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Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex.
II. Numerical simulations, spectral entropy, and correlation times

D. A. Steyn-Ross, Moira L. Steyn-Ross, and Lara C. Wilcocks
Department of Physics and Electronic Engineering, Private Bag 3105, University of Waikato, Hamilton, New Zealand

J. W. Sleigh
Department of Anaesthetics, Waikato Hospital, Hamilton, New Zealand

~Received 4 September 2000; revised manuscript received 10 February 2001; published 27 June 2001!

In our two recent papers@M.L. Steyn-Rosset al., Phys. Rev. E60, 7299 ~1999!; 64, 011917~2001!# we
presented clinical evidence for a general anesthetic-induced phase change in the cerebral cortex, and showed
how the significant features of the cortical phase change~biphasic power surge, spectral energy redistribution,
‘‘heat capacity’’ divergence!, could be explained using a stochastic single-macrocolumn model of the cortex.
The model predictions were based on rather strong ‘‘adiabatic’’ assumptions which assert that the mean-field
excitatory and inhibitory macrocolumn voltages are ‘‘slow’’ variables whose equilibration times are much
longer than those of the input ‘‘currents’’ that drive the macrocolumn. In the present paper we test the adiabatic
assumption by running numerical simulations of the stochastic differential equations. These simulations con-
firm the number and nature of the steady-state solutions, the growth of fluctuation power at transition, and the
redistribution of spectral energy towards lower frequencies. We use spectral entropy to quantify these changes
in the power spectral density, and to show that the spectral entropy should decrease markedly at the point of
transition. This prediction agrees with recent clinical findings by Viertio¨-Oja and colleagues@J. Clinical
Monitoring Computing16, 60 ~2000!#. Our modeling work shows that there is an inverse relationship between
spectral entropyH and correlation timeT of the soma-voltage fluctuations:H}2 (ln T). In a theoretical
analysis we prove that this proportionality becomes exact for an ideal Lorentzian process. These findings
suggest that by monitoring the changes in EEG correlation time, it should be possible to track changes in the
state of patient consciousness.

DOI: 10.1103/PhysRevE.64.011918 PACS number~s!: 87.19.La, 05.10.Gg, 05.70.Fh
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I. INTRODUCTION

Our two earlier papers@1# and@2# introduced a theoretica
model to describe the gross changes in EEG~electroencepha
logram! characteristics observed when a patient underg
general anesthesia. In order to make the model equat
amenable to analytic treatment it was necessary first to
the stationary states of the model, then to make an adiab
approximation in which it is assumed that thehe ~excitatory!
and hi ~inhibitory! soma voltages of the mean-field macr
column vary on time scales much slower than those of
input ‘‘currents’’ which are integrated by the macrocolum
capacitor. This simplification allowed us to calculate a the
retical fluctuation spectrum for small white-noise perturb
tions of the macrocolumn about its steady state, and to
dict how this spectrum would change as a function
anesthetic concentration.

To verify the correctness of the theoretical analysis
papers@1,2#, we deemed it essential to run numerical sim
lations of the stochastic differential equations, and it is
first task of the present paper to report in Sec. II the result
these numerical experiments. Specifically, these experim
~i! confirm the predicted number, character, and location
the macrocolumn steady states as a function of anesth
effect; ~ii ! give a numerical demonstration of the growth
fluctuation power~the ‘‘biphasic effect’’! as the conscious
→unconscious transition point is approached; and~iii ! estab-
lish the range over which the adiabatic and full equatio
1063-651X/2001/64~1!/011918~12!/$20.00 64 0119
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give similar results, and identify the point at which the
behaviors are expected to diverge.

We find that the spectral power of the EEG redistribu
towards lower frequencies as the anesthetic effect increa
This redistribution can be quantified in terms of theShannon
spectral entropy~defined later in the paper!, giving a mea-
sure of the flatness~‘‘whiteness’’! of the EEG spectrum. In
Sec. III we compare the theoretical and numerical pred
tions for the anesthetic-driven change in spectral entro
then test these model predictions against clinical meas
ments furnished by Viertio¨-Oja and colleagues@3#. We find
good qualitative agreement between model results and c
cal measurement for spectral entropy change during ind
tion of general anesthesia.

These changes in the macrocolumn spectral respo
should also be detectable in the time domain. As pointed
in @1#, the model predicts there will be a pair of distin
first-order phase transitions: one at theA3 conscious
→unconscious induction~see Fig. 5 of@1#!, and another at
the Q1 unconscious→conscious emergence return. W
would expect both of these transitions to be heralded b
significant lengthening of the correlation times~the so-called
‘‘critical slowing down’’! of the soma-voltage fluctuations a
the macrocolumn jump points are approached. We dem
strate that the model correlation times do evolve in this w
but we have not yet applied this time-domain analysis to r
EEG data.

In the final part of Sec. III we investigate the link betwee
spectral entropy and correlation time for the soma-volta
©2001 The American Physical Society18-1
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fluctuations, and find that the two quantities appear to
inversely related: spectral entropy scales as the nega
logarithm of the correlation time. We comment on a possi
clinical application of this finding.

II. NUMERICAL VERIFICATIONS OF THE THEORY

A. Simulating the stochastic differential equations

The macrocolumn equations of motion for the excitato
and inhibitory soma voltages consist of a set of eight coup
stochastic differential equations: two first-order, six seco
order; the stochastic differential equations~SDEs! are given
in Eqs ~2.1!–~2.4! of @2#. After replacing each second-orde
differential equation~DE! with a pair of first-order DEs, we
can write down a set of 14 first-order difference equatio
which can then be integrated with an Euler one-step sche
We refer to this 14-equation set as thefull, nonadiabatic
equations.

