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In a recent paper the authors developed a stochastic model for the response of the cerebral cortex to a general
anesthetic agent. The model predicted that there would be an anesthetic-induced phase change at the point of
transition into unconsciousness, manifested as a divergence in the electroencephalogram spectral power, and a
change in spectral energy distribution from being relatively broadband in the conscious state to being strongly
biased towards much lower frequencies in the unconscious state. Both predictions have been verified in recent
clinical measurements. In the present paper we extend the model by calculating the equilibrium distribution
function for the cortex, allowing us to establish a correspondence between the cortical phase transition and the
more familiar thermodynamic phase transitions. This correspondence is achieved by first identifying a cortical
free energy function, then by postulating that there exists an inverse relationship between an anesthetic effect
and a quantity we define as cortical excitability, which plays a role analogous to temperature in thermodynamic
phase transitions. We follow standard thermodynamic theory to compute a cortical entropy and a cortical “heat
capacity,” and we investigate how these will vary with anesthetic concentration. The significant result is the
prediction that the entropy will decrease discontinuously at the moment of induction into unconsciousness,
concomitant with a release of “latent heat” which should manifest as a divergence in the analogous heat
capacity. There is clear clinical evidence of heat capacity divergence in historical anesthetic-effect measure-
ments performed in 1977 by Stullkex al. [Anesthesiologyt6, 28 (1977)]. The discontinuous step change in
cortical entropy suggests that the cortical phase transition is analogous to a first-order thermodynamic transi-
tion in which the comatose-quiescent state is strongly ordered, while the active cortical state is relatively

disordered.
DOI: 10.1103/PhysRevE.64.011917 PACS nunier87.19.La, 05.10.Gg, 05.70.Fh
[. INTRODUCTION tion of very high neuronal firing. The other extreme of a

deep anesthetic effech&1.5, the “coma” statgis also a

In a recent papefl] we developed a theoretical model, stable state, but one in which neuronal firing is strongly sup-
based on known bulk neurophysiological processes, for thpressed. For intermediate values of the anesthetic effects,
action of general anesthetics on the cerebral cortex. We a$.3<A=<1.5, the model predicts three stationary values for
sume that the cortex consists of collections of assemblies dt,;. Two of these states are stable with respect to small
macrocolumns. A macrocolumn is a group of fluctuations; we identify these stable states as “activated”
~40000-100000 neuron@n proportions 85% excitatory, (upper branchand ‘“quiescent” (lower branch. The acti-
15% inhibitory which act collectively within a small volume vated and quiescent stable states are separated by an inter-
of the cortex. The effect of the general anesthetic was intromediate and unstable third state which provides a route by
duced into the model as a prolongation of the inhibitorywhich the macrocolumn can make a rapid transition into the
postsynaptic potential. quiescent state. Transition into quiescence is increasingly

We applied a stochastic formalism in which externalprobable as\ is increased beyond unity, and becomes com-
(voltage-independehtnputs into an assembly were treated pulsory forA=1.5.
as random Gaussian fluctuations about a mean value. In the By linearizing the Langevin equations about these station-
adiabatic limit in which input currents are assumed to equili-ary states, we were able to employ standard stochastic meth-
brate much faster than the average excitatory and inhibitorgds to derive fluctuation spectra fbr,. These theoretical
soma voltages, andh;, we derived stochastic differential spectra are relevant to clinical measurements sincehthe
equationgLangevin equationsfor h, andh; . By setting the  excitatory soma voltages are believed to be the source of the
time derivatives to zero, we found the stationéwy equilib-  scalp-detected electroencephalogré®tG) signal. As the
rium solutions forh,;. When plotted as a function of the anesthetic effect is increased, the theoretical spectra show a
anesthetic effeck, the graphs for the equilibrium soma volt- reduction in median frequency coupled with a very pro-
ages display the classic “inverted-S” phase transition form.nounced increase in power as the upper-braAghlimit
See Fig. 1. point of Fig. 1 is approached. This power increase is shown

