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Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex.
I. A thermodynamics analogy
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1Department of Physics and Electronic Engineering, Private Bag 3105, University of Waikato, Hamilton, New Zealand
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In a recent paper the authors developed a stochastic model for the response of the cerebral cortex to a general
anesthetic agent. The model predicted that there would be an anesthetic-induced phase change at the point of
transition into unconsciousness, manifested as a divergence in the electroencephalogram spectral power, and a
change in spectral energy distribution from being relatively broadband in the conscious state to being strongly
biased towards much lower frequencies in the unconscious state. Both predictions have been verified in recent
clinical measurements. In the present paper we extend the model by calculating the equilibrium distribution
function for the cortex, allowing us to establish a correspondence between the cortical phase transition and the
more familiar thermodynamic phase transitions. This correspondence is achieved by first identifying a cortical
free energy function, then by postulating that there exists an inverse relationship between an anesthetic effect
and a quantity we define as cortical excitability, which plays a role analogous to temperature in thermodynamic
phase transitions. We follow standard thermodynamic theory to compute a cortical entropy and a cortical ‘‘heat
capacity,’’ and we investigate how these will vary with anesthetic concentration. The significant result is the
prediction that the entropy will decrease discontinuously at the moment of induction into unconsciousness,
concomitant with a release of ‘‘latent heat’’ which should manifest as a divergence in the analogous heat
capacity. There is clear clinical evidence of heat capacity divergence in historical anesthetic-effect measure-
ments performed in 1977 by Stullkenet al. @Anesthesiology46, 28 ~1977!#. The discontinuous step change in
cortical entropy suggests that the cortical phase transition is analogous to a first-order thermodynamic transi-
tion in which the comatose-quiescent state is strongly ordered, while the active cortical state is relatively
disordered.

DOI: 10.1103/PhysRevE.64.011917 PACS number~s!: 87.19.La, 05.10.Gg, 05.70.Fh
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I. INTRODUCTION

In a recent paper@1# we developed a theoretical mode
based on known bulk neurophysiological processes, for
action of general anesthetics on the cerebral cortex. We
sume that the cortex consists of collections of assemblie
macrocolumns. A macrocolumn is a group
;40 000–100 000 neurons~in proportions 85% excitatory
15% inhibitory! which act collectively within a small volume
of the cortex. The effect of the general anesthetic was in
duced into the model as a prolongation of the inhibito
postsynaptic potential.

We applied a stochastic formalism in which extern
~voltage-independent! inputs into an assembly were treate
as random Gaussian fluctuations about a mean value. In
adiabatic limit in which input currents are assumed to equ
brate much faster than the average excitatory and inhibi
soma voltageshe andhi , we derived stochastic differentia
equations~Langevin equations! for he andhi . By setting the
time derivatives to zero, we found the stationary~or equilib-
rium solutions forhe,i . When plotted as a function of th
anesthetic effectl, the graphs for the equilibrium soma vol
ages display the classic ‘‘inverted-S’’ phase transition for
See Fig. 1.

The graphs show that the cortex exhibits three main e
librium regimes depending on the value ofl. For l&0.3,
the model predicts a single stable state for the cortex wh
we refer to as ‘‘seizure’’~region III!, as it describes a situa
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tion of very high neuronal firing. The other extreme of
deep anesthetic effect (l*1.5, the ‘‘coma’’ state! is also a
stable state, but one in which neuronal firing is strongly s
pressed. For intermediate values of the anesthetic effe
0.3&l&1.5, the model predicts three stationary values
he,i . Two of these states are stable with respect to sm
fluctuations; we identify these stable states as ‘‘activate
~upper branch! and ‘‘quiescent’’ ~lower branch!. The acti-
vated and quiescent stable states are separated by an
mediate and unstable third state which provides a route
which the macrocolumn can make a rapid transition into
quiescent state. Transition into quiescence is increasin
probable asl is increased beyond unity, and becomes co
pulsory forl*1.5.

By linearizing the Langevin equations about these stati
ary states, we were able to employ standard stochastic m
ods to derive fluctuation spectra forhe . These theoretica
spectra are relevant to clinical measurements since thehe

excitatory soma voltages are believed to be the source o
scalp-detected electroencephalogram~EEG! signal. As the
anesthetic effect is increased, the theoretical spectra sho
reduction in median frequency coupled with a very pr
nounced increase in power as the upper-branchA3 limit
point of Fig. 1 is approached. This power increase is sho
in Fig. 2. This increased cortical excitation at the point
induction is well known in the anesthesiology communi
and is referred to as the ‘‘biphasic’’ response. The go
qualitative agreement between the predicted changes in s
©2001 The American Physical Society17-1
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FIG. 1. ~a! Model predictions
for the stationary states forhe

~circles! and hi ~crosses! as a
function of anesthetic effectl. ~b!
In region II bounded by
A1A3Q3Q1, for a given value ofl
there are three possible values f
he , but only two of these are
stable: points lying on the uppe
~‘‘active’’: A1 ,A3) branch, and
points on the lower~‘‘quiescent’’:
Q1Q3) branch. Forl*1.53 ~re-
gion I!, he becomes single-valued
and neural firing is strongly sup
pressed~‘‘coma’’ !; for l&0.3 ~re-
gion III!, he is again single-valued
but now neural firing is maxi-
mized~‘‘seizure’’!. @Based on Fig.
5 of @1#, but with additional values
shown locating the top-left corne
seizure extremum.!
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tral characteristics~frequency shift, biphasic power! and
those observed in clinical measurements@2–5# provides
strong supporting evidence of a physical phase transitio
the cortex at the point of induction into unconsciousness

A common characteristic of thermodynamic phase tran
tions is the observation of divergences in one or more
rameters. The fact that EEG power appears to diverge
critical point during induction motivates the present pape
attempt to understand the nature of this transition from
statistical mechanics perspective. Our approach will be
assert a formal correspondence between the cortical sy
~the macrocolumn! and a classical system, which can be d
scribed using the language and ideas of equilibrium ther
dynamics.

FIG. 2. Variation of spectral power for anesthesia-induct
path A1A3Q3C of Fig. 1. Note the substantial ‘‘slab’’ of biphasi
power marking theA3 extremum immediately prior to theA3

→Q3 jump to the lower branch.~This figure corrects a frequency
scale error on Fig. 6 of@1# which displayed a frequency unit of H
that should have read ‘‘kHz.’’!
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We need to make clear what we mean by applying
words ‘‘thermodynamics’’ and ‘‘equilibrium’’ to the phase
transition of a complex biological system such as the ce
bral cortex. First, we arenot implying that the phase transi
tion is in any way caused by changes in the thermome
measured physical temperature of the cortex. Rather, we
asserting that the anesthetic acts in a ‘‘temperaturelik
manner to drive the cortex through its ‘‘anestheto-dynam
phase transition into unconsciousness. In a thermodyna
transition, changes in the kinetic energy of molecules lead
altered intermolecular interactions. In the anestheto-dyna
transition, anesthetic-induced changes in neuronal syna
responses lead to changes in the cortical information proc
ing manifest as a loss of consciousness. The thermodyna
analogy is useful because once a suitable anesthetic-e
↔ analogous-temperature mapping has been established
are free to use generalized thermodynamics concepts to
scribe the change.

Second, the equilibrium assumption is fundamental to
model: At all times the cortex never deviates far from t
anesthetic-determined equilibrium points defined by
inverse-S curve of steady states shown in Fig. 1. The
sumption that the cortex can be in an equilibrium state
quires some justification—after all, the conventional pictu
of the cortex would say that it is an open, dissipative biolo
cal system which is far from equilibrium because its stea
state behavior is maintained by a continuous flux of chem
energy associated with nutrients and oxygen required
metabolic functioning. We argue that our equilibrium trea
ment can be justified on the basis of~1! localization and~2!
scale.

(1) Local equilibrium.Glansdorff and Prigogine@6# ex-
plain how it is possible to ascribe a state oflocal equilibrium
to a small mass element~in our case, the macrocolumn!
which is part of a larger system~i.e., the cerebral cortex!
which, as a whole, is out of equilibrium. This can be done
the local state~i.e., the soma voltage! is completely de-
scribed by an equation of state which is independent of
7-2
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TOWARD A THEORY OF THE . . . . I. . . . PHYSICAL REVIEW E 64 011917
gradients~e.g., of chemical energy!. In our case, the equatio
of state is represented by the Fig. 1 anesthetic-determ
trajectory of soma-voltage steady states.

