression for the velocity of ar=bV2y+(1—u|y|®) ¥, 2
the defect cores in terms of derivatives of the order param-
eter field evaluated at the core position. This approach nawvherey is a complex field and andu are complex param-
only allows one to investigate equations of motion obeyed byeters. For the appropriate set of parametelmice ofb and
individual defects, but opens up the possibility of treating theu) we find on quenching from an initially disordered state
statistical properties of an ensemble of interacting defectghat the CGLE generates a set of coarsening point defects.
We have, from previous work4] in the area of phase- The characteristic distance between the defects increases
ordering kinetics[5], the analog of the Maxwell velocity with time due to the annihilation process between defects
distribution for a collection of phase-ordering defects. and antidefect$6].

In the defect-coarsening regime for the CGLE, the defect Forb andu real Eq.(2) reduces to the dissipative TDGL
densityn(t) scales ag ~?(t) whereL(t) is a characteristic equation which is the most widely studied model for phase
length that grows with, andt is the time of the evolution of ordering[5]. If we setb=u=i» in Eq.(2) and taken large,
the system starting with random initial conditions. In thesewe find that after a simple gauge transformation &.re-
circumstances, as shown in detail below, the defect-velocit@uces to
probability distribution is given, as in the purely dissipative

II. BACKGROUND

time-dependent Ginzburg-Land&UDGL) case, by —iawp=V2y+ (1= [y . ()
This equation, the nonlinear Schiinger equationNLSE)

3 1 [7], gives a highly idealized description of the low tempera-

2 77_0_2 ture properties of a neutral superfluid. Unlike the TDGL sys-
tem, the NLSE supports several conserved quantities. In par-

- ticular the quantityf d | (r,t)|? does not change with time.

where the characteristic velocity~L ! is given explicity ~ This model supports the same defects as the TDGL model,
below. Similarly, the defect-defect equal-time correlationbut the dynamics of the defects are quite different. Two op-
function has the same forrtsee below as found for the positely charged vortices in the TDGL model move along the
TDGL case. In the case of the correlations between defedine connecting them toward annihilation. In the NLSE the
densities at different times, we find some rather weak deviasame two vortices move at right angles to the line connecting
tions from the results in the TDGL case. them.

P(V)=T (1+V2/p?)~2, (1)
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Ill. DEFECT CHARGED DENSITY AND VELOCITY i _ _
FIELDS Duo=—5 > €ap( UV g* — *V gih). (7)
3

The approach developed here allows for a direct connec-
tion between a set of field equations, like the complexHereD is defined by Eq(5) and we must remember thais
Ginzburg-Landau equation satisfied by an order parametenultiplied by the defect-core-locating function inp in Eq.
field, and the equations of motion of the cores of a set 0f6). Equation(7) gives one an explicit expression for the
defects. It has only recently been understood, as discusseigfect-velocity field expressed in terms of derivatives of the
below, that these expressions for the defect velocity reducerder parameter. This expression for the defect velocity
to the same form as found in pattern forming studies usingeems to be very general. Notice that we have not specified
very different arguments. the form of the equation of motion for the order parameter,
The approach developed here is motivated by addressingnly that the order parameter be complex ad2. For the
the question: What is the probability of finding a defect aCGLE, our expression for the defect velocity reduces to
distancer from an antidefect? In work on phase-ordering
kinetics [8] we developed methods that are convenient for i ) e ero2 s
handling such questions. A motivating factor was the real- Dvo=— 2 % €ap(DVPV ggf* —b* VYt V). (8)
ization that in treating statistical properties of defects one
does not want to work with formal structures which require pgeg this expression for the velocity agree with our expec-

an explicit treatment in terms of the defect positions. Thisaions for known cases? Let us assume that we have a defect
leads to problems of specification of initial conditions. In- of chargem at the origin of our two dimensional system and
stead we looked for a way of implicitly finding the positions write the order parameter in the forgr=Rd’ (R:r|m|ew

of the defects using the order parameter figlitself. and 6=mde+ 0g), where agai and ¢ are the cylindrical

