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Metastable states in glassy systems
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Truly stable metastable states are an artifact of the mean-field approximation or the zero-temperature limit.
If such appealing concepts in glass theory as configurational entropy are to have a meaning beyond these
approximations, one needs to cast them in a form involving states with finite lifetimes. Starting from elemen-
tary examples and using the results of Gaveau and Schulman, we propose a simple expression for the con-
figurational entropy and revisit the question of taking flat averages over metastable states. The construction is
applicable to finite-dimensional systems, and we explicitly show that for simple mean-field glass models it
recovers, justifies, and generalizes the known results. The calculation emphasises the appearance of new
dynamical order parameters.
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[. INTRODUCTION observables by averaging the values they take over all
blocked configurations of a certain volume. It later turned
Slowly relaxing systems such as glasses or compactingut that mean-field glass moddl3,4] relaxing at zero tem-
granular media can be viewed as having fast, local, quasRerature had exactly Edwards’ ergodicity propef§j: at
equilibrium dynamics, plus a slow, nonequilibrium drift. long times any nonequilibrium observable is correctly given

These two superposed motions can take different forms?Y the typical value it takes over all local energy minima of
the appropriate energy density.

‘cage” V|brat_|ons plus structu_ral rearrangements in glasses; A first problem arises when one wishes to apply this con-
bulk fluctuations plqs domamjwall motion In coarsening cept at finite temperaturder vibration, in the case of granu-
problems; etc. At a given long time, the fast motion COVers d5 mediy. There again, the mean-field case offers a sugges-
region of phase space which one may picture as a “metagon: at nonzero temperature Edwards’ argument works as
stable state.” N well, provided one substitutes “energy minima” by “free-
~ Even though metastable states are a familiar and appeainergy minima” (“states”). This construction is possible
ing concept, it turns out that defining them in an unambigu-because within mean field we have a well-defined notion of
ous manner in non-mean-field models is quite subtle. This imree_energy landscape, whose local minima are in s@ue
turn has as a consequence that such standard ideas in glags all) cases related to completely stable distributions. How-
theory as “configurational entropyfrelated to the number ever, as discussed by Franz and Virasf@h one needs to
of metastable statpsre not only hard to calculate, but are consider “quasistates” with finite lifetimes in order to un-
indeed, with the exception of some fortunate cases, approxiderstand the situation at finite waiting times.
mate asconcepts In finite-dimensional problems, a high-lying metastable
In this paper we show how these questions can be put ogtate cannot have an infinite lifetime: there is always a finite
a well defined basis using a formalig] that does not rely ~ probability of escape through the nucleation of a droplet of a
on specifically mean-field concepts. First of all, given thatmore favorable phase. Hence, which distribution one consid-
one can simulate and in certain cases calculate analyticall§'S @ metastable depends always on which lifetimes one is
the complete history of a sample starting from a quench, whionsidering. For example, the concept of “configurational
should one have any need to introduce the apparently urgntropy” (the logarithm of the number of stajesbiquitous
needed notion of “metastable state”? Indeed, these statdd glass theory, has in finite dimensions only a meaning with
only come into play when one wishes to make argument? time scale attached. Moreover, even the mere definition of

“ : = i an Edwards distribution is not as simple, quite apart from the
such as “phase space contains such and such a dIStrIbUtIcgﬂuestion of the validity of the ergodicitylike hypothesis it

of states, which will be accessed with such and such a prObaissumes
ability by a typical dynamical history. Long-time out of equi- In Sec. Il we shall review the notion of metastable state

librium observables can be directly calculated by averagingyithin mean-field glass models and how the knowledge of
the observables over some subset of states—and further rgfejr gistribution allows us in certain cases to reproduce

erence to dynamics may be omitted.” some results obtained from the full solution of the out of
This kind of “ergodic” argument was pioneered by Ed- equilibrium dynamics. We shall also mention some limita-

wards[2], who proposed that in compacting or slowly flow- tions found even at this level of the identification “free-
ing granular systems one can obtain the correct dynamicanergy minimum-stable state.”

In Sec. Ill we discuss a strategy valid in any dimension
for the definition and calculation of metastable states based
*Unite Mixte de Recherche du Centre National de la Recherchen the evolution operator developed by Gaveau and Schul-
Scientifique de I'Ecole Normale Supeure. man[1]. We discuss how one can thus recast the question of
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configurational entropy and Edwards’ distribution in a form
relevant in finite dimensions at nonzero temperat(we frap({mi})=
stronger vibration, in the case of granular medig consid-
ering finite-lifetime metastable states, in the spirit of the B
“quasistates” discussed in Reff6]. - Z[l—qp—pqp‘l(l—q)]—TS({mi}),

In Sec. IV we apply this method to a simple mean-field
glass model. We show how one can rederive in this way both (5
the number of states and the dynamics inside a state, within

a framework whose applicability goes beyond mean field. WhereNg=X;m{ and S({m;}) is given in Eq.(3) for the
spherical and Ismg cases, respectively.

Within the TAP approach, one signature of the glass tran-
sition is the fact that the free ener¢fy) has, below a critical
Consider the mean-field model of ferromagnet temperature, many~¢e®") minima[10-13. The main dif-
ference between mean-field versionsspin and structural
1 glasses is seen, in the TAP approach, in the way states are
E=— mE Ss-hXY S, (1)  separated. o _
I i Given the analogies with the ferromagnet, it seems very
tempting to attribute to the minima of E¢) a dynamical
where the sum is over all spins. The spins can be Ising Sineaning of “state.” For the models with=3 this has been
==+1 or spherical};S’=N. One can easily obtain a free done[14,15 by starting from a configuration where the co-
energy in terms of local magnetizatioms,=(S;) (where ordinates are as close as possible to having a givenand
(---) means the average over the Gibbs megsure then checking that the subsequent dynamical evolution is a
stable, quasiequilibrium situation confined to a region of
1 phase space in such a way th&)ime averags= Mf -
f({mi}):_mz mm;—h> m-TS{m}), (2 On the contrary, for models such as the Sherrington-
7 ' Kirkpatrick model the identification of all TAP minima with
) stable states seems to breaks down. Let us formulate a heu-
where T=1/8 denotes the temperature aSf{m;}) is the  (isiic argument to see this. Decreasing temperature, minima
usual entropic term split in a second-order transition manner. At least a fraction
of the minima are “born” this way[16], and to get an ex-
ponential number of minima one needs that on average there

II. A FORTUNATE CASE: MEAN-FIELD MODELS

Smi})=—i 12[(1—mi)ln(L—mi) is a division everyO(1/N) change in temperature. Hence, a
_ _ _ _ . . fraction of TAP solutions are jus2(1/N) below their critical
S({mip)=—i 12[(1—mi)in(1—mi)+(1+mi)in(1+mi)] for tSimperhture, and under those circumstances barriers cannot
1 be large enough to dynamically separate them from their
=5In(1-q) spherical model (3 twins.”

FDT temperature. Long-time out of equilibrium observ-
ables The dynamics of modd#) following a quench below
andNg=3N ,m?. the critical temperature can be solved analyticdlly,4].

