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Molecular dynamics simulations of spin and pure liquids with preservation
of all the conservation laws
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A methodology is developed to integrate numerically the equations of motion for classical many-body
systems in molecular dynamics simulations. Its distinguishable feature is the possibility to preserve, indepen-
dently on the size of the time step, all the conservation laws inherent in the description without breaking the
time reversibility. As a result, an implicit second-order algorithm is derived and applied to pure liquids, as well
as spin liquids, for which the dynamics is characterized by the conservation of total energy, linear and angular
momenta, as well as magnetization and individual spin lengths. It is demonstrated on the basis of Lennard-
Jones and Heisenberg fluid models that when such quantities as energy and magnetization must be conserved
perfectly, the algorithm turns out to be more efficient than popular decomposition integrators and standard
predictor-corrector schemes.
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[. INTRODUCTION divided into a lot of subintervals, reducing the efficiency of
the computations considerably.

During the last years, considerable attention has been fo- The exact conservation of integrals of motion is especially
cussed on computer studies of relaxation properties and critimportant for simulations of spin liquids near phase transi-
cal phenomena in classical spin systdts9]. These studies tions, when the phase diagrams, dynamical scaling, long-
dealt mainly with lattice models such as the Isixy, and  time correlated behavior, or derivatives of the thermody-
Heisenberg models. Of current interest is the investigation of@mic functions are investigated. This is so because in these
continuum spin liquid model§10—19 in which additional ~ C@Ses, the presence of artificial fluctuations in energy and

dynamical effects are possible because of the coupling bdn@gnetization may have a significant influence on the re-
tween spin and liquid subsystems sults. Therefore, it is desirable to look for an algorithm

Quite recently[16,17, a set of symplectic algorithms of which conserves the fundamental physical invariants exactly

different orders in the time step has been constructed fof" at least within machine accuracy. L .
In the present paper, a approach to numerical integration

numerlgal mtegraﬂqn of motion in the presence of bOthof the equations of motion for spin and pure liquids is intro-
translational and spm_degrees .Of free_dom. Asa CONSEQUENCHced. The main feature of this approach is its intrinsic pres-
the molecular dynamic8MD) simulations of a Heisenberg o ation of all the conservation laws inherent in the system
spin fluid have been carried out. The symplectic integrator§yithout violating the time reversibility property. The paper is
were derived by developing the Suzuki-Trotter techniqueyrganized as follows. The basic equations and their integrals
[18] for decompositions of exponential operators. Their maingé motion are described in Sec. 1. Sec Il is devoted to a
advantages over standard predictor-corrector schemes are @gnsequent derivation of the desired second-order algorithm.
plicitness, time reversibility, and exact conservation of spinits possibility to exactly conserve the integrals of motion is
lengths. It was also shown that the decomposition algorithmg@emonstrated there also. In Secs. IV and V, the algorithm is
permit significantly larger time steps and lead to a substantiakested in actual MD simulations on the Heisenberg and
speedup of the calculations. In a particular case when theennard-Jones fluid models, respectively, and compared
spin degrees of freedom are frozen, these algorithms can lwith previous numerical schemes. The discussion and con-
reduced to the well-known velocity Verlet integrafd9], cluding remarks are given in Sec. VI.
widely used for simulating of pure liquid dynamics.

However, a decompositiofpredictor-corrector and other Il. BASIC EQUATIONS OF MOTION
existing traditional numerical schemga0], such as Runge- AND CONSERVATION LAWS
Kutta, etc) approach does not preserve the total energy and ) ] .
magnetization of the system. In most MD applications the Let us consider a classical-body system described by
accuracy achieved for the energy-magnetization conservatighe Hamiltonian
by the decomposition algorithms is high enough to obtain 5
reliable results. Moreover, this accuracy can be improved H=S m+
using higher-order versiongl6] of the decomposition ap- =1 2
proach or decreasing the step size. But if the integrals of
motion have to be conserved perfectly, the nonconservativetherer; andv; are the translational position and velocity,
algorithms may not be an optimal choice for the solution ofrespectively, of particlé with massm; carrying spins . The
the problem. The reason is that then the time step should biuid part of the potential is denoted by(rj;), whereas

N
iZﬂ[go(n;)—J(ri,»s-a], (1)

N -
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J(rij) is the exchange integral corresponding to a pair of [ll. THE METHOD OF INTEGRATION
spins with the interparticle separatiogj1=|ri — rJ-|. Note that
within the classical approach, each smnis treated as a
continuous three-component vector with fixed lengplt-
ting for conveniencés|=1, so thatJ will be measured in
energy units Although the results which will be obtained
below can easily be adapted to a larger class of Hamiltonia
(to multicomponent systems, for instapcee restrict our-
selves for the sake of simplicity to the basic modglwhich
represents a typical isotropic Heisenberg spin fluid, 14]. p(t+7)=p(t)+ 7 dp/dt],s o+ O(7°),

ForJ=0, Eq.(1) reduces to a pure liquid model.

