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Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex.
[I.  Numerical simulations, spectral entropy, and correlation times
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In our two recent papergV.L. Steyn-Rosset al, Phys. Rev. B60, 7299 (1999; 64, 011917(2001)] we
presented clinical evidence for a general anesthetic-induced phase change in the cerebral cortex, and showed
how the significant features of the cortical phase chabg#hasic power surge, spectral energy redistribution,
“heat capacity” divergence could be explained using a stochastic single-macrocolumn model of the cortex.
The model predictions were based on rather strong “adiabatic” assumptions which assert that the mean-field
excitatory and inhibitory macrocolumn voltages are “slow” variables whose equilibration times are much
longer than those of the input “currents” that drive the macrocolumn. In the present paper we test the adiabatic
assumption by running numerical simulations of the stochastic differential equations. These simulations con-
firm the number and nature of the steady-state solutions, the growth of fluctuation power at transition, and the
redistribution of spectral energy towards lower frequencies. We use spectral entropy to quantify these changes
in the power spectral density, and to show that the spectral entropy should decrease markedly at the point of
transition. This prediction agrees with recent clinical findings by Vie@ja and colleague$J. Clinical
Monitoring Computingl6, 60 (2000 ]. Our modeling work shows that there is an inverse relationship between
spectral entropyH and correlation timel of the soma-voltage fluctuationsl«— (InT). In a theoretical
analysis we prove that this proportionality becomes exact for an ideal Lorentzian process. These findings
suggest that by monitoring the changes in EEG correlation time, it should be possible to track changes in the
state of patient consciousness.
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[. INTRODUCTION give similar results, and identify the point at which their
behaviors are expected to diverge.

Our two earlier paperil] and[2] introduced a theoretical We find that the spectral power of the EEG redistributes
model to describe the gross changes in HElBctroencepha- towards lower frequencies as the anesthetic effect increases.
logram) characteristics observed when a patient undergoe§his redistribution can be quantified in terms of ieannon
general anesthesia. In order to make the model equatior@ectral entropy(defined later in the papgrgiving a mea-
amenable to analytic treatment it was necessary first to fin§ure of the flatnes¢‘whiteness”) of the EEG spectrum. In
the stationary states of the model, then to make an adiabate€C- !l we compare the theoretical and numerical predic-
approximation in which it is assumed that the(excitatory tions for the anesthetlc—drlv_en change_ in sp_eg:tral entropy,
and h; (inhibitory) soma voltages of the mean-field macro- then test these model predictions against clinical measure-

column vary on time scales much slower than those of thénents fu”.“shed by Vierti®ja and colleaguefs]. We find -
. o . . good qualitative agreement between model results and clini-
input “currents” which are integrated by the macrocolumn

cal measurement for spectral entropy change during induc-

capacitor. This simplification allowed us to calculate a theo'tion of general anesthesia.

retical fluctuation spectrum for small white-noise perturba- These changes in the macrocolumn spectral response
tions of the macrocolumn about its steady state, and t0 présyo 4 also be detectable in the time domain. As pointed out
dict how this spectrum would change as a function ofiy [1] the model predicts there will be a pair of distinct
anesthetic concentration. first-order phase transitions: one at the; conscious

To verify the correctness of the theoretical analysis of ., nconscious inductioisee Fig. 5 of1]), and another at
papers[1,2], we deemed it essential to run numerical Simu-the Q, unconscioussconscious emergence return. We
lations of the stochastic differential equations, and it is theyould expect both of these transitions to be heralded by a
first task of the present paper to report in Sec. Il the results ofignificant lengthening of the correlation timgke so-called
these numerical experiments. Specifically, these experimentgritical slowing down”) of the soma-voltage fluctuations as
(i) confirm the predicted number, character, and locations ofhe macrocolumn jump points are approached. We demon-
the macrocolumn steady states as a function of anesthetstrate that the model correlation times do evolve in this way,
effect; (i) give a numerical demonstration of the growth in but we have not yet applied this time-domain analysis to real
fluctuation power(the “biphasic effect’) as the conscious EEG data.
—unconscious transition point is approached; éingestab- In the final part of Sec. Il we investigate the link between
lish the range over which the adiabatic and full equationsspectral entropy and correlation time for the soma-voltage
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fluctuations, and find that the two quantities appear to bare independent, Gaussian-distributed sources of random
inversely related: spectral entropy scales as the negativeumbers with mean zero, variance unity. The division by
logarithm of the correlation time. We comment on a possibley/At ensures that the diffusion incremdift scales as the

clinical application of this finding. square root of the time step as required for a Wiener process
[4,5].
Il. NUMERICAL VERIFICATIONS OF THE THEORY Second, the ajy(jkcfeiy are constant dimensionless
safety factors designed to ensure that the random fluctuations
A. Simulating the stochastic differential equations in the p;c subcortical inputs always remain small. The appro-

The macrocolumn equations of motion for the excitatoryP/at€ Setting depends on the size of the time step. For our
q y mulations, we seAt=10"*s andea;,=0.1. This value for

and inhibitory soma voltages consist of a set of eight couple ! -
stochastic differential equations: two first-order, six secondi?hbel.fafte;ytfacifr (tanstl_Jred_ thf"‘t therﬁjwould be negll_?lblie prob-
order; the stochastic differential equatiof&DES are given Zv:alrgge ?/aﬁjeuc uation irp; would ever exceed itgpj)
n Eqs(2_.1)—(2.4).of [2]. Aﬁer replgcmg.each second-order To start the integration, the initial values for soma volt-
differential equationDE) with a pair of first-order DEs, we agesh, and h, typically would be set equal to their zero-
can write down a set of 14 first-order difference equations, jica (eaquilibrilum values, derived from Fig. 1 [&], appro-
which can then be integrated with an Euler one-step SChemBriate to the given value’of anesthetic effact '
We refer to this 14-equation set as thdl, nonadiabatic
equations. h=he%\), hP=he&%n).