The states are represented by the minimé ¢t T<T.  One finds that the system never equilibrates, and remains
there are two, and the deeper one dominates the Boltzmar&ging just above a threshold level of energy densjtyand
distribution. If h>>0 one of the states becomes metastablefree energy densityfy, higher than the equilibrium ones.
within mean field its lifetime is infinite, but in finite dimen- Given any two observable& and B, one can define their

sions it will decay. dynamic correlation function
The TAP approachNext, consider the glassy Hamilto-

nians: Cas(t,t")=(A(t)B(t")) (6)

1 and the integrated responggg to a fieldhg conjugate toB
E=— ol iy SSi (4)  acting continuously between tim¢s andt:
P P P P
. _ XAM)
whereJ; _; are independent random variables with vari- xn(t,t')= Shy (7)

ance p!/2NP~1. The Ising version withp=2 is the
Sherrington-Kirkpatrick model, the mean-field version of where the averages are over the dynamical realization.
spin glasses. The models witt=3 are instead systems hav- If one makes a parametric plot ofag(t,t’) versus
ing a behavior resemblingtructural glasseg7,8]. Cag(t,t’) one obtains for model) with p>2 at long times

It turns out that one can find for these models a free ena curve as in Fig. 1. One has in addition to the straight line
ergy function analogous to EqR) (the “TAP” free energy  with gradient—1/T (as in equilibrium), another straight line
[9]), in terms of local magnetizations; : of gradient, say,— 1/T, associated to the slow relaxation.
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barrassing situation that it is not entirely obvious what one
means by “metastable state” in finite dimensions, as we
now discuss.

The problem with finite dimensional and driven systems

5 In finite dimensions and nonzero temperature nucleation ar-
\ guments suggest that a distribution with dynamical free en-
ergy density(to be defined belowhigher than the equilib-
rium one should decay through nucleation in finite times. We
are hence in a situation in which we have no absolute notion
of state without making reference to a time sd@ed hence
to dynamic$: two different distributions may be confused
into a single state or be treated as two separate entities de-
pending on whether the time to go from one to the other is
FIG. 1. A fluctuation-dissipation plot. The straight line to the smaller than or larger than the time scale considered.
left defines the effective temperature. If we are interested in systems driven by shear or by vi-
bration, we have the additional problem that even in the

Ter is the same for every pair of observablesndB, and it mean-field case the distribution_ is not Gi.b.bsian within a

can be showi18] that it satisfies all the properties of a true State. In a vibrated case, the notion of stability must be sub-

temperature. stituted by the notion of periodicity, so that a “state” will
The appearance of a temperature in a system is an indic&JM out to be a structure periodic in time. _

tion of some form of ergodicity, in this case clearly not the ~Before entering into the present approach, let us mention

usual Gibbs-Boltzmann equilibrium at temperatdre In-  that a pragmatic way of dealing with these difficulties, at

deed, soon after the dynamical solution was obtained, Mol€ast at very short time-scales, is the so-called “inherent

nasson and Virasorfil9,20] observed that the temperature Structure” constructior{27]. Though it does not solve the

Ter could be reobtained from the TAP approach withoutduestions of principle mentioned aboj&g], it offers a prac-

making any reference to the dynamics: Defining the comlical way around applicable to concrete problems.

plexity (or configurational entropyS(f ) as the logarithm of

the number of TAP solutions of a given free energy, onelll. DYNAMICAL DEFINITION OF METASTABLE STATES

checks that

X(7 + tu, tw)

0 1 I 1 1
0.2 0.4 0.6 0.8 1

C(7T + tw, tw)

Let us consider a system evolving with stochastic dynam-
ics, which for definiteness we shall consider is of the Lange-

i: oS(f) (8) vin form. The probability distribution will evolve according
Test of ff to
th
How this equality follows from Edwards’ assumption is dis- m: —HP(S,1),
cussed in Ref[6]. dt
Furthermore, one can also see that the long-time values of
macroscopic observables are given by the flat average of H=— i(TiJr E) 9)
their values taken over all TAP solutions of the dynamical IS\ 9§ 9§/’

energy densityy,. Hence, we have a strong indication for a . .
measure in the manner of Edwards, this time applied to TARvhereH is the Fokker-Planck operator. The potential energy

states. E can be time-dependent, and furthermore one can add to
If the system has large, but finite size, it will slowly ap- (?E/dS) forces that do not derive from a potential.
proach equilibrium. In that case, a plot similar to Fig. 1 will ~ Given a probability distributiorP, one can define a dy-
show that the two tracts slowly tend to become parallel andamic free energy
Tew(t) (now a function of timg tends toT. Inspired by the
work of Bonilla et al. [21], Nieuwenhuzeri22] conjectured
that one could extend the relatigé) for all times, using the
TAP solutions of the energy level appropriate at each time. o . , . .
Later on, a two-temperaturg versusC plot (and hence If H is time-independent, any stationary configuration satis-
the existence of an FDT temperatufg; was seen to occur fies
in realistic models such as three-dimensional Lennard-Jones
glasses[23—-2§. Several of these simulations where per-

F(t)=f[TP(S,t)|n P(Sit)+E(S)P(S,t)]ds. (10

H Pstationary: 0. (11)

formed at temperaturezbovethe putative equilibrium glass \joreover, writing any  distribution  as P(x,t)
tempergture, so that the emstencg ofstowly evolving =3¢,(t) i (x), wherey (x) are the right eigenvectors &f
well-defined T¢ is surely a dynamical phenomenon, unre-

lated to the structure of equilibrium states. If one wishes to Hlg)=Nil ), (12

consider this as a symptom of slowly evolving flat distribu-
tion between metastable states, one finds oneself in the erthe evolution equatiof®) implies
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ci(t)=cle Mt (13

o

o
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\
\
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We see that iP is to vary slowly it has to be concentrated on
eigenvectors with low eigenvalues. Indeed, each; is an

ARALARRRRAY

M
N\

inverse time scal§29,30. In the following subsections we — >

shall motivate and discuss an identification of the set of Z %i% "

small eigenvaluey;’s with metastable states. = ="
Motivation Consider first the system of two hard disks 2;//%2////

performing Langevin dynamics in a bdkig. 2). Clearly, if Z/%/Z?/

the disks are really not interpenetrable, there are two (_j|ffer- g%g;/// '

ent ergodic components, each composed of the mirror image =

of the configurations of the other. Symmetry implies that the -

spectrum of the Fokker-Planck operator is doubly degener-

ate. The two lowestzerg eigenvalues correspond to two FIG. 2. A system with two ergodic components.
stationary distributions. One can construct an associated ei- . . L
genvector as the flat distribution over all pairs of coordinates NiS Shows that the number of states “below the gap” coin-
of the centers of the disks such that they do not superposades with the number of ergodic components.

and such that the “disk A” is to the right and “disk B” to In the preceding examples the ergodic components are

the left, and similarly a second eigenvector corresponding t&trlctly separated. However, in most applications this is not

having the disk B to the right and A to the left. These are thethe case: there is in fact a passage time between components

“pure states”: any linear combination of these two distribu- that only 'bec.omes infinite in some limit. To understand the
tions will be an “impure” state. The next higher eigenvalues construction in these cases, consider a very low-temperature

are equal to the inverse of the time needed for the particles tgangevm process occurring in asymmetric and symmetric

explore their ergodic component. Note, in passing, that thi ouble-well potentials as in Fig. 3. On the left of the figure
we show the lowest levels of the spectrum for both cases,

hard-spheres system is the typical example in which the in . .
herent structure construction is not meaningful while theand at the top the correspond'lng eigenvectors. For the asym-
present one has no problem. metrlc case, th(_a two lowest .elgenvalues are separat_eq by the
In this example we have strictly two ergodic components,'m’erse Ar_rhenlus escape time frpm the h|ghest_ minimum.
corresponding to twofold ground state degeneracy of théA‘" other e|ge.nvalues are muqh highieD(1)], and_ include .
Fokker-Planck operator. This is indeed very general: suppoa@e escape time _from a maximum, etc. The e‘!genflyjincnon
we havep ergodic components, ... C,, with typical times abeledr_;\ is essentially posmvg and repres_ent_s a “pure” state
t1,....t, required to explore each component. We can Con-Pl’ W.h'le one can Wake a linear combinatiéy = (a+ b)
struct an independent eigenvector with zero eigenvalue usinﬁ.at. will also be positive ar!d concentrated on f[he.m.etastable
the stationary distributior®,(x) restricted to each compo- inimum. For the symmetric well the situation is similar, but

