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Statistics of atmospheric correlations
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For a large class of quantum systems, the statistical properties of their spectrum show remarkable agreement
with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider.
In this work, we show that the random matrix approach can be beneficially applied to a completely different
classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmo-
spheric parameters that characterize the state of atmosphere. We show that the spectrum of atmospheric
correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric
empirical correlation matrices that have physical significance are marked by deviations from the eigenvector

distribution.
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[. INTRODUCTION variability [9]—and in the study of financial assets and port-

folios through the Markowitz’s theory of optimal portfolios

The study of random matrix ensembles has brought in &410]. Most often, the analysis performed on the correlation
great deal of insight in several fields of physics ranging frommatrices is aimed at separating the signal from “noise,” i.e.,
nuclear, atomic and molecular physics, quantum chaos arf@ cull the physically meaningful modes of the correlation
mesoscopic systemil]. The interest in random matrices Matrix from the underlying noise. Several methods based on
arose from the need to understand the spectral properties bfonte Carlo simulations have been used for this purpose
the many-body quantum systems with complex interactiond.11]. The general premise of such methods is to simulate
With general assumptions about the symmetry properties ofnoise” by constructing an ensemble of matrices with ran-
the system dictated by gquantum physicsy random matriﬂom entries drawn from Specified distributions, and the sta-
theory (RMT) provides remarkably successful predictionstistical properties of its eigenvalues like the level density,
for the statistical properties of the spectrum, which have beeftc., are compared with that of the correlation matrices. Even
numerically and experimentally verified in the last few de-as the Monte Carlo techniques become computationally ex-
caded2]. In recent times, it has been realized that the flucPensive beyond a point, asymptotic formulations take over.
tuation properties of low-dimensional systems, e.g., chaotid he deviations from “pure noise” assumptions are inter-
quantum systems, are universal and can be modeled by &#eted as signals or symptoms of physical significance. In the
appropriate ensemble of random matri§8s From its ori-  context of the atmospheric sciences, empirical correlation
gins in quantum physics of high-dimensional systems, thénatrices are widely used, for example, to study the large
scope of RMT is further widening with the new approachesscale patterns of atmospheric variability. If the random ma-
based on supersymmetry methodd and applications in trix techniques are valid for a correlation matrix, it might be
seemingly disparate fields like quantum chromodynamicé!seful as a tool to separate the signal from the noise, with
[5], two-dimensional quantum gravity6], conformal field lesser computational expense than with methods based on
theory[j_] and even financial marketg]_ Thus, random ma- Monte Carlo techniques. We show that RMT prediction for
trix techniques have potential applications and utility in dis-€igenvector distribution has potential application in this di-
ciplines far outside of quantum physics. In this paper, we'ection for atmospheric correlation matrices.
show that the empirical correlation matrices that arise in at-
mospheric sciences can also be modeled as a random matrix
chosen from an appropriate ensemble.

The correlation studies are elegantly carried out in the The state of the atmosphere is governed by the classical
matrix framework. The empirical correlation matrices ariselaws of fluid motion and exhibits a great deal of correlations
in a multivariate setting in various disciplines, for instance,in various spatial and temporal scales. These correlations are
in the analysis of space-time data in general problems ofrucial to understand the short and long term trends in cli-
image processing and pattern recognition, in particular, fomate. Generally, atmospheric correlations can be recognized
image compression and denoisif&l—the weather and cli- from the study of empirical correlation matrices constructed
mate data are frequently subjected to principal componendsing the atmospheric data. Most significant correlations are
analysis to identify the independent modes of atmospheridocumented as teleconnection patterns, i.e., the simultaneous

correlations in the fluctuations of the large scale atmospheric

parameters at widely separated points on the earth. They

*Email address: msanthan@in.ibm.com could be thought of as the dominant modes of atmospheric
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Kanazawa, Yokohama 236-0001, Japan. Email addressiorthern hemisphere teleconnections and show that the
prabir@jamstec.go.jp dominant eigenmodes of the correlation matrices, in most
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FIG. 1. The NAO pattern from
the EOFs of monthly mean SLP
correlation matrix with the geo-
graphical map of the domain of
analysis in the background. The
contours are drawn after averag-
ing over the first two dominant
EOFs. Note the north-south dipole
shown as closed contours, in mid
Atlantic (dotted contourand over
Greenlandsolid contours