In MD simulations it is necessary to solve numerically thewhere 7 is the step size an®(7°) denotes the truncation
equations of motiordp/dt=[p,H], where[, ] denotes the terms. In view of Eq(2), the explicit expressions for such a
Poisson bracket ang={r;,v;,s} is the full set of micro- propagation read
scopic phase variables. For the system under consideration,

We will show in this section that it is possible to generate
time-reversible microscopic trajectories along of which all
the integrals of motion are preserved at arbitrary finite time
steps. Our derivation of the desired algorithm is started by
r]considering a midpoint scheme of the second order. Accord-
ﬁg to this scheme, the dynamical variables can be propa-

gated as

the dynamical equations can be written more explicitl T
[12,1ﬂy’ q P y ri(t+T):ri(t)+TVi t+§ s
dri T
ar Vi Vi(t+71)=V(t)+ 7f; t+3 /m;,
q ‘ 1N (©)
dvi_fi_ 1 (%_ﬂ | )f_: S(t+ 1) =8(0+7[$X Q] 2/,
dt - momy iy Laryg o ot g _
@) where the midstep values of, f;, and sXg; should be
ds s s N specified additionally.
—=—Xg=-X 2 JiS; - The only way to construct mid-point translational veloci-
dt % STIE)) ties maintaining the time reversibility property is
Here,fi:E]‘(j;gi)fij and gl=E](J¢,)gU are the force and in- T T 3
ternal magnetic field, respectively, acting on partictiie to wvi| t 5| = SV +vi(t+ D) ]+ O(7). 4
the interactionsf;j = —(¢j; —J; 5-5)ri; /r;; and g;;=J;;s
with all the rest of bodies, wherep;j=¢(rj;) and J;  The termsO(7°) of third and higher orders can be ignored

=J(rj;). Note that the quantum Poisson bracket was appliegecause the corresponding terms of the same orders have
[5,12] to derive the equations for spin subdynamics. If anpeen truncated already within the midpoint approach. Equa-
initial statep(0) is specified, the time evolutign(t) can be  tion (4) represents, in fact, an implicit interpolation formula

uniquely obtained by integrating E¢R). in which past(at time t), and future(at t+7) values of
Taking into account the symmetiy;; = ¢;; andJ;;=J;;  dynamical quantities enter symmetrically, assuring automati-

of interaction potentials, it follows from E@2) that the total  cally the reversibility of the solutions.

energyE=H, the total magnetizatioM =X;s, the total lin- In the case of translational forces, there are several possi-

ear momentunP=3;m;v;, as well as angular momentum bijlities to build the midpoint values. The reason is that the
L=Ximir;Xv; are integrals of motion, i.edE/dt=dM/dt interparticle functionf;;=f(r;;,s-s;) depends explicitly on
=dP/dt=dL/dt=0. The structure of spin equations of mo- relative positionr;; and orientatiors; - s; which in turn vary
tion [the last line of Eq(2)] imposes in addition the conser- with time. Thus, we can apply the midpoint interpolation
vation of individual spin lengthgs|=s;=const. Indeed, either to the functiorf;; as a whole, or directly to the dy-
ds/dt=d(s-s)¥%dt=(s-ds /di)/s;=s-[sXg]/hs=0, namical variables;; ands-s;. As a result, two different
be- approaches to the force evaluation may be introduced,
cause the equalitgf ax b]=0 is valid for arbitrary vectora  namely,

and b. In addition, the exact solutions are time reversible,
since the equations of motion are invariant with respect to 1
the time inversion transformation——t, {v;,s}—{—v;, :E[f(rij(t)’[s'Sj]t)+f(rii(t+T)'[Si'ﬁ]tw)]
—S}.

No existing numerical scheme can obey perfectly all theand
just mentioned properties. The exact conservation during the
integration can be achieved only for some of the integrals of B
motion, such as linear momentum, for example. Usually, it is =firj
required that the deviations of conservative quantities from
their original values to be within an acceptable level of pre-The last approach requires the knowledge of midpoint values
cision. This results, however, in limitations on the size of thefor r;; ands-s;. The obvious choice for the relative posi-
time steps which actually can be used for MD simulating. tions is

.
fij t+ E

T

[S-Slt+ 72

t+o
2
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Ty 1
t+—):§[rij(t)+rij(t+7')]. (6)

The interpolation of the scalar produics - s;]; -, will be

N

described latter. None of the above approaches for evaluatingE f; ( t+ T -V
fij(t+ 7/2) can lead to a scheme with exact preservation of =1

the total energy. The energy will only be conserved approxi-

mately with the precision within which the microscopic so-

lutions are calculated, i.eE(t+ 7) =E(t) + O(7°).
We will show now that the second approdéty. (5)] can
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tained in the right-hand side is invariant with respect to the
replacements$— j, it can be shown that

T 1
t+§):_§ ; {o(rij(t+7))

2
—(rij(1)—[I(rij(t+ 7))
=i (O)ILS - S ]+ 72t

be modified in such a way as to compensate the loss of . .
precision in the total energy. The idea lies in the following.ASSuming for the moment that spin degrees of freedom are

Since, according to Eql), the energy differenc&(t+ 7)
—E(t) is a function of the quantitiesp(r;;(t+ 7)) and
@(rij(t)) as well as)(r;(t+ 7)) andJ(r;;(t)), it is natural to
try to evaluate numerically the partial derivatives(r;;)
=delarij andJ'(ri;) =aJldrj; [which appear in Eq(5) at

t+ 7/2] in terms of the same quantities, rather than to calcu-

frozen (i.e., that[s-s;] does not depend on timethe last
relation can be presented in the form

N
T.Zl fi(t+7/2)-vi(t+7/2)=U(t) —U(t+7),

late the derivatives analytically. This is possible because for
any function{(r;;) depending only on the interparticle dis- \hereU denotes the potential energy of the system. On the

tancer;; we can write the following two expressions:

dé(ry) _o& dryj _ Tij-Vj

dt _(9rij dt B r” rij

and

dé(rij)
dt

:f(rij(t+ T)i_ E(rij(1) Lo,

t+7/2

the combinnation of which gives

f,:lr'ij) :g(rij(t"":))_f(rij(tj) o), (7
N t+ 72 Trij t+§ 'Vij t+§

where the midpoint values of relative velocity=v;—v; are
calculated according to E¢4) as

.
t+ -

1
5 =§[Vij(t)+vij(t+7)].