nentC,. These completely span the zero eigenvalue supow 1t is the linear comb‘|‘nat|o!?§>1=(a+ b) and P,=(a .
space. To show this, we calculate —b) that play the role of “pure” states. Any other combi-

nation of the formyP;+ (1—y)P, with 0<y<1 will give

an “impure” (almos) steady state. Note that these defini-

tr[e*‘*H]:f dxf dy(x|e”"/2H|y)(y|e T"/2H|x) tions make sense in the time window in which we can con-
sider the exponential Arrhenius times much larger that any

other time involved O(1)], and this will happen only in the

PP
=> > dxf dy(x|e”("/2H|y) low-temperature limit.
a=1b=1 JxeC, yeCy

X(yle~(*12H|x) - A °

p
5[] ayene ey
a=1 JxeCy yeCqy

X(yle™ "2H|x), (14)

If we now take t* much larger than all thet;, om
(yle™("2H)xy =P (y), the equilibrium probability foy re-

sHtricted to the ergodic componeatto which x belongs. 2 =t ~expiem
ence,

T~0

p p
we M=% 3 [ ax| aypoop)=p.
a=1b=1 Jxe(, yeCy

FIG. 3. A sketch of eigenfunctions and spectrum of the Fokker-
(15 Planck operator at low temperature.
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If the temperature is nonzero, a separation of time scale8s a consequence th®;) vectors have all the good proper-
can happen as a result of the thermodynamicalothe)  ties to represents metastable states: they are positive normal-
limit. For example, it is easy to see that a mean-field ferroized distributions, nonzero only on different regions of the
magnet at & T<T,. will have a similar spectrum, but with  configuration space and they are stationary on time scales
playing the role of large parameter instead of .1The case less thant*. In the proof, as in the simple example of the
of finite-dimensional ferromagnets is slightly more subtle:previous subsection, the definition is unavoidably linked to a
we have there a timescale for domain excitations within @ime scale: if one considers really infinite times, before any
state that can be as large as a power lavNifthe time it  other limit, then the distinction between states vanishes. Fur-
takes for a large domain to collapsand a much longer time thermore, it is assumed the number of states so defined re-
Sca|e e\,eCN(dil)/d) for going from one phase to the Other_ mainS f|n|te in the thel’modynamic ||m|t We be”eve that

The construction of Gaveau and Schulmeangeneral, the  90ing to situations in which this is not the cages we will
low eigenvalue spectrum can correspond to more than tw§elow is indeed not entirely innocent, but is at the heart of
eigenvectors. One can now ask in general whether all thes@ite a few problems associated to the definition of “state”
eignevectorgor combinations of theinrepresent positive, N glassy systems(We have already encountered such
stable distributions, and whether one can construct as marfbtieties when we discussed TAP minima in the
pure states as there are low eigenvalues. In a series of papérgerrington-Kirkpatrick modg|
[1], Gaveau, Schulman, and Lesne showed this to be the Driven systemsThe construction described above is not
case, gave recipes for the explicit construction of the purdimited to purely relaxational or time-independent systems.
states, proved their unicity and exploited this construction td=onsider for example the case in which a system is periodi-
study metastability. cally “vibrated” or “trapped.” One can still try to look for
We shall be only descriptive here, we refer the reader t@tationary, or rather, periodic situations. One can repeat es-
the references for the proofs, as well as other investigationgentially the same argument by considering the evolution
concerning metastability. Consider, for example, a Fokkeroperator through one cycle:
Planck operator having the lowegteigenvalues\,,...,\,
separated by a gap from the others, i.e., one can fitid a _tH()
such that one can consider that Uu=T7 cycledte 7 (20)

t*\<1 fori=1,...p,
where 7 denotes time order. One has to look now for the
tA>1 fori=p+1,.... (16) eigenvectors ofJ Who'se eigenvalue' is close to 1. Similarly,
one can also work with systems driven by constant noncon-
servative forcegas in a sheared fluidand with nonlinear
space-dependent frictiaas in granular systems
Pure barriers Given that pure states can be viewed as
aying the role for finite temperature that energy minima
play for zero temperature, one is naturally led to ask which

In the previous simple example aby such that* is posi-
tive will satisfy this asT—0. The meaning of* is clear: it
is a time scale much longer than the relaxation into states
but much shorter than transitions between states. Clearly, t

L ) :
operator exp-t"H] is essentially a projector onto the SPACE yistributions play the role of barrier®r in general saddle

“below the gap” (up to terms of order exp-t*\;], with i . S ]
<p). Within the same accuracy, one can then find a basis 0?10|nts) in finite temperature. For Fokker-Planck processes

X . . o - this can be done naturally starting from the states constructed
p right eigenvectorsP;) which are positiveP;(x) = (x| P;) as above. In Appendix A we show how this can be done
=0; almost stationaryd|P;)~0,Vi=1, ... p; normalized . i

and not zero in nonoverlapping regions of space. The las We remark that a solvable example, in which saddle
; pping Treg pace. . noints play an important role in the spectrum of the evolution
property is related to the fact that one can also find a basis

o approximate almost stationary@;|H~0) left eigenvec perators, is the Glauber evolution of the completely con-
) i o~ "= nected Ising model and its generalizati80]. It has been
tors (Q;|, such that eacl®; is essentially one within the g 9 B0]

L ofp h | d satisfy th found that the lowest eigenvalues, i.e., the longest relaxation
support o i(X), zero everywnere €ise and sa isfy the o times, are gathered in families, each one being in correspon-
thogonality and normalization conditions

dence with a stationaryjot necessarily stablgoint of the
static mean field free energy.

(QilPj)~ 5y . 17
Given any observablé, we can calculate its average within V. FLAT DISTRIBUTION OVER STATES AT FINITE
the state 1" as TEMPERATURE OR VIBRATION: A DEFINITION
OF CONFIGURATIONAL ENTROPY
(A)i=(Qi|AIP)). (18

Motivation As we mentioned in Sec. Il, the fact that one
finds a two-temperature behavior in mean-field glasses can
be seen as suggesting the relevance of a measure consisting
in summing over metastable states of given endaogyfree
e—t*HNE 1P Q). (19) energy with equal weight. Armed with the construction for _

i metastable states we discussed above, we shall see how this

One can also write approximately

016101-5



GIULIO BIROLI AND JORGE KURCHAN PHYSICAL REVIEW E64 016101

G . - . .
Ln;@sgrrit\a/e(;agygtee;);pressed in finite-dimensional or periodi ) fx/E(x>=EodX<X|e PH [ (x|e T H]x)]
. * = .
ExpressionsConsider, in the spirit of Edwards’ distribu- S (Eo fx,,E(X,)=Eodx’<x’|e‘t*H|x’)
tion, an average of an observable over states, each measured (26)

with equal weight. This will be relevant for the long-time out

of equilibrium dynamics under the assumption that almost alithe meaning of this equation becomes transparent in the
states of given energy have the same basin of attraction. example of the completely separated ergodic components of
Using the same notation as in the previous section, Wehe previous section.
define the average over the meas((re)) of an observable Note that also the intrastate entropy is time scale depen-
A'in the following way: dent. Indeed, if we set* —0, we are defining as “states”
the configurations themselvg31]. On the other extreme, if
1 t* is longer than the equilibration timéx’|e™""H|x’) gives
<<A>>‘*_Ei§1 (A, @D the Gibbs measure, and the intrastate entropy becomes the
usual entropy. In short: changing the time scale both changes

where the subinde®* reminds us of the fact that states are e number of states and their nature, hence the change in

now defined according to their time scale. We have configurational and intrastate_entropy, respectively.
Flat measures and effective temperatur&ippose we

p p p have a glassy system, taken through a given thermal history
> (A= (QAIP)Y= t[|P}Qi|A]=t]e HA], (an annealing protocplo a glassy phase at tinteat which
i=1 i=1 i=1 time its energy i€(t) =E, (and if we let the particle number
(22 or the volume change we should specify also thefihe
assumption of typicality of metastable states, is then

p

where we have used Egd.8) and(19). Hence,

tre [e” " HA]

e " HA] ((A))px(Eq) =

#~<A>histor ) (27)
trfe "M 3 trg[e "] ’