We can greatly simplify the equation set by making t
adiabatic assumption~i.e., that thehe,i soma voltages are
‘‘slow’’ variables which equilibrate on much longer tim
scales than theI jk input currents!. This gives a single pair o
coupled first-order Langevin equations listed as Eqs.~2.9!
and~2.10! in @2#. Rewriting these as difference equations, t
soma voltages evolve as the sum of driftFDt and diffusion
GDt terms,

he
n115he

n1F1
nDt1Ge

nDt, ~2.1a!

hi
n115hi

n1F2
nDt1G i

nDt, ~2.1b!

where the superscriptn means ‘‘value at time stepn,’’ and
Dt is the time increment. TheF1,2

n are the simulated drift
terms which are straightforward discretizations of t
continuous-time drift equations~2.10a! and ~2.10b! of @2#.
The discretization of the diffusion equations~2.10c! and
~2.10d! of @2#, Ge,i requires some care; the resulting equ
tions are

Ge
n5H cee~he

n!aeeA^pee&
R1

n

ADt
Gee/ge

1lc ie~he
n!a ieA^pie&

R3
n

ADt
Gie/g iJ Y te ,

~2.2a!

G i
n5H cei~hi

n!aeiA^pei&
R2

n

ADt
Gee/ge

1lc i i ~hi
n!a i iA^pii &

R4
n

ADt
Gie/g iJ Y t i . ~2.2b!

~Symbols are as defined in Table I of@2#.! There are two
points of note here. First, each of the four independe
d-correlated, infinite-variance white noise sourc
jk,kP$1 . . . 4% of @2# have been replaced in the simulation equ
tions by their discrete approximationRk /ADt where theRk
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are independent, Gaussian-distributed sources of ran
numbers with mean zero, variance unity. The division
ADt ensures that the diffusion incrementGDt scales as the
square root of the time step as required for a Wiener proc
@4,5#.

Second, thea jk( j ,kP$e,i %) are constant dimensionles
safety factors designed to ensure that the random fluctuat
in thepjk subcortical inputs always remain small. The app
priate setting depends on the size of the time step. For
simulations, we setDt51024 s anda jk50.1. This value for
the safety factor ensured that there would be negligible pr
ability that a fluctuation inpjk would ever exceed itŝpjk&
average value.

To start the integration, the initial values for soma vo
ageshe and hi typically would be set equal to their zero
noise equilibrium values, derived from Fig. 1 of@2#, appro-
priate to the given value of anesthetic effectl:

he
05he

eq.~l!, hi
05hi

eq.~l!.

For l in the range 0.28,l,1.53, the equilibrium curve ha
a multivalued ordinate, so we would select either the to
middle-, or bottom-branch (he

eq.,hi
eq.) equilibrium values, de-

pending on the particular numerical experiment we wished
run.

B. Verification of macrocolumn steady states

The theoretical equilibria determined in@1# were verified
by running numerical simulations of both the full 14
equation nonadiabatic set and of the adiabatically simplifi
two-equation set. These simulation runs showed that
steady-state values calculated in@1# are correct, that the up
per and lower branches are stable~with the exception of the
high-l top branch for the full equations; this is discuss
below!, and that the middle branch is unstable. We dem
strated this by starting the system on the middle~unstable!
equilibrium point. The macrocolumn would never sit the
but would ‘‘fall’’ off the potential hill, settling into either the
upper-branch~high-firing! equilibrium valley, or the lower-
branch~low-firing! equilibrium valley. The ‘‘splitting prob-
ability’’ ~i.e., the probability of falling into a given valley!
was found to be;50%. See Figs. 1 and 2.

Figure 1 shows that the adiabatic runs settle to one of
stable states within about 200 samples~20 ms!. It appears
that the time required to settle decreases with increasingl.
Figure 2 illustrates the much slower evolution of the fu
equations, typically taking an order of magnitude long
~2000 samples, 200 ms! than the adiabatic equations to set
to steady state. We also see that forl51.3 @Fig. 2~c!#, unlike
the adiabatic case, the full-equation upper branch isunstable:
all runs which go to the upper branch develop an expon
tially growing oscillation about that branch before collapsi
to the bottom branch.

To discover the source of this instability we performed
linear stability analysis of the full equation set, and fou
that, on the top branch, the real part of the dominant eig
value goes positive when the anesthetic parameterl.1.2.
Subsequent simulation runs confirmed this finding: the up
branch is only stable in the full-equation case forl,1.2. As
l approaches this value from below, the simulations show
8-2
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TOWARD A THEORY OF THE . . . . II. . . . PHYSICAL REVIEW E 64 011918
FIG. 1. Settling to steady state for stochastic simulations of the adiabatic equations for three values of the anesthetic effect lyi
region II of the S-bend~see Fig. 1 of@2#!: ~a! l50.5; ~b! l51.0; ~c! l51.3. The four random noise sources to thepjk subcortical spike
inputs each have amplitudea50.1. The time step is 0.1 ms. The dark~light! curves show time evolution forhe (hi). For eachl value, ten
independent runs are shown. Each run is started on the unstable (he0

,hi 0
) equilibrium point at the crest of the potential hill separating the t

valleys~see Fig. 4 of@2#!, but cannot remain there. Random fluctuations cause the soma voltages to roll off the hill into either valle
equal probability. The upper stable equilibrium is the high-firing, active state; the lower stable equilibrium is the hyperpolarized, q
state.
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increasingly undamped oscillation at;10 Hz ~the so-called
EEG a-band resonance!. However, a time-frequency analy
sis of clinically measured EEG wave forms doesnot show a
preferential growth ofa-band power during anesthetic in
duction. Instead, the clinical traces show a broad transfe
power from higher to lower frequencies as the induct
point is approached, just as predicted by the simpler, a
batic theory~see Fig. 6 of@1#, and Figs. 4 and 5, discusse
later in this paper!.

