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Reentrant miscibility in fluids with spherical interactions
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We have obtained the closed-loop fluid-fluid immiscibility in the phase diagram of a binary mixture with
interactions with spherical symmetry. That topology appears when a short-range attractive interaction is con-
sidered between unlike pair molecules. We present “exact” results obtained from Monte Carlo simulation on
different ensembles and results from the application of a first-order perturbation theory.
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A large number of binary fluid mixtures show immiscibil- tions. The pair potential;; (r), between molecules of species
ity as they are cooled below an upper critical solution tem- andj is given by the square-we(BW) model:
perature(UCST). Less common is the reappearance of full
miscibility at a lower critical solution temperatufeCST). uj(r)=o= (r<oj)

This type of behavior has been observed in solutions of or-
ganic compounds in water or alcoh¢ld, and between them
nicotinetwater mixtures are a textbook examph.

After some controversial discussions about the qualitative 0 (r>oj\j), (1)
origin of such a phenomenology, Barker and Fd& . ) )
showed the first calculations on a closed-loop phase diagraMherer is the distance between the centers of the particles.
using a lattice description of mixtures with strong orienta- Models with a small number of parameters are usually
tional interactions. The model was designed according to &etter managed. This is the case of SW symmetrical mix-
suggestion by Hirschfeldest al.[4], who attributed the ori- tUres, whereo;;=0,=0, €1,=€»=¢€, andA;;=Ap=A\.
gin of reentrant miscibility to the freezing of the orientational By tuning the potential parameters of the interactions be-
entropy and the strong attraction due to hydrogen bondingween unlike particles€;,,€12,) 1), many features of the
which links molecules for a few orientations. In recent yearsphase behavior of real systems can be obseft2e14.
many attempts have been made to reproduce the closed-loop In this work, the fluid phase equilibria of SW symmetrical
shapes of actual mixtures by improving the lattice picture ofnixtures witho,=0, X3,#\, and €;,# € are considered
the fluid [5,6]. The first successful continuum approach atby Monte Carlo(MC) simulation and the application of the
predicting the closed-loop liquid immiscibility came from an Barker and Henderson theof¥5,16.
application of Wertheim’s theory to symmetric hard sphere In binary mixtures, fluid phase separation can occur
(HS) mixtures with mean-field MF) interactions between through two different mechanisms. Attractive interactions
like molecules plus a single square-well bonding site pePetween particles can induce the condensation of a vapor to
molecule, which leads to the formation of dimers betweerProduce a liquid phase of higher density. On the other hand,
unlike components for some molecular orientatipris unfavorable interactions between unlike particles can induce

The realm of the hydrogen bonding as the origin of thed demixing separation, where phases essentially differ on
closed-loop phase diagrams arose from the failure of som@omposition[17]. The combination of these two effects can
earlier studies, which considered spherical interactj@@,  Produce very different types of phase diagrdrhks The use
to obtain reentrant miscibility. A contributing factor in that of @ symmetrical model makes it easier to identify the nature
situation was the observation that the van der WA4aRBW) of different phases. The presence of demixing in a certain
equation of statéEOS, combined with VDW mixing rules, equilibrium between several phases of these mixtures implies
can predict qualitatively almost all known phase diagramthat two of the phases, | and II, in equilibrium have the same
types of fluid-fluid equilibria[10]; only one type, the so- density,p, and the mole fractions of a componentfulfill
called class VI, involving a closed-loop immiscibility at low x{=1-x;' [14,17-19. These two phases will be labeled
temperatures, cannot be predicted with the VDW approacH: F’’ in the context of phase diagrams. In addition, demix-
Recently, Lope$11] has shown by computer simulation that ing also implies the equality of the chemical potentials of
diagrams of class VI can be found for isotropic one-centeboth componentsi;= ..
interaction potentials when the range of unlike interactions is Simulations were performed using semi-Gra(®) en-
shorter than the pure components diameter. semble techniqud0,17]), where the thermodynamic condi-

In this Brief Report, we revise the microscopic origin of tions are defined by the number of particésthe tempera-
the reentrant miscibility in fluids by considering an off- tureT, the pressur@ (or the volumeV), and o=y — uo.
lattice model of a binary mixture with isotropic pair interac- Simulations were run either in one b@®G-NpT and SG-