((A))ex=

. . where the average is over several realisations of the same
Note that once written this way, all reference to pure state

. - ) f)rotocol, ending at timeé with energyE(t) =Ej,.
has disappeared, except indirectly in the value chosett for From the Langevin point of view, the Ieft-hoand side of Eq.
We often need an equation similar to E&3), but are ? '

: i . . 27) corresponds to adding over all periodic trajectories start-
restricted to states having a certain energy, particle numbe

. ng from an energy, with periodt*. Equation(27) tells us
etc. In that case we generalize Eg3) as, for example, that thermal histories give the same result as a very particular

- set of trajectories, in a manner analogous as when one rep-
tr[ S(E—Ege "HA] trgle “HA] resents chaotic dynamical systems by using only the periodic

<<A>>t*(EO)_ — = —x ) orbits.
t[S(E-Eq)e "] trg[e "] In the zero temperature mean-field case, we cart’set
(24) = in EqQ. (27), and thus select the states with infinite life-
. time. This is Edwards’ prescription for granular medig (
where tg denotes a restricted trace. ~0) and the one we discussed above within mean field. In

Once we make the assumption that all states of the sanfinite dimensions, where metastable states eventually nucle-
energy(or particle number, etchave an equal weight for the ate, we are forced to giv a finite value. The fact that the
purposes of calculating a dynamical observable, it becomeghoice oft* is not unique already tells us that E7) will
meaningful to count their number at given energy, the conpe an approximation.
figurational entropy: The central remaining question now is what is a reason-

able value fort*. Indeed, giving a value df* determines a
St*(Eo)Elntr[5(E—Eo)e‘t*H]=IntrEo[e“*H]. (25)  configurational entropySi«(Eg) and an intrastate free en-
ergy: fix(Eg)=Ep—Tsx(Eg). This in turn determines a

If t*—0 we get the microcanonical measuend entropy, temperature associated with the time scale as

up to irrelevant constan{81]), and if we lett* —co we find
no high-lying metastable states at all in finite dimensions.
The dependence arf is hence unavoidable if one is to ob-
tain a finite configurational entropy in that case.
Equation(25) defines the time scale-dependent configura{where we have eliminated the energy in favorfef). It
tional entropy. One also needs the average entwiflyin a  seems now natural to compare the different relaxation times
state s+, and the corresponding average free energy of &f the correlations in a given problem with. For example,
state fi« =Ey— TS« . Using the construction of Eq$l7), glassy systems can often be described with two time scales, a
(18), and(19), we have fast(* 8" ) relaxation and a slowwaiting time dependent if

(78t* -1
(9ft*

(28)

t*
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the system is aging" a relaxation” t,,. If t* is small ¢*
<tg), Eq.(28) gives Te~T [31]. If we put instead

D(7)=0 and R(7)R(—7)=0. The existence of solutions
violating causality fort* large is then a symptom of large
equilibration times, i.e., of glassiness.

Using the time-reversal equati@B3), it is easy to derive
a noncausal form of FDT, valid for arty :

tp<t*=t,, (29)

then T+ may be different(largep than T. This is the tem-
perature to compare with the one governing the relation be-
tween correlation and response in the regime corresponding
to the « relaxation[32].

. There are cases in which the “slow” relaxationg happen—l-he physical meaning d, unlike that ofC andR, is unfa-

in several time scales, becoming more and more different agjiar. If we couple the states to a time-dependent, random
aging proc_eed:{4]. Then, the definition(28) !mmedlately agnetic “pinning fields” [19] h, such thatm
yields a different temperature for every widely separateJnF(t’t,)é the fields will make a change in the nquber of

time scale, ?”d t.h's. wc_)uld agree with what one Observeﬁwetastable states, and it is easy to show that
from fluctuation-dissipation relatiorig].

Time-dependent order parameteid/e are interested in

d

v 35

C(t—t")=T{R(7)—R(—17)}.

1 ) x
calculating two-time correlation functions D(t,t")=— ———In{trfe " "]} (36

N SF(t,t)

1 * ! ! - - ..

(A(t)B(t'»ENtr[e*(t “OHpAe (tHHBe~tH] It is hence clear that systems with a finite number of states
will have D=0 in the long-time limit.
1 —(t* —7)H —7H
= N.tr[e Ae ™MB]=(AB)(7), V. THE CALCULATION

In the following we apply the theory discussed above to a
simple glassy system: the spherical version of mdde!
These models are thought to be mean-field versions of struc-
tural glasses, we shall not deal in this paper with models
corresponding to spin glasses for which, as mentioned above,
we do not expect the present computation of states to be in
correspondence with the TAP-equation-based calculations in
he literature.

The trace of the Fokker-Planck operator, at a fixed energy
densityE, can be written as a functional integf&@3] over
the spin fieldsS,(t) and the response fields(t) with peri-
odic boundary conditions o0§;(t). Once the average of the
trace has been performd@4], the action depends on the
fields S(t) and S(t) through the two time functions
C(t,t"),R(t,t"),D(t,t’) only. As a consequence one can in-

tegrate out the field$(t) and 5(t) and get an effective
action on two time functions:

(30

wherer=t—t’, and\ is the normalization. Cyclic permu-
tation implies
(AB)(7)=(BA)(t* — 7). (31

If H is a time-dependent Fokker-Planck operator, assoc
ated with forces deriving from a potentig| we have

efEHe PE=HT, (32
Using Eq.(32) in Eg. (30) we get the time-reversal property
(AB)(7)=tr*[e” ("~ IH(efEBe FF)Te~ ™ (efEAE FE)T]

=(BA)(7), (33)

whereA=(eFAe #F)' andB=(efFBe FF)1
We shall need to consider the cases in whichndB are,

respectivelyS, andS;=—4d/4S; . Let us define, for a system

S/Nz—ft dt[ o;R(t,t" )+ AR(t,t")=TD(t,t") ]| =+
of N degrees of freedom 0

p t* ! ! - !
Cit-1)=C( = 3 (SOS X)) +4 ), saroer )

1 +(p—1)R(t,t")R(t’",t)CP2(t,t")]
R(t-t)=R(1)= 5 2 (S(OS(1),

N 1
——ft dC(t,t)— 1]+ =TrinM, 37)
2 Jo 2
r — _ 1 c c ’
D(t-t )_D(T)_NZ (SMOS(). (34) where the operatav reads
Because we are considering periodic trajectories, causal- M= R(tt")  C(t,t") 39
ity is violated. This means that neith&(7) nor R(7) for S ID(tt) Rt/

negativer need to be zero. However, it is easy to show that

if (t* — 7) is larger than the thermalization tinie which the
system is projected to its Gibbs measuithen we recover