Resonances are absent in our adiabatic theory becaus
adiabatic approximation eliminates the second-order time
rivatives that appear in the full equations. While the f
equations have a very rich range of dynamic behaviors s
lar to EEG patterns observed in the conscious cerebral
tex, for the purposes of modeling anesthetic induction,
simpler, adiabatic theory seems to provide a better ma
with clinical measurement. For this reason, the present p
focuses on the adiabatic predictions.
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C. Verification of fluctuation divergence „biphasic power surge…
at induction

Figures 6 and 7 of@1# illustrated the linearized adiabatic
theory prediction of a dramatic increase in low-frequen
fluctuation power as the conscious→ unconscious transition
is approached. Within the anesthesiology community, t
power surge is referred to as the ‘‘biphasic’’ or activatio
depression response to general anesthetic@6–8#. Here, we
verify that numerical simulation also shows a biphasic
sponse: the adiabatic equations produce anhe time series
whose fluctuations about steady state grow strongly as
macrocolumn nears itslA3

transition point.

The adiabatic macrocolumn is started atl50.3 on the
upper branch of the S curve~see Fig. 1 of@2#!. During a 30-s
simulation run, the anesthetic effect is slowly and stead
increased to reach a final value ofl52.3 after 300 000 itera-
tions for a time stepDt51024 s. The simulation results in
ut note that
ency
r
wards the
FIG. 2. Stochastic simulation results for full~nonadiabatic! equations for~a! l50.5; ~b! l51.0; ~c! l51.3. Initial settings and noise
amplitudes are as in Fig. 1. Full-equation runs generally demonstrate the same steady-state asymptotes as the adiabatic runs, b
settling times are an order of magnitude longer here, and the upper branch is now characterized by an oscillatory dynamic, of frequ;10
Hz, which is strongly damped for smalll, but becomes much less damped asl is increased. Forl*1.3, the oscillation about the uppe
branch becomes so strong that the upper equilibrium becomes dynamically unstable, causing trajectories originally headed to
high-firing branch to deviate and collapse into the hyperpolarized quiescent branch.
8-3
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FIG. 3. Time series of excita-
tory soma potentialhe for induc-
tion into unconsciousness.~a!
Time development along the equ
librium curve; ~b! ac fluctuations
residual after subtraction of the d
equilibrium component. Thehe

time series was generated by
30-s adiabatic simulation run in
which l was steadily increased
from 0.3 to 2.3 during the course
of the run. Time step:Dt50.1 ms
for 300 000 samples; noise sca
a50.1. In ~a!, the fluctuations are
displayed at 3003 actual size in
order to make them visible on th
equilibrium voltage scale. Their
true scale is shown in~b!.
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Fig. 3 show a flaring cornucopia of soma-voltage fluctuatio
that reach their maximal extent at the moment of transiti
then abruptly collapse immediately after the jump to t
much lower values characteristic of a low-firing, hyperpol
ized macrocolumn.

This divergent growth in fluctuation power is reminisce
of the divergent behavior observed in many physical ph
transitions, supporting that notion that the conscious↔ un-
conscious transition can be analyzed as a physical chang
state.

D. Verification of EEG spectral changes

1. Predictions of adiabatic theory

The theoretical fluctuation spectra were computed by
earizing the adiabatic equations about the S-bend~Fig. 1 of
@2#! steady state~found by setting all derivatives and nois
terms to zero!. This produced a pair of linearized stochas
differential equations for the variations in the soma voltag
h̃e,i about steady state, from which the stationary fluctuat
spectrum is derived as

S@he~v!#5
1

2p

D11A22
2 1D22A12

2 1D11v
2

~A11A222A21A122v2!21~A111A22!
2v2

.

~2.3!

The four drift-matrix elementsA11, A12, A21, andA22 are as
listed in the Appendix equations~A1!–~A4! of @1# @but note
the small typographical error on the last line of Eq.~A4! of
@1#: the postsynaptic amplitude term is incorrectly su
scripted, and should readGi ~not Ge)].

As explained in Sec. II A, in order for simulation to matc
theory, the four subcortical noise inputs must be kept su
ciently small, necessitating the introduction of scaling fact
a jkA^pjk& which multiply the four white-noise terms@see
Eq. ~2.5! of @2##. This means that the two diffusion-matri
elementsD11 andD22 listed in the Appendix equations~A5!
and ~A6! of @1# require modification, and now read
01191
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D115
1

te
2 $~ceeaeeGee/ge!

2^pee&

1l2~c iea ieGie/g i !
2^pie&%eq, ~2.4!

D225
1

t i
2 $~ceiaeiGee/ge!

2^pei&

1l2~c i i a i i Gie/g i !
2^pii &%eq. ~2.5!

Figure 4 shows how the theoretical spectrum changes
function of anesthetic effectl. There are two significant fea
tures. First, there is a very obvious surge in fluctuation pow
as the induction@Figs. 4~a! and 4~b!# and emergence@Figs.
4~c! and 4~d!# transition points are approached. This pow
surge is the anesthetic biphasic peak referred to earlier,
was seen in the simulation time series also~Fig. 3!.

