
PHYSICAL REVIEW E, VOLUME 64, 016105
Molecular dynamics simulations of spin and pure liquids with preservation
of all the conservation laws
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A methodology is developed to integrate numerically the equations of motion for classical many-body
systems in molecular dynamics simulations. Its distinguishable feature is the possibility to preserve, indepen-
dently on the size of the time step, all the conservation laws inherent in the description without breaking the
time reversibility. As a result, an implicit second-order algorithm is derived and applied to pure liquids, as well
as spin liquids, for which the dynamics is characterized by the conservation of total energy, linear and angular
momenta, as well as magnetization and individual spin lengths. It is demonstrated on the basis of Lennard-
Jones and Heisenberg fluid models that when such quantities as energy and magnetization must be conserved
perfectly, the algorithm turns out to be more efficient than popular decomposition integrators and standard
predictor-corrector schemes.
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I. INTRODUCTION

During the last years, considerable attention has been
cussed on computer studies of relaxation properties and c
cal phenomena in classical spin systems@1–9#. These studies
dealt mainly with lattice models such as the Ising,XY, and
Heisenberg models. Of current interest is the investigation
continuum spin liquid models@10–15# in which additional
dynamical effects are possible because of the coupling
tween spin and liquid subsystems.

Quite recently@16,17#, a set of symplectic algorithms o
different orders in the time step has been constructed
numerical integration of motion in the presence of bo
translational and spin degrees of freedom. As a conseque
the molecular dynamics~MD! simulations of a Heisenber
spin fluid have been carried out. The symplectic integrat
were derived by developing the Suzuki-Trotter techniq
@18# for decompositions of exponential operators. Their m
advantages over standard predictor-corrector schemes ar
plicitness, time reversibility, and exact conservation of s
lengths. It was also shown that the decomposition algorith
permit significantly larger time steps and lead to a substan
speedup of the calculations. In a particular case when
spin degrees of freedom are frozen, these algorithms ca
reduced to the well-known velocity Verlet integrator@19#,
widely used for simulating of pure liquid dynamics.

However, a decomposition~predictor-corrector and othe
existing traditional numerical schemes@20#, such as Runge
Kutta, etc.! approach does not preserve the total energy
magnetization of the system. In most MD applications
accuracy achieved for the energy-magnetization conserva
by the decomposition algorithms is high enough to obt
reliable results. Moreover, this accuracy can be impro
using higher-order versions@16# of the decomposition ap
proach or decreasing the step size. But if the integrals
motion have to be conserved perfectly, the nonconserva
algorithms may not be an optimal choice for the solution
the problem. The reason is that then the time step shoul
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divided into a lot of subintervals, reducing the efficiency
the computations considerably.

The exact conservation of integrals of motion is especia
important for simulations of spin liquids near phase tran
tions, when the phase diagrams, dynamical scaling, lo
time correlated behavior, or derivatives of the thermod
namic functions are investigated. This is so because in th
cases, the presence of artificial fluctuations in energy
magnetization may have a significant influence on the
sults. Therefore, it is desirable to look for an algorith
which conserves the fundamental physical invariants exa
or at least within machine accuracy.

In the present paper, a approach to numerical integra
of the equations of motion for spin and pure liquids is intr
duced. The main feature of this approach is its intrinsic pr
ervation of all the conservation laws inherent in the syst
without violating the time reversibility property. The paper
organized as follows. The basic equations and their integ
of motion are described in Sec. II. Sec III is devoted to
consequent derivation of the desired second-order algorit
Its possibility to exactly conserve the integrals of motion
demonstrated there also. In Secs. IV and V, the algorithm
tested in actual MD simulations on the Heisenberg a
Lennard-Jones fluid models, respectively, and compa
with previous numerical schemes. The discussion and c
cluding remarks are given in Sec. VI.

II. BASIC EQUATIONS OF MOTION
AND CONSERVATION LAWS

Let us consider a classicalN-body system described b
the Hamiltonian

H5(
i 51

N mivi
2

2
1

1

2 (
iÞ j

N

@w~r i j !2J~r i j !si•sj #, ~1!

where r i and vi are the translational position and velocit
respectively, of particlei with massmi carrying spinsi . The
fluid part of the potential is denoted byw(r i j ), whereas
©2001 The American Physical Society05-1
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J(r i j ) is the exchange integral corresponding to a pair
spins with the interparticle separationr i j 5ur i2r j u. Note that
within the classical approach, each spinsi is treated as a
continuous three-component vector with fixed length~put-
ting for convenienceusi u51, so thatJ will be measured in
energy units!. Although the results which will be obtaine
below can easily be adapted to a larger class of Hamilton
~to multicomponent systems, for instance!, we restrict our-
selves for the sake of simplicity to the basic model~1! which
represents a typical isotropic Heisenberg spin fluid@12,14#.
For J[0, Eq. ~1! reduces to a pure liquid model.

In MD simulations it is necessary to solve numerically t
equations of motiondr/dt5@r,H#, where@ , # denotes the
Poisson bracket andr[$r i ,vi ,si% is the full set of micro-
scopic phase variables. For the system under considera
the dynamical equations can be written more explic
@12,17#,

dr i

dt
5vi ,

dvi

dt
5

f i

mi
[2

1

mi
(

j ( j Þ i )

N S ]w i j

]r i j
2

]Ji j

]r i j
si•sj D r i j

r i j
,

~2!
dsi

dt
5

si

\
3gi[

si

\
3 (

j ( j Þ i )

N

Ji j sj .