cases, reflect these teleconnection pattgt@k For instance, In general, any atmospheric paramezéx,t) (like wind

the North Atlantic oscillation(NAO) [13] refers to the ex- velocity, geopotential height, temperature, etaries with
change of the atmospheric mass between the Greenlangpacex and timet and is assumed to follow an average trend
Iceland region and the regions of North Atlantic ocean be-on which the variationgor anomalies as referred to in atmo-
tween 35° N and 40° N and is characterized by a northspheric sciencgsare superimposed, i.ez(X,t)=2y,4(X)
south dipole pattern as shown in Fig. 1. It is known that the+z’(x,t). The wind vectors can be represented as a complex
NAO is associated with anomalous weather patterns in eashumberse? wheres is the wind speed ané the direction.

ern U.S. and northern Europe including Scanding\idl.  Thus, in generalz(x,t) could be a complex number. The
Such dominant modes need not always have to be a telecomathematical treatment of complex correlations and EOFs is
nection. For example, the pattern in Fig. 2 can be identifieqjiven in Ref.[15]. In further analysis, the standardized
with the annual trade wind fluctuations in the equatorial Paanomaly z’'(x,t) will be used that will have zero mean
cific region, obtained as a dominant eigenmode from thgz’(x)=0] and is rescaled such that its Variar{zé(x)2> is
analysis of the pseudo-wind-stress vectors. In subsequephity. If the observations were takertimes at each of thp
sections, we will perform statistical analysis on the spectra o§patial locations and the corresponding anomali¢s, t) as-

atmospheric correlation matrices, whose dominant modesempled in the data matriz of orderpx n, then the spatial
display correlation patterns discussed above. Atmospherigorrelation matrix of the anomalies is given by

correlations are interesting to study from a RMT perspective

because they arise naturally from known physical interac- +

tions and offer instances to verify tw@rthogonal and uni- S= HZZ : 2.1
tary) of the three Gaussian ensembles of RMT.

Note that the elements of the Hermitian mat&of orderp
are just the Pearson correlation between various spatial
The empirical orthogonal functiofEOF) method, also points. The eigenfunctions @& are called the empirical or-
called the principal component analysis, is a multivariate stathogonal functions since they form a complete set of or-
tistical technique widely used in the analysis of geophysicathogonal basis to represent the data matrixn the geophys-
data[9]. It is similar to the singular value decomposition ical setting, the EOFs can be plotted as contour maps by
employed in linear algebra and it provides information aboutassociating each component with its corresponding spatial
the independent modes of variabilities exhibited by the systocation as shown in Fig. 1. If the eigenvalue corresponding
tem. to the mth eigenmode is\,,, then the percentage vari-

Empirical orthogonal functions
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ance associated with the mode is given hy, 400
=(Am/=P_17\{)100.0. Then, the dominant mode would cor-

respond to the EOF with the largest eigenvalue. In the last

few decades, several variants of this basic EOF technique 350
have been used to suit varied requiremé¢aisWe will show

that the spectrum o displays random-matrix-type spectral
statistics.

300

N(A)

Ill. EIGENVALUE STATISTICS

250 F VO I S
A. Data and analysis 0.01 0.02 003 0.04

Computing reliable correlation matrices depends on the ]
availability of a sufficiently long time series of data. Gener- 200 }
ally, the requirement is to hawe>p, as otherwise, the com- [
puted covariances could be noisy and correlations could be
regarded as random. Reliable records of monthly averages ol v L
for weather and climate parameters of interest exist for the 0.2 0.4 0.6 0.8 1
last 50 years. In our study, we use both the daily as well as A
the monthly averaged dfit"?‘ available from Na.tional Qenters FIG. 3. The integrated level density, in the form of a staircase,
for Environmental PredictionNCEP reanalysis archives for the eigenvalues of the monthly mean SLP correlation matrix.

[16]. Further in this direction, we study three casé8: The solid line is the empirical curve that fits the level density with
monthly mean sea-level pressu@LP) for the Atlantic do-  gark circles denoting the location of eigenvalues. The inset is mag-
main (0°-90° N,120° W-30° E), from 1948 to 1999, nified view of a part of the curve.