(2) Scale.Glansdorff and Prigogine emphasis that ‘‘ . . .
the local equilibrium assumption implies that dissipative p
cesses are sufficiently dominant to exclude large deviat
from statistical equilibrium . . . . There must be sufficien
dissipative ‘collisions’ to compensate for the effect of im
posed gradients.’’ For the cortex, we picture these dissipa
processes as the myriad openings and closings of the
lions of ion channels that service an individual neuron. Th
collisions occur on time scales several orders of magnit
faster than time scales of our ‘‘mesoscale’’ soma-volta
model, so the requirement for plentiful collisions is well sa
isfied. Further, because we are modeling at the mesosca
the neural assembly, and not at the microscopic scale of
molecular and ionic channel processes, it is not unreason
to replace the fine details of biological maintenance w
steady-state parameters in the model~e.g., thec jk weighting
functions represent the time-averaged neurokinetics!, then to
treat the steady state as if it were a true equilibrium.

Given this~local! equilibrium picture, our statistical me
chanics analysis of the macrocolumn proceeds as follo
We compute the Fokker-Planck equation corresponding
the Langevin equations in the adiabatic limit in which we
the time derivatives of the ‘‘fast’’~rapidly equilibrating!
variables to zero but retain their fluctuations~noise contribu-
tions! about steady state. This allows us to derive a station
probability distribution function~PDF! Ps(he ,hi ,l) for the
macrocolumn. This is accomplished by decoupling the s
tem Langevin equations~using the form of the equilibrium
solutions! yielding a PDF of the form

Ps~he ,hi ,l!'Pe~he ,l!Pi~hi ,l!. ~1.1!

We will show that the twoPe,i factors appearing on th
right-hand side of the PDF can each be expressed as a
ponential whose argument we denote by the symbolUe,i .
When plotted as a function of the anesthetic effectl, we find
that theUe,i map out potential hills-and-valleys curves wi
troughs and peaks coinciding, respectively, with the sta
and unstable equilibrium points of Fig. 1. Borrowing a ph
nomenological technique from quantum optics@7,8#, we say
that theUe,i curvesdefinepotential functions which can b
associated with a free energyVe,i . The precise form of the
free energyV depends on the choice of the Boltzmann fun
tion, as discussed in Sec. III B.

Continuing the thermodynamic analogy, we compute
cortical entropyusing the Maxwell relationS52dV/dQ,
where Q is the anesthetic-dependent analogous ‘‘tempe
ture,’’ which we call ‘‘excitability,’’ and that we conjecture
should be inversely proportional tol. This approach is very
much in the spirit of Haken’sSynergeticswork @8# in which
a phenomenological free energy was inferred from a stat
ary Fokker-Planck equation, permitting the calculation
equivalent entropy and heat capacity in a nonequilibri
system.

In summary, this paper is concerned with establishin
thermodynamic analogy for the cortex. The cortical pha
01191
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transition can then be interpreted as a particular type of ph
transition, thus enhancing our predictive powers concern
anesthetic changes to brain activity, and enriching our und
standing of cortical processes in general. The prediction
this paper~and that of our earlier paper@1#! rely on the
applicability of the adiabatic limit. In the companion pap
@9# we use numerical stochastic simulations to investig
model behaviors in this adiabatic limit, then compute anot
kind of macrocolumn entropy that is amenable to direct cli
cal measurement: spectral entropy.

Before we launch into our cortical entropy calculation
we first review the pertinent details of@1#, summarizing the
model that provides our defining equations of state.

II. THEORETICAL FRAMEWORK

A. Stochastic differential equations„SDEs…

Our model was described in some detail in@1#. The model
is based on a set of partial differential equations~PDEs! de-
rived by Liley et al. @10# which describe the time develop
ment forhe andhi for a neuronal aggregate. We transform
the PDEs of Lileyet al. into stochastic differential equation
~SDEs! by incorporating noise terms assumed to origin
from random fluctuations in the subcortical inputs. This
sulted in the following set of eight coupled SDEs:

F te 0

0 t i
G d

dt Fhe

hi
G5Fhe

rest2he

hi
rest2hi

G1FceeI ee1c ieI ie

ceiI ei1c i i I i i
G , ~2.1!

S d

dt
1geD 2F I ee

I ei
G5H FNee

b

Nei
b GSe~he!1Ffe

f i
G1F ^pee&

^pei&
G J Gegee

1FG1~ t !

G2~ t !
G , ~2.2!

S d

dt
1g i D 2F I ie

I ii
G5H FNie

b

Nii
b GSi~hi !1F ^pie&

^pii &
G J Gig ie1FG3~ t !

G4~ t !
G ,

~2.3!

F S d

dt
1 v̄LeeD 2

fe

S d

dt
1 v̄LeiD 2

f i

G5 v̄F S d

dt
1 v̄LeeDLeeNee

a

S d

dt
1 v̄LeiDLeiNei

a
G Se~he!,

~2.4!

where

FG1~ t !

G2~ t !
G5FaeeA^pee&j1~ t !

aeiA^pei&j2~ t !
GGegee,

FG3~ t !

G4~ t !
G5Fa ieA^pie&j3~ t !

a i iA^pii &j4~ t !
GGig ie. ~2.5!

The c jk ( j ,kP$ei%) are normalized weighting functions de
fined by,
7-3
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cee

he
rev2he

uhe
rev2he

restu
, c ie5

hi
rev2he

uhi
rev2he

restu
,

~2.6!

cei5
he

rev2hi

uhe
rev2hi

restu
, c i i 5

hi
rev2hi

uhi
rev2hi

restu
.

The termsI ee,I ie ,I ei ,I i i represent intracortical neuronal in
puts averaged over the assembly. The coupling strength
tween cells is determined by sigmoid functionsSe(he),
Si(hi),

Se~he!5
Se,max

11 exp@2ge~he2ue!#
,

~2.7!

Si~hi !5
Si ,max

11 exp@2gi~hi2u i !#
.

In addition to sigmoid-modulated spike input from th
neural mass, there are long-range~cortico-cortical! spike in-
put contributions (fe ,f i) from distant excitatory assem
blies, plus soma-voltage-independent spike inp
(pee,pie ,pei ,pii ) from exogenous or external sources
beled, for convenience, assubcortical, and pictured physi-
ologically as nonspecific input from the brain stem. We
sume that noise arises solely in the subcortical sources,
we ignore noise entering via the cortico-cortical connectio
from distant assemblies.

The four^pjk& subcortical sources appearing in Eqs.~2.2!
and~2.3! represent the average value of each subcortica
put. The fourG terms defined in Eq.~2.5! contain noise
sourcesj(t) which provide the random fluctuations in th
subcortical inputs. Thesej(t) are Gaussian white-nois
sources that have zero mean and ared correlated,

^jh~ t !&50, ^jh~ t !jh8~ t8!&5dhh8d~ t2t8!. ~2.8!

Each noise source is scaled by a multiplicative factor of
form a jkA^pjk&. Thea jk are dimensionless scale factors i
troduced to ensure the fluctuations are always small.@This is
a technical refinement to our Eqs.~2.9! of @1# which, while it
does not alter our theoretical development, it does beco
significant when attempting to solve the equations via s
chastic simulation; refer to the companion paper@9# for fur-
ther details.#

We introduced the effect of general anesthetic into
model by modulating the inhibitory neurotransmitter ra
constant,

ḡ i5
g i

l
,

wherel is a multiplicative scaling factor assumed to be p
portional to the anesthetic concentration, so thatl51 corre-
sponds to no anesthetic effect, and an increase inl corre-
sponds to an increase in the anesthetic amount~a decrease in
the g i rate constant!.
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The stochastic equations~2.1!–~2.4! define our model of
the cortex. Table I lists the numerical values and definitio
for the equation parameters and constants.