Let us consider the case of two dimensions where we,, jinates relative to the core at the origin. It is then a
have point defects. The case of line defects can also b,

treated[9,10] using these ideas but will be discussed else_gti\r/aelrg:h;;oré/;a(rg nggegilgu'us to show that the velocity
where. The basic idea is that the positions of defects arg '

located by the zerogl1-13,§ of the order parameter field m

Y. Suppose, instead of the positiongt) we want to write vazzb"(va03+ — 2 eaﬁvﬁw)
our description in terms of the zeros @f(r,t). It is not Iml 7

difficult to see that the defect charged density has the two m

representations —2b'(VaW— il ZB eaBVBGB) . 9

N
p(r,t)=5(¢(r,t))D(r,t):E g;8(r—ri(t)) (4) If we ignore the contributions due to the variation in the
=1 amplitude w, Eq. (9) reduces [14] to v,=2b"V _60g
) ) +b’(m/|m|)Z ge, 5V g5 . The first term is the only contri-
Whgreqi :p(ri)”D(ri” ==x1, andD(r) is the Jacobian as- ption in the NLSE case and states that a vortex moves with
sociated with the change of variables from the set of defecf o |ocal superfluid velocity15]. The second term is the

positions to the field): Peach-Koehlef16] term first found in this context by Ka-
| wasaki[17]. These are the results from the phase-field ap-
_ roach and lead, for example, to the same type of interaction
b= 21 E“lﬂzvﬂll’bvﬂzw* ! ®) b b yP

between two vortices as found in fluids. The velocity of a
. _ . single isolated vortex is zero. For a set of two isolated vor-
where we sum over the, €, ,, is the two-dimensional tices one has the expected behavior for the TDGL and NLSE
antisymmetric tensor, and summation over repeated indicezsases.
is implied. For later reference, the unsigned defect density is For our purposes here the more important point is to con-
given byn(r,t)=|p(r,1)]. sider the work of Tenkvist and Schrder[18]. Using meth-
For systems where only unit charges are preseig,the  ods of differential geometry, they looked at the derivation of
topological charge density. Notice thgt is well defined the form of the velocity of a defect in the case of the CGLE.
even for systems like classical fluids where the circulationThey comment, “The evolution of a system wiflspira)
associated with a defect is not quantized. vortices may be described in terms of the defects, or fila-
The dynamical implications of this approach are simple.ments, along with values of the fieldR and ¢ “at positions
If indeed topological charge is conserved then we would exaway from the defects of filaments. Such a separation into
pect the charge density to obey a continuity equation. It wasollective coordinates and field variables is nontrivial, and
shown in Ref[4] thatp satisfies a continuity equation of the the present work comprises the first exact treatment of this

form kind for a dissipative system.” The final equation they ob-
tain, in our notation here and for two-dimensional systems, is
dp=—V-(pv), (6)  precisely given by Eq9). Thus the velocity given by E¢9)
reproduces the most sophisticated results obtained using
where the defect velocity field is given explicitly by other methods.
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IV. AUXILIARY FIELD METHOD B. ExpressingG,,, in terms of C

A. Overview The defect density in the defect-defect correlation func-

. tion defined by Eq(11) can be written explicitly in terms of
How can we use these EXpressions ﬁqland v(y) to . the Gaussian auxiliary fielth in the form
compute the measurable statistical properties of an evolving

CGLE system? We will use a generalization of an approxi- 1

mate method which has led to good results for the TDGL p(l)= EEulﬂzfvmvulmvl(1)Vu2va(1)5(m(1))
case. The basic idea is to assume that there is mapping from (14)
the order parameter field onto an auxiliary fiebddhat shares

the same zeros ag in space. In par'gicular, we require and we sum over all the indices and . In the isotropic
pLy]=plm] andv] /] =v[ m], where again we use the result case, worked out previously, the evaluation@f, for the
that the velocity is multiplied by a defect-zero-findin  n.yector model for the general case m#d was facilitated
function. These requirements are not very constraining sincgy the decomposition of the average 1y, into a product
. . p
they only require thays be proportional tom for smallm  of averages corresponding to each component. This decom-
with corrections that are cubic im. It has been convenient hnsition is not possible here because the complex coeffi-
to think of m(x) as a two-vector whose magnitude gives thecients in the CGLE couple the components of the order pa-
distance fronx to a defect core. Thus, as discussed in morggmeter as the system evolves. We need a more general
detail below, near the core we can take yrem, and  approach. This more general approach involves using the