We can greatly simplify the equation set by making the ) o
“slow” variables which equilibrate on much longer time & multivalued ordinate, so we would select either the top-,
scales than the,, input currents This gives a single pair of Middle-, or bottom-branchhc®,hi*) equilibrium values, de-
Coup|ed first-order Langevin equations listed as Hw) pendlng on the partlcular numerical experiment we wished to
and(2.10 in [2]. Rewriting these as difference equations, therun.

soma voltages evolve as the sum of difht and diffusion o
B. Verification of macrocolumn steady states

I'At terms,
N+l wn o —n n The theoretical equilibria determined [ifi] were verified
he"=he+FiAt+ AL, (218 py running numerical simulations of both the full 14-
nt1 wn . en N equation nonadiabatic set and of the adiabatically simplified
hi™ "=hi+ F2At+T7At, (2.1b two-equation set. These simulation runs showed that the

, . _ . steady-state values calculated[ij are correct, that the up-
where the superscript means \l{alue at time step,” and e and Jower branches are stabléth the exception of the
At is the time increment. Th&; , are the simulated drift  high\ top branch for the full equations; this is discussed
terms which are straightforward discretizations of thebelovxb, and that the middle branch is unstable. We demon-
continuous-time drift equation&2.103 and (2.10D of [2].  girated this by starting the system on the middlestable
The discretization of the diffusion equatiori8.100 and  equilibrium point. The macrocolumn would never sit there,
(2.10d of [2], I'e; requires some care; the resulting equa-pyt would “fall” off the potential hill, settling into either the
tions are upper-branch(high-firing) equilibrium valley, or the lower-

branch(low-firing) equilibrium valley. The “splitting prob-

R1 ability” (i.e., the probability of falling into a given vallgy
n n l
Fe=| z/fee(he)aeev(pee)\/ﬁGee/ye was found to be~50%. See Figs. 1 and 2.
Figure 1 shows that the adiabatic runs settle to one of the
R3 stable states within about 200 sampl(@0 m3. It appears
+ N ie(he) aieV(Pie)==Giel ¥, / Te. that the time required to settle decreases with increasing
VAt Figure 2 illustrates the much slower evolution of the full

(2.23 equations, typically taking an order of magnitude longer
(2000 samples, 200 mthan the adiabatic equations to settle
R} to steady state. We also see thatXer 1.3[Fig. 2(c)], unlike
=1 ei(h!) @eiV(Pei)—==Gcel Ve the adiabatic case, the full-equation upper branchmigable
VAt all runs which go to the upper branch develop an exponen-
RO tially growing oscillation about that branch before collapsing
n o N—2 ol _ to the bottom branch.
M) a <p”>\/EG'eW' / ni- (2.2 To discover the source of this instability we performed a
linear stability analysis of the full equation set, and found
(Symbols are as defined in Table | @f].) There are two that, on the top branch, the real part of the dominant eigen-
points of note here. First, each of the four independentyalue goes positive when the anesthetic parameted.2.
o-correlated, infinite-variance ~ white  noise  sourcesSubsequent simulation runs confirmed this finding: the upper
&kkef1 ... 4 Of [2] have been replaced in the simulation equa-branch is only stable in the full-equation case Xer 1.2. As
tions by their discrete approximatidfy/\/At where theR, A approaches this value from below, the simulations show an
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FIG. 1. Settling to steady state for stochastic simulations of the adiabatic equations for three values of the anesthetic effect lying within
region Il of the S-bendsee Fig. 1 of2]): (a) A=0.5; (b) A\=1.0; (c) A=1.3. The four random noise sources to e subcortical spike
inputs each have amplitude=0.1. The time step is 0.1 ms. The ddlight) curves show time evolution fdr, (h;). For each\ value, ten
independent runs are shown. Each run is started on the unsltrgpllqu) equilibrium point at the crest of the potential hill separating the two
valleys(see Fig. 4 of2]), but cannot remain there. Random fluctuations cause the soma voltages to roll off the hill into either valley with
equal probability. The upper stable equilibrium is the high-firing, active state; the lower stable equilibrium is the hyperpolarized, quiescent
state.

increasingly undamped oscillation at10 Hz (the so-called C. Verification of fluctuation divergence (biphasic power surge
EEG «-band resonangeHowever, a time-frequency analy- at induction

sis of cI|n_|caIIy measured EEG wave forr_ns doex shov_v a Figures 6 and 7 of1] illustrated the linearized adiabatic-
preferential growth ofa-band power during anesthetic in- ohh

- o eory prediction of a dramatic increase in low-frequenc
duction. Instead, the clinical traces show a broad transfer y p . . q' . y
. . . ._fluctuation power as the consciods unconscious transition
power from higher to lower frequencies as the induction,

S : . : ._is approached. Within the anesthesiology community, this
point is approached, just as predicted by the simpler, adia ower surge is referred to as the “biphasic” or activation-

batic th Fig. 6 of1], and Figs. 4 and 5, di dP _ !
Iaatleur:in f;rsy(t;sae;er '9- 6 011}, and Figs. 4 an Iscusse depression response to general anesthétie]. Here, we