The graphs show that the cortex exhibits three main equiin Fig. 2. This increased cortical excitation at the point of
librium regimes depending on the value »f For A=<0.3, induction is well known in the anesthesiology community,
the model predicts a single stable state for the cortex whicland is referred to as the “biphasic” response. The good
we refer to as “seizure’{region lll), as it describes a situa- qualitative agreement between the predicted changes in spec-
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(a) Stationary States (b) he Soma Trajectory FIG. 1. (a) Model predictions
o8 - : - 40 ‘ ' " ' for the stationary states foh,
% Seizure , (circles and h; (crosses as a
g ° e _ :;ducnon function of anesthetic effeat. (b)
— 20§ x_hi : 201 mergence | .
< ! N n region Il bounded by
£ E A1A;Q3Q;, for a given value of
o OF 5 or there are three possible values for
£ = he, but only two of these are
S 20 S 207 Al ] stable: points lying on the upper
g i (“active”: A;,A3) branch, and
& Hor g -40 | - po 1 points on the lowef“quiescent”:
& %) A3 Q1Q3) branch. Forn=1.53 (re-
o5 60 | & 60} 1 : gion I), hy becomes single-valued
L [—» and ne(;;ral firing)] is strongly(sup-
en L a0t ] pressed‘“coma”); for A=<0.3(re-
% % Q?""‘“"" gion I, h, is again single-valued
100 , , . 100 . @2 93 Coma but now neural firing is maxi-
0 05 1 15 2 0 0.5 1 1.5 2 mized(“seizure”). [Based on Fig.
Anesthetic Effect, A Anesthetic Effect, A 5 of [1], but with additional values
shown locating the top-left corner
seizure extremunn.
tral characteristics(frequency shift, biphasic powerand We need to make clear what we mean by applying the

those observed in clinical measuremefizs-5] provides words “thermodynamics” and “equilibrium” to the phase
strong supporting evidence of a physical phase transition ifransition of a complex biological system such as the cere-
the cortex at the point of induction into unconsciousness. bral cortex. First, we araotimplying that the phase transi-

A common characteristic of thermodynamic phase transition is in any way caused by changes in the thermometer-
tions is the observation of divergences in one or more pameasured physical temperature of the cortex. Rather, we are
rameters. The fact that EEG power appears to diverge at gsserting that the anesthetic acts in a “temperaturelike”
critical point during induction motivates the present paper'smanner to drive the cortex through its “anestheto-dynamic”
attempt to understand the nature of this transition from gpase transition into unconsciousness. In a thermodynamic
statistical mechanics perspective. Our approach will be t¢ansition, changes in the kinetic energy of molecules lead to
assert a formal correspondence between the cortical systegiyered intermolecular interactions. In the anestheto-dynamic
(the macrocolumnand a classical system, which can be de-yansition, anesthetic-induced changes in neuronal synaptic
scribed using the language and ideas of equilibrium thermoregponses lead to changes in the cortical information process-
dynamics. ing manifest as a loss of consciousness. The thermodynamics
analogy is useful because once a suitable anesthetic-effect
< analogous-temperature mapping has been established, we
are free to use generalized thermodynamics concepts to de-
scribe the change.

Second, the equilibrium assumption is fundamental to our
model: At all times the cortex never deviates far from the
anesthetic-determined equilibrium points defined by the
inverse-S curve of steady states shown in Fig. 1. The as-
sumption that the cortex can be in an equilibrium state re-
quires some justification—after all, the conventional picture
of the cortex would say that it is an open, dissipative biologi-
cal system which is far from equilibrium because its steady-
state behavior is maintained by a continuous flux of chemical
energy associated with nutrients and oxygen required for
metabolic functioning. We argue that our equilibrium treat-
ment can be justified on the basis(@j localization and2)
scale.