 €jj (aier<0'ij)\ij)
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NVT ensemblesusing w1,=0, or in two boxegthat inter- 20

change particles and volumasing Gibbs ensemble Monte ’ e,

Carlo (GEMC) techniqueg21] with total volume fixed. wl 7 "\.\ ]
Simulation runs are organized in cycles. In each cyNle, 4 A

translations andN identity flips are attempted, one trial 1.6 —;” T R ‘

change of volume in SG-NpT and one attempt of volume | ‘x

interchange, antll attempts of particle interchange in GEMC Lol

runs. In “one-box” methods, simulations were performed g, | / - N

usingN=108, 256, 500, and 864 particles. In GEMC runs, N o° %,

we usedN =128, 216, and 500, with overall reduced density 44|/ g 8 iy

po®=0.36. ; Tor o 0 |
In order to analyze the fluid demixing, an order parameter o8| i

@ is defined asb=2x—1. The form of the probability dis- i /

tribution function of® for different systems can be moni- o !

tored [18,19 by evaluating the parameterG=(3 04 , ,

—(®*{D?)?)/2. For given conditions of andp (or p), the 600 025 o 078 1.00

value of G depends oM. As N increases goes either to 0

(“mixed” fluid ) or to 1 (“demixed” fluid). At critical con- FIG. 1. TheT-x phase diagram of the symmetric square well

ditions, G is supposed to converge rapidly withto a non- ~ Mmixture withA=1.4, A;,=1.1, ande;,/e=1.7 atp* =1.5. Tem-
trivial value G, . The critical lines can be evaluated by inter- peratures are given in reduced unifs" =kgT/e. Dashed line
polating over pairs of MC data sets with different value$of show§ PT results. Circles are MC results for the composition as a
to find the conditions wher6 is invariant withN. We have function of temperature, diamonds represent the estimated critical
estimated an invariant value @G,~0.7 in agreement with points. For comparison, we show the results for a mixture with
Ref. [19]. The composition of demixed phases is evaluatecflz:0 (dotted line.
asx;=(1=(|®[))/2.
The analysis of liquid-vapor equilibriufLVE) at a given  which is evaluated using the empirical correction of the
T was performed by means of the estimationofusing a  Percus-Yevick prediction®3]. Note that the density depen-
test-particle methodi22] on a number of SG-NVT simula- dence ofgy(p;r) modifies the MF approximation underlying
tions at different densities. The excess partwofvas fitted to  the VDW “a” parameter. In fact, such a dependence
a polynomial of the density. From the coefficients, we cancoupled with a short-range attractive potential between un-
readily evaluate the properties of the phases at equilibriundike particles can give a nonmonotonic behavior 1¢p),
The results were checked by performing GEMC simulations.
The results of both methods agree within experimental error. 54 , ,
MC results can be used to test the quality of theoretical
approaches. According to the first-order Barker-Henderson
perturbation theoryPT) [15], the Helmholtz free energy per
particlef of a binary mixture is given as

f(p,T,x f T Af
(p,T,X1) _ swip,T) At @
kgT kgT kgT

where kg is the Boltzmann constanfgy(p,T) is the free
energy per particle of the pure components, afdis the
free energy of mixing per particle, which dependsTanp,
andxy:

Af X (1=x)1(p)
keT KgT

+X1InX+(1=%)In(1—Xy).

)

FIG. 2. T-p projection of the fluid phase diagram from MC and
The first term on the right-hand side corresponds to the experturbation theory £,,=0). Potential parameters are the same as
cess free energy of mixing(p) is given by in Fig. 1. The dashed curve represents the FFE critical line evalu-
ated using PT. Dotted lines enclose three phase equilibria regions
(evaluated with PY. Empty circles represent points on the FFE
|(P):Pf dr go(p;r)[ugar) —ugs(r)], (4)  critical line evaluated from MC simulation. Filled circles corre-
spond to the compositions of vapor and demixed fluid phases in
equilibrium. Error bars are shown when the size of the symbols is
wheregq(p;r) is the pair distribution function of a HS fluid, exceeded. Solid lines are just joining points.
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FIG. 3. p-T projection of the theoretical results on the same

