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In the framework of quantum chaos, the theory of dynamical localization plays an outstanding role, both for
its conceptual relevance and physical import. Theoretical arguments, confirmed by a large amount of numerical
simulations, have shown in the case of complete classical chaos, that the localization length is related to the
classicaldiffusion constant and the effective Planck’s constanie investigate the quantum behavior when
classical dynamics exhibits anomalous diffusiep that the diffusion constant is not defipedie show that
dynamical localization still takes place, and that the scaling with the quantum parameter is the same as the
classically diffusive case.
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One of the most remarkable phenomena in quantum chaos D
is represented by dynamical localization, namely the sup- §=aﬁ, 3

pression of deterministic chaotic diffusion at large enough
time scaleqg1]. The original formulatior{ 2] considered the o o o
behavior of the kicked rotator, that is the quantum analog ofvhere extensive investigatiofi$] strongly indicatea=1/2.

the classical standard m&g) These considerations are not of purely theoretical signifi-
cance, since quantum dynamical localization has been ob-
Pn+1= Pn— K sin(xp), served in a number of different experimental set{4.
(1) The aim of this paper is to analyze the asymptotic quan-
Xn+1=Xnt Pn1, tum regime when the above-mentioned scenario changes in

. . . _an essential way at the classical level, that is when classical
which represents a paradigmatic example of the complexityjitsion is anomalous As a matter of fact, a number of

of classical Hamiltonian dynamics, and catches the essentigl .ant studief11] have pointed out the existence of a set of

features of a number of nonlinear physical problems. One of \51es where classical transport does not follow the linear
the most striking classical properties of E@), for a wide relationship(2), but rather

range of largeK values, is the appearance @éterministic
diffusion namely, if we consider Eql) on a cylinder(the o5(N)~n# (4)
positionx being actually an anglewe get 2

ao(N) ={(pn—Po)2)~2Dn, 2) with some nontrivial exponent (see Fig. 1 Act.uallly, not
only the second moment of momentum distribution is
where the average is over a set of initial conditions. Theanomalous, but the whole spectrum of moments is character-
classical dynamics is thus described by a stochastitzed by a scaling functiogs(q), defined by the asymptotic
parameter—the diffusion constalt—(which depends on relationship
the nonlinear parametd€ [4]). When the system is quan-
tized the most striking consequence is that classical diffusion ((Pn—Po)%) = aq(n)~nWBA, (5
in p is suppressedfor large enough timgs and the
asymptotic distributions are exponentially localized in theFigure 2 shows how foK = 6.905 (which is the parameter
momentum representatiqsee[1,2,5,6). This phenomenon value we focus on in our analygithe scaling functior3(q)
(called quantum dynamical localizatignbears remarkable has a nontrivial profile, in contrast to genuine normal diffus-
analogies to Anderson localizati¢#]: the essential physical ing casegthe dashed line in Fig.)2
parameter associated to the quantum motion is thudothe Our choice of the nonlinearity parameteris dictated by
calization length¢, which gives the rate of exponential lo- a pioneering analysis of the quantum motid®], where,
calization of the asymptotic wave function. over the considered time scale, the authors observed a slow-
A remarkable theoretical argumdi® links, in the regime  down of the quantum growth law fos,(n), but not the
of small effective/i and genuine classical deterministic dif- saturation that is a hallmark of dynamical localization. Our
fusion (2), the localization length to both classical and quan-first task is thus an analysis, over long time scales, of the
tum parameters quantum dynamics corresponding Ko=6.905, with differ-
ent values of the effective Planck’s constaniVe recall that
the quantum dynamics involves the one-kick unitary evolu-
*Email address: artuso@fis.unico.it tion operator
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FIG. 1. {(p? for the classical standard mag £6.905): the FIG. 3. Quantum evolution of(p* for K=6.905: the
average is over fOinitial conditions. The dashed line has a slope asymptotic localization is clearly exhibited. The upper curve refers
u=1.5344. to #=0.27 and the lower one th=2.7.

ent order moments. As an example we show in Fig. 3 the

evolution of the fourth moment for two different valuesfaf

the main numerical result is that asymptotically alevays

whose evolution is most conveniently studied by selecting @bserve saturation, thus, even in presence of accelerated dif-