Vij

Then choosing= ¢,J, one finds the expression

- rij t+%
Th|t+5 =—j(j2i) . erj(t+)
rij(t+§ 'Vij t+ E)
—@(rij(1)—=[I(r;j(t+ 7)) = I(ri;(1))]
X[s- ]+ 72} (8

for midstep translational forces, where B¢7°) terms have
been neglected.
Performing scalar multiplication of E¢8) with the vector

other hand, multiplying the second line of E@) by v;(t
+ 7/2) and summating over the particles yields

S Wt I —w(0)- Mt D)D)

N
=K(t+7)—K(t)= T_Zl fi

t+ = vl t =
2/ ViltT3)

whereK denotes the kinetic energy. We see, therefore, that
during the time propagation given by Ed8) and (8), the
total energyE=K+U is conserved exactly for any, i.e.,
E(t+7)=E(t).

Note that Eqs(7) and(8) are well defined when the scalar
productr;;(t+ 7/2)v;;(t+ 7/2) tends to zero. This is so be-
cause according to the first line of E@), the midstep rela-
tive velocity is connected with the change in position by the
constraintv;; (t+ 7/2)= (r;; (t+ 7) —r;;(t))/ 7. So that the sca-
lar product is merely equal t@ri;(t+7) +rj;(t))- (rjj(t+ 7)
=1 () (27)=(rij(t+7) +r;; (1)) (rj; (t+7) —r;; () (27). As
a result, the right-hand side of E(,) can be rewritten in the
following mathematically equivalent form:

E(rij(t+ 7)) — &(ry; (1)) 2
I’,J(H—T)—r”(t) r,](t)—i—r”(t—l—T)

+0(7%), (9

which reduces to & (ry;(t+ 7/2))/r;;(t+ 7/2)+ €?O(7?)
when the valuérij (t+7)—rj; (t)]< e is small enough, where
rij(t+ 7/2)=(r; () +rij(t+7))/2 ande? denotes a machine
zero.

The exact energy conservation can also be achieved in the
presence of spin subdynamics. In order to show this, un-
freeze now the spin variables, and consider first the question

vi(t+7/2), then taking the sum over all the particles ( of how to interpolate the vector produgix g; arising in the
=1,2,... N), and using the fact that the double sum ob-third line of Eq.(3). Again, since this product depends on
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time implicitly via dynamical variables, and g;, we will T T
have here a lot of possibilities. The first of them, AM= = ;] ‘]ij(t+ 7|[s(O+s(t+7)]
1
[$XG T 2= 5[S (DX GO +5(t+7)X g (t+7)], x5+ 5(t+n)]

and Jj;(t+7/2) may be equal either ta[(rj;(t)+r(t
is not suitable because it does not lead to the conservation af 7))/2] or [J(r;(t))+J(r;; (t+ 7))]/2. The termAM is can-
individual spin lengths, i.es(t+7)=s;(t)+O(7). At the  celed because of the invariance of the double sum with re-
same time, the second interpolation spect to the transformatiar- j, and of the obvious equality
axb+bxa=0 which fulfills for any vectorsa andb. Thus,
M(t+7)=M(t) in both the cases. However, in the first of
(100 them whenJ;;(t+ 7/2)=J[ (rj;(t) +r;;(t+ 7))/2], the energy
differenceE(t+ 7) — E(t), being a function of two quantities
. ) J(rjj(t+ 7)) andJ(r;;(t)), cannot be reduced to zero exactly
does conserve spin lengths exact(t + 7_-) =_si(t), for a_1rb|- using only one midpoint valug[ (r;; (t) +ry; (t+ 7))/2].
trary choice ofg;(t+ 7/2). Indeed, substituting Eq10) into At the same time, within the last third interpolation given
the propagation equatiog(t+7)=s(t)+7(sXgli+-2/h  py Eq. (12) we are able to perform such a reduction. To
and solving analytically the obtained expression with respeciiemonstrate this, let us consider finally the interpolation of
to s(t+7), one obtains the spin scalar produdts-s ... appearing in Eq.(8).
Similarly to Eq.(6), one defines this interpolation in the form

t+ o
2

1
[SXQi]t+r/2:§[S(t)+S(t+ 7)]Xg;

S(HT):1+<72/4h2)[gi]$+7,2|S(m%sm (S-Sl z=5[S(0-§(O+§ T+ -5+ D] (19
x [gi]HT/2+4T—;[2[gi]t+7/2([gi]t+ﬂz- S e Gy (42, Tt can be shown that
—([gi]w,z)Zs(t)]]. v %J [0 (4 )= 30 TS - STe

As can be verified readily, Eq11) represents an unitary ZZN_ [3(ry ()8 (147§ (£ 7)
transformation s (t+ 7) = ©,(t, 7)s (1), where O(t,7) is a =

rotation matrix which, of course, does not change the norm
of vectors.