(1) Local equilibrium.Glansdorff and Prigoging6] ex-

FIG. 2. Variation of spectral power for anesthesia-inductionPlain how it is possible to ascribe a stateletal equilibrium
path A;A;QsC of Fig. 1. Note the substantial “slab” of biphasic 0 @ small mass elemeritn our case, the macrocolumn
power marking theA; extremum immediately prior to thé; ~ Which is part of a larger systerfi.e., the cerebral cortgx
— Q3 jump to the lower branchThis figure corrects a frequency- which, as a whole, is out of equilibrium. This can be done if
scale error on Fig. 6 dfL] which displayed a frequency unit of Hz the local state(i.e., the soma voltageis completely de-
that should have read “kHz)’ scribed by an equation of state which is independent of the

Power (dB)
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gradientqe.g., of chemical energyln our case, the equation transition can then be interpreted as a particular type of phase
of state is represented by the Fig. 1 anesthetic-determinddansition, thus enhancing our predictive powers concerning
trajectory of soma-voltage steady states. anesthetic changes to brain activity, and enriching our under-
(2) Scale.Glansdorff and Prigogine emphasis that.". standing of cortical processes in general. The predictions of
the local equilibrium assumption implies that dissipative pro-this paper(and that of our earlier papdd]) rely on the
cesses are sufficiently dominant to exclude large deviationapplicability of the adiabatic limit. In the companion paper
from statistical equilibrim . ... There must be sufficient [9] we use numerical stochastic simulations to investigate
dissipative ‘collisions’ to compensate for the effect of im- model behaviors in this adiabatic limit, then compute another
posed gradients.” For the cortex, we picture these dissipativkind of macrocolumn entropy that is amenable to direct clini-
processes as the myriad openings and closings of the mital measurement: spectral entropy.
lions of ion channels that service an individual neuron. These Before we launch into our cortical entropy calculations,
collisions occur on time scales several orders of magnitudeve first review the pertinent details pf], summarizing the
faster than time scales of our “mesoscale” soma-voltagemodel that provides our defining equations of state.
model, so the requirement for plentiful collisions is well sat-

isfied. Further, because we are modelipg at the_ mesoscale of Il. THEORETICAL FRAMEWORK
the neural assembly, and not at the microscopic scale of the o . .
molecular and ionic channel processes, it is not unreasonable A. Stochastic differential equations(SDES9

to replace the fine details of biological maintenance with  our model was described in some detail 1. The model
steady-state parameters in the mo@ed)., they; weighting  is pased on a set of partial differential equatiéROES de-
functions represent the time-averaged neurokingtitben to  rived by Liley et al. [10] which describe the time develop-
treat the steady state as if it were a true equilibrium. ment forh, andh; for a neuronal aggregate. We transformed
Given this(local) equilibrium picture, our statistical me- the PDEs of Lileyet al. into stochastic differential equations
chanics analysis of the macrocolumn proceeds as followgspEgg by incorporating noise terms assumed to originate

We compute the Fokker-Planck equation corresponding t@om random fluctuations in the subcortical inputs. This re-
the Langevin equations in the adiabatic limit in which we setgyjted in the following set of eight coupled SDES:

the time derivatives of the “fast”(rapidly equilibrating
variables to zero but retain their fluctuatiom®ise contribu-
tions) about steady state. This allows us to derive a stationary
probability distribution functionfPDF) Pg(he,h;,\) for the
macrocolumn. This is accomplished by decoupling the sys-
tem Langevin equation@ising the form of the equilibrium N
solutions yielding a PDF of the form dt " e

7« O
O T;

2 IIH \
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Ps(he,hi ,N)=~Pg(he,N)Pi(h; ,\). (1.9 I'y(t)
) 22
We will show that the twaP,; factors appearing on the
right-hand side of the PDF can each be expressed as an ex- 2. NB (Pie) Ta(t)
ponential whose argument we denote by the synmibg]. )(( 'e}:{ ' Si(h))+ © ”Gi’yie+ : }
When plotted as a function of the anesthetic effectve find Lii Nf (Pii) Ly(t)
that theU,; map out potential hills-and-valleys curves with (2.3
troughs and peaks coinciding, respectively, with the stable
and unstable equilibrium points of Fig. 1. Borrowing a phe- d — 2
nomenological technique from quantum opti@s8], we say dt e
that theU,; curvesdefinepotential functions which can be d
associated with a free enerdy ;. The precise form of the —+v_Aei)AeiNgi
free energyV depends on the choice of the Boltzmann func- dt
tion, as discussed in Sec. Il B. 2.4
Continuing the thermodynamic analogy, we compute a
cortical entropyusing the Maxwell relatiorS=—dv/de,  Where
where © is the anesthetic-dependent analogous “tempera-