Im¢=m, . o _ ~_ general identity valid for Gaussian fields:
The main assumptiof®] in the theory is that the fielthis

Gaussian and the variance iimis determined by requiring
that the defect charge density continuity equation be satisfiedm,(1)F[m])= 2 f dt2d2x2CVV,(12)< F[m]> .
on average: v/ om,:(2)
(15
dG,,(12) ) _ ] )
- — Vi (p(1)V(1)p(2))=G,,(12), (10)  Using this result for all of the fields 5, acted upon by a
1 gradient in Eq.(11), one can bring all the gradients outside
the average. This generates many terms that are products of
where the matrixC and averages proportional to the quantities
G,,(12=(p(1)p(2)) 11 G(12)=(a(m(1))s(m(2))) (16)

and p(1)=p(t;,x;). With these assumptions and assump—and

tions about the initial conditions, one can work out all of the J
statistical properties of the defects includi@g,(12) and the G, . (12):< S(m(1))—— 5(m(2))> ,
defect-velocity probability distribution function defined by 12 am,,(2)

17

nP(V)=(|p|8(V—v[¢])). (120 and similar higher order derivatives of tgunctions which
do not contribute to the final result.
Corrections to this Gaussian approximation can be investi- A key assumption in the evaluation @,, is that the

am,, (1)

gated using methods of the type developed in RE®s20. system is isotropic in space and we can write
The procedure then is to first compute,,(12) and
G,,(12) assuming tham is a Gaussian field. This will give C,, (12=C,,/(r,t t5), (18
G,,(12) andG,;,(12) as functions of the auxiliary field cor-
relation function Vill)cw,(lz)zc'w,(lzﬁw (19
Cup(12)=(m,(1)mg(2)), (139 and
where @ and 8 take on the values andy. Inserting these VE})VLZ,)CW(H): —[Cty,(lZ)—CIV,(12)]FNFM,
results forG,,(12) andG,;,(12) back into Eq(10) gives an T
equation forC(12). It will turn out that this equation for —C,, (126, (20)

C(12) can be solved analytically. This result can then be fed
back into the result foG,,(12) to obtain an explicit expres- wherer =X; —X,, and
sion for the defect density correlation function. As part of

_ L I
this calculation we obtain the average defect density C,.(129=C,,(12), (22)
={(|p|). Finally we can carry out the average over the Gauss- L
ian variablemto obtainP (V) as a function ofc(12), and in T _
turn obtain an explicit expression f&(V). €, (19= r (12, (22)
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and the primes indicate derivatives with respect.tdJsing yifo
these results one can then carry out the sums over the spatial h= o (35
. y . T
coordinate labels, tha's in G,,, to obtain
=c® (2) ‘g . .
G,p(12)=G, /(12 + G, (12), (23 C. Satisfying conservation of topological charge

The calculation of the current contribution Gf;, on the
right-hand side of Eq(10) is much the same as fdg,,
except for terms that involve the on-site correlation function

where
(1) _ . L T
Gpp(12) Q(12)evl,,zevl,,zcvlyi(12)Cvzyé(12) (29
5(2)(1)=1<[Vm(1)]2>=—[VZC (rtity)]i=o- (36
and > o(rtaty) Jr=o-
Ggi)(lz):_Evlvzevivégazol(lz) G,, is also proportional to the factdrl/(2r)?](1/r)d/dr
, - and, after performing an integration overwe obtain the
><CLlol(12)002,/(12)CV2V/(12)- (25  averaged conservation law, given by Ef0), which can be
2 ' rewritten as

It is easy to evaluate, using the results from the Appendix, P
the remaining averages over the auxiliary field: 7 2\ _op/ "
g (Qy7)=2b'M+2b"N, (37)