Resonances are absent in our adiabatic theory because /iy that numerical simulation also shows a biphasic re-
adiabatic approximation eliminates the second-order time deiPonse: the adiabatic equations producehartime series
rivatives that appear in the full equations. While the full Whose fluctuations about steady state grow strongly as the
equations have a very rich range of dynamic behaviors simiacrocolumn nears its,_ transition point.
lar to EEG patterns observed in the conscious cerebral cor- The adiabatic macrocolumn is started \at 0.3 on the
tex, for the purposes of modeling anesthetic induction, theipper branch of the S cunysee Fig. 1 of2]). During a 30-s
simpler, adiabatic theory seems to provide a better matckimulation run, the anesthetic effect is slowly and steadily
with clinical measurement. For this reason, the present papéncreased to reach a final value)of= 2.3 after 300 000 itera-
focuses on the adiabatic predictions. tions for a time step\t=10"* s. The simulation results in
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FIG. 2. Stochastic simulation results for fijlonadiabatiz equations for(@) A=0.5; (b) A=1.0; (c) A =1.3. Initial settings and noise
amplitudes are as in Fig. 1. Full-equation runs generally demonstrate the same steady-state asymptotes as the adiabatic runs, but note tha
settling times are an order of magnitude longer here, and the upper branch is now characterized by an oscillatory dynamic, of-fré@uency
Hz, which is strongly damped for small, but becomes much less dampedi\as increased. Fok=1.3, the oscillation about the upper
branch becomes so strong that the upper equilibrium becomes dynamically unstable, causing trajectories originally headed towards the
high-firing branch to deviate and collapse into the hyperpolarized quiescent branch.
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(a) he Time-series (b) Fluctuations Time-series

FIG. 3. Time series of excita-

-10 0.12
tory soma potentiah, for induc-
-20 tion into unconsciousness(a)
Time development along the equi-
S =30 ~ librium curve; (b) ac fluctuations
E 3 residual after subtraction of the dc
% 0 g e.quilibriulm component. Theh,
B .0 = time series was gene_rated by_ a
i 2 30-s adiabatic simulation run in
E .60 ‘_:’ which N was steadily increased
3 L from 0.3 to 2.3 during the course
& 70 S of the run. Time stepAt=0.1 ms
for 300 000 samples; noise scale
-80 a=0.1. In(a), the fluctuations are
-0.06 | 1 displayed at 308 actual size in
90 ¢ ' 1 order to make them visible on the
o 05 > P R e 1 15 > 25 equilibrium voltage scale. Their
Anesthetic Effect, A Anesthetic Effect, A true scale is shown ifb).
Fig. 3 show a flaring cornucopia of soma-voltage fluctuations 1
that reach their maximal extent at the moment of transition, Dllz—z{(zpeeaeeGee/ye)2<pee>
T

then abruptly collapse immediately after the jump to the e
much lower values characteristic of a low-firing, hyperpolar-

ized macrocolumn. N (YieaieGi€l y)) <p|e>}eqi (2.9
This divergent growth in fluctuation power is reminiscent
of the divergent behavior observed in many physical phase 1 [0 )2
transitions, supporting that notion that the conscietiun- DZZ_E{(%iaeiGee Ye)(Pei)
conscious transition can be analyzed as a physical change of !
state. + N2 @i Giel 7)) (Pii)eq- (2.9
D. Verification of EEG spectral changes Figure 4 shows how the theoretical spectrum changes as a

function of anesthetic effedt. There are two significant fea-
tures. First, there is a very obvious surge in fluctuation power
The theoretical fluctuation spectra were computed by linas the inductioffFigs. 4a) and 4b)] and emergencEFigs.
earizing the adiabatic equations about the S-b@ig. 1 of  4(c) and 4d)] transition points are approached. This power
[2]) steady statéfound by setting all derivatives and noise surge is the anesthetic biphasic peak referred to earlier, and
terms to zerp This produced a pair of linearized stochasticwas seen in the simulation time series alBa. 3.
differential equations for the variations in the soma voltages Second, there is a marked change in the spectral distribu-
he,; about steady state, from which the stationary fluctuatiorfion of the fluctuation power. As transition is approached
spectrum is derived as along the top branch, the spectrum changes from being fairly
flat to having a strong roll-off characteristic with a peak at
D AZ 4 DA D rco? zero frequency. This tendency towards zero-frequency peaki-
Sth (w)]:i 11A%F Do+ Dygw _ ness is even more pronounced for the emergence|pajb.
€ 27 (A1 A~ AsiA— 02) 2+ (At Ay w? 4(c) and 4d)]. This alteration in spectral shape is the basis of
(2.3 the changes in spectral entropy and correlation time dis-
cussed later.

1. Predictions of adiabatic theory

The four drift-matrix elementé\;;, A5, Ayy, andA,, are as

listed in the Appendix equation@1)—(A4) of [1] [but note 2. Adiabatic simulation spectra

the small typographical error on the last line of E44) of The simulation spectra were computed by Fourier trans-
[1]: the postsynaptic amplitude term is incorrectly sub-forming the pseudo-EEG wave forms generated by iterating
scripted, and should redd; (not Gg)]. the coupled adiabatic equations of mot|&uys.(2.1)] for the

As explained in Sec. Il A, in order for simulation to match excitatory and inhibitory soma voltages. We would start the
theory, the four subcortical noise inputs must be kept suffiadiabatic macrocolumn at the upper- or lower-branch stable
ciently small, necessitating the introduction of scaling factorsequilibrium point corresponding to a given valueafthen
ajV(pjk) which multiply the four white-noise termgsee induce fluctuations about steady state by driving the macro-
Eq. (2.5 of [2]]. This means that the two diffusion-matrix column subcortical inputs with four independent white-noise
elementd ;; andD,, listed in the Appendix equatiorf®5)  sources. Each run consisted of 100000 iterations with a
and (A6) of [1] require modification, and now read time-stepAt=10* s, giving a 10-s pseudo-EEG record.
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(a) Induction (view 1) (b) Induction (view 2)

Power (dB)

Power (dB)

FIG. 4. Theoretical prediction for the variation of spectral power far and(b)] anesthesia inductiofpathA;A;Q5C of Fig. 1 in[2]),
and for[(c) and(d)] the emergence from anesthes@;Q,A;). Two views are shown for each trajectory to allow visual comparison of the
relative flatnesg“whiteness”) of the spectral curves before and after transition. Note the slab of biphasic power which heralds the slump
into unconsciousness at tig— Q5 transition in(a) and (b). There is a similar increase in cortical power on the return journey as the
macrocolumn emerges from unconsciousness, with total power rising to a peak immediately prid@{e-thg jump to the upper branch.