Here, f i5( j ( j Þ i )f i j and gi5( j ( j Þ i )gi j are the force and in-
ternal magnetic field, respectively, acting on particlei due to
the interactionsf i j 52(w i j8 2Ji j8 si•sj )r i j /r i j and gi j 5Ji j sj

with all the rest of bodies, wherew i j [w(r i j ) and Ji j
[J(r i j ). Note that the quantum Poisson bracket was app
@5,12# to derive the equations for spin subdynamics. If
initial stater(0) is specified, the time evolutionr(t) can be
uniquely obtained by integrating Eq.~2!.

Taking into account the symmetryw i j 5w j i and Ji j 5Jji
of interaction potentials, it follows from Eq.~2! that the total
energyE[H, the total magnetizationM5( isi , the total lin-
ear momentumP5( imivi , as well as angular momentum
L5( imir i3vi are integrals of motion, i.e.,dE/dt5dM /dt
5dP/dt5dL /dt50. The structure of spin equations of m
tion @the last line of Eq.~2!# imposes in addition the conse
vation of individual spin lengthsusi u5si5const. Indeed,
dsi /dt5d(si•si)

1/2/dt5(si•dsi /dt)/si[si•@si3gi #/\si50,
be-
cause the equalitya@a3b#50 is valid for arbitrary vectorsa
and b. In addition, the exact solutions are time reversib
since the equations of motion are invariant with respec
the time inversion transformationt→2t, $vi ,si%→$2vi ,
2si%.

No existing numerical scheme can obey perfectly all
just mentioned properties. The exact conservation during
integration can be achieved only for some of the integrals
motion, such as linear momentum, for example. Usually, i
required that the deviations of conservative quantities fr
their original values to be within an acceptable level of p
cision. This results, however, in limitations on the size of t
time steps which actually can be used for MD simulating
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III. THE METHOD OF INTEGRATION

We will show in this section that it is possible to genera
time-reversible microscopic trajectories along of which
the integrals of motion are preserved at arbitrary finite ti
steps. Our derivation of the desired algorithm is started
considering a midpoint scheme of the second order. Acco
ing to this scheme, the dynamical variables can be pro
gated as

r~ t1t!5r~ t !1t@dr/dt# t1t/21O~t3!,

where t is the step size andO(t3) denotes the truncation
terms. In view of Eq.~2!, the explicit expressions for such
propagation read

r i~ t1t!5r i~ t !1tvi S t1
t

2D ,

vi~ t1t!5vi~ t !1t f i S t1
t

2D /mi ,

~3!
si~ t1t!5si~ t !1t @si3gi # t1t/2 /\,

where the midstep values ofvi , f i , and si3gi should be
specified additionally.

The only way to construct mid-point translational veloc
ties maintaining the time reversibility property is

tvi S t1
t

2D5
t

2
@vi~ t !1vi~ t1t!#1O~t3!. ~4!

The termsO(t3) of third and higher orders can be ignore
because the corresponding terms of the same orders
been truncated already within the midpoint approach. Eq
tion ~4! represents, in fact, an implicit interpolation formu
in which past ~at time t), and future~at t1t) values of
dynamical quantities enter symmetrically, assuring autom
cally the reversibility of the solutions.

In the case of translational forces, there are several po
bilities to build the midpoint values. The reason is that t
interparticle functionf i j [f(r i j ,si•sj ) depends explicitly on
relative positionr i j and orientationsi•sj which in turn vary
with time. Thus, we can apply the midpoint interpolatio
either to the functionf i j as a whole, or directly to the dy
namical variablesr i j and si•sj . As a result, two different
approaches to the force evaluation may be introduc
namely,

f i j S t1
t

2D5
1

2
†f„r i j ~ t !,@si•sj # t…1f„r i j ~ t1t!,@si•sj # t1t…‡

and

f i j S t1
t

2D5fS r i j S t1
t

2D ,@si•sj # t1t/2D . ~5!

The last approach requires the knowledge of midpoint val
for r i j and si•sj . The obvious choice for the relative pos
tions is
5-2
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r i j S t1
t

2D5
1

2
@r i j ~ t !1r i j ~ t1t!#. ~6!

The interpolation of the scalar product@si•sj # t1t/2 will be
described latter. None of the above approaches for evalua
f i j (t1t/2) can lead to a scheme with exact preservation
the total energy. The energy will only be conserved appro
mately with the precision within which the microscopic s
lutions are calculated, i.e.,E(t1t)5E(t)1O(t3).

We will show now that the second approach@Eq. ~5!# can
be modified in such a way as to compensate the loss
precision in the total energy. The idea lies in the followin
Since, according to Eq.~1!, the energy differenceE(t1t)
2E(t) is a function of the quantitiesw„r i j (t1t)… and
w„r i j (t)… as well asJ„r i j (t1t)… andJ„r i j (t)…, it is natural to
try to evaluate numerically the partial derivativesw8(r i j )
5]w/]r i j and J8(r i j )5]J/]r i j @which appear in Eq.~5! at
t1t/2# in terms of the same quantities, rather than to cal
late the derivatives analytically. This is possible because
any functionj(r i j ) depending only on the interparticle dis
tancer i j we can write the following two expressions:

dj~r i j !

dt
5

]j

]r i j

dr i j

dt
5j8~r i j !

r i j •vi j

r i j

and

dj~r i j !

dt U
t1t/2

5
j„r i j ~ t1t!…2j„r i j ~ t !…

t
1O~t2!,

the combinnation of which gives

j8~r i j !

r i j
U

t1t/2

5
j„r i j ~ t1t!…2j„r i j ~ t !…

t r i j S t1
t

2D •vi j S t1
t

2D 1O~t2!, ~7!

where the midpoint values of relative velocityvi j 5vi2vj are
calculated according to Eq.~4! as

vi j S t1
t

2D5
1

2
@vi j ~ t !1vi j ~ t1t!#.