G, (12=D2C,,,, (12)G(12), (26
where

’ 2

(2m)? @0 PO2A
+AQV2A)) (38)

where D is defined by Eq(A10). ExpressingC,, (12) in and

terms ofCy(12) andA(12), as given by EqA2), and doing

the sums over the's, we find after some rearrangement the  \— ViQ(foVZAo—AoVZfoH ’}/-2|—(f(,)V2A6+A6V2f6),

result for the defect density correlation function: (39)
1d ) and we have introduced the time-dependent quantity
(27) s@)(1) ,
wo(l)= —=—=—[Vfo(r,t1t) ], =0. 40
where o(1) S [Vfo(r,tity) ] —o (40)
732(1_]:%)71, (29 Equation (37) Iooks. very complicated but simplifies if we
replacefy and A, with
fr=\f2+A2 (30) fo="f1cosQ (41
Co and
fo=——, (31
VSo(1)Se(2) A= frsinQ. (42)
R A @2 Then Eq.(37) can be rewritten as
0:—, 32
VS(1)%(2) it yr(2E =RV +94fr(Q)2(2F - R)
WhereSO(l):CO(“) and +,y_2I_Q/[2f_2I_Qr_f_/I_S_|_fTS/]:0, (43)
We still need to determine the auxiliary field correlation R=2b" wy(1)fr+2b'A+2b"B, (44)
functionsC, andA. It is easy to see that the result given by
Eqg. (28), in the isotropic limit whereA =0, reduces to the S=—2b'B+2b"A, (45)
result first reported by Halperirl3]
and
— 1d 2
Gyp(12)= = - (h9), (34) A=V2f—f1(VQ)?, (46)
where B=2Vf; VQ+f:V2Q. (47)
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A solution to Eq.(43) is given by d%q
| 0= [ a1 (59)
2fr=R (48) )
and It is not difficult to construct the appropriate solution given
by
2f2Q0)' =f1S—1;S'. (49)
f(q,t1,t2) =R(t1,to)R(t2,t0)9(q)
This last equation can be reduced to ' 2 .
Xefb q (tl+t272t0)e|ﬁq(tlft2), (60)
2f:Q0=-8. (50)
where
The set of coupled equations given by E@) and(50) are
equivalent to the equations fép and A, given by [t
R(tl,to):ex b . dTwo( T) . (61)
Fo=b'(wo(1)+V2)fo+b"V2A, (51) ’
It is straightforward to take the inverse Fourier transform of
and Eq. (60) with the result
Ap=b"(wo(1)+ V) Ag—b"V?f,. (52 2

ape 0)212
f(12=R(t1,to)R(tz,t0)| =5 |&~ D7, (62
This is the set of equations that must be solved self- L

consistently to obtain the unknown quantitigg, Ay, and
w(1). where

D. Auxiliary field correlation function L?=/2+4b'T—2ib"(t;—t,) (63

Equationg’51) and(52) are reduced to a set of differential gpqg
equations in time if we Fourier transform in space and put in
the time labels explicitly: ti+t,
T=—-".

5 (64)

J
— fo(a,tatz) = a(q,t1) fo(Q,tato) — BgAo(a,tsto),
oty O R e We must stop here and satisfy the constraint given by Eq.

(53 (59). We have from Eq(62)

d

_ — //2

&tlAO(q'tltZ) a(qatl)AO(qatlt2)+ﬁqfO(qatltZ)i 1:R2(tl,t0)(_2) , (65)

(54) L
where where
a(q’tl):b,(wo(tl)_qz) (55) Lz(tl)ztz(tl,tl):/2+4b,t1. (66)
and Equation(65) serves as an equation fai(t;) which can be
easily solved to give
Bq: b//q2. (56) y g

Equations(53) and (54) need to be solved together with the wo(ty)= 2 _ 2 . (67)
symmetry condition OV L2ty /2+4b'ty

f(qatlatz):fO(qytlat2)+iAO(Qatlth):f*(_qytZatl() ) Using Eq.(65) to expressR(t; ,to) in terms ofL(t;), we find
5