Since we consider times of order one with respeditthe
functional integral is dominated by a saddle point contribu-
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tion. We shall obtain periodic dynamic solutions which, in

the glassy phas@) break causality(b) have nonzero action,

(c) satisfy time-translational invariance, afdj satisfy time-

reversal and its consequen(@5). Note that(a) and (b) are

properties typical of instantons, while) and(d) are not. In

the high-temperature phase there is a periodic solution with

zero action for long times corresponding essentially to the (42

equilibrium dynamics. . ) )
The stationarity conditions on the action are equivalent tgVloreover fixing the value of the energygives an equation

X:(p—z)( p/2fTdt”Cp‘l(t—t”)D(t—t”)
0

+ ijdt”R(t—t”)R(t”—t)Cp‘z(t—t”) —2TD(0).
0

four equations on the two-time functions

C'(1)=—\C(7)+2TR(—17)
p t* " -1 " ’ n
+—f dt"CP Y (t—t")R(t' —t")
2 J)o
+|<ft R(t—t")CP~2(t—t")C(t"—t")dt",
0

(39

R'(7)=—\R(7)+2TD(7)
+2 [“arere-vp-v)
N kJOt*dt,,cpfz(t_trr)R(t—t”)R(t"—t’)+ o(7),
(40)

R,(T): _)\R(T)‘kat dt//D(tr _tr/)Cp72(t/ _trr)
0
><C(t—t”)+kft dt"CP2(t —t")R(t—1")
0

X R(t”—t’)+k(p—2)ft dt"CP3(t" —t")
0

XR(t'—t")R(t"—t")C(t—t") = AC(t—t") + &(7),
(41)

~D'(r)= —)\D(T)+kft*dt”D(t’—t”)R(t”—t)
0

t*
XCP‘Z(t—t”)+kJ dt"D(t—t")
0
X CP2(t—t")R(t"—t") + k(p—2)
xft dVR(t—t")R("— Rt —t')
0

X CP3(t—t")—AR(7),

wherek=p(p—1)/2 and we make explicitly use of the time
translation invariance=t—t'. The spherical condition fix

the value of\, which can be obtained subtracting E41)
from Eq. (40) for 7=0:

on the spherical multipliek:
PE=—-N+T[R(0")+R(07)]. (43

As a consequencg& and A are directly related. Using the
FDT relation one can show that Eq89)—(42) reduce to a
set of three independent equations on the functic(s),
R(7)+R(—17), andD(7).

A. Time-reversal, noncausal solutions

Let us show that computing for very largé the trace of
the Fokker-Planck operator one can recover the number of
stable states, and the dynamics within these states. The num-
ber of stable states can be obtained by a pure static compu-
tation for thep-spin spherical modelp>2) using the TAP
equationg 13].

For very larget* there are two possible behaviors for the
two-time functions depending on the enefgyd the model
we consider.

If at the energy value considered there are stable states
then the action evaluated in the solution has a well defined
limit ast* —oo. In this same limit, one expects that the two-
time functions for finiter describe the dynamics inside a
stable state(as calculated previously with other methods
[14]). A careful analysis of equation89)—(42) allows one
to show that the asymptotic forms of two-time quantities
reads forr<t*

C<r>=cc<7>+ti*é<r>, R(7)=Ro(7)

+ti*[f?(r)+r—rc], (44)

1 1 . (7
D(7)= 5 Do(7)+ 52D F)' (45)

(t*)
The functionR.(7) is causal, and for large (but small with
respect tot*) we have thatR.(7)—0 andC.(7)—q. To-
getherR. and C. describe the relaxation within a state. All
other functions are of order 1 when their arguments are of
order 1, and tend to zero when their argument is large. The
corrections of order 1 are not subleading in the computa-
tion of the trace, as this involves integrals over a large inter-
val [0t*]. The Edwards-Anderson parametgrandr—r,
are order one constants to be determined in what follows.

Note that the scaling ob implies that\ is of order 1t*.
One can easily check th&t,(7) andR.(7) satisfy the equa-
tions describing the equilibrium dynamics inside a state stud-
ied in Ref.[14]:
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) o . o Since the spherical multiplier is a parameter, this equation
Cc(T)Z)\Cc(T)+D/2JO dt"Cy *(t—t")Re(t' —1") fixes the overlap. It is useful to write this equation in a way
which is directly related to the static computation. Using the

L notation
+kf R,(t—t")CP%(t—t")
0

_ p _,. b(p—1)
QP2 IpE= — A+ o= (1-gP ) - —=—aP*(1-q),

X C(t"—t")dt"+ p2gP~ (r—r,)/2. (46)

R.(7) is causal and related to the correlation function z=(1-q)pP? YT, (54)
through the FDT relatiofR.(7) = —1/TC.(7) 6(7).

If for the energy value considered there are no stablévherec corresponds to the zero-temperature or radial energy
states then the behavior of the two-time functions is similawhich appear in the static computation, one can rewrite Eg.
to the previous one except thBthas a part of order of one (53) as the usual static equation qri13]
for finite time Dy and a part of order or ¥ for 7~t*:

1+pzE+p(p—1)z2/2=0. (55)
D(7)=Dy(7)+ (ti) f)(t_:) 47) From Eq.(52) we find the value of:
2
As a consequenc€(r) andR(7) do not satisfy equations r=- Bqlfplzg- (56)

“within a state,” and one has to solve a set of three equa-
tions onC, R andD in which Ris not causal also for infinite Integrating Eq(40) between 0 and* and using Eq(52) we

times (*). _ , , get the value oft:
In the rest of this subsection we consider an energy suc
that stable states exists and we compute the zero-frequency qP ld=—2/p+4&%p2. (57)
values ofC, R andD. Using the asymptotic form introduced
before one finds Finally we confirm, using the relationship betweemndq,
that the equations o€ (7) and R.(7) (46) are indeed the
t ek same ones found in Ref14] for the relaxational dynamics
f Clndr=qt* +0O(1), (“48) inside the stable state with overlapand energyE=(—x\
+T/2)/p.
* —q
Jo Re(7)d7= L T (49 B. The configurational entropy
To obtain the number of stable states we have to inject the
t* t* . . solution of Eqs(39)—(42) into the action(37) and then take
jo R(7)d7= fo Re(7)+r—rc+O(1M*)=r+O(11*), the long time limit. Using the compact notatig@(;t*)

(50) =[C(7;t*),R(7;t*),D(7;t*)] for the set of the two-time

functions, we decompose the asymptotic solution as

o d Q(7;t*)=Qo(7;t*) + Qq(7;t*)/t*, whereQ, reads
fo D(T)dTZtT—i-O[l/(t*)Z]. (51)

r—r d
Qu(nit)=| Cal RN+ 5 ryz| (89
Moreover for larget* the relation(43) reduces to the usual

onepE=—\+T/2+O(1/t*). Therefore we can considar  andC_(7),R.(7) are the solution of the relaxational dynam-

as a fixed parameter. . ics inside a stable stateél6) with the values ofr, r., d
_ Integrating Eq/(39) between 0 ant* and taking the lead-  determined above. Using this decomposition and the fact that
ing order int* we obtain Q is a saddle point of Eq.37) we find for very larget*
P 2, P ~1 1Q, &S Q
gl —A o7 (1= "+ o (1-077) S(Q)=S(Qo)~5 1= © S0 T t*>1. (59

2
+ %(r_rc)qp—z =0. (52)  An explicit computation shows that the second term of Eq.