This was repeated fax values ranging from 0.3 to 1.8 in We also computed the total fluctuation power in the range
steps of 0.1. The resulting adiabatic simulation spectra ardc to 5000 Hz and dc to 400 Hz by summing the area of the
shown in Fig. 5. 1-Hz histogram bins. The comparisons between simulation
For frequencies below 400 Hz, agreement between theorgnd prediction are shown in Fig. 6. The biphasic power
and simulation is excellent. At higher frequencies, the simuPeaks demarking the induction and emergence transition
lation spectra overestimate the theoretical result, particularpoints are of similar magnitude for both frequency bands,
when the macrocolumn is predicted to have a relatively flatndicating that most of the fluctuation power near transition
spectral responde.g.,\ =0.3 and\ = 1.0 on the top branch: resides in the lower frequencies. We observe that the agree-
see Figs. &) and 5b)]. Agreement at high frequencies is ment between simulation and theory is excellent for the

more convincing in those cases for which the macrocolumi ~400-Hz bandFig. 6b)], but degraded for the 0-5000-Hz

is predicted to have a strongly low-pass filtering characterispand[':ig' 6a)] for the upper branch where aliasing errors

tic [Figs. 5c)-5(f)]. This is explicable as an aliasing artifact are likely to be most apparent.
in the simulation arising from the fact that the macrocolumn
is being driven by unfiltered white noise, so the only “anti-
aliasing protection” in the sampled pseudo-EEG time series As mentioned earlier, numerical simulations of the full
is that provided by the low-pass filtering characteristics ofl4-equation model showed that the nonadiabatic macrocol-
the macrocolumn itself. We have verified that if we lower theumn becomes unstable along the upper branch\fer.3.
maximum excitatory and inhibitory firing rates by a factor of Unlike the adiabatic case, small soma-voltage fluctuations
10 from the presenfphysiologically rather highvalues of  about the upper-branch steady state would evolve into a
Se. max= S max— 1000 s (see Table | of[2]) to 100 s?, ~10-Hz oscillation whose amplitude would grow inexorably
then the—3-dB frequency for the power spectrum reducesuntil the macrocolumn collapsed “early” to the low-firing-
by about an order of magnitude, and the aliasing error igate lower branch, whereupon the oscillations would vanish.
much reduced. This numerical finding was confirmed by a linear stability

3. Nonadiabatic simulation spectra
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analysis of the nonadiabatic equations which showed that Despite the fact that knowledge of the internal microstate
along the top branch, one of the 14 eigenvalues has a reatructure is unavailable to us, our simple macrocolumn
part which goes positive whern>1.3, causing this high- model has demonstrated considerable predictive utility with
regime to become unstable. It is therefore not possible toespect to the anesthetic transition, indicating that the model
define a steady-state fluctuation spectrum for the higlk-  equations provide a not unreasonable coarse-grained picture
gime using the full equations, since the deterministic growttof the bulk behavior of the cerebral cortex. This leads us to
completely swamps the stochastic behavior. Fuller investigaask: Can the model be used to infer some of the internal
tion of the full-model equations is deferred to a later paper.physics of the brain from the external EEG signal? Specifi-
cally, can we uncover and quantify the link between the ex-
ternally measurable EEGpectral entropy (defined below

lIl. ENTROPY CONSIDERATIONS: STATISTICS, and the internal state of disorder of the cerebral cortex during
THERMODYNAMICS, AND SPECTRA the transition into unconsciousness?
That there is a link between EEG and brain state is well
A. Entropies for the macrocolumn established. For example, Steriaeteal. [9] observe the fol-

An implicit assumption in our work is that the model lowing: “The rapid patterns characteristic of the aroused
behavior of a single macrocolumn 6f10° cooperating neu- state are replaced by low-frequency, synchronized rhythms
rons can serve as a proxy for the bulk behavior of th0° ~ of neuronal activity when the brain falls asleep.” So, the
macrocolumns Comprising the 1011 neuron popu|ation of unconscious brain has a relatively Simple EEG SpeCtrUm,
the cortex. This “one speaks for all” macrocolumn picture is Whereas the spectrum for the conscious brain is noisier and
probably not too unreasonable when applied to the task ohore complex. EEG complexity can be quantified in fre-
characterizing the gross changes that occur when there isdency space by way of th8hannon spectral entropye-
massive switchover in cortical function from active- fined as{10,11]
consciousness to comatose-unconsciousness. After all, these N
gross changes can be, and routinely are, detected using a H:_i 2 b Inp; 3.1)
single EEG electrode which is only samplingl% of the NN 7Y '
total macrocolumn population. In our companion pajs&r
we proposed that this gross change in state could be quantiyherei is a frequency index ang; is a normalized spectral
fied in terms of an “anestheto-dynamic entropy” defined asdensity
the negative rate of change of macrocolumn free energy with

respect to its excitabilityy, S=—-dVv/d0O. S(w;)

Another means for quantifying the state of orderliness of Pi=w—, (3.2
the cortex would be to apply a statistical mechanics formal- E S(w)
ism which defines entropy in terms d®, the statistical j=1 .

