
RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 64, 015202~R!
Shape of analyticity domains of Lindstedt series: The standard map
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The analyticity domains of the Lindstedt series for the standard map are studied numerically using Pade´
approximants to model their natural boundaries. We show that if the rotation number is a Diophantine number
close to a rational valuep/q, then the radius of convergence of the Lindstedt series becomes smaller than the
critical threshold for the corresponding Kol’mogorov-Arnol’d-Moser curve, and the natural boundary on the
plane of the complexified perturbative parameter acquires a flowerlike shape with 2q petals.
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The standard map is a paradigmatic model for the tra
tion from regular to stochastic motion in classical mechan
introduced by Chirikov@1#. It has also been studied in rela
tion to problems of quantum mechanics and quantum ch
@2,3#, and statistical mechanics@4#; it is also relevant to prob-
lems in plasma physics@5#. It is a discrete one-dimensiona
dynamical system generated by the iteration of the symp
tic map of the cylinder into itself,T« :T3R°T3R, given
by

T«~x,y!5~x1y1« sinx,y1« sinx!.

For some background information, we refer the reader to
enormous body of literature on the topic, and in particular
@6# for a review.

For «50, the circlesy5const. are invariant curves o
which the dynamics is given by rotation with angul
velocity—rotation number—v5y/2p. As the perturbation
is turned on, we face the classical Kol’mogorov-Arnol’
Moser ~KAM ! problem of determining which invarian
curves survive and up to which size of the perturbative
rameter« ~see@7,8# for the optimal arithmetic condition on
the rotation number for the stability of an invariant curve!. It
is well known that such invariant curves are given parame
cally by the equation

C«,v : $x5a1u~a,«,v!,

y52pv1u~a,«,v!2u~a22pv,«,v!%,

where in thea variable the dynamics on the curveC«,v is
given by rotationsan115an12pv; the functionu(a,«,v),
called theconjugating function, satisfies the functional equa
tion

~Dv
2 u!~a,«,v!5u~a12pv,«,v!22u~a,«,v!

1u~a22pv,«,v!

5« sin@a1u~a,«,v!#, ~1!
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whose solutions are formally unique if we impose th
u(a,«,v) has zero average in thea variable. The study of
the invariant curvesC«,v and of their smoothness propertie
may then be reduced to the study of the existence
smoothness of the solutions of the functional equation~1!.

The solutions of Eq.~1! can be studied perturbatively b
expandingu in Taylor series in« and in Fourier series ina:
the resulting series is called theLindstedt series

u~a,«,v!5 (
k51

`

«ku(k)~a,v!5 (
k51

`

«k (
unu<k

einaun
(k)~v!;

by inserting the expansion in Eq.~1! we can derive recursion
relations for the coefficientsun

(k)(v), which, besides impos
ing the restriction on the range of the sum overk, are useful
for numerical calculations and also form the basis of thetree
expansionspioneered in@9#. It is the inversion of the opera
tor Dv

2 when solving the functional equation~1! that gives
rise to the so calledsmall denominators problem, seen in the
expressions for the coefficientsun

(k)(v) of the kernel of the
operatorDv

22 , given by 1/(4 sin2 npv).
To characterize the breakdown of an invariant curveC«,v ,

we introduce theradius of convergenceof the Lindstedt se-
ries:

r~v!5 infaPT~ lim sup
k→`

uu(k)~a,v!u1/k!21,

and thecritical function

«c~v!5sup$«8>0: ; «9,«8C«9,v exists and is analytic%;

clearly, r(v)<«c(v). In particular, the radius of conver
gence of the Lindstedt series is zero—so no KAM invaria
curve exists—whenv is rational; whenv satisfies an irra-
tionality condition known as theBryuno condition, instead, it
can be proved thatr(v).0—so that analytic invarian
curves exist for« small.

The analytic structure ofu in « is of particular interest,
since it may explain, among other things, the relation
tweenr(v) and«c(v). It is believed, on the basis of@10–
12#, that u has a natural boundary on the complex« plane,
i.e., that its domain of analyticity is bounded by a continuo
curve where singularities are dense, obstructing analytic c
©2001 The American Physical Society02-1
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tinuation; this natural boundary appears to be independen
a. Its shape determines the relation betweenr(v) and
«c(v): in fact, r(v) is given by the distance of the natur
boundary from the origin, while«c(v) is given by its inter-
section with the real, positive axis~and for the standard ma
the natural boundary must be symmetric with respect to
imaginary axis!.