Second, there is a marked change in the spectral distr
tion of the fluctuation power. As transition is approach
along the top branch, the spectrum changes from being fa
flat to having a strong roll-off characteristic with a peak
zero frequency. This tendency towards zero-frequency pe
ness is even more pronounced for the emergence path@Figs.
4~c! and 4~d!#. This alteration in spectral shape is the basis
the changes in spectral entropy and correlation time
cussed later.

2. Adiabatic simulation spectra

The simulation spectra were computed by Fourier tra
forming the pseudo-EEG wave forms generated by itera
the coupled adiabatic equations of motion@Eqs.~2.1!# for the
excitatory and inhibitory soma voltages. We would start t
adiabatic macrocolumn at the upper- or lower-branch sta
equilibrium point corresponding to a given value ofl, then
induce fluctuations about steady state by driving the mac
column subcortical inputs with four independent white-no
sources. Each run consisted of 100 000 iterations wit
time-stepDt51024 s, giving a 10-s pseudo-EEG recor
8-4
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FIG. 4. Theoretical prediction for the variation of spectral power for@~a! and~b!# anesthesia induction~pathA1A3Q3C of Fig. 1 in @2#!,
and for@~c! and~d!# the emergence from anesthesia (Q3Q1A1). Two views are shown for each trajectory to allow visual comparison of
relative flatness~‘‘whiteness’’! of the spectral curves before and after transition. Note the slab of biphasic power which heralds the
into unconsciousness at theA3→Q3 transition in ~a! and ~b!. There is a similar increase in cortical power on the return journey as
macrocolumn emerges from unconsciousness, with total power rising to a peak immediately prior to theQ1→A1 jump to the upper branch
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This was repeated forl values ranging from 0.3 to 1.8 in
steps of 0.1. The resulting adiabatic simulation spectra
shown in Fig. 5.

For frequencies below 400 Hz, agreement between the
and simulation is excellent. At higher frequencies, the sim
lation spectra overestimate the theoretical result, particul
when the macrocolumn is predicted to have a relatively
spectral response@e.g.,l50.3 andl51.0 on the top branch
see Figs. 5~a! and 5~b!#. Agreement at high frequencies
more convincing in those cases for which the macrocolu
is predicted to have a strongly low-pass filtering characte
tic @Figs. 5~c!–5~f!#. This is explicable as an aliasing artifa
in the simulation arising from the fact that the macrocolum
is being driven by unfiltered white noise, so the only ‘‘an
aliasing protection’’ in the sampled pseudo-EEG time se
is that provided by the low-pass filtering characteristics
the macrocolumn itself. We have verified that if we lower t
maximum excitatory and inhibitory firing rates by a factor
10 from the present~physiologically rather high! values of
Se,max5Si,max51000 s21 ~see Table I of@2#! to 100 s21,
then the23-dB frequency for the power spectrum reduc
by about an order of magnitude, and the aliasing erro
much reduced.
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We also computed the total fluctuation power in the ran
dc to 5000 Hz and dc to 400 Hz by summing the area of
1-Hz histogram bins. The comparisons between simula
and prediction are shown in Fig. 6. The biphasic pow
peaks demarking the induction and emergence transi
points are of similar magnitude for both frequency ban
indicating that most of the fluctuation power near transiti
resides in the lower frequencies. We observe that the ag
ment between simulation and theory is excellent for
0–400-Hz band@Fig. 6~b!#, but degraded for the 0–5000-H
band @Fig. 6~a!# for the upper branch where aliasing erro
are likely to be most apparent.

3. Nonadiabatic simulation spectra

As mentioned earlier, numerical simulations of the fu
14-equation model showed that the nonadiabatic macro
umn becomes unstable along the upper branch forl.1.3.
Unlike the adiabatic case, small soma-voltage fluctuati
about the upper-branch steady state would evolve int
;10-Hz oscillation whose amplitude would grow inexorab
until the macrocolumn collapsed ‘‘early’’ to the low-firing
rate lower branch, whereupon the oscillations would van
This numerical finding was confirmed by a linear stabil
8-5
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analysis of the nonadiabatic equations which showed
along the top branch, one of the 14 eigenvalues has a
part which goes positive whenl.1.3, causing this high-l
regime to become unstable. It is therefore not possible
define a steady-state fluctuation spectrum for the high-l re-
gime using the full equations, since the deterministic grow
completely swamps the stochastic behavior. Fuller invest
tion of the full-model equations is deferred to a later pap

III. ENTROPY CONSIDERATIONS: STATISTICS,
THERMODYNAMICS, AND SPECTRA

A. Entropies for the macrocolumn

An implicit assumption in our work is that the mod
behavior of a single macrocolumn of;105 cooperating neu-
rons can serve as a proxy for the bulk behavior of the;106

macrocolumns comprising the;1011 neuron population of
the cortex. This ‘‘one speaks for all’’ macrocolumn picture
probably not too unreasonable when applied to the tas
characterizing the gross changes that occur when there
massive switchover in cortical function from activ
consciousness to comatose-unconsciousness. After all,
gross changes can be, and routinely are, detected usi
single EEG electrode which is only sampling;1% of the
total macrocolumn population. In our companion paper@2#
we proposed that this gross change in state could be qu
fied in terms of an ‘‘anestheto-dynamic entropy’’ defined
the negative rate of change of macrocolumn free energy w
respect to its excitabilityQ, S52dV/dQ.