B. Equilibrium solutions

In @1# we derived the equilibrium solutions for the ma
rocolumn. We solved Eqs.~2.1!–~2.4! with d/dt50 and the
noise terms set to zero. In this long-time limit we found t
Fig. 1 stationary curves for the variations ofhe andhi as a
function of l. This inverted-S figure is suggestive of a cla
sical phase transition. This interpretation was confirmed b
stability analysis which showed that the upper and low
branches are stable with respect to perturbations, wherea
middle branch is unstable. Thus, if we start the system on
~high-firing, active! upper branch, and steadily increase t
anesthetic amountl, the soma voltage will slide along th
upper branch until the turning pointA3 is reached. At this
point the macrocolumn is forced to make a jump transition
the ~low-firing, quiescent! lower branch. Conversely, if the
system is started on the lower branch, then reductions il
cause the soma voltage to slide to the left until the turn
point Q1 is reached, whereupon an upwards transition to
high-firing branch occurs.

We have run stochastic simulations of Eqs.~2.1!–~2.4!.
See companion paper@9# for details. The simulations show
that the presence of subcortical noise allows the macro
umn to switch between stable states~activated↔ quiescent!
at other than the transitionl values (lA3 or lQ1). The like-
lihood of state switching diminishes as the amplitude of
noise is reduced, and increases as theA3 and Q1 turning
points are approached.

C. Langevin equations in adiabatic limit

Inspection of the various time scales for thehe,i soma
voltages and the fourI jk($ j ,k%P$e,i %) input currents @Eqs.
~2.1!–~2.4!# showed that it was reasonable to assume that
input currents would equilibrate much faster than the so
voltages. This justified a simplification in which we adiaba
cally eliminated the currents~details in@1#!, giving the fol-
lowing reduced set of stochastic differential equations for
soma voltages alone,

d

dt Fhe

hi
G5FF1~he ,hi !

F2~he ,hi !
G1FGe~ t !

G i~ t !
G , ~2.9!

where the drift terms are

F1~he ,hi !5$he
rest2he!1cee@~Nee

a 1Nee
b !Se~he!

1^pee&#Gee/ge1lc ie@Nie
b Si~hi !

1^pie&#Gie/g i%/te , ~2.10a!

F2~he ,hi !5$~hi
rest2hi !1cei@~Nei

a 1Nei
b !Se~he!

1^pei&#Gee/ge1lc i i @Nii
bSi~hi !

1^pii &#Gie/g i%/t i , ~2.10b!
7-4
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TABLE I. Symbol definitions and given values for model constants.

Symbol Description Value Unit

e,i ~as subscript! excitatory, inhibitory cell populations
he,i population mean soma voltage mV
te,i membrane time constant 0.040, 0.040 s
he,i

rest cell resting potential 270,270 mV
he,i

rev cell reversal potential~Nernst potential! 45,290 mV
I ee,ie total e→e,i→e ‘‘current’’ input to excitatory synapses mV
I ei,i i total e→ i ,i→ i ‘‘current’’ input to inhibitory synapses mV
c jk( j ,kP$e,i %) weighting factors for theI jk inputs
pee,ie exogenous~subcortical! spike input toe population 1100, 1600 s21

pei,i i exogenous~subcortical! spike input toi population 1600, 1100 s21

a jk( j ,kP$e,i %) weighting factors for fluctuations inpjk spike inputs 0.1
fe,i long-range~cortico-cortical! spike input toe,i populations s21

Lee,ei characteristic cortico-cortical inverse-length scale 0.40, 0.65 (cm)21

EPSP, IPSP excitatory, inhibitory postsynaptic potential mV
ge,i neutrotransmitter rate constant for EPSP, IPSP 300, 65 s21

Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e @e.g., Eqs.~2.5! and ~2.10!# base of natural logarithms 2.718 28 . . .
Nee,ei

b total number of locale→e,e→ i synaptic connections 3034, 3034
Nie,i i

b total number of locali→e,i→ i synaptic connections 536, 536
Nee,ei

a total number of synaptic connections from distant
e populations 4000, 2000

v̄ mean axonal conduction speed 700 cm s21

Se(he), Si(hi) sigmoid function mapping soma voltage to firing rate s21

Se,max,Si,max maximum value for sigmoid function 1000, 1000 s21

ue,i inflection-point voltage for sigmoid function 260, 260 mV
ge,i sigmoid slope at inflection point 0.28, 0.14 (mV)21
um
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and the corresponding diffusion terms are

Ge~ t !5$ceeaeeA^pee&j1~ t !Gee/ge

1lc iea ieA^pie&j3~ t !Gie/g i%/te , ~2.10c!

G i5$ceiaeiA^pei&j2~ t !Gee/ge

1lc i i a i iA^pii &j4~ t !Gie/g i%/t i . ~2.10d!

In @1# we linearized these equations about the equilibri
state defined by the inverse-S curve~Fig. 1!, then used stan
dard stochastic methods to obtain the fluctuation spectra
he as a function ofl shown in Fig. 2. In@9# we compare
these theoretical spectra against those obtained from num
cal simulation of the adiabatically simplified equatio
~2.9!–~2.10!.

D. Fokker-Planck equation

The results of@1#, as summarized in Secs. II B–II C of th
present paper, predict that the cortex will undergo a ph
transition as it ‘‘freezes’’ into unconsciousness. In order
explore the underlying nature of this transition, we choose
follow a statistical mechanics path which requires us to
rive probability distribution functionsPe and Pi for the ex-
citatory and inhibitory neuron populations for the macroc
01191
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umn. We generate thePe,i by calculating the Fokker-Planc
equation equivalent to the Langevin equations of the prec
ing section,

]P~he ,hi ,t !

]t
52

]

]he
@F1~he ,hi !P~he ,hi ,t !#

2
]

]hi
@F2~he ,hi !P~he ,hi ,t !#

1
1

2

]2

]he
2 @D1~he ,hi !P~he ,hi ,t !#

1
1

2

]2

]hi
2 @D2~he ,hi !P~he ,hi ,t !#.

~2.11!

The D1,2 are the diffusion~noise! terms defined by

^Ge~ t !Ge~ t8!&5D1d~ t2t8!, ~2.12a!

^G i~ t !G i~ t8!&5D2d~ t2t8!. ~2.12b!

E. Stationary distribution functions

In order to compute equilibrium parameters~such as en-
tropy! using a statistical mechanics framework, we requ
7-5
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FIG. 3. Equilibrium values for
hi expressed as al-dependent off-
set fromhe: D5he,02hi ,0 . Thehi

values become more similar tohe

at the seizure and coma extreme
Labels correspond to those show
in Fig. 1.
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the stationary distribution functionPs(he ,hi). This is found
by settingd/dt50 in Eq. ~2.11!. In general, for multivariate
systems, an analytic expression forPs is only obtainable
when the ‘‘potential conditions’’ are satisfied~see Gardiner
@11#!. The (he ,hi) two-variable cortical system does not sa
isfy the potential conditions. However, an approximate so
tion for Ps is achievable if we use the equilibrium values
Fig. 1 to decouple Eq.~2.11! into two independent equations
one forhe alone and a second forhi alone. Inspection of Fig
1 shows that, at equilibrium, thel dependence ofhe andhi
is rather similar: the curves are almost coincident on
bottom branch, become distinct on the middle and up
branches, then converge again as they approach the top
seizure corner. So it is reasonable to express the locu
equilibrium values ofhi as anhe-dependent offset from the
matching locus of equilibrium values ofhe ,

hi ,05he,02D~he!, ~2.13!

where the offset termD(he) is obtained numerically from the
Fig. 1 stationary curves, and is shown in Fig. 3 plotted a
function of he and of l. We will assume that theD(he)
offset formula, which is exact for the locus of equilibriu
points, can also be applied to points nearby which are v
close to equilibrium, so generalize Eq.~2.13! to read

hi5he2D~he!. ~2.14!

This generalization is equivalent to making a Taylor exp
sion about equilibrium and requiring that the first-order te
in the expansion, the gradient (]D/]he)(eq) , be small. Exam-
ining Fig. 3~a! we see that the absolute value of the slope
generally less than;0.2, except along the unstable bran
A3Q1 and in the vicinity of the jump pointsA3 andQ1; and
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also approaching seizure pointSwhere the slope has magn
tude ;0.35. For these regions, Eq.~2.14! will not be very
accurate, but this is of little consequence for the station
distribution function curves, since it is the locations of t
distribution maxima and minima that are of prime intere
and for these points the equation is exact.~The inaccuracies
in the distribution curves will manifest as shape errorsbe-
tweenturning points, and might compromise calculations f
first-passage times, but this is not the focus of our pres
work.!