For some rotation numbers, such as the golden meag
5(A521)/2, the natural boundary was found to be rough
circular @10,11#, with a very slight lengthening along th
imaginary axis for the golden mean@12#, so that one would
have «c(v)5r(v). Qualitatively, we can note that such
situation practically arises for Diophantine numbers of
form v5@a1 ,a2 ,a3 , . . . #, with small partial quotientsak :
in this sense the golden mean is the best possible case.
@15–17#, we can expect to see a sharp difference betw
r(v) and«c(v) whenv is close to a rational number~later
on, we shall come back to what ‘‘close’’ really means!.

Here we determine numerically, using Pade´ approxi-
mants, the natural boundary for the Lindstedt series of
standard map in the complex« variable, whenv is a Dio-
phantine number close to a rational one: see@10,11# for the
use of Pade´ approximants in this context and further refe
ences; it is enough here to recall that the poles of the P´
approximants model the shape of the natural boundary of
function being approximated. Of course this is no short
for a real ‘‘proof’’ of the existence and shape of the natu
boundary, as it is well known that Pade´ approximants can
introduce spurious poles: we just provide some numer
insight that suggests the phenomenology we are going
describe.

In the following figures we plot the poles in the comple
« plane of some Pade´ approximants foru(a,«,v), for a
51, and selected values ofv near rational values. We show
only the data coming from high-order Pade´ approximants
(@240/240#), computed using high-precision arithmetic (48
digits!, though lower order Pade´ approximants and lowe
precision arithmetic show the same results. Spurious p
zero pairs have been checked for and deleted. The inde
dence of the analyticity domain ofa has been tested b
computing the Pade´ approximants for some selected valu
of a and verifying that the shape of the natural boundary
essentially the same.

In Fig. 1 we see the shape of the natural boundary w
v5@10,1`#51/(101g), whereg5(A521)/2 is the golden
mean; note that such anv is close to 0. We clearly see tha
singularities close to the origin appear on the imaginary a
so thatr(v),«c(v) strictly in this case. Note also the two
lobed shape of the domain, generated by the two lines
singularities on the imaginary axis cutting deep into the a
lyticity domain.

In Fig. 2 we see the shape of the natural boundary w
v5@2,10,1`#5(101g)/(2112g), which is close to 1/2.
Again r(v),«c(v) strictly, and observe the four-lobe
shape of the domain, with four lines of singularities, a
ranged radially as the fourth roots of21, cutting into the
domain of analyticity.
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As we take rotation numbers close to other rational nu
bersp/q, we see 2q-lobed analyticity domains generated b
2q lines of singularities, arranged as the 2qth roots of21:
we call such singularitiesdominant.

For example, in Fig. 3 we see the shape of the natu
boundary whenv5@3,12,1`#5(121g)/(3713g), close to
1/3, and in Fig. 4 we see the shape of the natural bound
when v5@4,14,1`#5(151g)/(6114g), close to 1/4: ob-
serve the shapes of the natural boundaries and their rela
with q. It appears that there is no relevant dependence of
shape on the numeratorp: for example, in Fig. 5 we see th
shape of the natural boundary whenv5@2,2,12,1`#5(25
12g)/(6215g), which is close to 2/5; a similar shape
obtained for a rotation number close to 1/5.

In @13,14# it was shown that there exists

ūp/q~a,«!5 lim
h→0

u@a,~2ph!2/q«,p/q1h#, ~2!

FIG. 1. Poles of the Pade´ approximant @240/240#, v
5@10,1`#, a51. Greene’s method gives«c(v)50.4768.

FIG. 2. Poles of the Pade´ approximant @240/240#, v
5@2,10,1`#, a51. Greene’s method gives«c(v)50.6762.
2-2
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where the limit is taken along any path in the complexv
plane tending top/q nontangentially to the real axis. In pa
ticular, this implies

u~a,«,p/q1h!5ūp/q„a,~2ph!22/q«…1~corrections!,
~3!

where the corrections can be proved to be of order (2ph)2/q.
If we assumethat the relation 2 holds also forreal values of
h, provided that the limit is replaced with the limit superi
@8#, so that Eq. 3 can be written also for the values ofv that
we are considering, then we obtain thatr(v) can be approxi-
mated as

r~v!'h2/q~qCp/q
21lc!

1/q, ~4!

whereCp/q is the same constant as defined in@14#, andlc
'4p230.828'32.669~see@13#!.

FIG. 4. Poles of the Pade´ approximant @240/240#, v
5@4,15,1`#, a51. Greene’s method gives«c(v)50.6663.

FIG. 3. Poles of the Pade´ approximant @240/240#, v
5@3,12,1`#, a51. Greene’s method gives«c(v)50.7047.
01520
Then for the radius of convergencer(v), by comparing
the valuesr1(v) obtained through formula~4! and the val-
uesrP(v) obtained by Pade´ approximants, we find the re
sults listed in Table I.