1
1-iw

and the initial condition f(12) =D (ty,ty) e (%2 (68)

f(a,to,to) =27/ 26”1 2=g(q). 58 here
This particular choice of initial conditions, corresponding to

an initial correlation length’, is very convenient since all Dty t,)= L(ty)L(t2) (69)
integrals can be carried out analytically for all times. Finally 12 L%(T)

we must remember the normalization that follows from the

definition of f(12) given by Eqs(31) and (32): and
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2b"(t,—t,) _2yr
T (70) S(n)=17 (80)
This last definition implies b" [ 7—1 @)
w(7‘)=—, —, 81
[2=L%T)(1-iw) 71) bt 1
and and
(12 =0(ty 1) 72 (x )= 5 DX ®2
= , —e , (X, 7)=5 ————.
V2w 2 1+ w¥(7)
where Rather than discussing this result fif2) in more detail, it
5 is prudent to remember thdé{12) is not itself directly ob-
2_ X (73 servable. Thus let us turn back to observables and their de-
y 1+ w2’ pendence orf(12). We delay discussing the details of the
oscillations inf(12) until after discussing how this feeds
X=r/L(T), (74)  back into the determination of observables.
and V. DEFECT-DEFECT CORRELATION FUNCTION
1 A. General result
2= wy?. (79 . . .
2 Given the explicit solution forf(12), Eq.(79), we can

return to the evaluation of the density correlation function

There a}re a number of c_omments relevant t_o this r.esult foépp(lz) given by Eq(28). The input we need for its deter-
f(12) given by Eq(68). First note that there is consistency oo isy; 2= 1—F2, where

between the definition ofy(t) given by Eq.(40) and the

solution forf that leads to Eq(67). For equal timeg;=t, O2 , ,
=t, we have F2=|f|?2=——e X/(1%e9 (83
1+ w?
f(r,t)=e 7, (76)
and
which is of the same form as in the purely dissipative case
[20,21] with a characteristic length~/b’t. If we look at (124 (A1)2— 2F? (84)
the on-siter =0 autocorrelation function, Q=(fo)"+(40)"= 2y
L(1+ w?)
1+iw i i i
F(Oty 1) =D(t, 1) 2, (77) Inserting these results farr andQ back into Eq.(28) gives
1+ w
G,,(12)= % i ) (85
we can write fort,t,>t,, pp 2m LT[ 1+ wi(7)] g 1+ (7))
N AR
d)(tl,t2)=( Tl 2) . (78  Where
S(1_c)\— H2

Fort,>t,, w approaches a constant and the nonequilibrium g(s)= M (86)
exponent\, for ® also governs(0t,,t,) and is given by [eS—D%(7)]?
Ao=1, which is the samg20] as for the TDGL case fam
=d=2. In analyzingG,,(12) we must be careful to distinguish the

The main result here is that for nonequal times the auxil-equal-time case from the unequal-time case.
iary field correlation function shows an oscillatory behavior.
One of our chief goals below is discuss the possibility of B. The equal-time case
observing this phenomenon. We note here thd2) does

. If t;=t,=t and7=1, the density correlation function can
obey a form of scaling fot,,t,>1:

be written as
efiz(x,r) 5 )
f(12):f(x,r):<1>(¢)Te—(m)x M1+e%(n)]

o(7) G,p(r,t)

79 = 2772—L4(t)g(x)' (87)

wherer=t,/t,, where
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e“(1-x3)—1

1y (89

g(x)=
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VI. DEFECT VELOCITY PROBABILITY DISTRIBUTION
FUNCTION

The defect-velocity probability distribution function is de-

This is the same result found in the purely dissipative case. {in€d by

is known[13] that the conservation of topological charge for

equal times requires one to include in the defect-defect cor-n(t)P(V)=(|p(¢)|5(V—=V[#]))={|p(m)|S(V—Vv[m])).

relation function the correlation of a defect with itself:

G,,(r,)=8(N()+G,,(r 1), (89)

Whereﬁ(t) is the average defect density. Then conservatio

of topological charge is given by

f d’r G,,(r,1)=0. (90)
Inserting Eq.(89) into Eq. (90) gives
F(t):—f d2r G,,(r,t). (91)

However, using the form given by E¢28) we can do the

(96)

One of the main results from the last section is that at equal
times the auxiliary field probability distribution is isotropic

r,lemd has the same form as in the purely dissipative case. This

means that we obtain the same result here as found in Ref.
[4] and _glven earlier by Eq(l), where the characteristic

velocity v (t) is given by

(4)(t)

22\
v(t)=2(b") ool

(97)
with

S () =V4(r,t)|,—o— w3(1), (98)

integral in Eg.(91) and obtain for the average defect densityand using the explicit results fd(r t) given by Eq.(76) we