(59) vanishes in the long time limit provided that the correc-

tions toq are of an order less thant1/ This seems natural
Subtracting Eq(39) evaluated inr=0 to Eq.(52) we getthe o us since we are considering the relaxation dynamics inside
usual equation o andq: a stable state. As a consequence (henealed average of
the) logarithm of the number of stable states coincides with
S(Qp). When we injectQ, into Eq. (37) the first two lines

T
1- can be easily computed and read

- i _ b1
A= q+2T(1 gqP~ Y. (53)
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p C. The zero-temperature case

p
— — ZdoP 14+ —(r— —gP1
Mr=ro)+ 4 dg® "+ 2T (r=ro)(1=a"" At zero temperature, Eq40) is particularly simple. Intro-

ducing the notatiorR(7)=R.(7)+(r —r¢)/t* we find that
—r)%gP 2 (60) the equation on the Fourier transform Rf reads

- - p(p—1) .
whereas the computation of the third one, which reduces ' ®Re(®)=AR(@)+ ——=—R(w) Re(w)+1=0.
only to Tr In M/2, is slightly more subtle. Since the operator (65)
(38) is diagonal in Fourier space, we get

p(p—1)
+ 7 (r

For each frequency there are two solutions:

1Eln

1 1
=TrinM==In(r?—qd)+
2w#0

2 2

(ﬁz(w) C(w) )
0 R*w)’ R (w)= o= 1)[ A+VAZ=2p(p—1)], A=A+iw.

(61) (66)

where the Fourier transform of a functiér(7) is defined as In the following we focus on the two solutior®; (7) and
R. (7) which corresponds, respectively, to taking the Fourier
transform ofR. (w) andR_ (w). Using that at zero tempera-

ture C(7)=1 one can decompos®Q) in two terms such
(62)  that all the dependence d is contained only in one of

IA:(a))Zft e 'F(rdr, w= - *1,+
0 t

: : . . them
The functionR.(t,t") is causal and the associated operator is

upper triangular with diagonal elements equal to unity. Its 5 [e2 52 2
determinant hence is orfere the Ito convention is crucjal SIN(Q*)= —(1 Inp—In2)— &+
as it should because it does not give any contribution to the Ee
action in the standard case. As a consequence we have p(p—1) [t
+In(—EFVE2-EH - f Re (7)
1 R(w) C(w) In(r) 63
= . =—In(ry).
2 550 0 R*(w) ¢

XRZ(—r)dr+ %Z IN[R (0)RS (—w)].

Collecting all the pieces together and using the equation on

g, r, r. andd obtained in Sec. VA we find that the action 67)
S(Qo) reads The computation of the second line is performed in the Ap-

) pendix B. It turns out that, as in the static cd4&], the

1 ) E—\E &L dominant contribution is given bR_ for Eggg<E<E., by

S(Qo)/N=3 (1+Inp In2)—&+ 2 gc Ry for —&.<E<—Erse, and for —E.<E<—E&, the two

S saddle point contributions are the saifsee Appendix B
+In(—E-VE - &), Note that at zero temperatu@js the energy density of the

system. The final result is
2(p—1
Ee=— (pp ). (64)

As expected, this expression coincides with the logarithm of

EF /e - 52) 2

C

S(Q)zRe[ (1—Inp—In2)— &+ 5

tmhgrg[ulrg]t.)er of TAP states computed by Crisanti and Som FIn(—EF m)} _f dwpp(w-+pe)
Note that this formula is correct only f&#<&.. For & 0
> &, the formalism tells us that there are no stable states as ><In[1—exp(—t*|w|)]+t*f dopp(w+pé)w,
follows: in this energy regim® and\ remain of order one e
even for infinitet* and the action acquires a negative con- (68)

tribution of ordert*. This is as it should: since for these
energy values there are only metastable states with finite lifewhere p,(x) = v2p(p—1)— X2I[7p(p—1)] is the Wigner
times, the longer we s¢t the less metastable states we find.semicircle law. In Fig. 4 we plot Eq68) for p=3 and

In general for finite-dimensional glassy systems the interdifferent values ot* as a function of the energy densify
esting quantity will be the logarithm of the number of meta- For very large values df*,S(Q) converges to the logarithm
stable states with finite lifetime, which can be obtained plug-of the number of stable states. Note that for a finite-
ging the solutionQ(7) into the actionS for a finite value of  dimensional system we expect a similar behavior but with a
t*. In the following we compute this quantity at zero tem- vanishing curve for infinite*. Finally, we remark that the
perature. formula (68) has a simple interpretation. In fact, the first line
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t* —oo. This can be shown by the supersymmetric formalism
for Langevin dynamicg§33,38. Within this framework all
the two points correlation functions between fie&l&) and

S(t) can be encoded in
N
Q(1:2)=Zl (S(1)Si(2)), 1=(Tty,6,,6,), (69

S(1)=Si(t))+ 616, 5(t) +Ti(ty) 61+ 61¢(ty), (70)

where#, , 6, are Grassmann variables arj(t),c;(t) are fer-
mion fields[33,3§. Using this formalism the dynamical so-
lution (58) giving back the configurational entropy reads at
large times

e — J—
Q(1,2=Qc(1,2+q+ (6.6, 6,0,)

FIG. 4. Time dependent configurational entrog(e,t*) at T
—0 for p=3 as a function of the energy densiand of the time r—=re — — d
t*. From top to bottomit* =5,10,100,1000,2008,. Note the X t* + 61010202@’ (72)
infinite time limit curve with positive configurational entropy, a
mean-field artifact. 1
Qc(1,29={1+ 5(91_ 02)[ 01+ 62— (61— 6)
coicides with the number of saddles with energy denBity
Moreover, since the spectrum of the Fokker-Planck operator
for an harmonic oscillator with frequenay is [33] E,,=(n
+1/2)|w| — w/2, the second line of Eq68) corresponds to

the contribution due to a collection of harmonic oscillatorsThe functionQ.(1,2) is supersymmetric, whereas the last
with frequency distributed by the semicircle law centered inyyo terms in the right-hand side of E¢f1) break supersym-
—p&. This distribution is exactly the same of the eigenval-metry,

ues of the energy Hessian evaluated in saddles with energy on the other hand, the two-group ansatz consists in a
density £ [12]. As a consequence, at zero temperature, thgymmetricQ, , matrix

spectrum of the Fokker-Planck operator for tpespin '
spherical model coincides with the one obtained making an

19

Xsgnt;—ty)] T a1,

[Ce(ti—tr)—qal. (72)

B B
harmonic expansion around each sad@so the instable Qap=1+_—, a=bsm, Qap=1-—, m<a=b=n,
ones. (73)
VI. THE TWO-GROUPS ANSATZ AND SUPERSYMMETRY _ E
BREAKING Qap=A+ el a#b, a,bsm, (74

Twenty years ago, when people started to search for rep- B
Iiga symmetry breaking solutions of the Sherrigton- Qap=A——, a#b, m<a, b=n, (75
Kirkpatrick model, Bray and Moor¢35] proposed a two- m
group Ansatz for the famou®, , matrix [3]. At first sight c
the results seemed a little bit strange since the, ligiZ" —A— —  a=m. m<b=n 76
#1! (the overbar means the average over disordeturned Qap m?’ ' ' (76

out[36] that in the limit ofn going to zero, the logarithm of o

Z" equals the the logarithm of the number of TAP states, i.e.WWhere one has to take tine—cc andn—0 limits. The func-

the long-time limit of the configurational entrogg@5). The  tional dependence of the dynamical and replica free energy

reason of this “coincidence” has been completely obscure®f, respectivelyQ(1,2) andQ, , is the sam¢38]. Indeed,

until now. For instance, for many mean-field spin glass modZhe kinetic term in the dynamlcal fr_ee energy, which does not

els the complexity was computed starting from TAP stated'@ve a correspondent in the static case, is zero for the dy-

and, after, it was checked that the two-group Ansatz gav@amical solution(71). Moreover, if one put8=(r—r)T,

back the correct resul86,37,28. 2C=T?d, A=q the two matricesQ(1,2) andQ,;, lead to
Using the properties of the dynamical solutions presente¢he same results under tracing, convolution and term by term

in previous sections we can unveil why the Bray and MooreProduct. For instance, one can easily obtain