In all casesr(v),«c(v) strictly; furthermore, the dis-
crepancy between the two values increases asv gets close to
p/q. In a forthcoming publication we shall turn this rema
into a quantitative statement and compare the results f
Padéapproximants and from Greene’s method for«c(v).

A few words are necessary to explain what we mean
‘‘close’’: strictly speaking, in fact, an irrational number i
close to infinitely many rational values. For examp
@2,10,1`# is close to 1/2 because its continued fraction sta
as the expansion of 1/25@2# and then is followed by a large
integer (10, in this case!; the next best approximant o
@2,10,1`# is @2,10#510/21, but @2,10,1`# is not close to
10/21, since the subsequent partial quotient in its contin
fraction is a small integer (1, in this case!. Instead, consider
v15@10,1`# and v25@10`#; the sequence of rational ap
proximants obtained by truncation of their continued fra
tions is 0/1, 1/10, 1/11,. . . , for v1, and 0/1, 1/10,
10/101, . . . forv2: so we can say that both are close to
but v2 is also close to 1/10, whilev1 is not. It follows that
the natural boundary corresponding to the rotation num

FIG. 5. Poles of the Pade´ approximant @240/240#, v
5@2,2,12,1`#, a51. Greene’s method gives«c(v)50.8160.

TABLE I. Radius of convergence for some values of the ro
tion numberv: r1(v) is the value given by formula~4!, while
rP(v) is the value obtained numerically by using Pade´ approxi-
mants.

v p/q Cp/q r1(v) rP(v)

@2,10,1`# 1/2 0.125 000 0.514 0.510
@3,12,1`# 1/3 0.041 667 0.557 0.555
@4,15,1`# 1/4 0.026 042 0.528 0.526
@10`# 0/1 1.000 000 0.320 0.313
@10,1`# 0/1 1.000 000 0.290 0.284
@2,2,12,1`# 2/5 0.008 713 0.707 0.704
2-3
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v2 should be visibly influenced both by the singularities c
responding to 0/1 and by those corresponding to 1/10, wh
we could callsubdominant. This is indeed the case, as w
can see from Fig. 6; note that only the subdominant sin
larities near the real axis are actually detectable, since th
near the imaginary axis give a negligible effect with resp
to the dominant ones.

Therefore, two possible scenarios could be envisaged~1!
Following ideas first introduced in Ref.@16#, one could
imagine the natural boundary to be created by accumula
of lines of singularities due to resonances, soall the rational
approximantspk /qk of the rotation number should contrib
ute, with 2qk lines of singularities, to the buildup of th
natural boundary, with each lobe actually decomposed
larger number of lobes on a smaller scale and so on~these
smaller lobes would be eventually undetectable with P´

FIG. 6. Poles of the Pade´ approximant@240/240#, v5@10`#,
a51.
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approximants of feasible order with the computer technolo
available to us,except when the proximity to two distin
rational values is strong, as in the case ofv2 above!. ~2! The
boundary could be a ‘‘smooth’’ curve with branching poin
inside; as a Diophantine rotation number cannot be re
close to all its approximants and since the presence of
branching points inside the analyticity domain reveal t
closeness to the corresponding approximants, only a fi
number of cuts could arise in the analyticity domain~the
cuts, instead of being part of the boundary, should then be
artifact of the use of Pade´ approximants!. In the latter case it
would remain unclear which mechanism could be resp
sible for the buildup of the natural boundary. Of course t
euristic nature of Pade´ approximants makes it quite difficul
to choose without an argument based on different
proaches.

In any case, it is anyhow difficult to set the problem fro
a numerical point of view, since by increasing the values
a partial quotientak , for somek ~e.g., fork52 in the above
example!, in the continued fraction expansion for the rotatio
number v, the latter becomes closer to the converge
pk21 /qk21, so that the effect of the singularity correspon
ing to such a rational value is amplified: then the singula
ties detected by the Pade´ approximants tend to accumula
near such a dominant singularity, and the rest of the bou
ary of the analyticity domain appears as a set of a few s
tered points without much structure. To obtain a meaning
picture one should greatly increase the order of the P´
approximants, which is beyond current possibilities. Diffe
ent methods, such as the complex Greene’s method en
aged in Ref.@12#, could be used, but we expect that som
numerical problems would still be faced.

We thank S. D’Angelo~INFN Tor Vergata! for providing
us with computing resources. Calculations have been
formed on DEC Alpha computers, using DECFORTRAN 90
andMATHEMATICA .
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