Applying the offset relationships decouples the origin
Langevin equations~2.10a! into two independent, stochasti
equations of motion, one forhe and one forhi , leading to
two independent Fokker-Planck equations which are
pected to be valid for points close to equilibrium,

] P̃e~he ,l,t !

]t
52

]

]he
@ F̃1~he ,l!P̃e~he ,l,t !#

1
1

2

]2

]he
2 @D1~he ,l!P̃e~he,l,t !#,

~2.15a!

] P̃i~hi ,l,t !

]t
52

]

]hi
@ F̃2~hi ,l!P̃i~hi ,l,t !#

1
1

2

]2

]hi
2 @D2~hi ,l!P̃i~hi ,l,t !#,

~2.15b!

where the overtilde variables are defined
7-6
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P̃e~he ,l,t ![Pe~he ,he2D,l,t !,

P̃i~he ,l,t ![Pi~hi1D,hi ,l,t !,

F̃1~he ,l![F1~he ,he2D,l!,

F̃2~hi ,l![F2~hi1D,hi ,l!.

Equations ~2.15! represent an uncoupled pair of singl
variable systems, so it is now possible to solve for
steady-state~long-time limit! P̄e ,P̄i probability distributions.
Following the procedures outlined in Chap. 5 of Gardin
@11#, we attend to the boundary conditions by setting
‘‘probability currents’’ equal to zero athe,i5hi

rev5290 mV
~lower bound for soma voltage!, and athe,i5145 mV ~up-
per bound! and arrive at the following stationary solutions

P̄e~he ,l!5
N 1

D1~he ,l!
expF2E

290

he F̃1~he8 ,l!

D1~he8 ,l!
dhe8G

~2.16a!

5
N 1

D1~he ,l!
exp@2U1~he ,l!#

~2.16b!

5N1 exp@2Ue~he ,l!# ~2.16c!

and

P̄i~hi ,l!5
N 2

D2~hi ,l!
expF2E

290

hi F̃2~hi8 ,l!

D2~hi8 ,l!
dhi8G

~2.17a!

5
N 2

D2~hi ,l!
exp@2U2~hi ,l!# ~2.17b!

5N2 exp@2Ui~hi ,l!#, ~2.17c!

where we have moved theD1,2 diffusion term from the out-
side denominator of Eqs.~2.16b! and ~2.17b! into the expo-
nential of Eqs.~2.16c! and ~2.17c!, so that

Ue5U11 loge~D1!, Ui5U21 loge~D2!, ~2.18!

and where the normalization constants are defined by

N 1
215E

290

145

exp@2Ue~he ,l!#dhe , ~2.19a!

N 2
215E

290

145

exp@2Ui~hi ,l!#dhi . ~2.19b!

The definite integrals in Eqs.~2.16!–~2.19! are evaluated nu
merically. The stationary probability distribution function fo
the total system of excitatory and inhibitory neurons in t
macrocolumn is given by the product

Ps~he ,hi ,l!5 P̄eP̄i , ~2.20!
01191
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which follows because the excitatory and inhibitory distrib
tions have been decoupled and therefore made indepen

We refer to theUe defined in Eq.~2.18! as the excitatory
potential function, since its negative gradient2]Ue /]he is
interpretable as a force that drives the excitatory neuron v
age~a parallel comment applies toUi). This idea becomes
clearer after inspecting Fig. 4 which shows how theUe,i

potential functions vary with soma voltagehe,i . The points
on these curves at which the gradient is zero are the ‘‘ze
force’’ or equilibrium coordinates. The stability or otherwis
of a given equilibrium point is determined by the sign of t
curvature in the region immediately bracketing the poi
Thus if the equilibrium point lies at the bottom of a potent
valley ~positive curvature!, any small deviations away from
the local minimum will be opposed by a force acting
restore the equilibrium, making it stable. The converse is t
for the equilibrium point at the top of a potential hill~region
of negative curvature!: a small perturbation away from th
peak will produce a force tending to enhance the pertur
tion, so the equilibrium there will be unstable.

Figures 4~a!–4~g! show graphs ofUe,i as a function of
he,i for the seven representative values ofl shown in 4~h!,
the last panel of the figure. These seven slices provid
coarse sweep through regions III~seizure!, region II ~upper
branch!, and into region I~coma! of Fig. 1.

We observe that the extrema of theUe,i potential func-
tions coincide with the equilibrium soma voltages hig
lighted by the vertical lines marked on Fig. 4~h!. For ex-
ample, in Fig. 4~a!, Ue exhibits a single valley minimum
whose (l,he) coordinate belongs to the upper-left ‘‘seizure
corner of the equilibrium soma trajectory in Fig. 4~h!. This is
consistent with the vertical slice through this coordinate@la-
beled ‘‘a’’ in Fig. 4~h!# cutting thehe trajectory once only,
implying that forl50.25 only a single equilibrium state i
possible. The potential function is a minimum here, so t
state is stable.

In Fig. 4~b! for l50.50, three well-defined extrema hav
developed~two unequal valleys separated by small hill!, cor-
responding to three distinct steady-state solutions and th
fore three intersections on theb slice of Fig. 4~h!. Only the
two valley-point equilibria~upper branch athe5240 mV
and lower branch athe5285 mV! are stable, while the mid-
branch equilibrium point, defined by the potential-functio
peak ~at he5273 mV! that separates the two valleys,
unstable. In principle, the macrocolumn could sit delicat
balanced at the top of this hill, but given the slightest nud
would ‘‘slide’’ off the hill to nestle into one of the adjacen
valleys.

The relative depth of the two valleys changes asl varies,
indicating that the probability of occupation also chang
with l. For l,1, the upper~high-firing! branch is more
likely; while for l.1 the lower~low-firing! branch is fa-
vored. For l'1, both stable-branch values forhe are
equally likely; and if there are perturbations of sufficie
magnitude to overcome the potential hill, then there is
possibility that the macrocolumn could repeatedly switch
tween the upper- and lower-branch stable states.
7-7
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FIG. 4. ~a!–~g! Ue,i-potential
functions for seven representativ
values of l. Solid curve: Ue ;
dashed curve:Ui . ~h! Copy of
Fig. 1 showing the seven vertica
slices through the stationary-sta
trajectory which were used to
evaluate the displayed
U-functions. Circles:he ; squares:
hi . ~b!–~f! show two valleys
separated by a hill; the valleys be
long to the stable upper~high-
firing! and lower ~low-firing!
branches of the trajectory curve
while the hill belongs to the un-
stable midbranch. Each of the la
beled points in~h! maps to a val-
ley point ~local minimum! in the
correspondingly labeled figure
Note that forl51, the two val-
leys are approximately symmetric
The cortical state ‘‘rides’’ the
upper-branch valley as the
U-curve is distorted by the anes
thetic, until the cortical state is
‘‘tipped out’’ into unconscious-
ness in~g!.
o
s.

n
m
h
th
rg
i

co
ch
i
i-

t

g-
ort-
ted

e
ility

r the
-
an-

es
ge

of
be

nn
We note that theseUe,i curves are indistinguishable from
those for U1,2 ~not shown here!, i.e., the locations of the
valleys and hills are practically unchanged by the folding
the D1,2 diffusion divisors into the exponentials of Eq
~2.16b! and ~2.17b!.

In statistical thermodynamics, it is the Helmholtz free e
ergy that is minimized when the system is in equilibriu
The fact that ourUe,i potential functions have minima whic
correctly locate the stable equilibria leads us to suggest
these potential functions behave like Helmholtz free ene
functions for the macrocolumn. We expand on this idea
the following section.

