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The analyticity domains of the Lindstedt series for the standard map are studied numerically using Pade
approximants to model their natural boundaries. We show that if the rotation number is a Diophantine number
close to a rational valup/q, then the radius of convergence of the Lindstedt series becomes smaller than the
critical threshold for the corresponding Kol'mogorov-Arnol'd-Moser curve, and the natural boundary on the
plane of the complexified perturbative parameter acquires a flowerlike shape qvjibtals.
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The standard map is a paradigmatic model for the transiwhose solutions are formally unique if we impose that
tion from regular to stochastic motion in classical mechanicsi(a,s,w) has zero average in the variable. The study of
introduced by Chiriko\[1]. It has also been studied in rela- the invariant curve€, , and of their smoothness properties
tion to problems of quantum mechanics and quantum chaosiay then be reduced to the study of the existence and
[2,3], and statistical mechani¢4]; it is also relevant to prob- smoothness of the solutions of the functional equatibn
lems in plasma physid$]. It is a discrete one-dimensional  The solutions of Eq(1) can be studied perturbatively by
dynamical system generated by the iteration of the sympleeexpandingu in Taylor series ire and in Fourier series iw:
tic map of the cylinder into itselfT, : TXR—TXR, given the resulting series is called théndstedt series

by
T.(X,y)=(x+y+e sinx,y+ ¢ sinx). U(a,s,w)=k21 SkU(k)(a,w)=k21 ek e u®(w);

[v[<k

For some background information, we refer the reader to th%y inserting the expansion in E€L) we can derive recursion

enormous body of literature on the topic, and in particular to . . ; . :
[6] for a reviev{ P P relations for the coefficients(¥)(w), which, besides impos-

For =0, the circlesy=const. are invariant curves on ing the restriction on the range of the sum okeare useful
which the dynamics is given by rotation with angular for num_erlcql calculatl_ons an(_j also _form t_he basis ofitbe
velocity—rotation number—ew=y/27. As the perturbation expar215|on$)|oneered in9). It |s-the Inversion of the opera-
is turned on, we face the classical Kol'mogorov-Arnol'd- t©0F D, when solving the functional equatidd) that gives
Moser (KAM) problem of determining which invariant 'S€ to the so calledmall d_e_nomlpators problemseen in the
curves survive and up to which size of the perturbative pa&XPressions for the coefficient§’(w) of the kernel of the
rameters (see[7,8] for the optimal arithmetic condition on OperatorD 2, given by 1/(4 sifivmw).

the rotation number for the stability of an invariant curve To characterize the breakdown of an invariant cufyg,
is well known that such invariant curves are given parametriwe introduce theadius of convergencef the Lindstedt se-
cally by the equation ries:
C. o X=a+u(a,s ), p(w)=inf, cq(lim sugu®(a,w)[*) 1,
’ k— o0

y=2mw+tu(ae 0)-Ula=270,8,0)j, and thecritical function

where in thea variable the dynamics on the curg , is edw)=sufe’=0: V¥ &"<e'C, , exists and is analytic
given by rotationsy,, ; = a,+ 27 w; the functionu(a, &, ), e
qalled theconjugating functionsatisfies the functional equa- clearly, p(w)<edw). In particular, the radius of conver-
tion gence of the Lindstedt series is zero—so no KAM invariant
9 curve exists—whenw is rational; whenw satisfies an irra-
(Duu)(ae,0)=u(at+27m0,8,0)—2u(a,e,0) tionality condition known as thBryuno conditioninstead, it
can be proved thap(w)>0—so that analytic invariant
curves exist fore small.
=esiNa+u(a,s,w)], (1) The analytic structure ofi in ¢ is of particular interest,
since it may explain, among other things, the relation be-
tweenp(w) ande(w). It is believed, on the basis ¢10—

tu(a—27w,e,w)

*Email address: berretti@mat.uniroma2.it 12], thatu has a natural boundary on the compkexylane,
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tinuation; this natural boundary appears to be independent of 0.6 ey —
a. Its shape determines the relation betwegfw) and - 1
e(w): in fact, p(w) is given by the distance of the natural 0.4 i b TR N N ]
boundary from the origin, while () is given by its inter- i 1. ]
section with the real, positive axiand for the standard map L N . .
the natural boundary must be symmetric with respect to the 0.2+ K
imaginary axis. .

For some rotation numbers, such as the golden mean Y
=(\/5—1)/2, the natural boundary was found to be roughly -t e
circular [10,11], with a very slight lengthening along the 0.2 -
imaginary axis for the golden medh2], so that one would r ) ]
have e (w) =p(w). Qualitatively, we can note that such a 04l '-:~':,_,,:- R A ]
situation practically arises for Diophantine numbers of the e ) . 1
form w=[a;,a,,a3, . ..], with small partial quotients,, : . i
in this sense the golden mean is the best possmle case. From '°-‘fo_6' o4 02 0 02 04 0.6
[15-17, we can expect to see a sharp difference between
p(w) ande(w) whenw is close to a rational numbelater FIG. 1. Poles of the Padeapproximant [240/240,
on, we shall come back to what “close” really means =[10,I°], «=1. Greene’s method gives(w)=0.4768.