Then choosingj[w,J, one finds the expression

t f i S t1
t

2D52 (
j ( j Þ i )

r i j S t1
t

2D
r i j S t1

t

2D •vi j S t1
t

2D $w„r i j ~ t1t!…

2w„r i j ~ t !…2@J„r i j ~ t1t!…2J„r i j ~ t !…#

3@si•sj # t1t/2% ~8!

for midstep translational forces, where theO(t3) terms have
been neglected.

Performing scalar multiplication of Eq.~8! with the vector
vi(t1t/2), then taking the sum over all the particlesi
51,2, . . . ,N), and using the fact that the double sum o
01610
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tained in the right-hand side is invariant with respect to
replacementsi↔ j , it can be shown that

t(
i 51

N

f i S t1
t

2D •vi S t1
t

2D52
1

2 (
iÞ j

N

$w„r i j ~ t1t!…

2w„r i j ~ t !…2@J„r i j ~ t1t!…

2J„r i j ~ t !…#@si•sj # t1t/2%.

Assuming for the moment that spin degrees of freedom
frozen ~i.e., that @si•sj # does not depend on time!, the last
relation can be presented in the form

t(
i 51

N

f i~ t1t/2!•vi~ t1t/2!5U~ t !2U~ t1t!,

whereU denotes the potential energy of the system. On
other hand, multiplying the second line of Eq.~3! by vi(t
1t/2) and summating over the particles yields

(
i

mi

2
„vi~ t1t!2vi~ t !…•„vi~ t1t!1vi~ t !…

[K~ t1t!2K~ t !5t(
i 51

N

f i S t1
t

2D •vi S t1
t

2D ,

whereK denotes the kinetic energy. We see, therefore, t
during the time propagation given by Eqs.~3! and ~8!, the
total energyE5K1U is conserved exactly for anyt, i.e.,
E(t1t)5E(t).

Note that Eqs.~7! and~8! are well defined when the scala
product r i j (t1t/2)vi j (t1t/2) tends to zero. This is so be
cause according to the first line of Eq.~3!, the midstep rela-
tive velocity is connected with the change in position by t
constraintvi j (t1t/2)5„r i j (t1t)2r i j (t)…/t. So that the sca-
lar product is merely equal to„r i j (t1t)1r i j (t)…•„r i j (t1t)
2r i j (t)…/(2t)[„r i j (t1t)1r i j (t)…„r i j (t1t)2r i j (t)…/(2t). As
a result, the right-hand side of Eq.~7! can be rewritten in the
following mathematically equivalent form:

j„r i j ~ t1t!…2j„r i j ~ t !…

r i j ~ t1t!2r i j ~ t !

2

r i j ~ t !1r i j ~ t1t!
1O~t2!, ~9!

which reduces to j8„r i j (t1t/2)…/r i j (t1t/2)1e2O(t2)
when the valueur i j (t1t)2r i j (t)u,e is small enough, where
r i j (t1t/2)5„r i j (t)1r i j (t1t)…/2 ande2 denotes a machine
zero.

The exact energy conservation can also be achieved in
presence of spin subdynamics. In order to show this,
freeze now the spin variables, and consider first the ques
of how to interpolate the vector productsi3gi arising in the
third line of Eq. ~3!. Again, since this product depends o
5-3
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time implicitly via dynamical variablessi and gi , we will
have here a lot of possibilities. The first of them,

@si3gi # t1t/25
1

2
@si~ t !3gi~ t !1si~ t1t!3gi~ t1t!#,

is not suitable because it does not lead to the conservatio
individual spin lengths, i.e.,si(t1t)5si(t)1O(t3). At the
same time, the second interpolation

@si3gi # t1t/25
1

2
@si~ t !1si~ t1t!#3gi S t1

t

2D ~10!

does conserve spin lengths exactly,si(t1t)5si(t), for arbi-
trary choice ofgi(t1t/2). Indeed, substituting Eq.~10! into
the propagation equationsi(t1t)5si(t)1t@si3gi # t1t/2 /\
and solving analytically the obtained expression with resp
to si(t1t), one obtains

si~ t1t!5
1

11~t2/4\2!@gi # t1t/2
2 H si~ t !1

t

\
si~ t !

3@gi # t1t/21
t2

4\2
@2@gi # t1t/2„@gi # t1t/2•si~ t !…

2„@gi # t1t/2…
2si~ t !#J . ~11!

As can be verified readily, Eq.~11! represents an unitar
transformation,si(t1t)5Qi(t,t)si(t), where Qi(t,t) is a
rotation matrix which, of course, does not change the no
of vectors.

Three different time-reversible interpolations can be int
duced for the factor @gi # t1t/2[gi(t1t/2)5( j ( j Þ i )
3@gi j # t1t/2 . They are

@gi j # t1t/25
J„r i j ~ t !…sj~ t !1J„r i j ~ t1t!…sj~ t1t!

2
,

@gi j # t1t/25JS r i j ~ t !1r i j ~ t1t!

2 D sj~ t !1sj~ t1t!

2
,

and

@gi j # t1t/25
J„r i j ~ t !…1J„r i j ~ t1t!…

2

sj~ t !1sj~ t1t!

2
.

~12!