III. A STATISTICAL MECHANICS TREATMENT
OF THE CORTEX

A. Philosophy

In a series of papers~see@12,13# and references therein!
Ingber develops a statistical mechanics formalism of neo
tical interactions. He adopts a ‘‘bottom-up’’ approach whi
starts at the microscopic level of synaptic interaction. H
theoretical distribution function for the cortex is the cond
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tional probability that a mesocolumn~essentially equivalen
to our macrocolumn! will fire, given its interaction with
other mesocolumns and its previous history of firings. In
ber’s model successfully describes the formation of sh
term memory, and is consistent with EEG data genera
during selective attention tasks.

Our model has a more ‘‘top-down’’philosophy in that th
mean-field equations and associated stationary probab
distributionPs(he ,hi ,l) are amacrostate description of the
cortex. By this we mean that the computedhe,i values are to
be regarded as representing soma-voltage averages ove
;85 000 excitatory and;15 000 inhibitory neurons com
prising the macrocolumn. Thus it is not possible for a me
field model to identify the detailed microscopic states ormi-
crostates of the macrocolumn.~By ‘‘microstate’’ we mean
the particular electrostatic configuration of soma voltag
which, when summed, give the whole-macrocolumn volta
he,i .) However, if the underlying microstate description
the cortex were known, then the macrostate picture could
derived from it, in the same way that thePV5nRT macro-
description of an ideal gas is derivable from the Boltzma
distribution of its microstates.
7-8
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TABLE II. Proposed mapping between thermodynamics theory and the macrocolumn model of the cortex.

Thermodynamic space Cortical space

Temperature,T Excitability, Q

Internal energy,E Internal energy of macrocolumn,Ee,i

Helmholtz free energy,V5E2TS Cortical free energy,Ve,i5Ee,i2QSe,i

Entropy,S52(]V/]T) Cortical entropy,Se,i52(]Ve,i /]Q)
Heat capacity,C5T(]S/]T) Cortical ‘‘heat’’ capacity,Ce,i5Q(]Se,i /]Q)

Latent heat,TDS Cortical latent ‘‘heat,’’QDSe,i
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We will use this macroscopic picture to construct a sta
tical mechanics description of the anesthetic-induced cort
phase transition. We proceed by deriving a~phenomenologi-
cal! free energy functionV. The ‘‘free energy’’ concept is
very useful in statistical mechanics as its negative r
change with temperature gives entropy:S52]V/]T. But
this step will require us to identify carefully exactly what
meant by the ‘‘temperature’’ of the cortex; by cortical ‘‘tem
perature’’ we donot mean the physical temperature me
sured with a thermometer. In the next section we prese
line of argument, based on the idea of a canonical ensem
to enable identification of a plausible cortical temperat
analog.

B. Identifying a free energy function for the cortex

The construction of our statistical mechanics theory
motivated by the obvious similarities between the form
the Ue,i potential functions of Fig. 4 and the potential-we
description of phase transitions common in quantum op
@14#. For a quantum optics system described in terms o
parameterx, Lugiato and Bonifacio@7# write the stationary
probability distribution Ps(x) ~usually the solution of a
Fokker-Planck or Master equation! in the form

Ps~x!5N exp@2V~x!/k0# ~Lugiato and Bonifacio!,
~3.1!

whereN is a normalization constant, andk0 is a constant
introduced to ensure dimensional consistency. The quan
V(x) plays the role of a ‘‘generalized free energy’’@7,15#.
Haken @8# follows a similar approach in his Fokker-Planc
treatment of an analogous phase transition, but in his ex
nential term the denominator is the product of Boltzman
constantkB and a parameter he identifies as an equiva
temperatureT,

Ps~x!5N exp@2V~x!/kBT# ~Haken!, ~3.2!

which is very suggestive of the Boltzmann distribution. T
assertion in Eqs.~3.1! and~3.2! thatV(x) is a free energy is
justified phenomenologically on the grounds that the extre
of V locate the equilibrium states.

In both of these quantum-optics models, the diffusio
noise term is constant. In our cortical model, the diffusi
has a weakhe,i dependence, but this dependence seems
to challenge our positedUe,i↔ free energy analogy, sinc
the extrema ofUe,i coincide with the stationary values ofhe,i
for a given l. Therefore we postulate that there exists
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formal equivalence between the probability density functio
~PDFs! of Eqs.~3.1! and ~3.2! and the cortical PDF of Eqs
~2.16c! and ~2.17c!, and we assume that the cortical pha
transition can be described in a space which is dual to tha
statistical thermodynamics. The proposed dual-space m
ping is set out in Table II; the various elements of this ta
will be discussed as the paper proceeds.

Equating the cortical potential functionU from Eqs.
~2.16c! or ~2.17c! first with exponential argument of Eq
~3.2! ~Haken form!, then with the exponential argument o
Eq. ~3.1! @Lugiato and Bonifacio~LB! form#, we obtain two
alternative thermodynamic↔ cortical mappings for the free
energy of the cortex,

U~x![V~x!/kBT

⇒VH~he,i !5kBQU~he,i ! ~Haken!, ~3.3a!

U~x![V~x!/k0

⇒VLB~he,i !5k0U~he,i ! ~Lugiato and Bonifacio!.

~3.3b!

From Table II and Eqs.~3.3a! and ~3.3b!, it will be ap-
parent that for the cortical system we have introduced
symbol Q, which we define to becortical excitability, and
which, as we show using plausibility arguments develop
later in the paper, plays a role in the cortex analogous to
of temperatureT in thermodynamic systems. We will show
that excitabilityQ is inversely related to anesthetic effectl.
This (l,Q) mapping provides the crucial link between th
cortical general-anesthetic phase transition and the worl
thermodynamic phase transitions, and allows us to apply
concepts and tools of thermodynamic critical phenome
~e.g., entropy, heat capacity, and, in principle, critical exp
nents, universality! to the cortical transition.

C. Neurological canonical ensemble

In the absence of stimulus, a neuron will relax to itsrest-
ing potential. In our model, this voltage is set to270 mV
~i.e., the interior of the neuron is 70 mV more negative th
the outside medium!. A neuron is said to behyperpolarized
if its soma voltage is below~more negative than! the resting
potential, anddepolarizedif the voltage is above this value
The neuron cannot fire until its soma potential is raised t
threshold value which in our model is set at260 mV. A
voltage impulse arriving at the neuron is classified asinhibi-
tory if it tends to make the soma voltage more negative a
therefore less likely to reach threshold, andexcitatory if it
raises the soma voltage towards~or above! threshold. These
7-9
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inhibitory and excitatory events occur at the synapse,
fected via the release of neurotransmitters which selectiv
open channels to allow the passage of certain ions.

Most commonly used general anesthetic agents act by
hancing the effect of the GABA (g-aminobutyric acid, the
predominant inhibitory neurotransmitter in the cerebral c
tex! neurotransmitter. This chemical increases the chlor
ion currents at the postsynaptic GABAa receptor complex
allowing the Cl2 channels to remain open for longer, causi
the neuron to become hyperpolarized and therefore inhib
@16,17#. At the level of individual postsynaptic GABAa/Cl2

channels, the increase in the GABA-stimulated Cl2 current
is proportional to the fractional increase in the time that
channel is in the open state. We model this enhancemen
channel conductance as a prolongation of the inhibit
postsynaptic potential~IPSP! ~or more precisely, as a reduc
tion in the IPSP rate constantg i) assumed proportional to
anesthetic concentration.

Ingber @12# describes neuronal interactions in terms o
given neuron receiving quanta of chemical postsyna
stimulation from other neurons. Each quantum consists
thousands of molecules of neurotransmitter which drive
chemically gated postsynaptic potential. Ingber goes on
suggest that one may define a cortical PDF~probability dis-
tribution function! which will ‘ ‘ . . . describe the distribution
of electrical polarization caused by chemical quanta impi
ing on the postsynaptic membrane.’’

This distribution of electrical polarizations determines t
internal energyE of the macrocolumn system. Since the e
fect of anesthetic is to alter the gate opening times, ther
changing the net polarization of the macrocolumn, it is cl
that the anesthetic sets the macrocolumn internal ene
Thus we paraphrase Ingber’s statement to read as follo
‘‘For a given prolongation of the inhibitory post-synapt
potential, there exists a cortical PDF defining the mic
scopic distribution of soma voltages corresponding to a fi
value of internal energy.’’