system shown in Fig. 2. Dashed line represents FFE critical ”ness'.im'izllaﬁ gﬁil(\:/:zgrt)gﬁ :;htiT)?t ;agl?)(;e(g-lt(:f |n:}e;g;:t:j(?gsrgﬁthffcecr;r(;l;-
Dotted lines correspond to equilibrium between two demixed P PP gram, 9

phases(FF) and a mixed fluid of either low densitjv) or high to the predictions of perturbation theory, Bt=1 (see the text for

density (L). Circles mark the position of tricritical points. In the detaily. Reentrant behavior appears in the region between the lines

) L . I of empty and filled circles.
inset, where pressure is given in a logarithmic scale, a quadruple

point is observed at low pressure.
existence of a TCP, but the presence of LVE fg,b=0 in a

which produces the reentrant phenomenology. The phaséry small range of temperatures abolg:p cannot be dis-
equilibria of the mixtures can be evaluated within the pTregarded. The results from PT for the other end gf show
approach using the following recipéi) Fix the values of ~@dain some peculiarity; the end point is another TCP where
T, w12, and a set of values of. (i) For each value op, Nge Meets a triple point line of equilibrium between demixed
find the mole fraction of component X; (p,T,uq5), by  Phases and a mixed fluid of higher dengi§FLE). No evi-
minimizing the functiony(p,T,X;) with respect tox;, where dence of this behavior was found in the rangeTafised in
o(p,T.x))=f(p,T,xy)— X 1. (i) For each density, MC simulation. In any case, this high-density TCP is likely
evaluatep and u; as functions ofT, p, andx,(p,T,uq,). t0o be preempted by the solid. The presence of tricritical
Discontinuous transitions gm (for uq, constantcan be ana- points in a binary mixture is due to the symmetry in the
lyzed by looking for loops on th@-p and u;-p plots and interactiond1], and it is strongly dependent on the particular
performing Maxwell’s constructions. FF equilibrium appearsvalues of the unlike interaction parameters.

whenx (p,T,u1,=0)# 3. The HS contributions to the ther- In Fig. 4 we map the range of the dissimilar interactions
modynamic properties were evaluated using the Carnahar.e., €;, and\;,) where the FF closed-loop behavior can be
Starling EOS16]. observed forT*=kgT/e=1 and reduced densitiegp*

In Fig. 1, we show &T-x phase diagram at reduced pres- <1.1. It is observed that reentrant phase behavior appears
sure p* =po°/e=1.5 and u;,=0 for a mixture withA  only on a small region in the space of the unlike interaction

=1.4, N1,=1.1, ande,/e=1.7, which shows the FF reen- parameters, in agreement with experimental observations
trant phase loop. The PT predictions show a larger immiscifog],

bility range. In addition, FF equilibrium in PT vanishes at
low temperature through a first-order transition to a mixed
liquid. In the same plot, we include PT results for a mixture
without attractions between unlike particleg 4/e=0),
where phase separation persists at low temperatures.

In Fig. 2, we show ther-p phase diagram foj,,=0,
given by MC calculations and PT. In Fig. 3, we show the
p-T projection of the phase diagram obtained from PT. Th
agreement between simulation results and theory is onl
qualitative. At highT andp, both types of predictions show
FF equilibria. The critical line of FFBy g, ends in the lower
pressure region at the end of the line of triple poi(f&V The authors acknowledge the financial support of the
equilibrium). In PT results, this point is on the critical line of DGICYT/Spain under Grant No. PB98-0673-C02-02, and
LVE defined over different values @f,,. We have therefore the CSC of the Complutense University for the use of their
a tricritical point(TCP). MC results seem also to indicate the computing facilities.

We have observed a closed-loop FF immiscibility in the
phase diagram of a symmetric binary mixture where unlike
interactions show a short-range attraction. Reentrant phases
can appear in such fluid mixtures because at high densities
the packing of the molecules enhances the structure of the
liquid, and the miscibility of the mixture is recovered by the
action of the attractive forces between unlike molecules. The

DW EOS cannot show that phenomenology, because its
XAF attractive parameter, with any selected combination rule,
is density-independent.
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