The first approximation cannot be chosen for our purp
because it destroys the total magnetization of the system,
M (t1t)5M (t)1O(t3). The last two interpolations do re
produce the magnetization vector perfectly. Indeed, su
ming up the individual spin propagation@third of Eqs.~3!#
over all the particles and taking into account Eq.~10! gives
M (t1t)5M (t)1DM , where
01610
of

ct

-

e
e.,

-

DM5
t

4\ (
iÞ j

Ji j S t1
t

2D @si~ t !1si~ t1t!#

3@sj~ t !1sj~ t1t!#

and Ji j (t1t/2) may be equal either toJ@„r i j (t)1r i j (t
1t)…/2# or @J„r i j (t)…1J„r i j (t1t)…#/2. The termDM is can-
celed because of the invariance of the double sum with
spect to the transformationi↔ j , and of the obvious equality
a3b1b3a50 which fulfills for any vectorsa andb. Thus,
M (t1t)5M (t) in both the cases. However, in the first
them whenJi j (t1t/2)5J@„r i j (t)1r i j (t1t)…/2#, the energy
differenceE(t1t)2E(t), being a function of two quantities
J„r i j (t1t)… andJ„r i j (t)…, cannot be reduced to zero exact
using only one midpoint valueJ@„r i j (t)1r i j (t1t)…/2#.

At the same time, within the last third interpolation give
by Eq. ~12! we are able to perform such a reduction. T
demonstrate this, let us consider finally the interpolation
the spin scalar product@si•sj # t1t/2 appearing in Eq.~8!.
Similarly to Eq.~6!, one defines this interpolation in the form

@si•sj # t1t/25
1

2
@si~ t !•sj~ t !1si~ t1t!•sj~ t1t!#. ~13!

Then, using Eqs.~3!, ~8!, ~10!, and~12!, it can be shown that
the following equality holds:

(
iÞ j

N

@J„r i j ~ t1t!…2J„r i j ~ t !…#@si•sj # t1t/2

5(
iÞ j

N

@J„r i j ~ t1t!…si~ t1t!•sj~ t1t!

2J„r i j ~ t !…si~ t !•sj~ t !#[U (s)~ t !2U (s)~ t1t!,

whereU (s) denotes the spin part of the potential energy.
that, as in the case of frozen spin subdynamics, the s
t( i 51

N f i(t1t/2)vi(t1t/2) is reduced to the potential energ
differenceU(t)2U(t1t). But as was shown earlier usin
Eq. ~3!, this sum can be expressed also as the differe
K(t1t)2K(t) in the kinetic energy. This indicates aga
that the total energyE5K1U is conserved exactly, i.e.
E(t1t)5E(t), despite the microscopic solutionsr i(t1t),
vi(t1t), as well assi(t1t) are obtained with a limited
O(t3) accuracy. It is worth mentioning that the interpolatio

@si•sj # t1t/25
si~ t !1si~ t1t!

2
•

sj~ t !1sj~ t1t!

2

instead of Eq.~13! is possible, in principle, too but it will not
lead to the energy conservation.

The approach considered conserves also the total lin
and angular momenta, i.e.,P(t1t)5P(t) and L (t1t)
5L (t). The first follows directly from the structure of mid
point translational forces~8! for which ( i f i(t1t/2)50, so
that

(
i

mivi~ t1t!5(
i

mivi~ t !.
5-4
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Further, taking into account Eqs.~3! and ~4!, the position
propagation can be cast as

r i~ t1t!5r i~ t !1vi~ t !t1f i S t1
t

2D t2/2mi .

Then the sum( imir i(t1t)3vi(t1t) reduces to( imir i(t)
3vi(t)1t( ir i(t1t/2)3f i(t1t/2). The last term is can
celed since, according to Eq.~8!, the interparticle forces are
parallel to midstep vectorsr i j (t1t/2) and, thus, the secon
property

(
i

mir i~ t1t!3vi~ t1t!5(
i

mir i~ t !3vi~ t !

is also satisfied.
Thus, the desired algorithm of the second order has b

constructed. In view of Eqs.~3!, ~4!, ~6!–~10!, ~12!, and~13!,
the algorithm can be presented in the following comp
form:

r i~ t1t!5r i~ t !1
t

2
@vi~ t !1vi~ t1t!#,

vi~ t1t!5vi~ t !2
t

mi
(

j ( j Þ i )

r i j ~ t !1r i j ~ t1t!

r i j ~ t !1r i j ~ t1t!

3S w„r i j ~ t1t!…2w„r i j ~ t !…

r i j ~ t1t!2r i j ~ t !

2
J„r i j ~ t1t!…2J„r i j ~ t !…

r i j ~ t1t!2r i j ~ t !

3
si~ t !•sj~ t !1si~ t1t!•sj~ t1t!

2 D ,

si~ t1t!5si~ t !1
t

\

si~ t !1si~ t1t!

2

3 (
j ( j Þ i )

J„r i j ~ t !…1J„r i j ~ t1t!…

2

sj~ t !1sj~ t1t!

2
.

~14!

Equation~14! constitutes, in fact, a coupled system of thr
nonlinear vector equations for each particle with respec
the same number of unknownsr i(t1t), vi(t1t), and si(t
1t). The system can be solved in a quite efficient way
iteration, letting initially vi

(0)(t1t)5vi(t) and si
(0)(t1t)

5si(t) on the right-hand sides of Eq.~14!. Then the current
values forr i(t1t), vi(t1t), and si(t1t) obtained on the
left-hand sides of Eq.~14! are treated as initial guesses f
the next iteration. Already two iterations are sufficient
reach theO(t3) accuracy for the microscopic solutions an
energy conservation, i.e.,E(t1t)2E(t)5O(t3). The goal
of carrying out further several updates of Eq.~14! is to re-
duce the uncertainty«5E(t1t)2E(t) in energy deviation
to a negligibly small value~by adjusting the numberl>2 of
iterations for a givent). The rapid convergence«→10 is
01610
en
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guaranteed by the relative smallness of the step sizet and an
exponential decaying of« with increasingl ~see the next
section!.

