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Superballistic spreading of wave packets
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We demonstrate for various systems that the variance of a wave pd¢kett”, can show asuperballistic
increase with Z v<3, for parametrically large time intervals. A model is constructed that explains this
phenomenon and its predictions are verified numerically for various disordered and quasiperiodic systems.
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The time evolution of wave packets in one-dimensionalwhere the variances of wave packets, while staying below
(1D) and quasi-1D lattices is described by the time-the ballistic upper bound, show a cubic growth. Each system
dependent Schdinger equation consists of a perfect lattice with a disordered region of finite

length. Moreover, extending the length of the disordered re-
gion increaseshe time interval of the cubic growth.

de,(t) n+b We will show that this unexpected behavior of the vari-
i (;t = > HprCm, (1)  ance is associated with the rafefor the emission of an
m=n-b

electron from the disordered region into the perfect lattice.
This parameter determines the time scales

1 1w 1

wherec,(t) is the probability amplitude for an electron to be
and tyf~ T

at siten, b is the number of channels, ardl,, is a tight- t°”~<F
binding Hamiltonian. When translational symmetry is o ]
present, the eigenstates of the system are plane waves aff#en the superballistic growth starts and ends, respectively.
the variance of wave packets increases quadratically in tim&he differentl’ dependence of,, andts ensures that this
(ballistic spreading On the other hand, since the pioneeringtime interval becomes arbitrarily large &sdecreases. We
work of Andersor{1], it is known that disorder usually tends would like to mention that such intermediate superballistic
to suppress propagation and leads to localization. In the onéegimes are well known in other contexts like in hydrody-
dimensional case, even a small amount of disorder leads #@amic turbulencéRichardson lawor in plasma physics, but
localization of all eigenstategd,2], and therefore asymptoti- are unrelated.

cally the spreading of a wave packet remains bounded. In In order to understand the appearance of the cubic growth
higher dimensions a localization to delocalization transitionof the variance in Fig. 1 we consider a simple probabilistic
can occur that leads to diffusive or subdiffusive spreading ofnodel: The disordered part is replaced by a point source and
a wave packef2,3]. In addition, there are quasiperiodic sys- anything emitted from it moves with a constant veloaity
tems that even in 1D show fractal energy spectra and eigerinodeling the dynamics of a perfect lattice. Initially, all prob-
functions leading to a power law spreadirdg that is remi-
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niscent of anomalous diffusion in classical systems. o ' ' ' '
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A global characterization of the dynamical evolution of a 10° | M)
wave packet is provided by its variance o
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Its time dependence gives a quantitative description of the 10° | /
dynamics:»=0 corresponds to localization,=1 to diffu- ,
sion, v=2 to ballistic motion, andv e (0,2) to anomalous 10 10 10 12 100 10° 5

diffusion. It was shown that a ballistic upper bour(t)
<At?, exists for all times with a system specific constant FIG. 1. VarianceM(t) of a wave packet in a 1D disordered
[_5].. AIFhough this statement gives no .restriction.onfor model of sizeL =50, 70, 80, and 100from left to righ with a
finite time intervals, to our knowledge in all studies up t0 perfect lattice attached to both ends. The dashed lines indicate the
now r<2 was found for any time. time range over which the cubic growth appears before the
In this paper we show that there can be superballistiGsymptotic ballistic spreading sets in. The inset shows the cubic
spreading with exponentse (2,3] for parametrically large growth for a band random matrix modelb< 10, L =100,
time intervals. Examples witw=3 can be seen in Fig. 1 T=0.001).
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ability is confined to the point source and decays with at =0 for the point-source model. Conditioris and (ii)

constant ratd", such that the probability at the point source give the time scales and L/v, respectively. The internal
is given by varianceM;(t) is bounded byMT?*<L2. Thus condition
(iii ) together withM ¢, (t) ~vI"/3t3 valid for t<t.4 leads to

P()=exp(~T). @ the time scal¢ M "7 (v2T") ]*3. The maximum of these three
The varianceM pgt) of the point-source model is then given time scales defines the onset of the cubic law
by L Mmex 1/3
. t , ton= max{ | — } . (10)
Mps(t)Zfo dxsz'Odt’(— P(t"))s(x—v(t—t")), (5 v\ 0T

) In order to see the cubic law over a large time interyal
where— P(t) is the flux emitted from the point source. Sub- ~1/T" has to be large implying a smédl. For sufficiently
stituting Eq.(4) for P(t) we get smalll” the third time scale in Eq10) will dominate leading

. to the scaling presented in E@) for »=3. The ratiot /.,
Mpg(t)=v2I‘f dt'e T (t—t")?, (6) scales a_f 213 and therefore can be made arbitrarily large by
0 decreasingd’.
. . ] . One can extend the above analysis to other dynamical
which yields after integration exponentsy<3 by embedding the internal region in a lattice
5 5 o showing anomalous diffusion. These lattices are character-
22— —t+ 5— 5 (7) ized by a variance scaling d%, ue(0,2). This yields the
r—r<r general expression=u+ 1 for Egs.(2) and(3). Again, the
intuitive understanding is that the linear increase of the norm
of the wave packet outside the internal region increases the
exponent by 1.