Here we determine numerically, using Padpproxi-
mants, the natural boundary for the Lindstedt series of the As we take rotation numbers close to other rational num-
standard map in the complex variable, whenw is a Dio-  bersp/q, we see 2-lobed analyticity domains generated by
phantine number close to a rational one: EE® 11 for the  2q lines of singularities, arranged as thgtB roots of —1:
use of Padeapproximants in this context and further refer- we call such singularitiedominant
ences; it is enough here to recall that the poles of the Pade For example, in Fig. 3 we see the shape of the natural
approximants model the shape of the natural boundary of theoundary whenw=[3,12,1"]=(12+ y)/(37+3), close to
function being approximated. Of course this is no shortcutl/3, and in Fig. 4 we see the shape of the natural boundary
for a real “proof” of the existence and shape of the naturalwhen w=[4,14,I°]=(15+ y)/(61+4v), close to 1/4: ob-
boundary, as it is well known that Padpproximants can Serve the shapes of the natural boundaries and their relations
introduce spurious poles: we just provide some numericaVith g. It appears that there is no relevant dependence of the

insight that suggests the phenomenology we are going t8@Pe on the numeratpr for example, in Fig. 5 we see the
describe. shape of the natural boundary when=[2,2,12,]=(25

+2%)/(62+57%), which is close to 2/5; a similar shape is
obtained for a rotation number close to 1/5.
In [13,14] it was shown that there exists

In the following figures we plot the poles in the complex
e plane of some Padapproximants foru(a,e,w), for a
=1, and selected values af near rational values. We show
only the data coming from high-order Padgproximants
([240/24Q), computed using high-precision arithmetic (480

digits), though lower order Padapproximants and lower Uprq(e,8)= “TO ula,(2mn)?%,p/q+ 7], 2
precision arithmetic show the same results. Spurious pole/ K
zero pairs have been checked for and deleted. The indepen-
dence of the analyticity domain at has been tested by 08 prorp T T R
computing the Padapproximants for some selected values 06 b _'.. greiot M, ) ]
of @ and verifying that the shape of the natural boundary is C o ]
essentially the same. 0.4 [ N e
In Fig. 1 we see the shape of the natural boundary when oo . ]
w=[10,1"]=1/(10+ y), wherey=(y/5—1)/2 is the golden 0.2 1--g e
mean; note that such an is close to 0. We clearly see that 0 L s R
singularities close to the origin appear on the imaginary axis, TR S T
so thatp(w) <e (w) strictly in this case. Note also the two- 02 & ‘:. ¢
lobed shape of the domain, generated by the two lines of S T .3' ]
singularities on the imaginary axis cutting deep into the ana- -0.4 L K . ]
lyticity domain. - A K ]
In Fig. 2 we see the shape of the natural boundary when ~ -0.6 | ot e’ .
0=[2,10,I"]1=(10+ y)/(21+27y), which is close to 1/2. o | e . ]
Again p(w)<e(w) strictly, and observe the four-lobed 0-8_0_8 P
shape of the domain, with four lines of singularities, ar-
ranged radially as the fourth roots efl, cutting into the FIG. 2. Poles of the Padeapproximant [240/24Q, o
domain of analyticity. =[2,10,I"], a=1. Greene’s method gives,(w)=0.6762.
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FIG. 3. Poles of the Padeapproximant [240/240, o

~[312,7], a=1. Greene’s method givas,(w) = 0.7047. FIG. 5. Poles of the Padeapproximant [240/24Q0, o

=[2,2,12,1], a=1. Greene’'s method gives.(w)=0.8160.

where the limit is taken along any path in the complex
plane tending t@/q nontangentially to the real axis. In par-
ticular, this implies

Then for the radius of convergenggw), by comparing
the valuesp;(w) obtained through formulé) and the val-
uespp(w) obtained by Padapproximants, we find the re-
_ sults listed in Table I.
U(a,e,p/q+5) =Ugq(a,(27 )~ ?%)+ (corrections, In all casesp(w)<e(w) strictly; furthermore, the dis-
(©)) crepancy between the two values increases gsets close to
p/q. In a forthcoming publication we shall turn this remark
where the corrections can be proved to be of order£p*9. into a quantitative statement and compare the results from
If we assumehat the relation 2 holds also foeal values of ~ Padeapproximants and from Greene’s method $gfw).
7, provided that the limit is replaced with the limit superior A few words are necessary to explain what we mean by
[8], so that Eq. 3 can be written also for the valuessahat ~ “close”: strictly speaking, in fact, an irrational number is
we are considering, then we obtain tipdto) can be approxi- close to infinitely many rational values. For example,
mated as [2,10,1"] is close to 1/2 because its continued fraction starts
as the expansion of 1#2[ 2] and then is followed by a larger
p(w)~772’q(qC,§,ﬁ)\c)l’q, (4) integer (1_0, in this case the next best_approximant of
[2,10,1°] is [2,10]=10/21, but[2,10,1°] is not close to
10/21, since the subsequent partial quotient in its continued
fraction is a small integer (1, in this casénstead, consider
w1=[10,T°] and w,=[10"]; the sequence of rational ap-
proximants obtained by truncation of their continued frac-

whereC,, is the same constant as defined id], and\
~47%x0.828~32.669(see[13)]).