It is interesting to remark that the total linear and angu
momenta are conserved exactly within each iteration of
~14!. The reason is that the interparticle forces are evalua
exploiting Newton’s third law and the velocitiesvi(t1t) are
updated before all (i 51,2, . . . ,N) the advanced position
r i(t1t) were calculated. For similar reasons, the magnet
tion conservation is also fulfilled for each iteration, when t
spins are updated according to the third line of Eq.~14!. In
this case, however, the individual spin lengths will only
preserved like energy in an iterative sense, i.e.,si(t1t)
2si(t)5O(«). Nevertheless, the spin lengths can be ma
tained exactly within each iteration by replacing this thi
line by its mathematically equivalent counterpart~11! @were
@gi # t1t/2 is evaluated with the help of Eq.~12!#.

IV. NUMERICAL TESTS: COMPARISON WITH OTHER
METHODS

In our MD simulations of the Heisenberg spin fluid@Eq.
~1!#, the Yukawa function@14#

Y~r !5w
s

r
expS s2r

s D ~15!

was used to describe the spin-spin interactions. The liq
subsystem was modelled by a soft-core potential@21#

w~r !54uF S s

r D 12

2S s

r D 6G1u ~16!

which accepts nonzero values atr ,21/6s andw(r )50 at r
>21/6s. Heres is the diameter of particles, andu as well as
w denote the intensities of core-core and spin-spin inter
tions, respectively. The simulations were carried out in
microcanonical ensemble forN51000 identical (mi[m,si
[1) particles in a cubic box of volumeV5L3 employing
periodic boundary conditions. The Yukawa function w
truncated atRc52.5s,L/2 and shifted to be zero at th
truncation point to avoid the force singularities, i.e.,J(r )
5Y(r )2Y(Rc) at r ,Rc and J(r )50 otherwise. We have
chosen the same thermodynamic point as considered in
vious papers@16,17#, namely, a reduced density ofn*
5Ns3/V50.6, a reduced temperature ofT* 5kBT/w51.5
,Tc* ~where kB is the Boltzmann’s constant andTc*
'2.055 the critical temperature of the system@22#!, and a
nonzero magnetization per particle ofuM u/N50.6536 as
well as the same values for the reduced core intensityu/w
51 and the dynamical coupling parameterd5s(mw)1/2/\
52.

The equations of motion were solved using a well est
lished Adams-Bashforth-Moulton~ABM ! predictor-corrector
integrator of the fourth order@20#, the explicit decomposition
schemes@16,17# of the second~ED! and forth~ED4! orders,
as well as our conservative spin fluid dynamics~CSFD! al-
gorithm @Eq. ~14!#. All the test runs were started from a
identical well equilibrated configuration. A typical examp
5-5
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for the reduced total energyE* 5E/w and magnetization
M5uM u per particle as depending on the length of the sim
lation is shown in subsets~a! and~b! of Fig. 1, respectively,
at a reduced time step oft* 5t(w/ms2)1/250.01.

The huge systematic deviations in the total energy
tained within the ABM approach@see the dashed curve i
Fig. 1~a!# points out clearly that it is highly unstable an
thus, not suitable for long-duration observations over the s
tem at the time step considered. We mention that in
ABM scheme, the dynamical variables are first predicted

r~ t1t!5r~ t !1@55ṙ~ t !259ṙ~ t2t!137ṙ~ t22t!

29ṙ~ t23t!#
t

24
1O~t5!,

and further iteratively corrected as

r~ t1t!5r~ t !1@9ṙ~ t1t!119ṙ~ t !25ṙ~ t2t!

1ṙ~ t22t!#
t

24
1O~t5!,

whereṙ5$vi ,f i /m,@si3gi #/\%. The strong instability of the
ABM integrator can be explained by the facts that it destro
the unit norm of spin lengths~although conserves the mag
netization vector! and generates time irreversible solutio
~as has been rigorously prover@23#, the numerical stability
follows directly from the reversibility of an algorithm!. For
this reason, the ABM as well as other existing predict
corrector schemes can be used only at very small time s
~namely, att* <0.00125, see Refs.@16,17#!, where they ex-
hibit similar equivalence in the energy conservation as t
of the decomposition algorithms. However, such small s

FIG. 1. The total energyE* /N ~a! and magnetizationM /N ~b!
per particle as functions of the lengtht/t of the simulations per-
formed for a Heisenberg spin fluid using the predictor-correc
@dashed curve in~a!, marked ABM#, decomposition~solid curves,
ED/ED4!, and our algorithms~bold solid horizontal lines, CSFD!.
Note that the ABM and ED4 curves are indistinguishable in~b!
from the CSFD line.
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sizes are inefficient, because then too much expensive f
and field recalculations have to be performed in order
cover the fixed observation time. Moreover, the AB
scheme is about twice times slower compared to the
integrator even if one iteration only is applied within th
corrector procedure.

No drift in the functionsE(t) and M (t) was recognized
within both the decomposition ED and ED4 algorithms
time steps up tot* [tmax* 50.01 and over a number of tim
steps oft/t5100 000. These algorithms, however, do n
conserve the total energy and magnetization exactly. Inst
the last functions fluctuate quite visibly especially in the E
case, as can be seen from Fig. 1. The ED4 energy fluc
tions are approximately a factor of 2 smaller than those
the ED algorithm. This compensates the additional proces
time needed to evaluate high-order expressions to some
tent. However, the ED4 algorithm allows one to reduce
magnetization deviations to a negligibly small level whi
does not exceed about̂@M (t)2M (0)#2&1/2/N;331029

even at the greatest time steptmax* , where ^ & denotes the
microcanonical averaging. It is worth mentioning that t
ED/ED4 energy-magnetization fluctuations are caused by
O(t3)/O(t5) truncation errors and thus they will increas
drastically with increasingt.