d —
a + UAee) Ae(—:-l\lge
Se(he)y

ture,” which we call “excitability,” and that we conjecture T1(0)] [aeeV(Peaéa(t)] G

should be inversely proportional 2. This approach is very o(t)] aei‘/<pei>§2(t) eVe®

much in the spirit of Haken'Synergeticsvork [8] in which ’

a phenomenological free energy was inferred from a station- Ty 1

ary Fokker-Planck equation, permitting the calculation of T's(t) _| % (Pie)&3(1) G, ye. (2.5
equivalent entropy and heat capacity in a nonequilibrium Ca()] [ ayV(pii)éat) |

system.
In summary, this paper is concerned with establishing ahe i (j,ke{ei}) are normalized weighting functions de-
thermodynamic analogy for the cortex. The cortical phasdined by,

011917-3



STEYN-ROSS, STEYN-ROSS, SLEIGH, AND WILCOCKS PHYSICAL REVIEW@& 011917

h'e_h h'ev_h The stochastic equatiorf2.1)—(2.4) define our model of
o e, Y=, the cortex. Table | lists the numerical values and definitions
|he—he| |h{®'—hg| for the equation parameters and constants.
(2.6
S he'—h; _ h®=h, B. Equilibrium solutions
' |hev—presyt TN |hrev—presy” In [1] we derived the equilibrium solutions for the mac-

rocolumn. We solved Eq$2.1)—(2.4) with d/dt=0 and the
The termsl ¢, lie,lei,lii represent intracortical neuronal in- noise terms set to zero. In this long-time limit we found the
puts averaged over the assembly. The coupling strength b&ig. 1 stationary curves for the variations lof andh; as a
tween cells is determined by sigmoid functioss(h,), function of \. This inverted-S figure is suggestive of a clas-

Si(hy), sical phase transition. This interpretation was confirmed by a
stability analysis which showed that the upper and lower

Se max branches are stable with respect to perturbations, whereas the
Se(he)= 77 ext —gu(ho— 07" middle branch is unstable. Thus, if we start the system on the

2.7 (high-firing, active upper branch, and steadily increase the
S ' anesthetic amount, the soma voltage will slide along the
Si(hy)= L, max ] upper branch until the turning poii; is reached. At this
1+ exd —gi(hi—6))] point the macrocolumn is forced to make a jump transition to
-~ o o the (low-firing, quiescentlower branch. Conversely, if the
In addition to sigmoid-modulated spike input from the system is started on the lower branch, then reductions in
neural mass, there are long-rangertico-cortical spike in-  cause the soma voltage to slide to the left until the turning
put contributions .,¢;) from distant excitatory assem- noint Q, is reached, whereupon an upwards transition to the
blies, plus soma-voltage-independent spike i”pUt~°nigh-firing branch occurs.
(Pee:Pie :Pei,Pii) from exogenous or external sources la- e have run stochastic simulations of E¢®.1)—(2.4).
beled, for convenience, agibcortical and pictured physi-  see companion papg®] for details. The simulations show
ologically as nonspecific input from the brain stem. We as+that the presence of subcortical noise allows the macrocol-
sume that noise arises solely in the subcortical sources, anfnn to switch between stable statastivated— quiescent
we ignore noise entering via the cortico-cortical connectionst gther than the transition values (a3 OF No1). The like-
from distant assemblies. lihood of state switching diminishes as the amplitude of the

The four(pj) subcortical sources appearing in E(82  nojse is reduced, and increases as Aaeand Q; turning
and(2.3) represent the average value of each subcortical inpoints are approached.

put. The fourl" terms defined in Eq(2.5 contain noise
sourcesé(t) which provide the random fluctuations in the
subcortical inputs. Thesé&(t) are Gaussian white-noise

sources that have zero mean and &reorrelated, Inspection of the various time scales for thg; soma
voltages and the foullj.(jecfeiy iNPUt currents[Egs.