Q?’T 1
27 2qLYt)

n(t)=lim

r—0

(92

This is the expected result if scaling holds. One can also find

F(t) by direct computation and obtain

— t
=2,

(93

where wq is defined by Eq(40) and given in this approxi-

obtain

4(b/)2
L2(t)

v(t)= (99)

The result forP(V) given by Eq.(1) indicates that the prob-
ability of finding a defect with a large velocity decreases
with time. However, since this distribution falls off only as
V™4 for largeV only the first moment beyond the normaliza-
tion integral exists. This seems to imply the existence of a
source of large velocities. Assuming that the large velocities

mation by Eq.(67). We see that the two determinations of of defects can be associated with the final collapse of a de-

n(t) agree.

C. The unequal-time case

fect structure(defect-antidefect pair annihilation for point
defects, Bray[22] used general scaling arguments to obtain
the same large velocity tail given by EQ.).

One probe of the defect dynamics is to study the correla-

For the caser# 1, we have that the conservation of topo- tion between two defects including the correlation between

logical charge holds directly fd&,,(12) since

i Q%
2

r—0

f d’rG,,(12)= =0. (94)

The final step follows sinc&=~r? for small r and y% is
regular in this limit. If we set=0 in G,,(12) given by Eq.
(85) we obtain

1 47
27°LYT) [1+0¥(D)] (1-7)?

G,,(Oty,ty) =

We see that this quantity blows up at-1 signaling the

existence of thes function atr =0 obtained for equal times.

Thus we see that the limits—0 and7— 1 do not commute.

their velocities. The two-defect velocity probability distribu-
tion, P[V,V,,r] gives the probability that two defects sepa-
rated by a distance have velocitiesV,V,. This quantity
was determined in Ref23] and since it is an equal-time
quantity the results found there hold here. The physical re-
sults from the calculatiof23] of this quantity for the TDGL
model, carried out in detail fon=d=2 using the same ap-
proximations as indicated above, are relatively simple to
state. For a given separationthe most probable configura-
tion corresponds, as expected, to a state with zero total ve-
locity and a nonzero relative velocity only along the axis

connecting the defect¥,= —szui. Moreover, there is a
definite most probable nonzero value {or v ., for a given
value ofr. The most striking feature of these results is that
for smallr the most probable velocity goes @s,,= «/r and
x=2.19 in dimensionless units defined in REL3].
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VIl. ORDER PARAMETER CORRELATION FUNCTION whereq is the wave number of the spiral arms asymptoti-

Thus far we have focused on the statistical properties o ally far from the defect core anflo=;o(q). g depends on

. he particular parameters of the CGLE as discussed by
;{/Cr?igr? f:fets\;grthgiﬁﬁ;rgiﬂg foﬁrnecli redsI:g[IsC;?ﬁ/ 2”3;5(6\/)0”' Hagan. While there are values for whiglvanishes, as in the
Y € purely P ' YTDGL limit, we will assume that we work in a region of
rather small differences arise when one looks at unequa
; i " arameter space whegg~ 0.
times. Unfortunately neither of these quantities probes th . ; . .
- : : Using this set of mappings the order parameter correlation
full phase dependence of the auxiliary field correlation func-,

tion which shows interesting oscillations in space at unequaflunctlon 's given by

times. We show here that this phase dependence may be C.(12) = (e 162 +am2)]gil¢(1)+aqm(1)]
. i . A1) =y(e € )
probed via the order parameter correlation function evaluated
at unequal times. Indeed this quantity, within the approxi- ) D2
mate treatment given here, is quite different from the purely =iy ZJ' d?x(1)d?x(2)
dissipative case even at equal times. (27)
The order parameter correlation function is defined by X gl (81~ 82 gidx(1)—x(2)] g~ A2 (106)
Cy(12)=(y*(2)(1)), (100  whered?x(i)=x(i)dx(i)d¢(i) for i=1,2. The actiorA and