Such a picture has strong parallels with classical statist
mechanics distribution function derived from thecanonical
ensemble. A canonical ensemble describes a systems0 of N
particles in contact with an infinitely large heat reservoirR
maintained at constant temperatureT. The internal energyE
of the systems0 depends on the distribution of particles ov
their allowed energy statesEj . The most likely distribution
is found by maximizing the PDF subject to the two co
straints:N is fixed; E is fixed. The second constraint is hi
torically associated with the undetermined Lagrange mu
plier b, and for thermodynamic systems is found to
precisely related to temperature:b51/kBT.

For the anesthetic-dampled cortex, the infinite reservo
the milieu of general anesthetic in the blood stream wh
sustains the neurons of the macrocolumn. The concentra
of the anesthetic can be taken as an externally set cons
since the time scale on which it varies~* tens of millisec-
onds! is very much longer than the relaxation time scales
the macrocolumn (; tens of milliseconds!. The anesthetic
concentration, via the IPSP prolongation factorl, sets the
polarization state@equilibrium soma voltage (he

0 ,hi
0) on the

reverse-S of Fig. 1# and therefore the internal energy. As
01191
f-
ly

n-

-
e
y

d

e
of
y

ic
of
e
to

-

y
r
y.
s:

-
d

al

i-

is
h
on
nt,

f

the classical canonical picture, there are two constraintsN,
the number of neurons in the macrocolumn is fixed~this
assumption is implicit in the model: refer to the fourNb

constants in Table I!; and the internal energyE is fixed by
the anesthetic concentration. If the cortical PDF were kno
then, in principle, the most likely distribution of polarizatio
microstates could be found by minimizing the PDF with r
spect to these two constraints.

Thus the heat reservoir, which sets the temperatureT of
the classical thermodynamic system, has been replaced i
biological system by a blood-circulation reservoir of fixe
anesthetic concentration which perfuses the cortex, settin
IPSP prolongation factorl. However, it is obvious thatT
and l are not analogs: an increase inl ~via an increase in
anesthetic concentration! causes the macrocolumn to becom
more hyperpolarized and therefore more ordered, whe
increasing the temperature of a thermodynamic system h
randomizing, disordering effect. This is made clearer by c
sidering a true thermodynamic system which has persua
similarities to the cortical phase transition: the ferroelect
phase transition.

D. Ferroelectric analogy

Consider the temperature-driven first-order phase cha
which occurs in ferroelectric materials such as barium tit
ate (BaTiO3) and Rochelle salt (KNaC4H4O6•6H2O) @18–
20#. At temperatures below transition temperatureT0
5112 °C, the BaTiO3 crystal exhibits a net spontaneou
electric polarization. This dipole moment exists indepe
dently of any external electric field. When the crystal
heated to a second transition temperatureT15122 °C, its
structure suddenly changes from tetragonal to cubic and
spontaneous dipole moment disappears, the crystal rem
ing nonpolar at all higher temperatures. At intermediate te
peraturesT0,T,T1, the crystal exhibitsthermal hysteresis,
i.e., the crystal can exist in either polar or nonpolar for
depending on its thermal history. If the crystal was hea
from belowT0, it will retain its polar state until temperatur
T1 is reached, whereupon the polarization will suddenly a
discontinuously collapse to zero. If the crystal was coo
from aboveT1, it will remain unpolarized until the lower
transition temperatureT0 is reached, at which point its lattic
structure will spontaneously change and a dipole mom
will suddenly appear.

The precise definition of the Curie pointTc (5120 °C for
BaTiO3) for a ferroelectric is that temperature at which t
free energy wells for the polar and nonpolar states have e
depth, indicating that at that temperature both the polar
nonpolar states are equally likely@21#. The Curie point is
analogous to thel51 point on the cortical free energy dia
grams of Fig. 4~d!. In common usage, the Curie point
taken to mean the polarized→ unpolarized transition tem
perature~i.e., Tc[T1 for the BaTiO3 ferroelectric!. In Table
III we list some parallels between the ferroelectric and m
rocolumn systems.

In the ferroelectric, temperature is a measure of the th
mal motion which tends to destroy the polarization ord
For the cortex, we defineexcitability, Q, as the analog of
7-10
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thermodynamic temperature which provides the randomiz
disturbance tending to destroy the hyperpolarization orde
the quiescent macrocolumn. For our model, excitability is
some sense, oppositely proportional to cortical inhibition
quantified by the IPSP prolongation factorl. We investigate
several plausible (Q,l) mappings in the next section.

E. Relating anesthetic effect to cortical excitability

In our model, forl*1.53, the macrocolumn must resid
on the low-firing quiescent branch. As the anesthetic conc
tration is increased, the duration of the inhibitory postsyn
tic potential ~IPSP! is prolonged, producing greater inhib
tion and reduced neuronal firing. Increased anesthetic d
l corresponds to reduced cortical excitabilityQ, sol andQ
are inversely related. In thel→` limiting case of extreme
anesthesia, there can be no activity in the presence o
infinitely prolonged IPSP, soQ50 in this extreme frozen
limit. This point is our absolute-zero ‘‘temperature’’ a
which all neurons are fully hyperpolarized.

For the emergence trajectory,Q will increase as the hy-
perpolarization ordering diminishes with reductions inl,
and more neurons become depolarized~able to fire!. With
sufficient reduction inl, the macrocolumn will eventually
reach the seizure extremum~top-left corner of Fig. 1! at
which point all neurons are fully depolarized and firin
maximally, sincel50 means that the IPSP has zero du
tion so there is no inhibitory restraint on the macrocolum
firing activity. At this seizure extremum, cortical excitabilit
will have its maximum valueQmax. From a biological en-
ergy resources perspective, it is reasonable to argue
Qmax will have a large but finite value, while from a math
ematical modeling perspective one might argue thatQmax
→` asl→0 and then avoid the finite resources problem
asserting thatl50 is a model abstraction which will neve
occur in practice. In either case, we seek a mapping wh
model predictions for entropy change are not unduly se
tive to the finiteness or otherwise ofQmax.

The mathematical equation relatingQ to l is unknown,
but based on the foregoing discussion a plausible map
would have the following properties:

~i! Q→0 asl→` ~deep coma!.
~ii ! Q is a monotonic decreasing function ofl.
~iii ! Q→Qmax as l→0 ~extreme seizure!, where Qmax

may be finite or infinite.
Two of the simplest inverse relationships that satisfy th

criteria are

Q I5c0 /lc1 ~3.4a!

TABLE III. Parallels between ferroelectric and cortical macr
column systems.

Ferroelectric crystal Cortical macrocolumn

Polar ~ferroelectric! state Hyperpolarized~quiescent! state
Nonpolar state Depolarized~active! state
Increased temperature→ Increased excitability→

loss of polarization order loss of hyperpolarization order
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Q II5Qmaxexp~2c0lc1!, ~3.4b!

wherec0 andc1 are positive constants. Both functions dec
smoothly to zero asl→`; for the l→0 seizure extreme
Q I→` while Q II→Qmax, a finite maximum value. For defi
niteness and simplicity, we will setc051, Qmax51, and
only thec1 exponent will be altered. Figure 5 shows samp
Q-vs-l mappings forc150.2 ~curves 1 and 3!, c153 ~curve
2!, and c151.0 ~curve 4!. Curves 1 and 2 correspond t
infinite activity at l50 ~i.e., Q I mapping!, while curves 3
and 4 have finite activityQ5Qmax at l50 ~i.e., Q II map-
ping!.

F. Cortical entropy

Applying the Eq.~3.4! ‘‘temperature’’ mappings first to
the Haken potential form, Eq.~3.3a!, then to the Lugiato and
Bonifacio form, Eq.~3.3b!, we obtain four candidate expres
sions for cortical entropy,

SI, Haken5kBS l

c1

]U

]l
2U D , ~3.5a!

SII, Haken5kBS l12c1

c0c1

]U

]lU
D , ~3.5b!

SI, LB5k0

l11c1

c0c1

]U

]l
, ~3.5c!

SII, LB5k0

l12c1

c0c1Qmax
exp~c0lc1!