Three different time-reversible interpolations can be intro
duced for the factor [giliio=0i(t+7/2)=2;+i
X[Gijlt+ 2. They are

=J(ri;(1)s()-s5(H]=Ut) —UO(t+7),

“‘whereU(® denotes the spin part of the potential energy. So
that, as in the case of frozen spin subdynamics, the sum
TEiN= fi(t+ 7/2)vi(t+ 7/2) is reduced to the potential energy
differenceU(t) —U(t+ 7). But as was shown earlier using
(o] IG5 (0 + I (t+ 7)si(t+ 7) Eq. (3), this sum can be expressed also as the difference
1t ri2 2 ' K(t+7)—K(t) in the kinetic energy. This indicates again
that the total energfe=K+U is conserved exactly, i.e.,
s(t)+s(t+7) E(t+ 7)=E(t), despite the microscopic solutiomgt+ 7),
> ; vi(t+7), as well ass(t+7) are obtained with a limited
O(7°) accuracy. It is worth mentioning that the interpolation

rij(t) +ryj(t+7)
[gu]wz:J(' —

and s()+s(t+7) s(t)+s(t+7)
[S-Silir 2= 2 : >

I () + I (t+ 7)) (1) +5(t+7)
[Gijle+ 2= 2 2 : instead of Eq(13) is possible, in principle, too but it will not
(120  lead to the energy conservation.
The approach considered conserves also the total linear

The first approximation cannot be chosen for our purpos@nd angular momenta, i.eR(t+7)=P(t) and L(t+17)
because it destroys the total magnetization of the system, i.e7; L (t). The first follows directly from the structure of mid-
M(t+7)=M(t) +O(7%). The last two interpolations do re- point translational forceg8) for which =;fi(t+7/2)=0, so
produce the magnetization vector perfectly. Indeed, sumthat
ming up the individual spin propagatidthird of Egs.(3)]
over all the particles and taking into account Et0) gives E myv;(t+ 7'):2 myv;(t).
M(t+7)=M(t)+AM, where i i
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Further, taking into account Eq$3) and (4), the position guaranteed by the relative smallness of the stepsied an

propagation can be cast as exponential decaying of with increasingl (see the next
section.
T It is interesting to remark that the total linear and angular
. = . A . —_— 2 . . . . .
i+ =rO+viO7+h)| t 2)7 f2m;. momenta are conserved exactly within each iteration of Eq.

(14). The reason is that the interparticle forces are evaluated
Then the sum®;m;r;(t+ 7) Xv;(t+ 7) reduces tax;m;r;(t) exploiting Newton'’s third law and the velocitieg(t + 7) are
Xvi(t) + 7Ziri(t+ 7/2) X fi(t+ 7/2). The last term is can- updated before alliE1,2,... N) the advanced positions
celed since, according to E¢B), the interparticle forces are r;(t+ r) were calculated. For similar reasons, the magnetiza-
parallel to midstep vectons;(t+ 7/2) and, thus, the second tion conservation is also fulfilled for each iteration, when the
property spins are updated according to the third line of Edl). In
this case, however, the individual spin lengths will only be
preserved like energy in an iterative sense, isgt{+ 7)
—s(t)=0(e). Nevertheless, the spin lengths can be main-
tained exactly within each iteration by replacing this third
is also satisfied. line by its mathematically equivalent counterpéirl) [were

Thus, the desired algorithm of the second order has bedy; ], ,-» is evaluated with the help of E412)].

constructed. In view of Eq$3), (4), (6)—(10), (12), and(13),

the algorithm can be presented in the following compact |y NUMERICAL TESTS: COMPARISON WITH OTHER

2 miri(t+ T)XVi(t+T):Z miri(t)XVi(t)

form: METHODS
T In our MD simulations of the Heisenberg spin flJilq.
r(t+ 1) =riO+ 5O +vi(t+n)], (1)], the Yukawa functior14]
o—r
T rj(t)+rij(t+7) Y(r)=wgexy{—) (15
Vi(t+7)=v(t) - — e
(i (t+ 7))~ o (ry; (1) was used to describe the spin-spin interactions. The liquid

subsystem was modelled by a soft-core potengial

rij(t+ T)—rij(t)

12 6
3 (t+ 1) = I (1) o(r)=4u E) _<S +u (16)
rij(t+T)_rij(t) r r
S(H)-§()+s(t+7)-5(t+7) which accepts nonzero valuesrat 2¥6¢ and ¢(r)=0 atr
X > , =265 Hereo is the diameter of particles, andas well as

w denote the intensities of core-core and spin-spin interac-

7 s(O)+s(t+7) tions, respectively. The simulations were carried out in a

s(t+7)=s(t)+ P microcanonical ensemble fd¥=1000 identical (n,=m,s;
=1) particles in a cubic box of volum¥=L3 employing

I (D) +3(r;(t+ 1) 5 (0 +5(t+7) periodic boundary conditions. Thg Yukawa function was