_ . . _ determinantD are given in the Appendix. In particuldx is
and our approach toward its evaluation will be to find thegiven by Eq.(A13) in terms of polar coordinates and we
relationship between the order parameter and the auxiliarjave, more explicitly,

field m. In Sec. IV we required thap be proportional tan
for smallm near the core of a defect. In evaluating EX00) D2 [
we need a more general mapping. The procedure we will use C,(12)= l!fg—zf
here has been successful in the purely dissipative [2He (2m)
Picking up on the point made in Sec. IV, we choosgx) to o _
represent the distance from to the closest defect. This Xj X(2)dx(2)e'axn=x@)
physical picture can be realized by constructifign) as a 0
solution to the equation for a single stationary defect:

x(1)dx(1)
0

X exp

e oo
—5 2 X (u)wo(n))J(xu),x(z)),
bV2y+ (1+iw,—u|y|?) =0, (101 '
(107
wherem serves as the coordinate and is the oscillatory ) ] )
frequency. In the purely dissipative casereal andw,=0, Where the angular integrations are given by
one has for field points well away from a defect core o om
| sx(w.x@)= | Tdo [ Tas2)
(M) = ghoe' "™, (102 0 0

i[6(1)— ¢(2)] oD 2Cx(1)x(2)cosp(1)— $(2)— 6]
where, for a defect of charge xe e T

(108
p(m)=ntan (m,/m,). (103
and 6 is defined by ta®=A/C,. Shifting the angular inte-
In the purely dissipative case, insertion of 402 for  grations we see that the dependence factors out:
(m) into Eq. (100 and carrying out the Gaussian average

overm leads to the resul[25] J(X(l)'x(z)):2ﬂeiﬁfzwdd)ei</>eD2CTx(l)x(2)cos¢'
0
2 (L, (1=29)17 (109
C,!,(12)=¢Off dz 2¢2\172 (104 . . . .
o (1-z°f9) If we change integration variables frorfi) to
with f(12) given by Eq.(68) with «=0. This approximate yi= VW (i)x(i), (110
result has been rather extensively tested in the TDGL case
[26]. we can rewrite Eq(107) in the form
In the CGLE case we have a different and interesting ;

element. There is a range of parameters where one has spiral C.(12)= 2 — 721“ d f“ d
defects. Thus, unlike the TDGL case, one has spatial struc- w12 %fT o 0 itn 0 Y2ty

ture associated with individual defects beyond the core. In s o
particular Hagar{27] showed that the far-field solution of X e~ (V11Y2)/2gi(d1y1~d2y2)

Eqg. (101 is given by o
— i pafry1Yo COSO
(m(x))= lﬂoei[d?(x)ﬁ-qm(x)]’ (105 X 274 d¢ e'Pe' 2 , (111
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where

q=qvVSo(i)yrt. (112
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Inserting this result back into Eq114) we obtain

2]c -2 *
Czp(lz):lﬂoEVT Jo(91)J5(d2)

Notice that the phase dependence of the auxiliary field cor-

relation function is isolated in the overall factor bin Eq.
(111). The integral over¢ in Eg. (111) gives a modified

Bessel function, but for our purposes we need only the

power-series result:

m ” 2K+1
ifz d¢ eldaftyiyz cosé— 2 1 fry1y,
2mJo Sokl(k+1)!l 2
(113
and
f * 1 f 2k
_ 2 -2 T
C¢(12)—¢057T kzom 5) Ji(ap) Ik (aa),
(114
where
Jk(Q1)=f ydy efyzfzeiqukaH_ (115
0

In the limit g—0 Eqg.(114) does, after some manipulations,

reduce to the result found in the TDGL case for 2. Note
that forq+0, except for =|r,—r,| very small,g;, given by
Eq. (112, is becoming increasingly large with/Sy(i)
~L(t;). This means we need evalualgq;) only for large
g; - Evaluation ofJ,(q;) for largeq; is facilitated by writing

Je(ay ,a)=f ydy e 2 iy,
0
whereJ,(q;)=J«(q;,1/2). We have then
k+1
Igi.a)=| - Jgi.a) (116
and
* 2 . o 2 X
J(q; ,a)=f dy e @ eW=~/—e %+iJ"(q;,a).
0 2a
(117

We see that the real part dfis exponentially small for large
qiz. However, it is easy to see that for large

1 2a 3(2a)?
J(ga)=—+—=+——

(118
9 o o

f 4
=51’

277 (910,)3
0 2144

g0 [Se(1)Se(2)]¥? (120

The scaled portion of the order parameter correlation func-
tion for x#0 can be written as

6
W<x,r>=%88’2<t1>$’2<t2>c¢<12>=2fyi. (121)
0

For 7#1, the correlation function depends strongly gn
=b"/b" via w. This is not true at equal times wheng
=b"/b’" does not appear in the scaling function. Ferl the
oscillations inf are now clear in the order parameter corre-
lation function. Writing out the real and imaginary parts we
obtain

_2F 1
Vi+w? (1-F?)