Ansatz allows one to calculate the long-time limit of the

configurational entropy25). In fact this Ansatz is isomor-

phic to zero frequency part of the dynamical calculation for

3 f(Qa,a>=f d1f[Q(L)]=28, (77
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and finite dimensiongas well as to vibrated systeis but
> f(Qa,b):f d1d2 f[Q(1,2)] we have not attempted to prove it. It may be, however, that
a,b L. o . .
writing it in the form (27), can be a good starting point for
=2[f'(1)—f'(A)]B+f"(A)B2+2f'(A)C, doing this. Moreover, the forni27) [and Eq.(28)] lends
itself naturally to a generalization to cases in which a system
(78) has more than two widely separated time scales and tempera-
tures.
TrapInQ=Tr;2InQ Finally, the computation in Sec. V has allowed us to
=-2In(1-A)+In[(1-A+B)>—2AC]. check the mean-field results without relying on the TAP

states, themselves an intrinsically mean-field concept. The
(79 kind of solutions that dominate break causality and have

As a consequence the computation, which make use of tHRositive action, put satisfy _time reyersal and a noncaqsal
two-group Ansatz, is isomorphic to the dynamical onetfor form of FDT. Unlike the bamer—(_:rossmg solution of Lopatin
—t*. Therefore the replica symmetry breaking scheme en‘-"md Iof]‘e [40], they have in this sense only some of the
coded in this Ansatz can be finally understood: it is a way toorope_rtles of t_rue mstanto_ns. Moreover, the dynamical com-
implement the dynamical computation in a replica formal-Putation unveils the meaning of the two-groups An$at,

ism. There are, however, two important differences betweel'Nich allows one to compute the number of stable states

the two approaches. First of all, in the dynamical computawIthln a replica formalism.

tion we are not free to choose between different Aresahe

one which gives back the long-time limit of the configura- ACKNOWLEDGMENTS

tional entropy(25), but we have simply to solve the equa- We wish to thank L. loffe. J. L. Lebowitz and L. S
tions of motion. This clearly makes the procedure inambigu'Schulman for useful sug.gesti(;ns. ' ' T
ous, unlike the case of the replica computation. Moreover the '
two approaches lead to the same results only if a dynamical
solution with the correct values ofd,r exists. It could then APPENDIX A: PURE BARRIERS

happen(see the discussion on the configurational entropy of | ot ys show how to define “pure barriers” using a super-
the SK model that the equations oq,d,r admit a solution ~ symmetric extention of the Fokker-Planck operator. For a
but there is no dynamical solution corresponding to thesgystem withN degrees of freedom, introduce thefermion
values. As a consequence even if the static computation, i.6reation and annihilation operataisandaiT, with anticom-

the sum over all TAP sc_)Iutions or _the computation by th?mutation relationga, ,al], = &, . Define the supersymmet-
two-group scheme, predicts the existence of an exponentlzﬁc charge as b 1

number of stable states the more correct dynamical calcula-
tion does not. az(Tpi_iE,i)aiT: 0=pia. (A1)

VIl. CONCLUSIONS The supersymmetric operatbis,sy

In this work we have shown how to put the questions
related to metastable states in glasses in a manner valid for . _
finite.di ; ; Hsusy=[Q,Q]+ =H+ ——
inite-dimensional systems. We have used the construction of IX;IX;
Gaveau and Schulman to define the metastable states. This
construction requires the existence of a “gap” in the life- commutes with the charges, and with the fermion number
time, so that one can associate “states” with distributionsoperator. In the zero-fermion subspace it coincides with the
that are stable for much longer than a given titig and ~ Fokker-Planck operator.
“transient processes” with those that decay much faster. Applying the operatorQ to all but the lowest Fokker-
There is no such gap in real glasses, so our use of this coflanck (zero-fermion eigenvectors, one obtains a one-
struction has to be considered partly as a definition inspirefermion eigenvector. Going back to the example of low-
in the cases where there is. temperature dynamics in a potential of Sec. Ill, one can see
A reasonable criterion for the relevance of any quantitythat the lowest one-fermion eigenvectors correspond to dis-
will hence be that they are not too sensitive to the exactributions associated to the barriers. Indeed, one can con-
value chosen fot*. For example, if we consider a tempera- vince oneself that in a low-temperature multidimensional
ture associated with the relaxation asl« with t* =t,, this  system, the lowest eigenvectors wiHermions correspond
definition is meaningful to the extent that it is stable with to barriers withk unstable directiongsee Ref[41], where
respect to a change i of, say, an order of magnitude. these questions are discussed in detail, and used to derive
Next, there is the question as to whetfigs indeed re- Morse theory resulis
produces the fluctuation-dissipation temperature. This and Now, by analogy with the argument motivating the con-
other results depend on the validity of the flatness hypothesedruction of pure states, it is reasonable to define “barrier
in the manner of Edwardgor which positive evidence be- distributions” in general as the lowest eigenvector$igf;sy
gins to appeat39]). In this paper we have formulated the with lowest eigenvalues in subspaces witfermions. This
hypothesis in a manner applicable to positive temperaturedefinition will make sense whenever there is a gap in the

2

aa; (A2)
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spectrum, whatever the origin of such a d&pgeN, low T,

*
etg. One can then use traces ®f' Hsusy to calculate ex-
pectation values.

APPENDIX B:

The aim of this section is to calculate the last line of Eqg.
(67). Instead of making the computation by brute force, we

will use the exact results that can be obtained in phe2

case. Fop=2 the spherical model is a simple collection of

harmonic oscillators with frequency distributed with a semi-
circle law centered around the value of the spherical multi-
plier. The spectrum of the Fokker-Planck operator for an

harmonic oscillator with frequencyw is [33] E,=(n

+1/2)| w| — w/2. Therefore fop=2 and at zero temperature,

the logarithm of the trace of the evolution operator reads

In(Tre "H)=— Nf dop(w+28)InN[1—exp —t*|w|)]

0
+Nf dwp(w+2E)t* w, (B1)

PHYSICAL REVIEW B4 016101

On the other hand faf>1 thep=2 model is a collection of
unstable harmonic oscillators which can be mapped to the
previous case changing the sign of eachAs a consequence

for £>1 we expect thaln Tr e H= NS(Q™). In the inter-
mediate energy regima priori one has to consider both
solutions. Since the functional computation should give back
the result(B1), the last line of Eq(B2) reads

1 1
— 52 R*(n)R*(n)+ 5; IN[R*(nN)R*(—n)]

(O]

Z—J da)p(w—l-ZE)(—t* > +|n|ewt*/2_e—wt*/2l

0
iiﬂf dwp(w+2E) (B3)

if the determination of the logarithm in the first line of Eq.
(B2) is such that In-1=—i7. Note that foré<—1 all the
oscillators are stable, as a consequence the last term in Eq.
(B3) vanishes and EqB2) coincides with Eq.(B1). For

&£>1 all the oscillators are unstable, as a consequence the last

result also by the functional formalism. In the computationfrom the first logarithm in Eq(B2), and one obtains the

of Sec. V C we obtained an action which fpr=2 reads
1 1
SIN= 5—52+ S (Ex JE—1)2+In(—-EF JE2-1)

1 1
—52 REMRA (M +5> R (MR (=n)],
(B2)

where we have writtefR(t) insteadR.(t) sincer=r for

same results that foE<-—1 with an additional term
Jdwp(w+28E)t* w. Finally, in the intermediate energy re-
gime the first line in Eq(B2) is complex and its imaginary
part cancels exactly the imaginary contribution coming from
the last term in Eq(B3). In this case the the two saddle point
contributions are the same, therefore to obtain (Bd) one
can consider only one of them. However, to obtain the ex-
pected value oR(t) one has to sum on saddle points.