& 5 5 truncated atR.=2.50<L/2 and shifted to be zero at the

truncation point to avoid the force singularities, i.8(r)
(14) =Y(r)—Y(Ry) atr<R. andJ(r)=0 otherwise. We have
chosen the same thermodynamic point as considered in pre-
Equation(14) constitutes, in fact, a coupled system of threevious papers[16,17, namely, a reduced density of*
nonlinear vector equations for each particle with respect te=Ng3/V=0.6, a reduced temperature of =kgT/w=1.5
the same number of unknownmg(t+7), vi(t+7), ands(t ~ <T¥ (where kg is the Boltzmann's constant and?
+ 7). The system can be solved in a quite efficient way by~2.055 the critical temperature of the syst¢#?]), and a
iteration, letting initially vO(t+7)=vi(t) and $°(t+7)  nonzero magnetization per particle (1|/N=0.6536 as
=s(t) on the right-hand sides of E(L4). Then the current well as the same values for the reduced core intensity
values forr;(t+7), vi(t+7), ands(t+7) obtained on the =1 and the dynamical coupling parameter o(mw) %/
left-hand sides of Eq(14) are treated as initial guesses for =2,
the next iteration. Already two iterations are sufficient to  The equations of motion were solved using a well estab-
reach theO(7°) accuracy for the microscopic solutions and lished Adams-Bashforth-MoultofABM ) predictor-corrector
energy conservation, i.eE(t+7)—E(t)=0(7°). The goal integrator of the fourth ordd20], the explicit decomposition
of carrying out further several updates of Efj4) is to re- scheme$16,17] of the secondED) and forth(ED4) orders,
duce the uncertainty = E(t+ 7) —E(t) in energy deviation as well as our conservative spin fluid dynam{&SFD al-
to a negligibly small valuéby adjusting the numbde=2 of  gorithm [Eqg. (14)]. All the test runs were started from an
iterations for a givenr). The rapid convergence— +0 is identical well equilibrated configuration. A typical example

016105-5



I. P. OMELYAN, I. M. MRYGLOD, AND R. FOLK PHYSICAL REVIEW E64 016105

= - (a) sizes are inefficient, because then too much expensive force
0.999275 |2 7*=0.01 and field recalculations have to be performed in order to
i ED4 = cover the fixed observation time. Moreover, the ABM
0.991275 E scheme is about twice times slower compared to the ED
integrator even if one iteration only is applied within the
0.083275  EDWY CSFD corrector procedure. _
’ 25000 50000 75000 100000 No drift in the functionsE(t) and M(t) was recognized
t/T within both the decomposition ED and ED4 algorithms at
0.6536254 (b) time steps up ta* =75 ,,=0.01 and over a number of time

steps oft/7=100000. These algorithms, however, do not
conserve the total energy and magnetization exactly. Instead,

the last functions fluctuate quite visibly especially in the ED
case, as can be seen from Fig. 1. The ED4 energy fluctua-

CSFD tions are approximately a factor of 2 smaller than those of
55000 50000 75000 100000 the ED algorithm. This compensates the add_ltlonal processor
t/T time needed to evaluate hlghjorder expressions to some ex-

tent. However, the ED4 algorithm allows one to reduce the

FIG. 1. The total energf* /N (a) and magnetizatioM/N (b) magnetization deviations to a negligibly small level which
per particle as functions of the lengthr of the simulations per- does not exceed abOl(‘[M(t)—M(O)]2>1/2/N”3><10_9
formed for a Heisenberg spin fluid using the predictor-correctoreven at the greatest time stef).,, where() denotes the
[dashed curve irfa), marked ABM|, decompositior(solid curves,  microcanonical averaging. It is worth mentioning that the
ED/ED4), and our algorithmgbold solid horizontal lines, CSHD  ED/ED4 energy-magnetization fluctuations are caused by the
Note that the ABM and ED4 curves are indistinguishablelth  O(7%)/O(7°) truncation errors and thus they will increase
from the CSFD line. drastically with increasing.

o The situation is completely different in the case of our
for the reduced total energf* =E/w and magnetization approach, because the CSFD algorithm preserves the inte-
M =[M| per particle as depending on the length of the simuyrals of motion for arbitrary time steps. Of course, we cannot
lation is shown in subsets) and(b) of Fig. 1, respectively, apply too large step sizesr{~1) since then the micro-
at a reduced time step of = 7(w/mo?)?=0.01. scopic solutions will deviate considerably from their exact

The huge systematic deviations in the total energy obrounterparts and because of too large number of iterations
tained within the ABM approachsee the dashed curve in npeeded to achieve the convergence. Choosing, for instance,
Fig. 1(@)] points out clearly that it is highly unstable and, 7 =7*_=0.01 we have determined the following levels
thus, not suitable for long-duration observations over the sysy, ihe averaged total energy fluctuation&=((E* (t)
tem at the time step considered. We mention that in the_ E*(0))2)Y2N at the end of the 100000 time step runs:

ABM scheme, the dynamical variables are first predicted, g o104 23x10°5 3.1x10°6. 2.2x10° 7. and 2.8
x 10~ 8 corresponding to the number®f iterations 2, 3, 4,

0.6535852

M/N

0.6535450

p(t+7)=p(1) +[55p(t) = 59p(t— 7) + 37p(t - 27) 6, and 8, respectively. We see, therefore, that the iterations
_ r converge rapidly with increasingand the uncertainties can
—9p(t—37')]ﬂ+0(7'5), be approximately described by the exponential dependence
£~3X10 “exp(—1.2) atl=4. Of course, the iterative so-
and further iteratively corrected as lutions require additional computational efforts, but they are
justified when a high level of the energy conservation is
p(t+7)=p(t) +[9p(t+ 1)+ 19(t) — 5p(t— 7) necessary. In order to demonstrate this, we have tried to re-
duce the energy fluctuations within the ED/ED4 algorithms
. T 5 by decreasing the time step. The corresponding resufl &r
Tp(t=27) 157 +0(7), the time steps 0.01, 0.005, 0.0025, and 0.00125, i.er* at