Another means for quantifying the state of orderliness
the cortex would be to apply a statistical mechanics form
ism which defines entropy in terms ofV, the statistical
weight of the macrostate~i.e., the number ofmicrostates
equivalent to the given macrostate!, SV5kBlogeV, wherekB
is Boltzmann’s constant.SV is a measure of the availabilit
or spread of the microstates, indicating their degree of r
domness or disorder. For the macrocolumn picture, a
crostate is one particular depolarized and/or hyperpolar
electrical configuration of the 105 neurons within the macro
column. The weight for this microstate would be the numb
of distinct voltage configurations of the 105 excitatory and
inhibitory neurons, whose net effect, when summed over
whole macrocolumn, is to produce a given excitatory a
inhibitory (he ,hi) voltage ‘‘coordinate.’’ The equilibrium
state for a given value of anesthetic effect would then be
state which maximized the number of available microsta

Our model has no detailed knowledge of the state of
constituent neurons, so it cannot be used to count micros
~except perhaps for the fully hyperpolarized state of extre
coma: in this case all neurons are assumed to be in the s
zero-firing state at290 mV, giving a microstate count o
unity!. Clinical measurements of scalp-detected EEG
also unable to reveal microscopic details of the individ
neuron states. This is because the recordings are the sum
tion of the electrical activity of the several thousand mac
columns in the vicinity of the electrode: all internal m
crostate structure has been irretrievably blurred out by
spatial and temporal averaging.
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Despite the fact that knowledge of the internal microst
structure is unavailable to us, our simple macrocolu
model has demonstrated considerable predictive utility w
respect to the anesthetic transition, indicating that the mo
equations provide a not unreasonable coarse-grained pic
of the bulk behavior of the cerebral cortex. This leads us
ask: Can the model be used to infer some of the inter
physics of the brain from the external EEG signal? Spec
cally, can we uncover and quantify the link between the
ternally measurable EEGspectral entropy ~defined below!
and the internal state of disorder of the cerebral cortex du
the transition into unconsciousness?

That there is a link between EEG and brain state is w
established. For example, Steriadeet al. @9# observe the fol-
lowing: ‘‘The rapid patterns characteristic of the arous
state are replaced by low-frequency, synchronized rhyth
of neuronal activity when the brain falls asleep.’’ So, t
unconscious brain has a relatively simple EEG spectru
whereas the spectrum for the conscious brain is noisier
more complex. EEG complexity can be quantified in fr
quency space by way of theShannon spectral entropyde-
fined as@10,11#

H52
1

ln N (
i 51

N

pi ln pi , ~3.1!

wherei is a frequency index andpi is a normalized spectra
density

pi5
S~v i !

(
j 51

N

S~v j !

, ~3.2!

giving the probability of occupation of thei th bin of an
N-bin histogram for the power spectrumS(v). Spectral en-
tropy H measures the relative flatness~‘‘whiteness’’! of the
spectrum.H has a maximum value of unity for a perfect
flat spectral histogram, and has a diminished positive va
for a spectrum which has resonance peaks or which follow
decay law~e.g., power;1/f n).

As shown in@2#, our phase-transition model for the corte
suggests that the anestheto-dynamic entropy~i.e., analogous
thermodynamic entropy! will be smaller in the hyperpolar-
ized ~unconscious! state. Since the cortex will have fewe
microstates available to it in this well-ordered state, its firi
behavior and resulting EEG spectrum should be relativ
simple, so it is reasonable to expect that spectral entropH
should also be smaller in the unconscious state. Convers
both kinds of entropy should be larger in the relatively d
ordered, more complex active state. Thus we expect cha
in the spectral entropy to track changes in the internal th
modynamic entropy, providing an external measure of
internal state of the cortex.

In the next section we investigate how the spectral
tropy of the adiabatic macrocolumn is expected to vary w
the anesthetic effect, using numerical simulations to ch
the theoretical predictions. We compare our model res
with clinical determinations of spectral entropy reported
8-6
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FIG. 5. Comparison of theoretical fluctuation spectra~black curves! with stochastic simulation spectra~gray curves! for the adiabatic
equations.~The noise amplitudes and time step are as for Fig. 1.! Simulation graphs were computed as the averaged spectra for te
time-series segments~10 000 samples per segment! which were then smoothed with a 5-point moving-average filter. Plots~a!–~c! are
fluctuation spectra for three representative anesthetic values on the top~high-firing! branch; plots~d!–~f! are the corresponding spectra fo
the bottom~low-firing, quiescent! branch. At low frequencies, agreement between theory and simulation is excellent@see the inset graphs fo
0–400-Hz detail in~a!–~c!#. At higher frequencies, the simulation spectra become inaccurate; this is an inevitable consequence of dr
macrocolumn with unfiltered Gaussian noise sampled at 10 kHz, producing aliasing artifacts. Aliasing errors diminish when the m
umn has a strong low-pass filtering characteristic~e.g., the bottom branch:~d!–~f!, and the top branch near transition:~c!#, but become
significant when the macrocolumn frequency response is relatively flat.

FIG. 6. Total fluctuation power~a! to 5000
Hz, ~b! to 400 Hz for the macrocolumn as a func
tion of the anesthetic effect; solid lines: theore
cal prediction; points: simulation results. Curve
show the predicted trends in fluctuation pow
computed from the area under the theoretic
spectral density curves of Fig. 4. Points are o
tained from the power spectra of the pseudo-EE
he time series generated by numerical simulati
of the adiabatic equations~time stepDt50.1 ms;
noise scale factora50.1). Total power was esti-
mated by summing into 1-Hz bins the area und
the power spectral density curves from 0–50
Hz ~a! and 0–400 Hz~b!.
011918-7
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FIG. 7. Theoretical prediction and simulatio
results for Shannon spectral entropy for~a!
0–5000 Hz,~b! 0–400 Hz; solid lines: prediction
discrete points: simulation results. Spectral e
tropy is typically high on the upper~active!
branch, and low on the quiescent branch. For
duction into unconsciousness, spectral entro
declines steeply but continuously. In contra
during emergence into consciousness the spec
entropy makes a discontinuous upwards jump
transition. The points labeledA3 andQ1 mark the
cusps in fluctuation power that occur at the i
stant preceding induction into unconsciousne
and emergence from unconsciousness, resp
tively.
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Viertiö and colleagues@3# for patients undergoing genera
anesthesia. We then look for a relationship between spe
entropy and fluctuation correlation time, and find a dire
logarithmic mapping between these frequency- and tim
domain measures.