(sufficiently large momentum basi§plane wavepand shift- ~ fusion in the classical dynamics, the analysis of quantum

ing back and forthvia a fast Fourier transforjrto the con-  spreading of the wave packet strongly indicates that asymp-

jugate representation so that the tmmncommuting expo-  totically dynamical localization prevails. We remark that the

nentials in Eq(6) act as multiplications on the wave function choice of the basis size strongly dependsioffor the values

[13]. Typically we start with an initial state localized around of # we consideredin the same regime g42], where the

the zero-momentum state, and follow the evolution of differ-quantization scale is larger than the phase-space volume oc-
cupied by ordered structunesasis sizes up to’3 momen-

1 — — — — T tum states were used and we always checked that normaliza-

tion of the wave function is preserved during the whole

range of time evolutioitruled by the number of kicks). We

point out that our simulations refer to “generidhonreso-

nand values of#: the influence of weak chaos on resonant

[14] behavior has been recently considered by Alojids.

The remarks about asymptotic saturation of diffusion and
exponentially localized distributions do not imply that for
short and intermediate times we do not observe any deviation
from the standard picture: in particular the “ballistic peaks”
follow the behavior predicted in former analy$i$], and an
interesting intermediate regime is indeed preddd, but
here we address only the asymptotic behavior, and this is
- . always found to be consistent with dynamical localization.
The analysis of asymptotic distribution over momentum

0= e—(i/zﬁ)ﬁze—(i/hm cos&), (6)

] 7 states further supports this conclusion, anpuae exponen-
- . tial decay is exhibited, see Fig. 4.
04 1 1 L1 L1 . Once we convince ourselves that, despite the anomalous
0 2 4 6 8 10 character of classical dynamics, the long-time quantum be-
q havior is still ruled by exponential localization, a natural

question involves scaling properties of the localization

FIG. 2. The scaling indiceg(q) for K =6.905(full line). Each  length, as the standard argumeBj loses its meaning be-
exponent has been estimated by taking1®® initial conditions and ~ causeD is no more defined. We recall that in the standard
10* iterations of the map. The dashed line exhibits the same scalintheory, the way in which classical diffusion constant enters
indices for a normal diffusion cas&&11). guantum dynamical localization is through an estimate of
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FIG. 4. Final distribution probability over momentum states for _ F1G- 5. Scaling of localization length versts for K=6.905.
K =6.905 andh = 0.599. Circles represent estimates from the entropy, stars are related to

IPR, and diamonds from the slope of asymptotic distribution over

quantum states visited before quantum effects dominatd"omentum states. The dashed line has slope 2.
An~(Dt)¥2 The anomalous character of classical diffusionring to the distribution(one then getst;pr~1/2/PR). We
then enters the argument directly, and in principle one mighfinally looked at the entrop18] IPR '
expect a completely new scaling behaviaith respect tdt,
that linksn to p momentum statgsAs a matter of fact, if one
estimates the spreading by the square of the second moment S=2, |ay/?logla,/2 (8)
one getsAn~t*/2, There is a still subtler issue, namely that "

the nontriviality of the classical moments’ distributi¢see  Here ¢ is thought to be proportional to the number of par-
Fig. 2 might lead to nonequivalent estimates of the localiza+jcipating statesés~exp(S). Our findings consistently sug-
tion length[if, for instance, we putn(q=(A|n|*)", these  gest that every possible way of quantifying the localization

are ruled by different exponerjtas from Eq.(5 we get |ength yields, within numerical errors, the same scaling with
Angg~tP®, where sweeping space we pick up an interval 4 a5 seen from Fig. 5.

of possible exponents. So we checked a number of measures our simulations strongly indicate that, even in the pres-
of &: first of all from a direct inspection on the a?g/mptotlc ence of anomalies in the classical regime, dynamical local-
distribution, looking at an exponential decay rat€"*. We jzation still rules the asymptotic dynamics, and that the scal-

then considered the inverse participation rfia] ing with the quantum parametdr, somehow surprisingly,
still maintains the form of the normal diffusion case. The
E ENE absence of corrections with respect to the standard picture is
" coherent with the observation that the most dramatic classi-
IPR= 7 () cal effects (ballistic peaks propagatipnare exponentially

suppressed in the quantum regime, but further work is
needed to get a deeper understanding of the asymptotic re-

ime.
(a, being the momentum bases coefficients of the Waveg

function). We recall that the inverse participation ratio mea- We thank Daniel Alonso and Italo Guarneri for enlight-
sures the inverse of the number of momentum states concuening discussions, and Andrea G. Pinketts for inspiration.
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