(£,())=0, (&, (D, (t)=5,,8t—t"). (2.8 (2.)—(2.4)] showed that it was reasonable to assume that the
K K K input currents would equilibrate much faster than the soma

Each noise source is scaled by a multiplicative factor of the/oltages. This justified a simplification in which we adiabati-
form a: hp' ). The aj, are dimensionless scale factors in- cally eliminated the current&etails in[1]), giving the fol-

jk ik ik : o ! .
troduced to ensure the fluctuations are always stis is lowing reduced set of stochastic differential equations for the
a technical refinement to our Eq.9) of [1] which, while it ~ SOMa voltages alone,
does not alter our theoretical development, it does become

C. Langevin equations in adiabatic limit

significant when attempting to solve the equations via sto- d he - Fl(he'hi)%[re(t)}, 2.9
chastic simulation; refer to the companion paf@rfor fur- dtihi] [Fa(he,hp) | [Ti(D)
ther details]
We introduced the effect of general anesthetic into thewvhere the drift terms are
model by modulating the inhibitory neurotransmitter rate
constant, Fi(he,hi) ={hF*—he) + ed (Nt NE) Se(he)
— ¥ +(Pee 1Gee yet N e NES; (hy)
YiTy
A +(pie)1Giel yi}/ 7e, (2.103
where\ is a multiplicative scaling factor assumed to be pro- o oirest ENT
portional to the anesthetic concentration, so thatl corre- Fa(he,hi) ={(h™ =) + e (Ng;+ Ngj) Se(he)
sponds to no anesthetic effect, and an increase gorre- (0. NGl vt N b [NBS. (h:
sponds to an increase in the anesthetic am@udecrease in (Pei)]Geel vt X[ NiiSi(hi)
the y, rate constant +(pii)1Giel yiH i, (2.10b
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TABLE |. Symbol definitions and given values for model constants.

Symbol Description Value Unit
ei (as subscriptexcitatory, inhibitory cell populations
Ne population mean soma voltage mV
Teii membrane time constant 0.040, 0.040 S
hit cell resting potential —70,—-70 mv
het cell reversal potentialNernst potentigl 45,—90 mV
lecie total e—e,i—e “current” input to excitatory synapses mV
I eiii total e—i,i—1i “current” input to inhibitory synapses mV
Pik(i ke leil) weighting factors for thej, inputs
Peeie exogenougsubcortical spike input toe population 1100, 1600 3
Pei ii exogenougsubcortical spike input toi population 1600, 1100 3
@ji(j kefeil) weighting factors for fluctuations ip;, spike inputs 0.1

e long-range(cortico-cortical spike input toe,i populations st
Aceei characteristic cortico-cortical inverse-length scale 0.40, 0.65 &m)
EPSP, IPSP excitatory, inhibitory postsynaptic potential mV
Yeii neutrotransmitter rate constant for EPSP, IPSP 300, 65 1s
Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e [e.g., Egs(2.5 and(2.10] base of natural logarithms 2.7182..
N2, i total number of locab—e,e—i synaptic connections 3034, 3034
NE i total number of local —e,i—i synaptic connections 536, 536
Neeei total number of synaptic connections from distant

e populations 4000, 2000

v mean axonal conduction speed 700 chhs
Se(he), Si(hy) sigmoid function mapping soma voltage to firing rate “1s
Se. max S, max maximum value for sigmoid function 1000, 1000 15
O inflection-point voltage for sigmoid function —60, —60 mV
Oe,i sigmoid slope at inflection point 0.28, 0.14 (m\)

and the corresponding diffusion terms are

umn. We generate the, ; by calculating the Fokker-Planck
equation equivalent to the Langevin equations of the preced-

Ue(t) ={tecteeV(Pee) §1(1) Gel ve ing section,
+ A ieieV(Pie) €3(1) Gi€l yit/ e, (2.100 &P(hgt,hi 1) :_%[Fl(he-hi)P(henhi ]

I :{‘/Ieia’ei V(pei>§2(t)GeE/7e

N i V(Pii) €a(1) Gi€l v} 7. (2109

In [1] we linearized these equations about the equilibrium
state defined by the inverse-S cuifgg. 1), then used stan-
dard stochastic methods to obtain the fluctuation spectra for
he as a function ofa shown in Fig. 2. In[9] we compare
these theoretical spectra against those obtained from numeri-
cal simulation of the adiabatically simplified equations

(2.9-(2.10.