(i) monthly mean global sea surface temperatui®ST)

[17], and(iii) surface level pseudo-wind-stress vectors in thean empirical function to the average part of the integrated
equatorial  Pacific  ocean  (20°-20° N,130° E level density such that the unfolded eigenvalues
—70° W). The first case identifies many northern hemi-:Navg()\i) have mean spacing unif0]. All the analyses
sphere teleconnections, and its climatic effects and EOF aseported further were performed ep. As Fig. 3 shows, for
pects are document¢ti2]. Wind stress is an important quan- empirical correlation matrices, the spectrum is dense at the
tity in studies on coupled ocean-atmosphere models thabwer end. This is typical of the spectrum of correlation ma-
simulate the air-sea interaction and the feedback mechanisngices formed from the data matri through Eq.(2.1) [21].

The pseudo-wind-stress is defined &g= \/(u2+vz)(u In contrast to this, for a generic quantum system, the level
+iv), whereu and v are the zonal and meridional wind density increases with energy and is dense at the higher end
components and this leads to a complex correlation matrixef the spectrum.

Its EOFs exhibit signatures of the mean annual signal and El

Nino oscillationg18]. Note that the eigenmodes of the com- B. Level spacing distribution

plex correlation matrix are determined only up to a complex _
factor of unit modulus. This allows the freedom to choose a  One of the celebrated results of the random matrix theory
phase angle to rotate the eigenvectors. Is the nearest-neighbor eigenvalue spacing distribution, i.e.,

The atmospheric data is on an uniform spatial grid of 2.5°the distribution ofsi=¢;,;—¢; . It gives the probability for
along both the latitude and longitude. To ensure thap in  finding the neighboring levels with a given spacign the

the calculations with monthly mean data, the spatial resolu€ontext of this work, the Gaussian orthogonal ensemble

tion was reduced to 5°. Thus, for the casg of monthly (G.OE) is appropriate fgr the mean sea-level pressure corre-
mean SLP correlationg =434 andn=624. In the caséiii) Iat_lons and the Gau.SS|an unitary ensemi@&JE) is appro-

of monthly mean wind-stress analysis over equatorial Pacifihate for ps.e'udo-'wmd-stress veptors. The' spectra of these
ocean, the land points were removed from the calculationgl"’lss_es _EXh_'b't unlver_sal fluctuation properties and the spac-
using land-sea mask and it results pr=494 andn=624. ing distributions are given bj22],

Since a longer time series of monthly mean data was not - -

available, another experiment was performed with daily av- Pcoe(s) = Esexy{ - Zsz), (3.
eraged time series with much improved ratio fern/p in

the range 2.5-3.5. The required means and anomalies were

computed from which, matrices of orders ranging from 500 Poud(s)= 252 ex —isz 3.2

to 1200 are constructed and diagonalized using standard GUE 2 a | '
LAPACK routines[19].

First we look at the structure of eigenvalue density. TheThe analytical forms above indicate level repulsion, a ten-
integrated level densiti(\) ==0O (XA —\;) can be written as  dency against clustering, as evident from low probability for
N(N)=~Ng,g(N)+Ng (M), @a sum of the average part and the small spacings. The level repulsion is linear for GOE and
fluctuating part. The eigenvalues are unfolded by fitting quadratic for GUE.
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tween the theoretical curves and the empirical distributions is
observed in the analysis of daily averaged data, in both the
cases of SLP and pseudo-wind-stress correlations, since they
provide about 1000 eigenvalues for the statistics. For in-
stance, a Kolmogorov-Smirnov test at 65% confidence level
could not reject the hypothesis that GOE is the correct dis-
tribution for the eigenvalues of the monthly mean SLP cor-
relation matrix, whereas a similar test for the daily averaged
SLP data could not reject the hypothesis at 99% confidence
level. The monthly mean SST correlation matrix analysis
(not shown herealso supports RMT spacing distribution.
The eigenvalue spacing distribution for the equatorial Pacific
pseudo-wind-stress vector correlation matrix also indicates a
good agreement with the GUE prediction given by E212)

(see Fig. .

