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Asymptotic quantum behavior of classically anomalous maps

Roberto Artuso1,2,3,* and Michele Rusconi1

1International Centre for the Study of Dynamical Systems and Dipartimento di Scienze Chimiche, Fisiche e Matematiche,
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In the framework of quantum chaos, the theory of dynamical localization plays an outstanding role, both for
its conceptual relevance and physical import. Theoretical arguments, confirmed by a large amount of numerical
simulations, have shown in the case of complete classical chaos, that the localization length is related to the
classicaldiffusion constant and the effective Planck’s constant\. We investigate the quantum behavior when
classical dynamics exhibits anomalous diffusion~so that the diffusion constant is not defined!: we show that
dynamical localization still takes place, and that the scaling with the quantum parameter is the same as the
classically diffusive case.
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One of the most remarkable phenomena in quantum ch
is represented by dynamical localization, namely the s
pression of deterministic chaotic diffusion at large enou
time scales@1#. The original formulation@2# considered the
behavior of the kicked rotator, that is the quantum analog
the classical standard map@3#

pn115pn2K sin~xn!,
~1!

xn115xn1pn11 ,

which represents a paradigmatic example of the comple
of classical Hamiltonian dynamics, and catches the esse
features of a number of nonlinear physical problems. One
the most striking classical properties of Eq.~1!, for a wide
range of largeK values, is the appearance ofdeterministic
diffusion, namely, if we consider Eq.~1! on a cylinder~the
positionx being actually an angle!, we get

s2~n!5^~pn2p0!2&;2Dn, ~2!

where the average is over a set of initial conditions. T
classical dynamics is thus described by a stocha
parameter—the diffusion constantD—~which depends on
the nonlinear parameterK @4#!. When the system is quan
tized the most striking consequence is that classical diffus
in p is suppressed~for large enough times!, and the
asymptotic distributions are exponentially localized in t
momentum representation~see@1,2,5,6#!. This phenomenon
~called quantum dynamical localization! bears remarkable
analogies to Anderson localization@7#: the essential physica
parameter associated to the quantum motion is thus thelo-
calization lengthj, which gives the rate of exponential lo
calization of the asymptotic wave function.

A remarkable theoretical argument@8# links, in the regime
of small effective\ and genuine classical deterministic d
fusion ~2!, the localization length to both classical and qua
tum parameters
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where extensive investigations@9# strongly indicatea51/2.
These considerations are not of purely theoretical sign
cance, since quantum dynamical localization has been
served in a number of different experimental setups@10#.

The aim of this paper is to analyze the asymptotic qu
tum regime when the above-mentioned scenario change
an essential way at the classical level, that is when class
diffusion is anomalous. As a matter of fact, a number o
recent studies@11# have pointed out the existence of a set
K values where classical transport does not follow the lin
relationship~2!, but rather

s2~n!;nm ~4!

with some nontrivial exponentm ~see Fig. 1!. Actually, not
only the second moment of momentum distribution
anomalous, but the whole spectrum of moments is charac
ized by a scaling functionb(q), defined by the asymptotic
relationship

^~pn2p0!q&5sq~n!;nqb(q). ~5!

Figure 2 shows how forK56.905 ~which is the paramete
value we focus on in our analysis! the scaling functionb(q)
has a nontrivial profile, in contrast to genuine normal diffu
ing cases~the dashed line in Fig. 2!.

Our choice of the nonlinearity parameterK is dictated by
a pioneering analysis of the quantum motion@12#, where,
over the considered time scale, the authors observed a s
down of the quantum growth law fors2(n), but not the
saturation that is a hallmark of dynamical localization. O
first task is thus an analysis, over long time scales, of
quantum dynamics corresponding toK56.905, with differ-
ent values of the effective Planck’s constant\. We recall that
the quantum dynamics involves the one-kick unitary evo
tion operator
©2001 The American Physical Society04-1
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Û5e2( i /2\) p̂2
e2( i /\)K cos(x̂), ~6!

whose evolution is most conveniently studied by selectin
~sufficiently large! momentum basis~plane waves! and shift-
ing back and forth~via a fast Fourier transform! to the con-
jugate representation so that the two~noncommuting! expo-
nentials in Eq.~6! act as multiplications on the wave functio
@13#. Typically we start with an initial state localized aroun
the zero-momentum state, and follow the evolution of diff

FIG. 1. ^p2& for the classical standard map (K56.905): the
average is over 107 initial conditions. The dashed line has a slo
m51.5344.