B. Spectral entropy prediction from adiabatic theory

Using the theoretical adiabatic fluctuation spectra cal
lated from Eq.~2.3!, we computed the normalized Shann
spectral entropy@Eq. ~3.1!# with 1-Hz histogram bins for
frequency ranges 0–5000 Hz and 0–400 Hz. See Fig. 7.
both frequency bands, the spectral entropy is higher on
upper ~active! branch and lower on the bottom~quiescent!
branch. This is consistent with the notion that spectral
tropy will be large when the spectrum is relatively flat
‘‘white’’ ~all frequency bins equally populated!, and small
for a peaked spectrum~low-frequency bins more favore
than high-frequency bins!. As the three-dimensional~3D!
plots in Fig. 4 show, for small values ofl the shape of the
adiabatic power spectra for the top branch is considera
flatter than for the bottom branch. Asl→1.53 along the top
branch, the total fluctuation power rises to a peak, but
spectral distribution becomes increasingly concentrated
wards lower frequencies, so the spectral entropy decreas
a local minimum at theA3 critical point immediately prior to
the A3→Q3 induction jump.

For the Q3Q1 emergence trajectory along the botto
branch, the fluctuation spectra become even more dc-pea
hence the steep decline in spectral entropy in anticipatio
the Q1→A1 jump return to the upper branch.

Also shown in Fig. 7 are the spectral entropy values c
culated from the spectra derived from the adiabatic tim
series. Agreement between theory and numerical experim
01191
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s
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is generally very good. We found that the nonadiabatic sp
tral entropy curves~not shown here! differ markedly from
the adiabatic ones: this is because the spectral entropy va
are diminished by the appearance ofa-band resonances o
the upper branch which tend to swamp the stochastic tre

C. Spectral entropy from clinical measurements

We have recently become aware of clinical research
Viertiö-Oja and colleagues@3# investigating the feasibility of
using spectral entropy of patient EEG as a robust measur
depth of anesthesia. 105 patients undergoing routine gen
anesthesia were monitored using 12-lead EEG. The stat
consciousness was manually scored by an expert obse
using the six-level OAAS scale~observer’s assessment o
alertness and sedation: 55 fully awake; 05 deep anesthe
sia!. Loss of consciousness is defined as the transition fr
OAAS 3 to OAAS 2. After the transition, the patient n
longer responds to spoken commands and the eyelid refle
lost.

The OAAS scores were compared with the EEG spec
entropy values, and it was found that the entropy tracked
anesthesiologist’s rating, with loss of consciousness oc
ring at a universal critical value of entropy which was fou
to be independent of the patient. Figure 8 illustrates
strong correlation between the EEG measure and the
server assessment of consciousness.

Comparing the clinical results against the adiabatic p
diction of Fig. 7, there is good qualitative agreement for t
induction trajectory: adiabatic spectral entropy declines
the macrocolumn transits from the high-firing upper bran
to the low-firing quiescent branch; this parallels the decl
in clinical spectral entropy as the patient becomes anes
tized. In both cases, the rate of decline is steepest at tra
tion.
8-8
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FIG. 8. ~a! Spectral entropy derived from pa
tient scalp EEG during the induction of anesth
sia. The dashed curve shows 5-s averages;
heavy curve shows 1-min median-filtered ave
ages. The EEG was sampled at 10 000 s21, deci-
mated to 500 s21, and processed in 5-s segmen
For each segment, spectral entropy was cal
lated using a frequency-histogram binwidth
0.2 Hz.~b! The OAAS~observer’s assessment o
alertness and sedation! level as assessed by a
anesthesiologist. Level 5 is fully awake; level 0
a deep hypnotic state in which the patient sho
no response to tetanic stimulation of the uln
nerve~50 mA, 5 s!. In both figures, the horizonta
line shows the level at which transition from con
sciousness to unconsciousness occurs~OAAS 3
→ 2!. ~Data supplied courtesy H. Viertio¨-Oja,
and reported as patient 75 in Ref.@17#!.
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However, theory and experiment diverge for the em
gence trajectory. The adiabatic theory predicts that once
macrocolumn has reached the low-firing branch, reduc
the anesthetic concentration should lead to ever-diminish
spectral entropy as the macrocolumn approaches theQ1A1
critical point from the right, yet the clinical measuremen
seem to bottom-out at a minimum value of;0.66.

A possible explanation for this discrepancy might be t
the stochastic fluctuations for the bottom-branch macro
umn are expected to be very much smaller than for the
branch~compare the ‘‘before’’ and ‘‘after’’ fluctuation am
plitudes of Fig. 3!, consequently the stochastic component
the unconscious cortex could easily be swamped by
broad-band cortical resonances generated by the relat
ordered macrocolumns of the hyperpolarized cortex. If thi
so, it may provide a means of distinguishing the stocha
and nonstochastic components of the EEG signal by look
for transition-induced changes in the characteristics of
autocorrelation function of the EEG time-series.