0.8 -

0.6 -

P(s)
o
=~

l

0.2 -

[ TS R B RS R C. Long-range correlations

0 1 2 3 4 . . o
s Beyond the nearest-neighbor spacing distribution, we

study the long-range correlations. We compute the following
spectral fluctuation measurg20] that are based on the two-
point correlation function.

(a) The spectral rigidity, the so-callefi; statistic, mea-
sures the least-square deviation of the spectral staircase func-
tion N(€) from the straight line of best fit for a finite interval
L of the spectrum,

FIG. 4. Eigenvalue spacing distribution for the monthly mean
SLP correlation matrix. The solid curve is the GOE prediction. The
inset shows the cumulative distribution for the monthly and daily
averaged correlation matrix.

In Fig. 4, we show the spacing distribution for the eigen-
values of the correlation matrix of the monthly mean SLP.
The inset in this figure shows the cumulative spacing distri- 1 LieL
bution for the spectra obtained from the analysis of monthly As(L,L")= Eminf . [N(e)—ae— b]?de, (3.3
and daily averaged SLP data. We observe a general agree- ab L
ment with the RMT predictions. In Fig. 5, the spectra from
the monthly mean wind-stress correlation data is shown. |
the spacingss were uncorrelated then we would expect a
Poisson distributiorP(s) = exp(—s) [20]. In all the cases we
studied, the empirical histograms do not follow the Poisso
curves at all. As would be expected, a better agreement b

herea andb are obtained from a least-squares fit. Average
over several choices @f' gives the spectral rigidityAz(L).

(b) The number varianc&? is also a function of two-
oint correlation function. Len(L,L’) be the number of
igenvalues in the spectral intendal Then, for a choice of
', 22 is given by

S2(L,L"y=n(L,L")%>—L? (3.4

Averaging n(L,L")? over L' gives the number variance
32(L). The asymptotic results for lardg from random ma-
trix considerations, is given bj22]

0.8
B 1
.06 A3(L)—;In(L)+gV, (3.5
w
2
o S2(L)=——In(L) +h,, 3.6
v

0= wherev=1,2 corresponds to GOE and GUE, respectivgly,

andh are also dependent on the ensemble.

Figure 6 shows thé& 5(L) statistic for the SLP and wind-
T NI AR R stress correlation matrix spectrum, computed using the
0 1 2 3 method given by Bohigas and GianndiZ0]. Generally, a
good agreement is observed with the RMT predictions. In all

FIG. 5. Eigenvalue spacing distribution for the monthly meanthe cases, for small the agreement is good and small de-
wind-stress correlation matrix. The solid curve is the GUE predic-viations begin to be seen for larger values indicating a pos-
tion. The inset shows the cumulative distribution for the monthly Sible breakdown of universality. In general, this should indi-
and daily averaged correlation matrix. cate system specific features that cannot be modeled by
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O L L D e both of which are modeled by the orthogonal ensemble of
02 - (@) B RMT. This, in itself, demonstrates the breadth of applica-
C ] tions of RMT.
0.15 | 4
Z 01 b = IV. STATISTICS OF EOF COMPONENTS
0.05 E E With the eigenvalue statistics, it is not straightforward to
Tr ] obtain detailed system specific information, unless there are
N ST R R B i significant deviations from random matrix predictions. The
C (b) N, distribution of eigenvector components, on the other hand,
0.3 ] reveals fine-grained information at the level of every eigen-
L ] vector. In this section, we show that almost all the EOFs
S02f - follow the RMT distribution. However, a few EOFs that
=i c ] have physical significance, like the ones shown in Figs. 1
01 L ] and 2, deviate strongly from RMT. Broadly, the variability
C ] captured by an EOF is seen to be reflected in its deviation
0:_....|....|....|....|_: from RMT predictions.
0 5 10 15 20 Let a" be thejth component of thenth eigenvector. As-

L suming that these components are Gaussian random vari-
ables with the norm being their only characteristic, it can be
shown that the distribution af=|a["|, in the limit when the

and in (b) the GOE prediction. The circles are for the correlation mzatrllx Q|m§n3|on is large, is given by the special cases of the
matrix obtained from daily averaged data and triangles represent th¥é distribution[23],
matrix obtained from the monthly mean data. L\ V2 vi2-1 .