]U

]l
, ~3.5d!

where, for example, Eq.~3.5c! was derived by applying the
Maxwell relationS52]V/]Q to the Lugiato and Bonifacio
potential formV5k0U and using the chain rule

FIG. 5. Plausible excitabilityQ versus anesthetic effectl map-
pings. Curves 1 and 2 have unbounded excitability~‘‘temperature’’!
asl→0; curves 3 and 4 have finite excitability atl50.
7-11
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FIG. 6. Theoretical cortical entropy curves fo
the excitatory and inhibitory neural population
of the macrocolumn as a function of anesthe
effect. Assumed excitability~‘‘temperature’’!
mapping isQ51/lc1. ~a! Haken form,c150.2.
~b! Lugiato and Bonifacio form,c150.2. ~c! Lu-
giato and Bonifacio form,c153.
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]U
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52k

]U

]l

]l

]Q I
52k

]U

]l Y ]Q I

]l
~3.6!

with the Q I mapping giving the partial-derivative result

]Q I

]l
52c0c1/l11c1.

Graphs showing thel dependence of the Haken and L
entropies appear in Fig. 6. All three graphs assume the ty
temperature mappingQ51/lc1 ~the type-II mappings give
qualitatively similar results, so they are not shown her!,
with c150.2 for graphs~a! and~b!, andc153 for graph~c!.
Note that for the smaller value ofc1, the Haken and LB
entropy graphs are very similar, showing a maximum
tropy in the top-left corner~seizure!, and minimum entropy
in the bottom-right corner~coma!. The upper~active! and
lower ~quiescent! branches are separated by step discontin
ties atA3 ~induction point!, and atQ1 ~emergence point!.
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Inspection of Eqs.~3.5a!–~3.5c! shows that the Haken an
LB forms will give entropy curves which become more alik
for small c1. This is because the potential gradient]U/]l,
which is scaled by 1/c1, will tend to dominate the
U-potential term. For largec1, the entropy curves becom
dissimilar. However, the presence of the subtractiveU term
in the Haken form places an upper bound on the maxim
permissible value forc1: we found that forc1*0.4 the
Haken entropy becomes negative on the upper branch w
l*1.4. Since we require entropy to be always posit
~reaching zero only in the limit of perfect order!, then the
range of permissible power-law exponents for theQ-vs-l
mapping is limited to 0,c1&0.4 for Haken entropy.

The absence of theU subtraction in the LB form mean
that in principle there is no upper bound for thec1 exponent
in the LB entropy expression. We have selectedc153 as a
representative ‘‘large’’ exponent value since this produce
LB entropy curve@Fig. 6~c!# which has strong qualitative
similarity to the theoretical spectral entropy curves presen
in our companion paper@9#. Compared with the small-c1
entropy graphs of Figs. 6~a! and 6~b!, the large-c1 graph 6~c!
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shows a significantly different profile: the position of max
mum entropy has shifted from the top-left seizure corner t
position on the upper branch in the vicinity ofl51. This
feature suggests that the normal conscious state is assoc
with maximum entropy, and that both the coma and seiz
extremes have reduced entropy~increased order!. While this
is an intuitively attractive result, the supporting evidence
sparse at present. The work of Viertio¨-Oja and colleagues
@22# shows that spectral entropy does diminish during an
thetic induction ~see @9# for further details!, but, to our
knowledge, the corresponding spectral entropy changes
the traversal into epileptic seizure have not yet been repo
in the literature. Our own preliminary measurements for e
leptic EEG suggest that spectral entropy is lowered in
seizure state. These early findings indicate that the largc1
LB entropy graph of Fig. 6~c! is at least plausible.

We note that for both Haken and LB forms there is
abrupt and discontinuous negative change in the macro
umn entropy at theA3 point of induction. A step change in
entropy,DS, is characteristic of a first-order thermodynam
phase transition, and implies the existence of an analog
‘‘latent heat,’’ QDS, for the cortex. The detection of thi
latent effect should provide a direct clinical means by wh
we can determine the amount of energy which must be
moved from each macrocolumn in order to transform
cortex from a depolarized, disordered, conscious state
hyperpolarized, ordered, hypnotic state.

G. Cortical ‘‘heat capacity’’ and ‘‘latent heat’’

For a thermodynamic system consisting of a sample
its environment, theheat capacityof the sample is the energ
required to raise the temperature of the sample by 1 K. T
is a ‘‘heating’’ experiment in which energy flows inward
from the environment to the sample. Equivalently, heat
pacity can be determined in a ‘‘cooling’’ experiment whic
measures the energy required to lower the temperature o
sample by 1 K; in this case the energy flow is outwards, fr
the sample to its environment. For the cortex, we seek
design an experiment which measures the outflow of ene
from the cortex as it is ‘‘cooled’’~its excitability reduced!
under the influence of a general anesthetic.

The heat capacity depends on thephaseor bonding struc-
ture of the sample. If the sample changes phase during
cooling experiment, then we should expect the change
phase to show up as an anomalous peak in the heat cap
For a ferromagnetic substance cooled through its Curie t
perature, the transition from the disordered, nonmagn
state to the ordered, magnetically aligned state is smooth
continuous, and the transition is classified as second orde
contrast, the freezing of water and the cooling of a ferroel
tric material through its Curie point are classified as fir
order transitions, since both exhibit an abrupt and discont
ous change in order, quantifiable as a negative step ch
DS in entropy as the sample transforms from its liquid wa
~c.f. nonpolarized ferroelectric! disordered state to its ice
crystalline ~c.f. polarized ferroelectric! ordered state. This
discontinuous change in entropy is detectable as a sud
release of latent energy equal touTcDSu, where Tc is the
temperature at transition.
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Our model of the cortex predicts that as anesthetic ef
is increased, the soma voltagehe and associated free energ
V will change abruptly at a critical value for anesthetic effe
l. If the unconscious state is the more ordered, then
entropy change for the transition from the disordered, c
scious state to the well-ordered, unconscious state will
negative, and latent energy should bereleasedat the instant
of transition. However, because of the uncertainty introdu
by the presence of subcortical noise, we would not expec
105 macrocolumns of the cortex to jump simultaneously~the
larger the noise input into a given macrocolumn, the lar
the probability that it will jump ‘‘early’’!. Instead, the down-
ward jumps into unconsciousness will occur over the noi
broadened rangel1,l,l jump,A3

, wherel1.1.0 andlA3

51.53 ~see Fig. 1!. For small subcortical noise,l1,jump
→1.53 and the transition range will be quite narrow; f
large subcortical noise, the transition range will be compa
tively broad.

What are the requirements for the definitive thermod
namics experiment applied to the anesthetic-damped cor
Essentially we need to know how the energy uptake of
cortex varies as a function of anesthetic concentration. I
ally there would be simultaneous recordings of the EE
wave forms in order to correlate cortical electrical activ
with cortical energy consumption as the brain moves i
comatose unconsciousness.

We were very gratified to discover recently that the e
periment we seek was performed over 20 years ago
Stullken et al. @23# ~albeit for purposes quite different t
ours!. Stullken and colleagues were investigating the
sponse of the cerebral metabolic rate for oxygen (CMRO2

) in
dogs to increasing concentrations of four different anesth
agents: halothane, enflurane, isoflurane, and thiopental.
rebral oxygen consumption was determined by measu
the change in blood oxygen concentration for blood enter
and leaving the cerebral hemispheres, then multiplying
difference by the cerebral blood flow rate. The shapes of
anesthetic dose-response curves for CMRO2

were examined
by multiple measurements made at small, progressive c
centration increments. For example, the six dogs in the
othane group received increasing concentrations of haloth
such that the measured end-tidal~end-of-breath! concentra-
tion increased at a rate of 0.05%~of atmospheric pressure!
every 5 min to 1.1%, and thereafter, at increments of 0.1
every 5 min. The EEG was continuously recorded a
changes in EEG patterns from ‘‘awake’’ to ‘‘anesthetic
were correlated with changes in anesthetic concentration
CMRO2

. The points of EEG change for awake to transition
‘‘shifting’’ patterns, and from shifting to anesthetic pattern
were determined by inspection of rhythm, amplitude, a
frequency. High-frequency, low-amplitude activity (1565
Hz, 50640 mV) was classified as an awake pattern, wh
the onset of persistent lower-frequency and higher-amplit
activity (1068 Hz, 3006150 mV) was classified as an an
esthetic pattern. Shifting patterns showed alternation
tween awake and anesthetic characteristics.