The situation is completely different in the case of o
approach, because the CSFD algorithm preserves the
grals of motion for arbitrary time steps. Of course, we can
apply too large step sizes (t* ;1) since then the micro-
scopic solutions will deviate considerably from their exa
counterparts and because of too large number of iterat
needed to achieve the convergence. Choosing, for insta
t* [tmax* 50.01 we have determined the following levelsE
in the averaged total energy fluctuationsE5^„E* (t)
2E* (0)…2&1/2/N at the end of the 100 000 time step run
9.231024, 2.331025, 3.131026, 2.231027, and 2.8
31028 corresponding to the numbersl of iterations 2, 3, 4,
6, and 8, respectively. We see, therefore, that the iterat
converge rapidly with increasingl and the uncertainties ca
be approximately described by the exponential depende
E;331024exp(21.2l ) at l>4. Of course, the iterative so
lutions require additional computational efforts, but they a
justified when a high level of the energy conservation
necessary. In order to demonstrate this, we have tried to
duce the energy fluctuations within the ED/ED4 algorithm
by decreasing the time step. The corresponding result forE at
the time steps 0.01, 0.005, 0.0025, and 0.00125, i.e., at*
[tmax* /l with l 51, 2, 4, and 8 is presented in Fig. 2 in com
parison with the above CSFD data.

As one can see, such a reduction of the ED/ED4 ene
fluctuations is not efficient, since the deviationsE behave as
; l 22, i.e., decrease with increasingl much more slower than
the exponential dependence obtained within the CSFD a
rithm. In view of the results of Fig. 2 and taking into accou
that at the same value ofl one needs approximately the sam
processor time with both the ED and CSFD algorithms~the
ED4 integrator needs the time larger by factor 5 and is l
economical! in order to investigate the system over an ide
tical time interval, we come to the following conclusion

r

5-6
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When the total energy must be conserved up to a precisio
E 0;1024 ~the intersection point of the ED and CSF
curves, see the horizontal dashed line in Fig. 2! or better, the
preference should be done to the CSFD algorithm. For
ample, a level ofE;1026 in the conservation is achieved
l;5 within the CSFD algorithm, while up atl;50 for the
ED scheme~the last value was obtained by extrapolating t
; l 22 dependence to largerl ). Thus the CSFD algorithm
appears to be approximately in 10 times faster than the
integrator at this level ofE. For E.E0, we can restrict our-
selves to the usual explicit decomposition integrators.

Note that despite the uncertaintiesE 0;1024 look quite
small, they can considerably influence some observable m
roscopic quantities. The influence can be estimated quan
tively in terms of the ratioG5@^„E(t)2E(0)…2&/^„U(t)
2U(0)…2&#1/2 of total and potential energy fluctuations. F
our systemU5^„U* (t)2U* (0)…2&1/2/N;1022, whereU*
5U/w, so thatG05E0 /U;1%. Usual investigated quant
ties, such as thermodynamic functions, structure factors,
will be calculated approximately with the same relative p
cision G0 ~provided the averaging over the produced traj
tories is performed during a sufficiently large time interval
be entitled to ignore the statistical noise!. However, when
long-tail time correlation functions or derivatives of the the
modynamic functions are involved in the computations,
impact of the artificial energy fluctuations on the results w
be much greater. For instance, the relative uncertainty in
measurements of the specific heat~which are based on a
microcanonical ensemble fluctuation formula! is estimated to
already be (G0)1/2;10%. This uncertainty may appear to b
too large to determine correctly a phase diagram of the
tem.

A similar pattern to that shown in Fig. 2 was observ
within the CSFD approach at greater time stepst.0.01. The
energy as well as magnetization fluctuations continued
damp exponentially with increasingl, although a greate
number of the iterations was necessary to reach the s

FIG. 2. The averaged total energy fluctuationsE as a function of
the numberl of iterations, obtained in the Heisenberg fluid simu
tions within the CSFD algorithm at the reduced time steptmax*
50.01 ~bold solid curve!. The levels ofE corresponding to the
decomposition integrators at the time stepst* [tmax* /l are con-
nected by solid~ED! and dashed~ED4! curves.
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level of the conservation. Note that a rotational matrix v
sion of the CSFD algorithm@when the third line of Eq.~14!
is replaced by Eq.~11!#, in which individual spin lengths are
maintained exactly within each iteration, leads to a som
what better energy preservation at a givenl ~but then the
total magnetization, similar to the energy, will be conserv
in the iterative sense, i.e., at sufficiently largel ). The CSFD
results presented above forE have been obtained using th
version for spin subdynamics propagations.

Further improvements in the efficiency of the CSFD alg
rithm can be reached applying the following computation
trick. It can occur that after a some period of time during t
integration process the energy differenceE(t)2E(0) corre-
sponding to the lastl th iteration~within a current time step
t/t) exceeds the difference obtained for the previousl
21)-th iteration. Such a situation is possible because
round-off errors and an accumulation of other numerical
certainties, especially at relatively small values ofl, where
the lack in the time reversibility can lead to an instability
the solutions~note the CSFD algorithm is time reversible
the iterative sense, i.e., at large enough values ofl ). Then to
avoid the accumulation, we should merely take the values
microscopic phase variables corresponding to this previ
( l 21)-th iteration. The trick with a flexible number of th
iterations will guarantee a good stability for smalll;2 –4 as
well.