In the remainder of this paper we will give numerical
evidence supporting the above analysis. We use perfect or
(8) quasiperiodic lattices with a finite 1D or quasi-1D disordered
region, although there are many other possible settings. Our
first example consists of a 1D disordered region of dize
attached with semi-infinite perfect lattices at both ends. In
Eq. (1) this corresponds to a tridiagonal Hamiltoniah (
=1),withH, ,~,=1 andH,,=0 except for a region of size
L where H,,, is a random number. We fix the disorder

Mpit):l)z I't

As expected, the variance grows quadraticaliy4t)
~v?t?, for asymptotically large times. Expanding the expo-
nential term in Eq(7) one finds

1, T
= 2 —3——4 e
Mpgt)=v F(St o

Under the conditiont<1/T" the cubic term dominates all
higher orders. Thus we find a cubic increase of the varianc
in the point-source model starting from the tipg=0 up to
the timetyy~1/MT". At the same time scale the crossover to

the asymptotic ballistic spreading starts, as can be seen fro[cﬂrength and we use sample sizes 50, . . .,100 such that

Eq. (7). . o
An intuitive understanding is based on the fact, that theL>|°°’ wherel., is the localization length of the correspond-

inar decrease dp(1) -1 't for smal imes 15 respon- 179,11 dS0Hlred systen. b ol Eoses e it |
sible for the cubic growth of the varian¢g&q. (5)]. During P

this time the norm of the wave packet outside the pointglon' Figure 1 shows the variance averaged over ten disorder

: : o . realizations. It shoul n hat with veraging wi
source increases linearly. This linear increase of the norm_ 2 ations. It should be noted, that without averaging we

combined with the usual quadratic increase of the variancget the same qualitative behavior. For small times all wave
due to the ballistic spreading yields the cubic growth of the

variance. P(t )1 000 ‘ @
A more realistic model should take into account the 0.998 | L=100
lengthL of the disordered region and the timet which the L=s0
norm of the wave packet outside the disordered region starts 0.996 [ | oo
to increase linearly. The total variance M(t)=M(t) C ‘ ; ;
+My(t), whereM;(t) is the contribution of the internal , 0 20000 40000 z60000 80000
region andM .,(t) originates from the perfect lattice, which 1-30 o ' ‘ '
is given by i T (b)
10 o
» t ) L @ )
Mext(t):f dxxzf dt'(—=P(t")é(x—L—v(t—t'—1)). 107 Qe
L T .
9 50 60 70 8 790 100

This reduces to E(5) of the point-source model for times FIG. 2. (a) Norm of the wave packet inside the disordered re-

fquiIIir_l__g the following three conditions(i_)_t> 7, (i) vt> L, gion of the 1D model v& for L=80, 90, 100 showing linear de-
and (i) Me(t)>M;(t). These conditions set the time cays.(b) Decay ratel’ vs L following an exponential lawdashed
scalet,, at which the cubic law may start, in contrast to line).
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FIG. 3. Timest,, (circles andt.; (squaresvs I" for the 1D FIG. 4. External variancé (t) for a 1D disordered sample

model(filled symbol$ and for the band random matrix modepen (L =50) attached to Fibonacci chain models witk=0.1, 0.4, and
symbols, data fott,, andt,; are shifted to account for different 0.7 (from top to botton), showing the expected power lavgashed
prefactors of the power laws for the two models lines).

packets spread ballistically until the variance starts to satu= M=<b), only. The parameteb defines the hopping range
rate whenM ,(t)~12. Then the cubic increase of the vari- between neighboring sites, or in the quasi-1D interpretation
ance can be observed before finally the asymptotic ballistigh® number of transverse channels along a thin {#iteThe
spreading sets in. There is a ballistic upper bound for allonZero matrix elements are independent Gaussian random
times in agreement with Reff5]. The range over which the numbers with variance 1 within a region of sikeand are

cubic law holds increases with the size of the disorderec?qual to 1 outside this region. The matrix elemefs, that

sample. This is in agreement with the predictions of thecouple the sample to the perfect lattice are random numbers

point-source model: It is applicable since the norm of theWlth varianceT such thatl'~T [8]. In order to study an

wave packet inside the disordered region initially decays lin-€X@mple where the internal varianb(t) is bounded by

early [Fig. 2@)]. From this linear decaP(t)=1-Tt we the sample size rather than the localization length, we choose

determine the raté’ that decreases exponentially with the a Samp'e sizé. <., Thus the initigl wave papket spreads
sample size. [Fig. 2(b)], as expected for the localized re- diffusively over the disordered region before it leaks out to

gime [6]. Thus extending the disordered region decredses Fhe leads. We find a cubic increase of the variaffdg. 1,

and together with Eq(3) explains the increase of the super- n;s?) atnd bya/taryirllg th3e coupling strengfwe confirm Eq.
ballistic time interval. The time scaldg, andt.s are deter- ( )Fpr Ii)” andtof ( Igl.:'l:)J. i chai tside th
mined from the times wheiM(t) deviates from the fitted inally, we use a Fibonacci chain modél] outside the

cubic increase by more than 10%. The scaling of the tim%ﬁ:ﬁ;;ﬁirzgﬁgiaﬁhi&; iugvr\l’gi:%vfgz tgstgﬁfiglrigrilt;th
fg)aleston andtoy with I are shown in Fig. 3 confirming Eq. [10]. Figure 4 shows the superballistic increase of the exter-

5Ia| variance in nice agreement with the expected exponent

We now show that our considerations also apply to a ban 1
V=0 .

random matrix model that describes quantum wji@s The
Hamiltonian matrixH,,, is real and the entries are different ~ We thank R. Fleischmann, |. Guarneri, and A. Politi for
from zero in a stripe of widtib around the diagonalli helpful discussions.
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