+__
2 gh:

2

2

J
_a_hi[Fz(he,hi)P(he,hi,t)]
[D1(he,hi)P(he,h;,t)]

109
+ E W[Dz(heahi)P(heahi :t)]-

(2.11

The D, , are the diffusionnoisg terms defined by

D. Fokker-Planck equation
. . (To(t)Te(t")y=D,8(t—1"), (2.129
The results of 1], as summarized in Secs. |l B-1I C of the

present paper, predict that the cortex will undergo a phase
transition as it “freezes” into unconsciousness. In order to
explore the underlying nature of this transition, we choose to
follow a statistical mechanics path which requires us to de-
rive probability distribution function®, and P; for the ex- In order to compute equilibrium parametdssich as en-
citatory and inhibitory neuron populations for the macrocol-tropy) using a statistical mechanics framework, we require

(Fi(OT(t))=D,a(t—t"). (2.120

E. Stationary distribution functions
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(a) Offsetvs hp (b) Offsetvs A

FIG. 3. Equilibrium values for
h; expressed asX»@dependent off-
set fromhg: A=hgo—h; 5. Theh;
values become more similar tg
at the seizure and coma extremes.
Labels correspond to those shown
in Fig. 1.

[he — h;] Difference (mV)

Seizure Seizure

50

-50

0 0
he Soma Voltage (mV)

0.5 1 1.5
Anesthetic Effect, A

{(c) Ofiset vs he vs A

7333939515 )N g o

[he — hi] (mV)

0.5

e (m V) -100 0

the stationary distribution functioR¢(h.,h;). This is found
by settingd/dt=0 in Eq.(2.11). In general, for multivariate
systems, an analytic expression fBg is only obtainable
when the “potential conditions” are satisfiddee Gardiner

also approaching seizure poi&tvhere the slope has magni-
tude ~0.35. For these regions, EQ.14 will not be very
accurate, but this is of little consequence for the stationary
distribution function curves, since it is the locations of the

[11]). The (he,h;) two-variable cortical system does not sat- distribution maxima and minima that are of prime interest,
isfy the potential conditions. However, an approximate solu-and for these points the equation is ex&the inaccuracies
tion for P is achievable if we use the equilibrium values of in the distribution curves will manifest as shape errbes
Fig. 1 to decouple Eq2.11) into two independent equations, tweenturning points, and might compromise calculations for
one forh, alone and a second fb alone. Inspection of Fig. first-passage times, but this is not the focus of our present
1 shows that, at equilibrium, the dependence dfi, andh,; work.)

is rather similar: the curves are almost coincident on the Applying the offset relationships decouples the original
bottom branch, become distinct on the middle and uppekangevin equation$2.10g into two independent, stochastic
branches, then converge again as they approach the top-l€fguations of motion, one fdr, and one forh;, leading to
seizure corner. So it is reasonable to express the locus &#vo independent Fokker-Planck equations which are ex-
equilibrium values oh; as anh,-dependent offset from the pected to be valid for points close to equilibrium,

matching locus of equilibrium values &f,,

d

IPe(he N 1) = =
= ﬁ—m[Fl(he,)\)Pe(he,)\,t)]

ot

hi 0=heo—A(ho), (2.13
where the offset term (h,) is obtained numerically from the
Fig. 1 stationary curves, and is shown in Fig. 3 plotted as a
function of hy and of A. We will assume that the\(h,)
offset formula, which is exact for the locus of equilibrium
points, can also be applied to points nearby which are very
close to equilibrium, so generalize E.13 to read

1 g2 -
+ E a_t.]g[Dl(hei)\)Pe(he!)\!t)]!