. 2F 1
V1t w? (1-F?)

whereF is given by Eq.(83) andw andz by Egs.(81) and
(82). We are interested in the oscillations associated with
=b"/b"#0. These are most clearly manifestedW{ and
characterized by the zeros at

!

5 [cosz+ w sinz], (122

5 [—sinz+wcosz], (123

w=tanz,. (124

The first zero as a function of scaled distance is given by

2 4 2
XO=2+§w +.-. (125
for small » and

x5=mw—2+(lw) (126)

for large w.

VIIl. CONCLUSIONS

By using some different ideas about how to characterize
defect dynamics, we have shown how one can determine

This means that the leading nonexponential contribution tdocal expressions for the defect density and defect velocity in

the order parameter correlation function comes fidytq,)
and is given to leading order by

2a

Jo(0y,@)= (119

terms of derivatives of the order parameter fields. These ex-
act results were then used to derive approximate results for
the defect-defect density correlation function, defect-velocity
probability distribution, and order parameter correlation
functions. Within these approximations, which work well for
the purely dissipative case, we find that the results for the
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defect-defect density correlation function and the defect-(x(1),(x(2))=(8(x(1)—m(1)) S(x(2)—m(2)))
velocity probability distribution are substantially unchanged
from the TDGL case. Thus these results seem robust. The d?k(1) d?k(2)
results for the two-time auxiliary field correlation function :f (2m2 (2m)2
indicate some interesting oscillations of its phase as a func-
tion of scaled distance. Since the defect-defect density cor- p( 1
xXexp — =
2

exp(i; k<j>~x<j>)

relation function depends only on the amplitude of the aux-
iliary field correlation function these oscillations are not
present. In the last section we have seen that some remnant

of these oscillations is present in the order parameter corre- _ 1 1 A2 (A5)
lation function. However, another different element for the (27)? (detC)?? '

order parameter correlation function is that the spiral arms

for the defects render the interactions between different spavhere the argument of the exponential is given by

tial points much shorter range than for the purely dissipative

case. Thus for different spatial points at equal times the order A= X, ()%, ()W, (ij) (AB)

parameter correlation function is down by a factomdft) vy! ]

relative to the TDGL case. All these results can be tested via o . .
numerical simulation. and the matridWV is the inverse ofC defined by

VV, IJ

> > k,,<i>ku/<j>cy,,/<ij>)
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APPENDIX —€,,€;D?A, (A8)

In the purely dissipative case all correlations are isotropicyypere

where {,j)=(1,2). In the complex case, over time, the real D~ 2=5,(1)Sy(2)—C?, (A10)
and imaginary components of the order parameter are mixed,
and this requires that we treat the more general correlation C2=C2+A? (A11)

function for the auxiliary field

and finally
Cuu(i])=6,,,Coli]) +€,,€;A(12), (A2)
detC=D*. (A12)
which satisfies the required symmetry for classical fields
If we expressx(i)=x;(cosdg;,sing;), the argument of the

C,,.(i))=C,/(ji) (A3) exponential in the distribution takes on the simple form

if Co(ij)=Cq(ji). Thus the variance of the Gaussian fieid

— 2 Y -2 _ —
is determined by the two independent functig®g12) and A_Z X{Wo() =2D""Crxyx; COS b1~ $2 = 0),

A(12). (A13)
We will be concerned with various two-point averages
overm of the general form where
Cag(12=(A(M(1))B(M(2))) Co=Crcosd, (A14)
A=Cqsiné, (A15)
- [ ax@ex@ac)BE @), x(2), '
an
(Ad)

. S(DS((2)

— 2 _o1 2
where the two-point probability distribution is given by Wo(1)=D So(i) So()yr®. (A1)
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