D. Correlation time and its relationship to spectral entropy

The theoretical fluctuation spectrum is approximat
Lorentzian. This can be seen by considering the hi
frequency limit of Eq.~2.3!,

S~v!→ 1

2p

D11

v21~A111A22!
2

. ~3.3!

This approximation will become more accurate as the po
of transition is approached and the spectrum narrows
rises. We can identify the constant term (A111A22) in the
denominator as a relaxation rate, and its inverse as a co
lation time T51/(A111A22). The inverse-Fourier transform
of the power spectrum gives the autocorrelation funct
~this is the Wiener-Khinchin theorem!. For the Eq.~3.3!
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ideal Lorentzian spectrum, the autocorrelation function w
be an exponentially decaying function of time,

^he~ t !he~0!&5
1

2
D11Te2utu/T, ~3.4!

which will broaden at the induction and emergence transit
points as the spectrum narrows, becoming more dc-peake
the time scale for the voltage fluctuations increases. Thi
the classical ‘‘critical slowing down’’ phenomenon observ
in phase transitions.~A similar description relating change
in spectral shape to changes in correlation time has b
given by Shenoy in his treatment of the driven Joseph
junction as an analog of optical bistability@12#.!

Is there a relationship between spectral entropy and
relation time for the fluctuations? The adiabatic theory s
gests that there is, and that it is inverse. As the fluctua
spectrum narrows and rises on approach to transition,
spectral entropy decreases~the spectrum has become le
white! and the correlation times increase~the fluctuations
develop long-term memory: a 1/f noise process has ver
large power at very long time lapses~very smallv) @13#!.

To confirm this intuition, we computed the autocorrel
tion functions of the theoretical adiabatic spectra shown
Fig. 4. This was done numerically by converting each sing
sided spectrum to a dc-centered, double-sided spectrum
plying a Hanning window, then taking the absolute value
its discrete inverse Fourier transform~usingMATLAB ’s abs
andifft functions!. As expected, the resulting autocorrel
tion graphs showed an exponential decay from a peak at
lag. The decay timeT was determined as the negative of t
inverse slope of the semilogarithmic plot of autocorrelati
versus lag time.

The predicted variation of correlation timeT as a function
of the anesthetic effectl is shown in Fig. 9.
8-9
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FIG. 9. Predicted variation of the correlatio
time for stochastic fluctuations as a function ofl.
The correlation time is the 1/e decay time of the
theoretical autocorrelation functions~Fourier
transform of adiabatic fluctuation spectra of Fi
4!. Correlation times are plotted on a logarithm
scale. Note the apparent mirror symmetry~about
the horizontal axis! with the spectral entropy
curves of Fig. 7~a!.
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Comparison with Fig. 7~a! shows a remarkable mirro
symmetry between correlation time and spectral entro
The symmetry is not perfect, as can be seen from Fig. 1~b!
where we plot spectral entropy versus correlation time o
logarithmicx scale. But, as a rough fit by eye would sugge
it would not be unreasonable to draw a straight line of ne
tive slope through the points, indicating that, to first appro
mation, the spectral entropyH scales as the negative log
rithm of the correlation timeT.

This intriguing result motivated the following line of rea
soning: The adiabatic macrocolumn has a fluctuation s
trum which isnearly Lorentzian, and for which it isnearly
true to sayH}2 (ln T). So, could it be the case that for a
ideal Lorentzian process this relation is exactly correct?
find that the answer is ‘‘yes,’’ and a proof for this claim
presented in the Appendix. We find that for an ideal Lore
zian of correlation timeT, the unnormalized and normalize
spectral entropies are given, respectively, by

H52 ln T ~unnormalized!, ~3.5a!

H852
1

ln f max
ln T ~normalized on 0, f , f max!

~3.5b!
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for spectra plotted in linear frequency space (f : Hz!. If the
spectra are plotted in angular frequency space (v: rad/s!,
then T is replaced by 2pT in these formulas, andf max be-
comesvmax in Eq. ~3.5b!. See the Appendix for details.

IV. DISCUSSION

Although our adiabatic theory for the anesthetic-induc
phase transition is based on the mean-field model of a si
macrocolumn, it has been able to predict the following EE
behaviors that have been observed in clinical or laborat
settings.

~1! If the conscious→ unconscious transition is a first
order phase change from a less-ordered to a more-ord
state, then there should be a ‘‘latent heat’’ effect: a sudd
energy release to compensate for the loss of thermodyna
entropy. This prediction and its apparent corroboration in
experiment by Stullkenet al. @14# was discussed in@2#.

~2! Total EEG power should increase strongly as the
duction point is approached, then decrease following ind
tion; a similar power surge should occur at emergence~the
‘‘biphasic’’ effect @6–8,15#!.

~3! Spectral energy should redistribute from higher
lower frequencies during induction, with the spectrum b
coming increasingly narrow and dc-peaked@6#. This trans-
n

n

xi-
n-
r

FIG. 10. Spectral entropy versus correlatio
time for the adiabatic model.~a! has a linearx
scale to allow visual separation of the inductio
(A1A3Q3) and emergence (Q3Q1A1) trajecto-
ries. ~b! Plotted with a logarithmicx scale, both
trajectories merge, demonstrating an appro
mately linear relationship between spectral e
tropy and the logarithm of correlation time ove
three decades inT. The solid line in the lower
graph is theH852 ln T/ln 5001 prediction forT
~in seconds! for an ideal Lorentzian process~see
the Appendix for details!.
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TOWARD A THEORY OF THE . . . . II. . . . PHYSICAL REVIEW E 64 011918
formation from an approximately ‘‘white’’ spectrum to a 1/f
‘‘colored’’ spectrum should produce measurable reductio
in spectral entropy@3#.