P,,(r)z( ) ex;{ r))' (4.

assumptions based on randomness. Once again, we notice 2(r) (Z) 2

that the correlation matrix spectra obtained from daily data 2

show better agreement with RMT predictions, primarily due

to larger orders of correlation matrix involved and henceThe caser=1 can be identified with GOE and gives the
more eigenvalues for the analysis. Figure 7 shows the nuniell-known Porter-ThomasPT) distribution. The distribu-
ber varianceS2(L) for all the cases. We observe a fairly tion of complex eigenvectors correspond to the GUE class
good agreement with RMT predictions. The results for SLPWith »=2. The general understanding is that if the eigenvec-
and SST correlations are in broad agreement with the simildiors are sufficiently irregular in some sense, then its compo-

analysis performed on the financial correlation matriggs ~ hents arex” distributed and deviations occur if they show
some symptoms of regularity.

In further analysis, we will use the modulus square of the
EOF components, i.er,=|ajm|2, normalized to unit mean.

FIG. 6. A3(L) for spectra from the correlation matrix @&)
wind stress andb) SLP. The solid curve irfa) is GUE prediction

e e e e L B e o S B ) L s e o
a)

0.8 ] For the monthly mean SLP correlation matrix, Fig. 8 shows

] the cumulative distribution of EOF components. Since EOFs
a 0.6 o . E form an optimal basis to represent the data, most of the vari-
R4 ability is carried by a small number of EOFs; in this case

about 91% of the variability is captured by just 12 dominant
EOFs. The rest 9% is accounted for by the bulk of the rest
422 EOFs. The central result of this section is that the bulk
of these EOFs, accounting for a small fraction of the vari-
ability, follow the cumulative PT distribution given by(r)

0.2

IR IR

0

r g ° A
081 i =erf(\/2), where erf is the standard error function. This
.06 - strengthens the conclusion that the empirical correlation ma-
:,:/ N b trices can be modeled as a random matrix. As an example
04 7 from a large number of such EOFs, the distribution of the
0.2 E 3 294th EOF is showridenoted by dark circlgsn Fig. 8 and
“r 7 it practically falls on the PT curve. We observed that the
ol v v b i b by 0T distribution of all such EOFs follow RMT and this is also
0 1 2 3 4 5 confirmed by a Kolmogorov-Smirnov test.

L However, interesting cases arise from a small number of

FIG. 7. EZ(L) for spectra from the correlation matrix @) dominant EOFs that deviate strongly from RMT pI'EdiCtiOI’lS.
wind stress andb) SLP. The circles are for the correlation matrix The first two dominant EOFs shown in Fig. (&s dotted
obtained from daily averaged data and triangles represent the matrlines), representing about 30% and 22% of the entire vari-
obtained from the monthly mean data. ability, show significant deviations from the cumulative PT
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FIG. 8. Cumulative distribution of EOF components for the SLP  FIG. 9. Cumulative distribution of EOF components for the
correlation matrix. The solid curve is the Porter-Thomas distribu-pseudo-wind-stress correlations. The solid curve is the GUE predic-
tion. The curve with dark circles is a sample from the bulk of EOFstion. The curve with dark circles is a sample from the bulk of EOFs
that follow PT distribution. The two curves with dotted lines corre- that follow GUE. The dotted curves are for the first two dominant
spond to the first-two dominant EOFs, whose spatial map is showkOFs; the spatial map of dominant EOF is shown in Fig. 2. The
in Fig. 1. The long-dashed curves are the next few dominant EOFsurve with small dashe@narked as #is the 4th EOF that deviates
The curve with small dashesnarked as 4pis the 45th EOF that  significantly from the GUE curve.
surprisingly deviates from the PT curysee text

small fraction of the eigenstates, which display quantum lo-

curve. The spatial structure of both these eigenmodes, shovwgalization, deviate from random matrix predictioh24],
in Fig. 1, jointly captures the essence of the North Atlanticwhile most others show RMT-like behavior.
pattern. This scenario, of the most dominant of the EOFs There are two interesting observations in this study. First,
deviating from the PT distribution and lesser Significant Oneésyve notice that there are few EOFs, occurring at irregu|ar
showing agreement with it, is repeated in the analysis of SSTntervals, which do not carry much of a significance in terms
(not shown hergand daily averaged SLP correlations asof the variability but deviate strongly from RMT predictions.
v_veII. At this _pO|r_1t, we stress that these deviations are except is not immediately clear if they carry any significant infor-
tions that arise in about 1% of the EOFs. mation. Second, a surprising observation is that the EOFs