Another technical detail concerns the way in which t
expression@j„r (t1t)…2j„r (t)…#/@r (t1t)2r (t)# @appear-
ing in Eq. ~14! for j[w,J# should be treated in the limi
r (t1t)→r (t). As was pointed out earlier, this expressio
must be computed using its limiting representationj8„@r (t)
1r (t1t)#/2…1e2O(t2) when the difference ur (t1t)
2r (t)u,e is small enough. Then lettinge2 being equal a
machine zero, the truncated terme2O(t2) can be ignored
completely. In our program code we have used a dou
precision throughout with 16 significant digits,e2510216, so
that the valuee was set to be equal to 1028. It is interesting
to remark that the conditionur i j (t1t)2r i j (t)u,e was never
achieved for any pairi j of particles during the simulation
and, thus, the limiting expression was never used. This
be explained by the fact that the probability of finding t
system in such a state is prohibitively small and is prop
tional to Ce. The coefficientC increases with increasing th
length of the simulations and the number of particles asC
;tN2. Thus, the limiting expression is expected to be a
plied for systems with a greater size or when extra lo
simulations are performed.

Finally, some words about the angular momentum cons
vation. As is well known, the periodic boundary condition
which are commonly used in MD simulations to reduce t
finite-size effects, destroy the angular momentum vec
Nevertheless, it has been established that this vector is
served in our simulations in mean, namely,^L (t)&'L (0).
Note that initial values for the total angular as well line
momenta were putted to be equal to zero,L (0)50 and
P(0)50, i.e., the system was considered at the very beg
ning as one which does not move as a whole translation
and rotationally.
5-7
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V. APPLICATIONS TO OTHER SYSTEMS: PURE
LIQUIDS AND HARMONIC OSCILLATOR

The algorithm derived in the preceding section can a
be applied with equal successes to dynamics simulation
other liquid models. For instance, letting formallyJ[0, we
come to the usual equations of motion corresponding t
pure liquid system. These equations can be integrated u
the first two lines of the same propagation equation~14!,
where the terms withJ in the right-hand side of the secon
line must be omitted~the third line describes spin subdynam
ics and is not relevant in this case!.

Our simulations of pure liquid dynamics were based o
system composed ofN5256 particles interacting through
cut-off Lennard-Jones~LJ! potentialw(r )5F(r )2F(Rc) at
r ,Rc53.25s with w(r )50 otherwise, where

F54uF S s

r D 12

2S s

r D 6G . ~17!

The MD test runs have been performed at a reduced den
of n* 50.845 and a reduced temperature ofT* 5kBT/u
51.7. For the purpose of comparison, the equations of m
tion were integrated applying also a well-established velo
Verlet ~VV ! algorithm @19,23# of the second order and it
forth-order ~VV4! counterpart@18#. Our algorithm we will
now call conservative of pure fluid dynamics~CPFD! algo-
rithm. A typical maximal value for the reduced time step
simulating such a system istmax* 5t(u/ms2)1/250.005 @24#.
All the runs started from a well equilibrated configuratio
and covered an identical time interval oft* 5t(u/ms2)1/2

550 ~corresponding to 10 000 time steps att* 50.005).
It is worth mentioning that the explicit VV integrato

propagates the phase variables according to the relation

r i~ t1t!5r i~ t !1vi~ t !t1f i~ t !
t2

2m
1O~t3!,

vi~ t1t!5vi~ t !1@ f i~ t !1f i~ t1t!#
t

2m
1O~t3!.

This propagation can be presented as

$r i~ t1t!,vi~ t1t!%5D~ t,t!$r i~ t !,vi~ t !%1O~t3!,

where D(t,t) denotes the evolutionary operator. The VV
algorithm deals~similarly to the ED4 scheme! with the five
stages propagation

$r i~ t1t!,vi~ t1t!%5)
k51

5

D~ t,jkt!$r i~ t !,vi~ t !%1O~t5!,

where the coefficientsjk are j15j25j45j5[j51/(4
241/3) andj35124j. The VV approach needs only in on
force evaluation~the most time-consuming part of the calc
lations! per time step,pVV51, while pVV455. The CPFD
algorithm requires two force evaluation per iteration with
the time step, i.e.,pCPFD52.

The averaged total energy fluctuationsE5^„E(t)
2E(0)…2&1/2/(uN) obtained within the CPFD integration a
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the time steptmax* 50.005 and the numbers of iterations
l 52, 3, 4, and 8 are plotted in Fig. 3 as a function of t
reduced processor timelp ~where in this casep5pCPFD)
needed to perform the run of the mentioned above len
t* 550. The fluctuations identified during the integration
the time stepst* 5tmax* /l using the VV algorithm withl
51, 2, 4, 8, and 16 as well as the VV4 algorithm withl
50.5, 1, 2, 4 are also included in this figure. The proces
time spent to carry out the VV run of the lengtht* 550 at
t* 50.005 is assumed to be equal to unity in our dimensi
less presentationlp ~wherep51,2 and 5 for the VV, CPFD,
and VV4 integrators!.

The LJ energy fluctuations damp with increasingl as
; l 22, ; l 24, and ;exp(22.4l ) within the VV, VV4, and
CPFD integrations, respectively. Up to three intersect
points corresponding to the VV-VV4, VV4-CPFD, an
VV4-CPFD curves with the energy conservation levels
E 1;631025, E 2;1025, andE 3;331027 can be observed
in Fig. 3. So that the usual VV algorithm is recommended
be used when the precisionE of energy conservation play
not so important role in the computations, namely, whenE
>E1. The calculation with the help of the VV4 integrato
appears to be most computationally efficient in the interm
diate regimeE3,E,E1. Finally, when a very accurate con
servationE,E3, is required, the best choice is to apply th
CPFD algorithm because then it becomes to be most e
nomical.