weight of the macrostatéi.e., the number ofmicrostates
equivalent to the given macrostat&, = kglog.{2, wherekg giving the probability of occupation of théh bin of an
is Boltzmann’s constanS, is a measure of the availability N-bin histogram for the power spectruf{w). Spectral en-
or spread of the microstates, indicating their degree of rantropy H measures the relative flatne&svhiteness”) of the
domness or disorder. For the macrocolumn picture, a mispectrum.H has a maximum value of unity for a perfectly
crostate is one particular depolarized and/or hyperpolarizeffat spectral histogram, and has a diminished positive value
electrical configuration of the 2theurons within the macro- for a spectrum which has resonance peaks or which follows a
column. The weight for this microstate would be the numberdecay law(e.g., power~ 1/f").
of distinct voltage configurations of the A @xcitatory and As shown in[2], our phase-transition model for the cortex
inhibitory neurons, whose net effect, when summed over theuggests that the anestheto-dynamic enti@gy, analogous
whole macrocolumn, is to produce a given excitatory andhermodynamic entropywill be smaller in the hyperpolar-
inhibitory (he,h;) voltage *“coordinate.” The equilibrium ized (unconscious state. Since the cortex will have fewer
state for a given value of anesthetic effect would then be thatnicrostates available to it in this well-ordered state, its firing
state which maximized the number of available microstatesbehavior and resulting EEG spectrum should be relatively
Our model has no detailed knowledge of the state of itsimple, so it is reasonable to expect that spectral entkbpy
constituent neurons, so it cannot be used to count microstatefiould also be smaller in the unconscious state. Conversely,
(except perhaps for the fully hyperpolarized state of extreméoth kinds of entropy should be larger in the relatively dis-
coma: in this case all neurons are assumed to be in the samedered, more complex active state. Thus we expect changes
zero-firing state at-90 mV, giving a microstate count of in the spectral entropy to track changes in the internal ther-
unity). Clinical measurements of scalp-detected EEG arenodynamic entropy, providing an external measure of the
also unable to reveal microscopic details of the individualinternal state of the cortex.
neuron states. This is because the recordings are the summa-In the next section we investigate how the spectral en-
tion of the electrical activity of the several thousand macro-ropy of the adiabatic macrocolumn is expected to vary with
columns in the vicinity of the electrode: all internal mi- the anesthetic effect, using numerical simulations to check
crostate structure has been irretrievably blurred out by théhe theoretical predictions. We compare our model results
spatial and temporal averaging. with clinical determinations of spectral entropy reported by
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(a) Top:A=0.30 (b) Top: A =1.00 (c) Top:A=1.50
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(d) Bottom: A =0.30 (e) Bottom: A =1.00 (f) Bottom: A =1.50
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FIG. 5. Comparison of theoretical fluctuation spedtstack curveg with stochastic simulation specttgray curves for the adiabatic
equations(The noise amplitudes and time step are as for FigSimulation graphs were computed as the averaged spectra for ten 1-s
time-series segmentd 0 000 samples per segmgnthich were then smoothed with a 5-point moving-average filter. Rimts(c) are
fluctuation spectra for three representative anesthetic values on tlfleigbgfiring) branch; plotsd)—(f) are the corresponding spectra for
the bottom(low-firing, quiescentbranch. At low frequencies, agreement between theory and simulation is extedlerihe inset graphs for
0-400-Hz detail ifa)—(c)]. At higher frequencies, the simulation spectra become inaccurate; this is an inevitable consequence of driving the
macrocolumn with unfiltered Gaussian noise sampled at 10 kHz, producing aliasing artifacts. Aliasing errors diminish when the macrocol-
umn has a strong low-pass filtering characteri¢éi@., the bottom branchd)—(f), and the top branch near transitiaig)], but become
significant when the macrocolumn frequency response is relatively flat.

(a) Total Power to 5000 Hz
T T

0 T T T T T T T
g 4l A Top branch AS |
§, o Bottom branch
g of a1 ;
E.- FIG. 6. Total fluctuation powefa) to 5000
g S8 7 Hz, (b) to 400 Hz for the macrocolumn as a func-
=2 4l | tion of the anesthetic effect; solid lines: theoreti-
8‘; cal prediction; points: simulation results. Curves
I show the predicted trends in fluctuation power
0 computed from the area under the theoretical
spectral density curves of Fig. 4. Points are ob-
(b) Total Power to 400 Hz tained from the power spectra of the pseudo-EEG
0 ' ' ' ' ' ' ' ' ' h, time series generated by numerical simulation
g il | of the adiabatic equatior(ime stepAt=0.1 ms;
£ noise scale factosr=0.1). Total power was esti-
‘g oL | mated by summing into 1-Hz bins the area under
& the power spectral density curves from 0—5000
8 3| . Hz (a) and 0—400 HZb).
°
2 af -
8 =
%o 0.2 0.4 0.6 0.8 1 1.2 1.4 16 8

Anesthetic Effect, A

011918-7



STEYN-ROSS, STEYN-ROSS, WILCOCKS, AND SLEIGH PHYSICAL REVIEWG 011918

(a) Spectral Entropy to 5000 Hz
T T T

T T T

ir A1AAAAAAAAAAA 7

T T T

0.8F
FIG. 7. Theoretical prediction and simulation
1 results for Shannon spectral entropy féa)

0-5000 Hz(b) 0—400 Hz; solid lines: prediction;
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Spectral Entropy

L A Top branch 4 . . A .
0.4 -
5 Bottonbrarich dlscret.e pomts. S|mlulat|on results. Spectlral en
i tropy is typically high on the uppefactive
02 1 1 1 1 1 1 1 1 1 H H _
02 o 06 08 ’ P 4 18 18 branch, and low on the quiescent branch. For in

duction into unconsciousness, spectral entropy
declines steeply but continuously. In contrast,
: ‘ , : ‘ ‘ : during emergence into consciousness the spectral
T XA & & & & & & & & & 1 entropy makes a discontinuous upwards jump at
transition. The points labeledl; andQ, mark the
a cusps in fluctuation power that occur at the in-
stant preceding induction into unconsciousness
. and emergence from unconsciousness, respec-
tively.