. =7/l with1=1, 2, 4, and 8 is presented in Fig. 2 in com-
wherep={v; ,f;/m,[sXg;]/A}. The strong instability of the parison with the above CSFD data.
ABM integrator can be explained by the facts that it destroys As one can see, such a reduction of the ED/ED4 energy
the unit norm of spin length&lthough conserves the mag- fluctuations is not efficient, since the deviatiachbehave as
netization vector and generates time irreversible solutions~|~2, i.e., decrease with increasihghuch more slower than
(as has been rigorously provg23], the numerical stability the exponential dependence obtained within the CSFD algo-
follows directly from the reversibility of an algorithmFor  rithm. In view of the results of Fig. 2 and taking into account
this reason, the ABM as well as other existing predictor-that at the same value bbne needs approximately the same
corrector schemes can be used only at very small time steggocessor time with both the ED and CSFD algorithithe
(namely, atr* <0.00125, see Ref§16,17]), where they ex- ED4 integrator needs the time larger by factor 5 and is less
hibit similar equivalence in the energy conservation as thaéconomical in order to investigate the system over an iden-
of the decomposition algorithms. However, such small stepical time interval, we come to the following conclusion:
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10 ® level of the conservation. Note that a rotational matrix ver-
sion of the CSFD algorithrfiwhen the third line of Eq(14)
10 °} is replaced by Eg(11)], in which individual spin lengths are
maintained exactly within each iteration, leads to a some-
10 what better energy preservation at a givefbut then the
=~ total magnetization, similar to the energy, will be conserved
S 107 in the iterative sense, i.e., at sufficiently laige The CSFD
. results presented above f6rhave been obtained using this
107 version for spin subdynamics propagations.
10~k Further improvements in the efficiency of the CSFD algo-
rithm can be reached applying the following computational
10 - trick. It can occur that after a some period of time during the

2 3 4 5 6 7 8 9
l

0 1 integration process the energy differerie@) —E(0) corre-
sponding to the ladfth iteration(within a current time step
t/7) exceeds the difference obtained for the previolus (
—1)-th iteration. Such a situation is possible because of
round-off errors and an accumulation of other numerical un-
certainties, especially at relatively small valuesl ofvhere

the lack in the time reversibility can lead to an instability of
the solutiongnote the CSFD algorithm is time reversible in
the iterative sense, i.e., at large enough valudg.ofhen to
When the total energy must be conserved up to a precision @fvoid the accumulation, we should merely take the values for
Eo~10"% (the intersection point of the ED and CSFD microscopic phase variables corresponding to this previous
curves, see the horizontal dashed line in Figo2better, the (I —1)-th iteration. The trick with a flexible number of the
preference should be done to the CSFD algorithm. For exiterations will guarantee a good stability for smlatt2 -4 as
ample, a level o€~ 10 © in the conservation is achieved at well.

| ~5 within the CSFD algorithm, while up at50 for the Another technical detail concerns the way in which the
ED schemdthe last value was obtained by extrapolating theexpression[ £(r (t+ 7)) — &(r (t))]/[r (t+7)—r(t)] [appear-
~172 dependence to largd). Thus the CSFD algorithm ing in Eq. (14) for ¢é=¢,J] should be treated in the limit
appears to be approximately in 10 times faster than the ED(t+ 7)—r(t). As was pointed out earlier, this expression

FIG. 2. The averaged total energy fluctuatidghas a function of
the numbell of iterations, obtained in the Heisenberg fluid simula-
tions within the CSFD algorithm at the reduced time stép,
=0.01 (bold solid curve. The levels of€ corresponding to the
decomposition integrators at the time steps=ry,./l are con-
nected by solidED) and dashedED4) curves.

integrator at this level of. For £> &y, we can restrict our-
selves to the usual explicit decomposition integrators.
Note that despite the uncertainti€g~10"* look quite

must be computed using its limiting representatéoq r(t)
+r(t+7)]/2)+ €20(7?) when the difference |r(t+ 7)
—r(t)|<e is small enough. Then letting? being equal a

small, they can considerably influence some observable macaachine zero, the truncated teredO(7%) can be ignored
roscopic quantities. The influence can be estimated quantit@ompletely. In our program code we have used a double
tively in terms of the ratiol'=[((E(t)—E(0))?/((U(t)  precision throughout with 16 significant digits}= 10", so
—U(0))?)]*? of total and potential energy fluctuations. For that the values was set to be equal to 18. It is interesting

our systemi/=((U* (t)—U*(0))?)YYN~10 2, whereU*  to remark that the conditiofr;; (t+ ) —r;;(t)| < e was never
=U/w, so thatl'y=&,/U~1%. Usual investigated quanti- achieved for any pairj of particles during the simulations
ties, such as thermodynamic functions, structure factors, etcand, thus, the limiting expression was never used. This can
will be calculated approximately with the same relative pre-be explained by the fact that the probability of finding the
cisionT' (provided the averaging over the produced trajec-system in such a state is prohibitively small and is propor-
tories is performed during a sufficiently large time interval totional to Ce. The coefficientC increases with increasing the
be entitled to ignore the statistical nois¢lowever, when length of the simulations and the number of particleCas
long-tail time correlation functions or derivatives of the ther- ~tN2. Thus, the limiting expression is expected to be ap-
modynamic functions are involved in the computations, theplied for systems with a greater size or when extra long
impact of the artificial energy fluctuations on the results will simulations are performed.

be much greater. For instance, the relative uncertainty in the Finally, some words about the angular momentum conser-
measurements of the specific hdathich are based on a vation. As is well known, the periodic boundary conditions,
microcanonical ensemble fluctuation formuigestimated to  which are commonly used in MD simulations to reduce the
already be I[[y)¥?~10%. This uncertainty may appear to be finite-size effects, destroy the angular momentum vector.
too large to determine correctly a phase diagram of the sydNevertheless, it has been established that this vector is con-
tem. served in our simulations in mean, namefy,(t))~L(0).