FIG. 2. The scaling indicesb(q) for K56.905~full line!. Each
exponent has been estimated by taking 23105 initial conditions and
104 iterations of the map. The dashed line exhibits the same sca
indices for a normal diffusion case (K511).
01520
a
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ent order moments. As an example we show in Fig. 3
evolution of the fourth moment for two different values of\:
the main numerical result is that asymptotically wealways
observe saturation, thus, even in presence of accelerated
fusion in the classical dynamics, the analysis of quant
spreading of the wave packet strongly indicates that asy
totically dynamical localization prevails. We remark that t
choice of the basis size strongly depends on\: for the values
of \ we considered~in the same regime as@12#, where the
quantization scale is larger than the phase-space volume
cupied by ordered structures!, basis sizes up to 311 momen-
tum states were used and we always checked that norma
tion of the wave function is preserved during the who
range of time evolution~ruled by the number of kicksn). We
point out that our simulations refer to ‘‘generic’’~nonreso-
nant! values of\: the influence of weak chaos on resona
@14# behavior has been recently considered by Alonso@15#.

The remarks about asymptotic saturation of diffusion a
exponentially localized distributions do not imply that fo
short and intermediate times we do not observe any devia
from the standard picture: in particular the ‘‘ballistic peaks
follow the behavior predicted in former analysis@16#, and an
interesting intermediate regime is indeed present@12#, but
here we address only the asymptotic behavior, and thi
always found to be consistent with dynamical localizatio
The analysis of asymptotic distribution over momentu
states further supports this conclusion, and apure exponen-
tial decay is exhibited, see Fig. 4.

Once we convince ourselves that, despite the anoma
character of classical dynamics, the long-time quantum
havior is still ruled by exponential localization, a natur
question involves scaling properties of the localizati
length, as the standard argument~3! loses its meaning be
causeD is no more defined. We recall that in the standa
theory, the way in which classical diffusion constant ent
quantum dynamical localization is through an estimate
g

FIG. 3. Quantum evolution of^p4& for K56.905: the
asymptotic localization is clearly exhibited. The upper curve ref
to \50.27 and the lower one to\52.7.
4-2
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quantum states visited before quantum effects domin
Dn;(Dt)1/2. The anomalous character of classical diffusi
then enters the argument directly, and in principle one mi
expect a completely new scaling behavior~with respect to\,
that linksn to p momentum states!. As a matter of fact, if one
estimates the spreading by the square of the second mo
one getsDn;tm/2. There is a still subtler issue, namely th
the nontriviality of the classical moments’ distribution~see
Fig. 2! might lead to nonequivalent estimates of the locali
tion length@if, for instance, we putDn(q)5(Dunuq)1/q, these
are ruled by different exponents# as from Eq.~5! we get
Dn(q);tb(q), where sweepingq space we pick up an interva
of possible exponents. So we checked a number of meas
of j: first of all from a direct inspection on the asymptot
distribution, looking at an exponential decay ratee2n/j. We
then considered the inverse participation ratio@17#

IPR5

(
n

uanu4

S (
n

uanu2D 2 , ~7!

(an being the momentum bases coefficients of the w
function!. We recall that the inverse participation ratio me
sures the inverse of the number of momentum states con

FIG. 4. Final distribution probability over momentum states
K56.905 and\50.599.
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ring to the distribution~one then getsj IPR;1/2IPR). We
finally looked at the entropy@18#

S5(
n

uanu2 loguanu2. ~8!

Here j is thought to be proportional to the number of pa
ticipating statesjS;exp(S). Our findings consistently sug
gest that every possible way of quantifying the localizati
length yields, within numerical errors, the same scaling w
\, as seen from Fig. 5.

Our simulations strongly indicate that, even in the pre
ence of anomalies in the classical regime, dynamical loc
ization still rules the asymptotic dynamics, and that the sc
ing with the quantum parameter\, somehow surprisingly,
still maintains the form of the normal diffusion case. Th
absence of corrections with respect to the standard pictu
coherent with the observation that the most dramatic cla
cal effects ~ballistic peaks propagation! are exponentially
suppressed in the quantum regime, but further work
needed to get a deeper understanding of the asymptotic
gime.

We thank Daniel Alonso and Italo Guarneri for enligh
ening discussions, and Andrea G. Pinketts for inspiration

FIG. 5. Scaling of localization length versus\, for K56.905.
Circles represent estimates from the entropy, stars are relate
IPR, and diamonds from the slope of asymptotic distribution o
momentum states. The dashed line has slope 2.
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