Figure 9 shows the cumulative distribution for the EOFscorresponding to first few eigenvalues at the lower end of the
obtained from the analySiS of the monthly mean Wind-Stresgpectrum, most often regarded as least dominant and ran-
correlation. Note that in this case, the appropriate predictiogjom, devoid of any system specific information, show
follows the unitary ensemble since the EOF components argarked deviations from RMTsee also Ref[7]). One such

complex. The dominant 20 EOFs explain nearly 90% of thesxample each for the GOE and GUE cases is shown in Figs.
variability in the wind-stress data. The rest of the large num-g gnd 9.

ber (about 400 of EOFs show good agreement with the cu-

mulative GUE curve for eigenvector distribution given by

I(_r)=1—exp(—r). One sgch case, 370th EOF, is shown in V. DISCUSSION AND CONCLUSION

Fig. 9 denoted by dark circles. In general, EOFs show good

agreement with RMT except for the few dominant EOFs. This work shows that the random matrix predictions are
The dominant EOF, whose spatial pattern is shown in Fig. 2pf considerable interest in the study of the correlation matri-
represents the mean annual Pacific trade-wind fluctuationges that arise in atmospheric sciences. Previous work on the
and explains 38% of the variability and shows pronouncecdorrelations of stock market fluctuations has come to similar
deviation from the cumulative GUE curve. The next few conclusion7]. This is despite the following basic difference,
dominant EOFs also exhibit significant deviations. LeglerRMT assumes that the quantum Hamiltonian matrix is part
[18] has performed EOF analysis on the Pacific ocean windef an ensemble of random matrices whose entries are inde-
stress vectors and attributed physical significance to the topendent random numbers drawn from a Gaussian distribu-
three dominant EOFs. Thus, EOFs that have physical signifiton. In the correlation matrix formalism, the elements of
cance, cannot be modeled by RMT ensembles. An analoggata matrix are independent Gaussian distributed random
with quantum eigenstates seems inevitable. Studies on thmumbers. Then, the correlation matrix in E§.1 follows
distribution of the eigenfunctions of low-disorder tight- the Wishart structurf25], a form of generalizeg/? distribu-
binding systems and chaotic quantum systems show that téon.
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In the application of EOFs in various disciplines, an im-  In summary, we have analyzed atmospheric correlation
portant question is the truncation of EOFs while opting for amatrices from the perspective of the random matrix theory.
low-dimensional representation for a given data matrix. Thelhe central result of this work is that they can be modeled as
earlier approaches to this problem were based on MontE2hdom matrices chosen from an appropriate RMT en-
Carlo techniques or asymptotic theor{@11]. It would be semble. The eigenvalue statistics exhibits short- and long-

interesting to evolve a truncation criteria, for using EOFs a%'gvr\‘lgg]emg&%}’_ ?;pgegiag\gg\r/'eﬁg‘:’t d?g:ﬂgu%gﬁnglgxejoﬂ?g;ﬂ'

empirical basis, from random matrix technlqges since theEigenmodes that have physical significance deviate from
results here suggest that RMT could be potentially applied g\ predictions. We have verified our conclusions with ex-

separate the random modes from the physically significanymples of correlation matrices that belong to GOE and GUE

modes of the correlation matrix. universality classes of the random matrix theory.
Even as we have documented evidence for RMT-like be-
havior from the atmospheric correlation matrices, there is ACKNOWLEDGMENTS

also a need to look at the limits of RMT description. For 11,4 atmospheric data used in this work is the NCEP re-
instance, a correlation matrix that shows perfect correlatior(n}mab,siS data provided by NOAA-CIRES Climate Diagnos-
will obviously not behave like RMT. Can correlation matrix tics ‘Center, Boulder, CO, from their web site at http://
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