(b) Spectral Entropy to 400 Hz

0.7F

Spectral Entropy
o
©
T
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Anesthetic Effect, A

Viertio and colleague$3] for patients undergoing general is generally very good. We found that the nonadiabatic spec-
anesthesia. We then look for a relationship between spectréfal entropy curvegnot shown herediffer markedly from
entropy and fluctuation correlation time, and find a directthe adiabatic ones: this is because the spectral entropy values

logarithmic mapping between these frequency- and timeare diminished by the appearance®band resonances on
domain measures. the upper branch which tend to swamp the stochastic trends.

C. Spectral entropy from clinical measurements

B. Spectral entropy prediction from adiabatic theory .
We have recently become aware of clinical research by

Using the theoretical adiabatic fluctuation spectra Ca|CUVierti6-Oja and colleaguel8] investigating the feasibility of
lated from Eq.(2.3), we computed the normalized Shannon ysing spectral entropy of patient EEG as a robust measure of
spectral entropyEq. (3.1] with 1-Hz histogram bins for depth of anesthesia. 105 patients undergoing routine general
frequency ranges 0—5000 Hz and 0—400 Hz. See Fig. 7. Fainesthesia were monitored using 12-lead EEG. The state of
both frequency bands, the spectral entropy is higher on theonsciousness was manually scored by an expert observer
upper (active) branch and lower on the bottoguiescent  using the six-level OAAS scaléobserver's assessment of
branch. This is consistent with the notion that spectral englertness and sedation:= fully awake; 0= deep anesthe-
tropy will be large when the spectrum is relatively flat or sjg). Loss of consciousness is defined as the transition from
“white” (all frequency bins equally populatedand small  OAAS 3 to OAAS 2. After the transition, the patient no
for a peaked spectruniow-frequency bins more favored |onger responds to spoken commands and the eyelid reflex is
than high-frequency bins As the three-dimensionaBD) lost.
plots in Fig. 4 show, for small values af the shape of the The OAAS scores were compared with the EEG spectral
adiabatic power spectra for the top branch is considerablgntropy values, and it was found that the entropy tracked the
flatter than for the bottom branch. As—1.53 along the top  anesthesiologist's rating, with loss of consciousness occur-
branch, the total fluctuation power rises to a peak, but itging at a universal critical value of entropy which was found
spectral distribution becomes increasingly concentrated tao be independent of the patient. Figure 8 illustrates the
wards lower frequencies, so the spectral entropy decreasesg@ong correlation between the EEG measure and the ob-
a local minimum at thé\; critical point immediately priorto  server assessment of consciousness.
the A;— Q3 induction jump. Comparing the clinical results against the adiabatic pre-

For the Q3;Q; emergence trajectory along the bottom diction of Fig. 7, there is good qualitative agreement for the
branch, the fluctuation spectra become even more dc-peakegduction trajectory: adiabatic spectral entropy declines as
hence the steep decline in spectral entropy in anticipation ahe macrocolumn transits from the high-firing upper branch
the Q;—A; jump return to the upper branch. to the low-firing quiescent branch; this parallels the decline

Also shown in Fig. 7 are the spectral entropy values calin clinical spectral entropy as the patient becomes anesthe-
culated from the spectra derived from the adiabatic timetized. In both cases, the rate of decline is steepest at transi-
series. Agreement between theory and numerical experimetibn.
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(a) Spectral Entropy
085 T T T T

0.8 FIG. 8. (a) Spectral entropy derived from pa-
tient scalp EEG during the induction of anesthe-
sia. The dashed curve shows 5-s averages; the
heavy curve shows 1-min median-filtered aver-
ages. The EEG was sampled at 10 00, sleci-
mated to 500 !, and processed in 5-s segments.
For each segment, spectral entropy was calcu-
lated using a frequency-histogram binwidth of
0.2 Hz.(b) The OAAS (observer’s assessment of
(b) OAAS Level alertness and sedatipevel as assessed by an
' ' ' i ' ' anesthesiologist. Level 5 is fully awake; level 0 is
T a deep hypnotic state in which the patient shows
L - no response to tetanic stimulation of the ulnar
nerve(50 mA, 5 9. In both figures, the horizontal
line shows the level at which transition from con-

i \ 7 sciousness to unconsciousness ocd@A8AS 3
1k T — 2). (Data supplied courtesy H. ViertiOja,
of and reported as patient 75 in RgL7]).