A similar pattern to that shown in Fig. 2 was observedNote that initial values for the total angular as well linear
within the CSFD approach at greater time step<0.01. The momenta were putted to be equal to zekd0)=0 and
energy as well as magnetization fluctuations continued t&(0)=0, i.e., the system was considered at the very begin-
damp exponentially with increasiny although a greater ning as one which does not move as a whole translationally
number of the iterations was necessary to reach the sanaand rotationally.

016105-7



I. P. OMELYAN, I. M. MRYGLOD, AND R. FOLK PHYSICAL REVIEW E64 016105

V. APPLICATIONS TO OTHER SYSTEMS: PURE 10
LIQUIDS AND HARMONIC OSCILLATOR 10 ~

The algorithm derived in the preceding section can also 10 -5}
be applied with equal successes to dynamics simulations of 10 -
other liquid models. For instance, letting formally=0, we
come to the usual equations of motion corresponding to a . 1077
pure liquid system. These equations can be integrated using 10 ~®
the first two lines of the same propagation equatiad), 10
where the terms witld in the right-hand side of the second
line must be omittedthe third line describes spin subdynam- 10 ™k
ics and is not relevant in this case 10

Our simulations of pure liquid dynamics were based on a 10 - . . .
system composed dfi=256 particles interacting through a o 4 8 12 18
cut-off Lennard-Jone@_J) potentialp(r)=®(r)—P(Ry) at lp

r<R.=3.25 with ¢(r)=0 otherwise, where FIG. 3. The averaged total energy fluctuatighss a function of
the reduced processor tim@ needed for the simulations of a

(17) Lennard-Jones liquid within the CPFold solid curve, usual
velocity Verlet(solid curve, VV}, and fourth-order velocity Verlet

o 12 o 6
o)
.(dashed curve, VWalgorithms.
The MD test runs have been performed at a reduced denS|t(y VAalg

of n*=0.845 and a reduced temperature Bf =kgT/U  the time stepr,,=0.005 and the numbers of iterations of
=1.7. For the purpose of comparison, the equations of mor=2 3 4, and 8 are plotted in Fig. 3 as a function of the
tion were integrated applying also a well-established velocityequced processor timk (where in this case=pcpro
Verlet (VV) algorithm[19,23 of the second order and its peeded to perform the run of the mentioned above length
forth-order (VV4) counterpar{18]. Our algorithm we will ¢+ —50. The fluctuations identified during the integration at
now call conservative of pure fluid dynami6SPFD algo-  ine time stepsr* = 7%/l using the VV algorithm withl
rithm. A typical maximal value for the reduced time stepin _q1 5 4 g and 16 as well as the VV4 algorithm with

. . . _ 1/2_ 1 1 L 1
simulating such a system ig,,=f(Wmo?)"*=0.005[24].  _'5 1 2, 4 are also included in this figure. The processor
All the runs started from a well equilibrated configuration tjme spent to carry out the VV run of the length=50 at
and covered an identical time interval of=t(u/ma?)"* 1« _ g 005 is assumed to be equal to unity in our dimension-

=50 (corresponding to 10000 time stepszt=0.005). less presentatiotp (wherep=1,2 and 5 for the VV, CPFD,
It is worth mentioning that the explicit VV integrator 5.4 \vv4 integrators

propagates the phase variables according to the relations — the |J energy fluctuations damp with increasihgs
2 ~172, ~17% and ~exp(—2.4) within the VV, VV4, and
ri(t+ ) =ri(t)+v(t)r+f(t) ==+ O(7°), CPFD integrations, respectively. Up to three intersection
2m points corresponding to the VV-VV4, VV4-CPFD, and
VV4-CPFD curves with the energy conservation levels of
T —5 —5 —7
Vi(t+ 7) = V() + [, () +f;(t+ 7) ]=— + O( ). £1~6X107°, £,~107>, and€3~3X 10" " can be observed
2m in Fig. 3. So that the usual VV algorithm is recommended to
be used when the precisighof energy conservation plays
not so important role in the computations, namely, wifen
{ri(t+7),vi(t+ 1)} =D(t, P){r;(t),v;(1)} + O( ), =¢,. The calculation with the_ help of _th_e V\_/4 integrator
appears to be most computationally efficient in the interme-
where D(t,7) denotes the evolutionary operator. The VV4 diate regimef;<£<¢,. Finally, when a very accurate con-
algorithm dealgsimilarly to the ED4 schemewith the five ~ servation£<&s, is required, the best choice is to apply the

d=4u

This propagation can be presented as

stages propagation CPFD algorithm because then it becomes to be most eco-
nomical.
° 5 The CPFD approach can also be used for the prediction of
{ri(t+7),vi(t+ T)}:kll D(t, & {ri(t),vi(t)}+O(7), dynamical phenomena in other many-body collectithgh

as the solar system, for instanand treated as an efficient

where the coefficientst, are & =¢&,=&,=£&=é=1/(4 numerical _solver of first-grder differential equations. The
— 43 and,=1—4¢. The VV approach needs only in one most notorious exampl(a\{mch can be analyzed analytically
force evaluatior{the most time-consuming part of the calcu- is the equationd®x/dt?=x= —x describing dynamics of a
lations per time steppyy=1, while p,\4s=5. The CPFD simple harmonic oscillator. This equation reduces to a sys-
algorithm requires two force evaluation per iteration withintem of two first-order differential equations=v and v =
the time step, i.e.pcpr=2. —X, which in turn can be reproduced from the first two lines