The CPFD approach can also be used for the predictio
dynamical phenomena in other many-body collections~such
as the solar system, for instance! and treated as an efficien
numerical solver of first-order differential equations. T
most notorious example~which can be analyzed analytically!

is the equationd2x/dt2[ ẍ52x describing dynamics of a
simple harmonic oscillator. This equation reduces to a s
tem of two first-order differential equationsẋ5v and v̇5
2x, which in turn can be reproduced from the first two lin
of general equation~2! putting formally r i[x, vi[v, w
5x2/2, mi[1, andJ50. Then in view of Eq.~14!, the time

FIG. 3. The averaged total energy fluctuationsE as a function of
the reduced processor timelp needed for the simulations of
Lennard-Jones liquid within the CPFD~bold solid curve!, usual
velocity Verlet ~solid curve, VV!, and fourth-order velocity Verlet
~dashed curve, VV4! algorithms.
5-8
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MOLECULAR DYNAMICS SIMULATIONS OF SPIN AND . . . PHYSICAL REVIEW E64 016105
propagation readsx(t1t)5x(t)1t @v(t)1v(t1t)#/2 and
v(t1t)5v(t)2t @x(t)1x(t1t)#. The last two relations
can be solved explicitly, and the result for the conservat
numerical trajectories is

x~ t1t!5
x~ t !~12t2/4!1v~ t !t

11t2/4
,

v~ t1t!5v~ t !2t
x~ t !1v~ t !t/2

11t2/4
,

whereas the VV solutions are

x~ t1t!5x~ t !~12t2/2!1v~ t !t,

v~ t1t!5v~ t !2t@x~ t !~12t2/4!1v~ t !t/2#.

Choosing the initial conditionsx(0)50 and ẋ(0)[v(0)
51, the above two types of numerical trajectories can
compared between themselves and with respect to the e
solution x(t)5sin(t) and ẋ(t)[v(t)5cos(t). The result of
comparison forx(t) is presented in Fig. 4 at a typical tim
step of t50.05T, whereT52p denotes the period of th
oscillations. As can be seen easily, the conservative solu
leads to a better reproduction of the original dependence
the VV trajectory, despite the both CPFD and VV a
proaches are valid to the sameO(t3) order in truncation
errors. Therefore, additional cancellations of the truncat
uncertainties are possible due to the exact preservation o
integral of motion 2E5 ẋ21x2[1 along the CPFD trajec
tory ~note that maximal VV deviations inE consist of about
20% at t50.05T). Similar cancellations of the truncatio
uncertainties in microscopic solutions within our conser
tive approach should be expected for other systems of dif
ential equations, in particular, for spin and pure liquid d
namics.

FIG. 4. Numerical solutions to the differential equationẍ(t)
52x obtained during our new~solid curve! and velocity-Verlet
~dashed curve! integrations at the time stept50.05T with T54p.
The exact resultx(t)5sin(x) is shown as open circles.
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VI. CONCLUDING REMARKS

One of the most fundamental characteristics in physics
the conservation laws. Therefore, it is desirable that the
merical methods in computational physics obey these la
Unfortunately, the most popular algorithms, such as pred
tor corrector, Runge-Kutta, Verlet, decomposition Suzu
Trotter, etc., being applied to the nonlinear many-body pr
lem, do not preserve fundamental physical invariants, s
as energy and angular momentum, when these are inhere
the description.

In the present paper we have tried to remedy such a s
ation and formulated a completely conservative approach
numerical integration of the equations of motion in classi
systems. The approach is general enough to be used
wide class of systems such as spin and pure liquids, col
tions of charged particles, etc. It can also be considered
the prediction of other phenomena in physics, astrophys
chemistry, and biology, whenever the numerical solutions
systems of differential equations are necessary.

Our main attention in this study was concentrated on
namics of spin liquid models in which additional effects wi
respect to pure liquids are possible because of the en
exchange between spin and liquid subsystems@15–17#. As a
result, a new second-order MD algorithm~called as CSFD!
has been consequently derived within the above prese
approach. Its greatest advantage is that all the integral
motion existing in the system, namely, the total energy, l
ear and angular momenta, individual spin lengths, and t
magnetization are conserved independently on the size o
time step. It is worth emphasizing that such a complete c
servation has been achieved intrinsically, i.e., without
introduction of any artificial external forces or numeric
constraints. Moreover, the resulting algorithm maintains
time reversibility property inherent in the basic equation
This is also important for long-duration MD observatio
because the stability of an algorithm is closely connec
with its time reversibility@23#.

The presented algorithm is implicit, i.e., it requires iter
tive solutions. Thus, when a high precision in conservation
not needed, the CSFD scheme may be less efficient in p
tice than explicit decomposition methods@16,17#. We have
shown, however, on the basis of an actual simulation o
Heisenberg fluid model that when the total energy and m
netization must be reproduced precisely, the CSFD algori
may be in order or even more faster than the decomposi
integrators. Another important feature of the conservat
method is that additional cancellations of the truncation
certainties are possible in microscopic solutions due to
exact preservation of the macroscopically observable in
grals of motion, as was demonstrated analytically on
simple example of the harmonic oscillator.

For a particular case when the spin subsystem is abs
the CSFD algorithm reduces to a so-called CPFD integra
While this work has been done we have learned that
integrator is equivalent, in fact, to that developed indep
dently by Greenspan@25# as well as Gonzalez and Simo@26#.
These authors, however, considered the integration in res
of applying it to mechanical systems when the number
particles is not very large. Here we have shown within the
model that the CPFD integrator can be used with equal s
cess in MD simulations of pure liquids.
5-9
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The approach presented can be adapted to m
component systems, optimized to a multiple time stepp
integration and extended to higher-order versions. These
other related problems will be the subject of a separate
vestigation.
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