08 tions is 0/1, 1/10, 1/11,.., for wq, and 0/1, 1/10,

06 L _ L jepttiee, S A 10/101, ... forw,: so we can say that both are close to 0,
Tr SN [ i, but w, is also close to 1/10, while is not. It follows that

0.4 fogribia® ; ] the natural boundary corresponding to the rotation number

0.2 | "‘:\ -l ] TABLE I. Radius of convergence for some values of the rota-

] tion numberw: p;(w) is the value given by formuld4), while

0 F 1 pp(w) is the value obtained numerically by using Paafeproxi-

ol ] mants.
-0.2 i ::’ : \.. ]
0.4 : . .-- | .-' t ] w p/q Cp/q p1(w) pp(w)
: L \ it L] [2,10,1°] 12 0125000 0514 0.510
06t T SR Bl ] [3,12,1°] 13 0.041 667 0.557 0.555
-0.8 L0 L1 |. L1 | L1 L1 L T L [4’15’100] 1/4 0026 042 0528 0526
0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 [10°] 0/ 1.000000 0.320 0.313
[10,17] 0/1 1.000 000 0.290 0.284
FIG. 4. Poles of the Padeapproximant [240/24Q, o [2,2,12,1] 2/5 0.008 713 0.707 0.704

=[4,15,I°], a=1. Greene’'s method gives,(w)=0.6663.
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0.6 p=rrrr L B approximants of feasible order with the computer technology
1 available to us.except when the proximity to two distinct
0.4 | . ] rational values is strongas in the case ab, above. (2) The
- P e N 1 boundary could be a “smooth” curve with branching points
I i Y ] inside; as a Diophantine rotation number cannot be really
0.2 @ g close to all its approximants and since the presence of the
i ., , | branching points inside the analyticity domain reveal the
0 H ‘ i closeness to the corresponding approximants, only a finite
3 § number of cuts could arise in the analyticity domdthe
I ._:". . cuts, instead of being part of the boundary, should then be an
02 1 % 3 i artifact of the use of Padapproximants In the latter case it
i e, o '_.:.-"' 1 would remain unclear which mechanism could be respon-
0.4 BRI s i sible for the buildup of the natural boundary. Of course the
i ’ euristic nature of Padapproximants makes it quite difficult
SR AT AT I SRS AT BT B to choose without an argument based on different ap-
' proaches.

06 04 02 0 02 04 06 In any case, it is anyhow difficult to set the problem from

FIG. 6. Poles of the Padapproximant 240/24Q, w=[107], a numerical point of view, since by increasing the values of
a=1. a partial quotient,, for somek (e.g., fork=2 in the above
example, in the continued fraction expansion for the rotation

w, should be visibly influenced both by the singularities cor-"“‘”“t/’er w, theth""‘t“ﬁ]r b?fort“e]? trflosiir to ritthe convergent
responding to 0/1 and by those corresponding to 1/10, whiclk-1/dk-1, SO that the etiect of the S g.u anty correspond:
we could callsubdominantThis is indeed the case, as we "9 to such a rational value is z_impln‘led. then the singulari-
can see from Fig. 6; note that only the subdominant singu’Eles detected by the Padpproximants tend to accumulate

larities near the real axis are actually detectable, since thodE&! such a dominant singularity, and the rest of the bound-

near the imaginary axis give a negligible effect with respec er?/egf tz%tasn\f\llli}[/ftllglﬁlr?]ﬁ[:nhalsr'][riggjerzrsTgsoztzier: gf rﬁgz\rll\?nsi‘itl_
to the dominant ones. p : g

Therefore, two possible scenarios could be envisaded. picture_ one ShOUI.d g_reatly increase the ord_e_r_(_)f the'_ Pade
Following ideas first introduced in Ref16], one could approximants, which is beyond current possibilities. Differ-

imagine the natural boundary to be created by accumulatioﬁnt mgthods, such as the complex Greene’s method envis-
of lines of singularities due to resonances aficthe rational aged n Ref[12], could be used, but we expect that some
approximants, /qy of the rotation number should contrib- numerical problems would still be faced.

ute, with 2g, lines of singularities, to the buildup of the  We thank S. D’AngeldINFN Tor Vergata for providing
natural boundary, with each lobe actually decomposed in as with computing resources. Calculations have been per-
larger number of lobes on a smaller scale and sdtbese formed on DEC Alpha computers, using DEGRTRAN 90
smaller lobes would be eventually undetectable with Pad@and MATHEMATICA .
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