The averaged total energy fluctuation§=((E(t)  of general equation(2) putting formally r;=x, vi=v, ¢
—E(0))?)¥2/(uN) obtained within the CPFD integration at =x%/2, m;=1, andJ=0. Then in view of Eq(14), the time
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1.1 VI. CONCLUDING REMARKS
09 One of the most fundamental characteristics in physics are
07T the conservation laws. Therefore, it is desirable that the nu-
05T merical methods in computational physics obey these laws.
0.3 Unfortunately, the most popular algorithms, such as predic-
= 01 tor corrector, Runge-Kutta, Verlet, decomposition Suzuki-
Y _oal Trotter, etc., being applied to the nonlinear many-body prob-
_osf lem, do not preserve fundamental physical invaria_nts, such
_osl as energy and angular momentum, when these are inherent in
’ the description.
-o07p In the present paper we have tried to remedy such a situ-
-0.9} ation and formulated a completely conservative approach for
—11 "1" T - ’1'2 numerical integration of the equations of motion in classical
¢ systems. The approach is general enough to be used for a

wide class of systems such as spin and pure liquids, collec-
FIG. 4. Numerical solutions to the differential equatig(t) tions of charged particles, etc. It can also be considered for

= —x obtained during our newsolid curve and velocity-Verlet ~the prediction of other phenomena in physics, astrophysics,
(dashed curveintegrations at the time step=0.05T with T=4. chemistry, and biology, whenever the numerical solutions to

The exact resulk(t) =sin(X) is shown as open circles. systems of differential equations are necessary.

Our main attention in this study was concentrated on dy-
propagation reads(t+7)=x(t)+ r[v(t)+v(t+7)]/2 and namics of spin qugid_models in Which additional effects with
o(t)=0(t) ~r[X()+X(1+ ). The last o reiaons SPEC o, pre e are posee because of e eneroy
girrhzﬁcz(l)lt\gﬁeft)é?ilgsiﬂié » and the result for the ConserVat'w:“result, a new second-order MD algorjtr(ru:alled as CSFDp

has been consequently derived within the above presented

approach. Its greatest advantage is that all the integrals of
X(1)(1— 714 +v(t) T motion existing in the system, namely, the total energy, lin-
1+ 2/4 ' ear and. angular momenta, individual spin lengths, z_and total

magnetization are conserved independently on the size of the

time step. It is worth emphasizing that such a complete con-
x(t)+v(t)7/2 servation has been achieved intrinsically, i.e., without the
e — introduction of any artificial external forces or numerical

X(t+7)=

v(t+7)=v(t)—7

1+7%/4 constraints. Moreover, the resulting algorithm maintains the
time reversibility property inherent in the basic equations.
whereas the VV solutions are This is also important for long-duration MD observations
because the stability of an algorithm is closely connected
X(t+7)=x(t)(1— 72/2) +v(t) T, with its time reversibility[23].

The presented algorithm is implicit, i.e., it requires itera-
tive solutions. Thus, when a high precision in conservation is
not needed, the CSFD scheme may be less efficient in prac-
tice than explicit decomposition methofls6,17]. We have

Choosing the initial conditiong(0)=0 andx(0)=v(0)  shown, however, on the basis of an actual simulation of a
=1, the above two types of numerical trajectories can béleisenberg fluid model that when the total energy and mag-
compared between themselves and with respect to the exd@gtization must be reproduced precisely, the CSFD algorithm
solution x(t)=sin@) and x(t)=v(t)=cost). The result of M3 be in order or even more faster than the decomposition

comparison fox(t) is presented in Fig. 4 at a typical time integrators. Another important feature of the conservative
P P 9- yP method is that additional cancellations of the truncation un-
step of 7=0.05T, where T=27 denotes the period of the

lati A b v th i luti certainties are possible in microscopic solutions due to the
oscilialions. As can be seen easily, the conservative SolulioBy act preservation of the macroscopically observable inte-

leads to a better reproduction of the original dependence thafyais of motion, as was demonstrated analytically on a
the VV trajectory, despite the both CPFD and VV ap-simple example of the harmonic oscillator.

proaches are valid to the san@(r°) order in truncation For a particular case when the spin subsystem is absent,
errors. Therefore, additional cancellations of the truncationpne cSED algorithm reduces to a so-called CPFD integrator.
uncertainties are possible due to the exact preservation of th§hile this work has been done we have learned that this
integral of motion E=x?+x?=1 along the CPFD trajec- integrator is equivalent, in fact, to that developed indepen-
tory (note that maximal VV deviations i& consist of about dently by Greenspa25] as well as Gonzalez and Sirfi26].

20% at 7=0.05T). Similar cancellations of the truncation These authors, however, considered the integration in respect
uncertainties in microscopic solutions within our conserva-of applying it to mechanical systems when the number of
tive approach should be expected for other systems of differparticles is not very large. Here we have shown within the LJ
ential equations, in particular, for spin and pure liquid dy-model that the CPFD integrator can be used with equal suc-
namics. cess in MD simulations of pure liquids.

v(t+7)=v(t)— 7 x(t)(1— 7214)+v(t)7/2].
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