2 4 6 8 10 12 14
Time (min)

0.75

0.7

0.65

n w H o
T
1

However, theory and experiment diverge for the emerddeal Lorentzian spectrum, the autocorrelation function will
gence trajectory. The adiabatic theory predicts that once thiee an exponentially decaying function of time,
macrocolumn has reached the low-firing branch, reducing
the anesthetic concentration should lead to ever-diminishing 1
spectral entropy as the macrocolumn approacheQtj#e, (he(t)he(0)) = EDuTe‘“VT, (3.9
critical point from the right, yet the clinical measurements
seem to bottom-out at a minimum value ©0.66. ) ) ) ) -

A possible explanation for this discrepancy might be thalWh_'Ch will broaden at the induction and emergence transition
the stochastic fluctuations for the bottom-branch macrocolPOints as the spectrum narrows, becoming more dc-peaked as
umn are expected to be very much smaller than for the to'ghe time ;cale fgr the voIFage fluctuations increases. This is
branch(compare the “before” and “after” fluctuation am- the classical “critical slowing down” phenomenon observed
plitudes of Fig. 3, consequently the stochastic component ofin Phase transitiongA similar description relating changes
the unconscious cortex could easily be swamped by an{p spectral shape_to (_:hanges in correlatlon_ time has been
broad-band cortical resonances generated by the relativefjven by Shenoy in his treatment of the driven Josephson
ordered macrocolumns of the hyperpolarized cortex. If this igunction as an analog of optical bistabilifg2].)
so, it may provide a means of distinguishing the stochastic S there a relationship between spectral entropy and cor-
and nonstochastic components of the EEG signal by lookingelation time for the fluctuations? The adiabatic theory sug-
for transition-induced changes in the characteristics of th@©sts that there is, and that it is inverse. As the fluctuation

autocorrelation function of the EEG time-series. spectrum narrows and rises on approach to transition, the
spectral entropy decreaséthe spectrum has become less

white) and the correlation times increasgtne fluctuations

develop long-term memory: a fl/noise process has very
The theoretical fluctuation spectrum is approximatelyjarge power at very long time lapségery smallw) [13]).

Lorentzian. This can be seen by considering the high- To confirm this intuition, we computed the autocorrela-

D. Correlation time and its relationship to spectral entropy

frequency limit of Eq.(2.3), tion functions of the theoretical adiabatic spectra shown in
Fig. 4. This was done numerically by converting each single-
S(w)— i D 3.3 sided spectrum to a dc-centered, double-sided spectrum, ap-

plying a Hanning window, then taking the absolute value of
its discrete inverse Fourier transforimsing MATLAB's abs

This approximation will become more accurate as the poinandifft ~ functiong. As expected, the resulting autocorrela-
of transition is approached and the spectrum narrows antion graphs showed an exponential decay from a peak at zero
rises. We can identify the constant teriA,(+A,,) in the lag. The decay tim& was determined as the negative of the
denominator as a relaxation rate, and its inverse as a corr@iverse slope of the semilogarithmic plot of autocorrelation
lation time T=1/(A;+A,,). The inverse-Fourier transform versus lag time.

of the power spectrum gives the autocorrelation function The predicted variation of correlation tinfeas a function
(this is the Wiener-Khinchin theoremFor the Eq.(3.3 of the anesthetic effedt is shown in Fig. 9.

2T w?+ (At Ag)?
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w

FIG. 9. Predicted variation of the correlation

a Bottom branch
2+ o Top branch 4 time for stochastic fluctuations as a functionof
The correlation time is the &/decay time of the
A3 i theoretical autocorrelation functiongFourier

transform of adiabatic fluctuation spectra of Fig.
] 4). Correlation times are plotted on a logarithmic
scale. Note the apparent mirror symmetapout
. . . . . . the horizontal axis with the spectral entropy
0 0.2 04 06 0.8 1 1.2 1.4 16 1.8 curves of Fig. Ta).
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T
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Comparison with Fig. & shows a remarkable mirror for spectra plotted in linear frequency spade Kiz). If the
symmetry between correlation time and spectral entropyspectra are plotted in angular frequency spaee ad/s,
The symmetry is not perfect, as can be seen from Fig)10 thenT is replaced by zT in these formulas, anfl,., be-
where we plot spectral entropy versus correlation time on @&omesw, in Eq. (3.50. See the Appendix for details.
logarithmicx scale. But, as a rough fit by eye would suggest,
it would not be unreasonable to draw a straight line of nega- IV. DISCUSSION
tive slope through the points, indicating that, to first approxi-

mation, the spectral entropyl scales as the negative loga-  Although our adiabatic theory for the anesthetic-induced
rithm of the correlation timd. phase transition is based on the mean-field model of a single

This intriguing result motivated the following line of rea- Macrocolumn, it has been able to predict the following EEG
soning: The adiabatic macrocolumn has a fluctuation speBehaviors that have been observed in clinical or laboratory
trum which isnearly Lorentzian, and for which it imearly ~ Settings. _ _ o _
true to sayH>=— (InT). So, could it be the case that for an (1) If the conscious— unconscious transition is a first-
ideal Lorentzian process this relation is exactly correct? wérder phase change from a less-ordered to a more-ordered
find that the answer is “yes,” and a proof for this claim is State, then there should be a “latent heat” effect: a sudden
presented in the Appendix. We find that for an ideal Lorent-energy release to compensate for the loss of thermodynamic
zian of correlation timeT, the unnormalized and normalized entropy. This prediction and its apparent corroboration in an

spectral entropies are given, respectively, by experiment by Stullkeret al. [14] was discussed if2]. _
(2) Total EEG power should increase strongly as the in-

duction point is approached, then decrease following induc-

H=—InT (unnormalize 3.5 : -
( u (3.53 tion; a similar power surge should occur at emergeftice
1 “biphasic” effect [6-8,15).
r__ . (3) Spectral energy should redistribute from higher to
H InfmaxlnT (normalized on 6<f<fraq lower frequencies during induction, with the spectrum be-