Section III D of the present paper showed that spec
entropy is expected to be inversely related to the correla
time of the EEG voltage fluctuations. If this is true, then
suggests an alternative means of detecting the onset of
sition: the EEG correlation times should increase strongly
the point of transition is approached. This should occur
both the induction into unconsciousness and for the reem
gence into wakefulness. In order to test this prediction, c
will need to be taken to ensure that any nonstochastic va
tions ~e.g.,a, u, d rhythms! are excluded from the analysis
Our simple adiabatic theory addresses only the stocha
component of the cortical signal, and is silent with respec
cortical resonances.

The work presented in this paper and its companion pa
@2# raises two significant questions:~i! What is the relation-
ship between anestheto-dynamic entropyS and spectral en-
tropy H for the anesthetized cortex? and~ii ! can these mac
roscopic entropies provide insight into an underlyi
statistical entropy which counts cortical microstates? We
tend to address both questions in future work.
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APPENDIX A: SPECTRAL ENTROPY FOR A
LORENTZIAN SPECTRUM

Consider the prototypical Lorentzian spectrum

S~v!5
1

k21v2
, 0,v,` ~A1!

whose decay ratek sets the half-power or23-dB frequency.
We convert the spectrum to a spectral probability distrib
tion p(v) by normalizing with respect to total spectral are

p~v!5
S~v!

E
0

`

S~v!dv

so that E
0

`

p~v!dv51. ~A2!

The spectral area for the Lorentzian distribution is

E
0

`

S~v!dv5E
0

` dv

k21v2
5

1

k
tan21S v

k D U
0

`

5
p

2k
~A3!

giving the Lorentzian probability density function

p~v!5
2k

p

1

k21v2
. ~A4!

The spectral entropyH is obtained by evaluating th
negative of the expectation value of lnp(v),
01191
s

l
n

n-
s
r
r-

re
a-

tic
o

er

-

e

-
,

H52E
0

`

p~v!ln p~v!dv

52E
0

`2k

p

1

k21v2
lnF2k

p

1

k21v2Gdv

52
2k

p H lnF2k

p G E
0

` dv

k21v2
2E

0

` ln@k21v2#

k21v2
dvJ

52
2k

p H p

2k
lnF2k

p G2I 1J . ~A5!

The value of the definite integralI 1 is tabulated~see formula
4.295.7 on p. 560 of@16#!

I 15
p

k
ln 2k. ~A6!

This result allows us to write the spectral entropyH for the
continuous Lorentzian spectrum in a simple closed fo
which depends only onk, the Lorentzian decay rate,

H5 ln~2pk!. ~A7!

We see that the Lorentzian spectral entropyH exhibits the
following limiting behaviors.

~1! H→1` ask→`. As decay ratek increases, we ap
proach the white-noise flat-spectrum limit in which energy
uniformly distributed over all frequencies, giving extrem
maximum spectral entropy.

~2! H50 whenk51/2p. If the spectrum is sufficiently
jagged, its entropy can be zero, and a more jagged spec
will have a negative entropy. This possibility of a negati
continuous entropy is quite unlike the behavior of the d
crete Shannon entropy of Eq.~3.1! which can never go nega
tive.

~3! H→2` as k→0. In this limit the Lorentzian distri-
bution tends to the infinitely-peakedd-function d(v) which
is zero everywhere except at zero frequency. For this de
spike spectrum, spectral entropy reaches its extreme neg
value.

Any real experiment involving a Lorentzian process w
necessarily be band limited to some upper-limit frequen
vmax. In principle we could determine the spectral entropy
a band-limited Lorentzian by replacing̀ by vmax in the
integrals of Eqs.~A2! and~A5!, but unfortunately the result
ing expression forH cannot be integrated analytically an
must be computed numerically.

An alternative approach to band limiting is to referen
the entropy of the unlimited Lorentzian against the ma
mum entropy achievable on the band-limited domain 0,v
,vmax. This suggests using a rectangular reference sp
trum which is ‘‘flat’’ up to vmax, and zero elsewhere,

prect~v!5
1

vmax
, 0,v,vmax

50, v.vmax
8-11
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and whose spectral entropyH rect is

H rect52E
0

vmax
prectln prectdv5 ln vmax. ~A8!

Thus we define a Lorentzian spectral entropyH8 which has
been normalized with respect to a band-limited rectang
reference,

H85
H

H rect
5

ln~2pk!

ln vmax
. ~A9!

With this normalization,H851 whenk5vmax/2p, meaning
that for this value of decay ratek, the entropy of the open
ended Lorentzian matches that of a rectangular refere
spectrum which is upper-band limited tovmax.
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In Figs. 7 and 10 in Sec. III of this paper, the spect
entropy calculations used frequenciesf measured in Hz
~rather than angular frequenciesv in rad/s!. Applying the
change of variablev52p f to Eq. ~A1! gives

S~ f !5
1

k21~2p f !2
5

1/4p2

K21 f 2
, ~A10!

whereK5k/2p, leading to a normalized band-limited spe
tral entropy

H85
ln~2pK !

ln~ND f !
5

ln k

ln~ND f !
5

ln~1/T!

ln~ND f !
, ~A11!

whereT51/k is the correlation time for the Lorentzian fluc
tuations. For the numerical experiment of Fig. 10, we
D f 51 Hz andN55001.
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