Prior to the Stullkenet al. experiment, it had been as
sumed that there was a linear negative-slope relationship
7-13
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tween the cerebral oxygen consumption (CMRO2
) and the

anesthetic concentration, but these earlier inferences of li
dose response had been based on a small number of iso
measurements. In contrast, Stullken’s careful and deta
study revealed that CMRO2

dose-response curves are nonl
ear at anesthetic concentrations less than 1 MAC~minimum
anesthetic concentration at which half the subjects are u
sponsive to surgical incision; the MAC is a standard meas
of anesthetic potency!. For all four anesthetic agents studie
~three inhalational, one intravenous!, Stullken found that
CMRO2

decreased precipitously until a stable anesthetic E

pattern was observed; thereafter CMRO2
decreased only

slowly. These results demonstrate that the change in the E
pattern from awake to anesthetic is accompanied by
abrupt metabolic depression, and the researchers specu
that these events coincide with the onset of functional
pression~loss of conscious awareness!. The Stullken graph
for the variation of metabolic rate with halothane concent
tion is shown in Fig. 7~a!.

It is pertinent to emphasize an important distinction b
tween a ‘‘standard’’ thermodynamics cooling experiment d
signed to determine the heat capacity of a closed, therm
insulated physical sample and the biological experiment p
formed by Stullken and co-workers. In the latter case,
‘‘sample’’ is the living and metabolizing cortex of a do
which is necessarily an energy-dissipative, open system
order to maintain an equilibrium state of the cortex, the
must be a continuous flux of energy~oxygen plus nutrients!

FIG. 7. Effect of general anesthetic~halothane! on the cerebral
metabolic rate~CMR via oxygen consumption! for a dog, as re-
ported by Stullkenet al., 1977~refer to Fig. 3 of@23#!. ~a! CMR ~as
percent of control! is plotted versus end-of-exhalation halotha
concentration~as percent of atmospheric pressure!. Regression lines
for changes in metabolic rate are drawn for each EEG-determ
region.~b! We computed the negative slope of the regression li
of ~a! to give the rate of decrease of metabolic rate with increas
anesthetic. The abrupt change in metabolic sensitivity to an a
thetic during the transition stage is very suggestive of a ‘‘lat
heat’’ effect signaling a change of phase to the more ordered s
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from the arterial blood to the cortex, and then from the c
tex to the venous blood~metabolic waste products!. As dis-
cussed in the Introduction, this molecular metabolic activ
is occurring at spatial and temporal scales several order
magnitude below that of our model, and serves to maint
the macrocolumn in its~local! equilibrium state. We picture
the biological system as analogous to a nonideal ‘‘loss
physical system.

A reasonable working definition for ‘‘heat capacity’’ of
dissipative biological system such as the cortex might
‘‘the amount by which the metabolic rate must change
order to change, by one unit, the state of excitability of t
cortex,’’ where ‘‘excitability’’ is an inverse measure of th
anesthetic effect~see Sec. III E!. This definition implies that
it is the rate of energy delivery which determines the state
the neuron, whereas in fact the causality is the other w
around: it is the state of the cell, as set by the anesth
concentration, which determines the metabolic requirem
and hence the blood flow. With this caveat in mind, we w
apply this working definition to the Stullken experiment.

The halothane results of the Fig. 7~a! show that the over-
all trend is for the metabolic rate to diminish as the an
thetic depth increases. The gradient of this graph is nega
and its magnitude gives the percentage reduction in m
bolic rate per unit increase in halothane concentration,
equivalently, per unitdecreasein excitability ~assuming an
inverse relationship between halothane concentration
cortical excitability!. Thus the slope magnitude can be inte
preted as a cortical heat capacity; see Fig. 7~b!.

Unlike the awake and anesthetic regions that have sim
~gentle! slopes and therefore similar heat capacities, the
termediate shifting region has a dramatically steeper slo
This is the heat capacity anomaly which signals the therm
dynamic phase change from the high-firing, high-metabo
rate upper branch to the low-firing, low-metabolic-rate q
escent branch. The area of the anomaly gives the ave
decrease in the rate of energy consumption ('14%) during
transition. We may also interpret this area as a measur
the rate of latent energy release from the cortex arising fr
the loss of entropy~gain in order! as the cortex transits to it
unconscious state. Thus, during transition, the metabolic
quirements of the cortex are offset by the latent energy wh
becomes available to the cortex as it ‘‘crystallizes’’ into h
perpolarized order.

In order to compare the Stullken experimental results w
the model predictions for a single macrocolumn, we w
focus on the excitatory neuron population~inhibitory results
are very similar!, assuming the Lugiato and Bonifacio form
for free energy, and taking a ‘‘temperature’’ mappingQ
5c0/lc1, with c05c151.0. This gives the LB entropy tra
jectory for induction shown in Fig. 8~a! which lies between
those shown in Fig. 6~b! (c50.2) and Fig. 6~c! (c53).

Applying the assumed temperature mapping to the defi
tion for the cortical heat capacity listed in Table II, we obta

C5Q
]S

]Q
52l

]S

]l
. ~3.7!

The resulting single-macrocolumn heat capacity is shown
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Fig. 8~b!. As expected, the step decrease in entropy produ
a heat-capacity anomaly corresponding to the release o
tent heat as the model ‘‘freezes’’ into its hyperpolariz
state. Only a single latent-heat spike is shown. This nar
peak would be expected to broaden if the contributions of
105 macrocolumns participating in the CMRO2

blood flow
experiment could be summed, taking into account the
pected variability for the various biological paramete
~threshold voltage, input spike rates, noise amplitudes, e!,
but we note that we have not yet attempted multimacroc

FIG. 8. Predicted variation in~a! entropy and~b! heat capacity
for the excitatory neurons of a single macrocolumn during ind
tion of anesthesia. The entropy curve assumes a simple inv
mapping between excitability~‘‘temperature’’! and the anesthetic
effect: Q51/l, and follows the Lugiato and Bonifacio scheme f
free energy@see Eqs.~3.1! and ~3.5c!#. The heat capacity is com
puted from the derivative of the entropy curve,C52l(]S/]l).
The negative step discontinuity in entropy atl51.53 produces a
positived function in the heat capacity which we approximate a
triangular spike of area 1.53uDSu and half-width equal to the sam
pling resolution ofl.
. J

sth

H.

f

y
,
B:
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umn modeling. Nevertheless, this apparent similarity
tween our preliminary theory and the clinical experiment
very encouraging.

In the following paper@9# we describe another test o
model prediction versus clinical results. This second test w
use spectral entropy to compare the spectral flatness o
theoretical fluctuation spectrum against that measured f
EEG records for patients undergoing general anesthesia

IV. SUMMARY AND CONCLUSIONS

In this paper we have linked the general-anesthetic ph
transition of the cerebral cortex with thermodynamic pha
transitions by drawing an analogy with the canonical e
semble of statistical mechanics. We view the applied an
thetic as an infinite bath which determines the internal
ergy and polarization of the cortex in much the same way
thermodynamic temperature determines the state of spo
neous polarization of a ferroelectric crystal.

This lead us to identify a parameter we namedexcitation
(Q), oppositely proportional to the anesthetic effect (l), to
serve as a temperature analog. By positing a set of simple
plausible (Q,l) inverse mappings, we were able to compu
the analogous entropy and ‘‘heat’’-capacity changes for
duction into unconsciousness, and for reemergence into
sciousness. The theory predicts that the macrocolumn
tropy S will decrease discontinuously at the active-t
quiescent transition, consistent with a first-order pha
transition to a more ordered state. A second prediction is
the analogous heat capacity will diverge by an amo
uQDSu at transition, signaling the release of latent energy
the change of phase.

Detailed clinical measurements by Stullkenet al. @23# of
the changing metabolic requirements of the cortex dur
induction of anesthesia seem to be consistent with our th
retical picture of a phase change with latent energy rele
This is a very encouraging finding.

Part of the motivation for invoking a canonical ensemb
formalism is that once one has identified a temperature a
log for the cortex, in principle, one could begin the task
enumerating cortical microstates and constructing a PDF
these microstates.
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