(3.5  coming increasingly narrow and dc-peaked. This trans-

(a) Spectral Entropy vs Correlation Time (linear scale)

oAl A Top branch ]
2 a Bottom branch
S osr .
f
Lu ).
8 08 A3 1 FIG. 10. Spectral entropy versus correlation
Q . . . .
2 time for the adiabatic modela) has a linearx
@0 04r at T scale to allow visual separation of the induction
02 . . . . . o (A1A3Q3) and er.nergence(;(sQ%Al) trajecto-
’ 0 50 100 150 200 250 ries. (b) Plotted with a logarithmicx scale, both
trajectories merge, demonstrating an approxi-
(b) Spectral Entropy vs Correlation Time (log scale) mately linear relationship between spectral en-
al ' ' ' ' ' ' ' ' ' ' ] tropy and the logarithm of correlation time over
three decades iff. The solid line in the lower
§ 08l | graph is theH’=— In T/In 5001 prediction forT
£ (in secondsfor an ideal Lorentzian procegsee
% 06l i the Appendix for details
3
&
o 04 q
.o
o]
0.2 L

0.2 0.5 1 2 5 10 20 50 100 200
Correlation Time, T (ms)
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formation from an approximately “white” spectrum to af1/ o
“colored” spectrum should produce measurable reductions H=-— Jo p(w)inp(w)do
in spectral entropy3].

Section Il D of the present paper showed that spectral =2k 1 2k 1
entropy is expected to be inversely related to the correlation =— | — nf— do
time of the EEG voltage fluctuations. If this is true, then it 0 T Ktw? | T K+
suggests an alternative means of detecting the onset of tran- >, 2
sition: the EEG correlation times should increase strongly as — 2_k [Z_k fx do _ fwln[k to ]dw
the point of transition is approached. This should occur for ™ m|Jok?+w? Jo Ki+ow?
both the induction into unconsciousness and for the reemer-
gence into wakefulness. In order to test this prediction, care _ 2_k o n 2_k O (A5)
will need to be taken to ensure that any nonstochastic varia- w2k |7 -

tions(e.g.,«, 6, 6 rhythmg are excluded from the analysis.
Our simple adiabatic theory addresses only the stochastiEhe value of the definite integrd] is tabulatedsee formula
component of the cortical signal, and is silent with respect ta4.295.7 on p. 560 df16])
cortical resonances.
The work presented in this paper and its companion paper ™
[2] raises two significant question§) What is the relation- Il:EIn 2k. (AB)
ship between anestheto-dynamic entr&gnd spectral en-
tropy H for the anesthetized cortex? afif) can these mac- This result allows us to write the spectral entrdgyfor the
roscopic entropies provide insight into an underlyingcontinuous Lorentzian spectrum in a simple closed form
statistical entropy which counts cortical microstates? We inwhich depends only oR, the Lorentzian decay rate,
tend to address both questions in future work.
H= In(27k). (A7)
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clinical data shown in Fig. 8. proach the white-noise flat-spectrum limit in which energy is
uniformly distributed over all frequencies, giving extreme
APPENDIX A: SPECTRAL ENTROPY FOR A maximum spectral entropy.

LORENTZIAN SPECTRUM (2) H=0 whenk=1/27. If the spectrum is sufficiently
jagged, its entropy can be zero, and a more jagged spectrum
will have a negative entropy. This possibility of a negative
continuous entropy is quite unlike the behavior of the dis-
S(w)= ; 0< <o (A1) crete Shannon entropy of E@.1) which can never go nega-

k2 + w? tive.
(3) H— —« ask—0. In this limit the Lorentzian distri-
whose decay ratk sets the half-power or 3-dB frequency. bution tends to the infinitely-peakegifunction 8(») which
We convert the spectrum to a spectral probability distribuis zero everywhere except at zero frequency. For this delta-
tion p(w) by normalizing with respect to total spectral area, spike spectrum, spectral entropy reaches its extreme negative
value.
_ * _ Any real experiment involving a Lorentzian process will

plw)= = so that fo P(o)do=1. " (A2) necessarily be band limited to some upper-limit frequency

Jo S(w)dw ®max- IN principle we could determine the spectral entropy of

a band-limited Lorentzian by replacinrg by wnay in the
The spectral area for the Lorentzian distribution is integrals of Eqs(A2) and(A5), but unfortunately the result-
ing expression folH cannot be integrated analytically and
JOOS d f”’ do 1t 71 a))
0 N9 o ke K K

- must be computed numerically.
giving the Lorentzian probability density function

Consider the prototypical Lorentzian spectrum

=— (A3) An alternative approach to band limiting is to reference
0 2k the entropy of the unlimited Lorentzian against the maxi-
mum entropy achievable on the band-limited domai&®
<wmax- ThisS suggests using a rectangular reference spec-
trum which is “flat” up to .y, and zero elsewhere,

2k 1 ad
P(o)=" 5 (A4) L
precl(w):w_a 0<w<w®ma
max
The spectral entropyH is obtained by evaluating the
negative of the expectation value offw), =0, w0>wma
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and whose spectral entropyec: IS In Figs. 7 and 10 in Sec. lll of this paper, the spectral
entropy calculations used frequenciésmeasured in Hz
_ [ @max _ (rather than angular frequencies in rad/9. Applying the

Hrec= fo Prect!N Precd® = IN 0. (A8) change of variablen=2#f to Eq.(Al) gives

Thus we define a Lorentzian spectral entrdpy which has 1 1/4m?

been normalized with respect to a band-limited rectangular ()= K2+ (27f)2 - K242 (A10)
reference,

whereK =k/27, leading to a normalized band-limited spec-
tral entropy
o In(27K) Ink In(1/T)

T In(NAT) _ In(NAT) In(NAf)’

H  In(2mk)

Hrect In ®max

(A9)

(Al1)
With this normalizationH' =1 whenk= w,,,/27, meaning

that for this value of decay rate the entropy of the open- whereT=1/k is the correlation time for the Lorentzian fluc-
ended Lorentzian matches that of a rectangular referendeations. For the numerical experiment of Fig. 10, we set
spectrum which is upper-band limited &g, Af=1 Hz andN=5001.
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