For p greater than 2, the equation &) has the same
form of Eq. (40) but for ap=2 spherical model at zero

p=2. This is directly related to the fact that there is notemperature with a variance of the couplingé=p(p
configurational entropy fop=2 and therefore the two-time —1)/2. As a consequence the last line of E&j7) reads

functions relax asymptotically faster thart*L/ For £<—1

thep=2 model is a collection of stable harmonic oscillators.

One can easily compute.(t) starting from the result for a

single oscillator and integrating over the Wigner distribution.

As expected, this function coincides wiRy, (t). As a con-
sequence foE<—1 we expect thaln Tr e H= NS(Q).

w % *
—f dwp(w+pé) _t*3+|n|e“’t 2_ g=ot /2|

iiﬂ'JO dop(w+pé). (B4)

[1] B. Gaveau and L. S. Schulman, J. Math. Ph$s, 1517
(1998. See also B. Gaveau and L. S. Schulmiit. 37, 3897
(1996; Phys. Lett. A229 347 (1996; B. Gaveau, A. Lesne,
and L. S. Schulmanbid. 258 222 (1999.

[2] S. F. Edwards, irGranular Matter: An Interdisciplinary Ap-
proach edited by A. MehtaSpringer, Berlin, 1994 and ref-

e-print cond-mat/970207Qnpublishegt in Spin-glasses and
Random Fieldsedited by A. P. YoungWorld Scientific, Sin-
gapore.

[5] J. Kurchan, J. Phys.: Condens. Mattter be publishey e-print
cond-mat/9909306.

[6] S. Franz and M. A. Virasoro, J. Phys.38, 891 (2000.

erences therein; see also A. Mehta, R. J. Needs, and S. Datt{7] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. 86, 5388

agupta, J. Stat. Phy$8, 1131(1992; R. Monasson and O.
Pouliquen, Physica &236, 395(1997.

[3] M. Mézard, G. Parisi, and M. Virasor&pin Glass Theory and
Beyond(World Scientific, Singapore, 1987

[4] J-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and Mzhite,

(1987); 37, 5342 (1988; Phys. Rev. A37, 4439 (1988; D.
Thirumalai and T. R. Kirkpatrick, Phys. Rev. B8, 4881
(1988; T. R. Kirkpatrick and D. Thirumalai, J. Phys. 22,
L149 (1989; T. R. Kirkpatrick and P. Wolynes, Phys. Rev. A
35, 3072(1987; Phys. Rev. B36, 8552(1987; T. R. Kirk-

016101-13



GIULIO BIROLI AND JORGE KURCHAN

patrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev4®
1045(1989.

[8] M. Mézard and G. Parisi, Phys. Rev. L8R, 747; M. Mezard
and G. Parisi, J. Phys. Cherhl1, 1076(1999; M. Mézard,
e-print cond-mat/0005173.

PHYSICAL REVIEW E64 016101

Coluzzi, G. Parisi, and P. Verrocchio, Phys. Rev. L&4.306
(2000; F. Sciortino, W. Kob, and P. Tartaglidgid. 83, 3214
(1999; W. Kob, F. Sciortino, and P. Tartaglia, Europhys.
Lett. 49, 5906 (2000; A. Crisanti and F. Ritort, e-print
cond-mat/9911226; e-print cond-mat/9907499.

[9] D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos[2g] G. Biroli and R. Monasson, Europhys. Lefi, 155 (2000.

Mag. 35, 593 (1977); H. Rieger, Phys. Rev. BI6, 14 655
(1992; J. Kurchan, G. Parisi, and M. A. Virasoro, J. Phys, |
1819(1993.

[10] C. De Dominicis, Phys. Rev. B7, 37 (1980.

[11] A. Bray and M. Moore, J. Phys. €3, L469 (1980.

[12] A. Cavagna, |. Giardina, and G. Parisi, Phys. Rev5B
11 251(1998.

[13] A. Crisanti and H.-J. Sommers, J. Phys, 1805 (1995.

[14] A. Barrat, R. Burioni, and M. Meard, J. Phys. A29, L81
(1996; S. Franz and G. Parisi, J. Phys5,11401(1995.

[15] G. Biroli, J. Phys. A32, 8365(1999.

[16] V. S. Dotsenko, M. V. Feigel'man, and L. B. loff&Spin-

glasses and Related Problen®oviet Scientific Reviews Vol.

15 (Harwood, Chur, 1990

[17] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lét, 173
(1993; Philos. Mag. B71, 501 (1995.

[18] L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Revs%
3898(1997).

[19] R. Monasson, Phys. Rev. Lefts, 2847(1995.

[20] M. A. Virasoro (unpublishegl

[21] L. L. Bonilla, F. G. Padilla, and F. Ritort, Physica260, 315
(1998.

[22] Th. M. Nieuwenhuizen, Phys. Rev. @, 267 (2000.

[23] G. Parisi, Phys. Rev. Let?9, 3660(1997.

[24] W. Kob and J.-L. Barrat, Europhys. Le#t6, 637 (1999.

[25] M. Sellitto, Eur. Phys. J. B, 135(1998.

[29] See R. Melin, J. Phys. 6, 469 (1996; R. Melin and B. Bu-
taud, ibid. 7, 691(1997).

[30] T. W. Ruijgrok and J. A. Tjon, PhysicéAmsterdam 65, 539
(1973; G. Biroli and R. Monasson, J. Phys. 81, L391
(1998.

[31] This follows from the fact that, for a Fokker-Planck process
(x|e " H|x)~ (47 Tt*) "2 ast* -0, a constant independent
of the coordinates.

[32] In the thermodynamic limit it is in fact more proper to com-
pare, instead of t*, the time scale given by
NI((H) i (E) 1™ 1={(1IN)[9Si (Eg)/at* 1} 1 (i.e., inverse
average eigenvalue of the Fokker-Planck opejatohich is
the conjugate variable t&° under Legendre transformation.

[33] J. Zinn-JustinQuantum Field Theory and Critical Phenomena
(Clarendon, Oxford, 1997

[34] We should take averages over the logarithm of the trace. In
this kind of model, it seems safe to take instead(dmenealedl
average over the trace its¢lf3].

[35] A. J. Bray and M. Moore, Phys. Rev. Lettl, 1068(1978.

[36] A. J. Bray and M. Moore, J. Phys. €3, L907 (1980.

[37] G. Parisi and M. Potters, Europhys. Le32, 13 (1995.

[38] J. Kurchan, J. Phys. @, 1333(1992; S. Franz and J. Kur-
chan, Europhys. Let20, 197 (1992.

[39] A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto, e-print
cond-mat/0006140.

[26] R. Di Leonardo, L. Angelani, G. Parisi, and G. Ruocco, e-print[40] L. B. loffe and D. Sherrington, Phys. Rev.5, 7666(1998);

cond-mat/0001311.
[27] P. H. Stillinger and T. A. Weber, Phys. Rev.25, 978(1982);
P. H. Stillinger and T. A. Weber, Scien@25, 983(1984; B.

A. V. Lopatin and L. B. loffe,ibid. 60, 6412 (1999; e-print
cond-mat/9907135.
[41] E. Witten, J. Diff. Geom17, 661 (1982.

016101-14