(2.153

IPi(hi 1)

ﬁ _ ~
0 —a—rll[Fz(h“)\)Pl(hl’}\’t)]

hi=h.—A(h). (2.19
This generalization is equivalent to making a Taylor expan-
sion about equilibrium and requiring that the first-order term
in the expansion, the gradiem4/dhg) ¢q), be small. Exam-
ining Fig. 3a) we see that the absolute value of the slope is
generally less than-0.2, except along the unstable branch

AzQ; and in the vicinity of the jump pointd; andQ; and

1 9 ~
—+ E W[DZ(hI ,)\)Pi(hi 1)\1t)]1

(2.15h
where the overtilde variables are defined
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which follows because the excitatory and inhibitory distribu-
tions have been decoupled and therefore made independent.
We refer to thel, defined in Eq(2.18 as the excitatory
potential function since its negative gradient dU./dh, is
interpretable as a force that drives the excitatory neuron volt-
age (a parallel comment applies 19;). This idea becomes
clearer after inspecting Fig. 4 which shows how tlg;
potential functions vary with soma voltadng ;. The points
Equations (2.15 represent an uncoupled pair of single- on these curves at which the gradient is zero are the “zero-
variable systems, so it is now possible to solve for theforce” or equilibrium coordinates. The stability or otherwise
steady-statélong-time limit) P, P; probability distributions.  of a given equilibrium point is determined by the sign of the
Following the procedures outlined in Chap. 5 of Gardinercurvature in the region immediately bracketing the point.
[11], we attend to the boundary conditions by setting theThus if the equilibrium point lies at the bottom of a potential

ﬁe(he!)\!t)EPe(heahe_A;)\it);
Pi(he, N\, )=P;(hj+A,hi,\ 1),
Fi(he,N\)=Fy(hg,he—AN),

Fo(hy ,)N)=Fo(h;+A,h \).

“probability currents” equal to zero atg ;=h{®'= —90 mV
(lower bound for soma voltageand athe ;= +45 mV (up-

per bound and arrive at the following stationary solutions:

— M he Fi(heN)
Pe(he,)\)——Dl(he,)\)exr{ZJ_go —Dl(h;_,)\)dhe
(2.16a
= 7Y -
=5t 7 &~ Ua(he V)] e
=Ny exg —Ug(hg,\)] (2.160

and

o - N h; |~:2(hi, ) /
Pi(hi . A)= D,(hi,N) eXF{zf_go Dy(h{ \\) an ]

(2173

2
=D,h ) SH T Valhi ] (2.179
=Ny exd —Ui(h; V)], (2.179

where we have moved th, , diffusion term from the out-

side denominator of Eq$2.16h and(2.17b into the expo-

nential of Eqs(2.169 and(2.179, so that
Ue=U;+loge(Dy),

U;=U,+logs(Dy), (2.18

and where the normalization constants are defined by

+45
N;1=f exd —Uq(he,N)]dhe,  (2.193

-90

+45
N;lzf ) exd —U;(h; ,\)]dh;.

(2.19h

The definite integrals in Eq$2.16—(2.19 are evaluated nu-

valley (positive curvaturg any small deviations away from
the local minimum will be opposed by a force acting to
restore the equilibrium, making it stable. The converse is true
for the equilibrium point at the top of a potential hitegion

of negative curvatupe a small perturbation away from the
peak will produce a force tending to enhance the perturba-
tion, so the equilibrium there will be unstable.

Figures 4a)—4(g) show graphs olU,; as a function of
he; for the seven representative valueshoshown in 4h),
the last panel of the figure. These seven slices provide a
coarse sweep through regions (Heizure, region Il (upper
branch, and into region coma of Fig. 1.

We observe that the extrema of thl; potential func-
tions coincide with the equilibrium soma voltages high-
lighted by the vertical lines marked on Fig(h}. For ex-
ample, in Fig. 4a), U, exhibits a single valley minimum
whose {,h,) coordinate belongs to the upper-left “seizure”
corner of the equilibrium soma trajectory in Fighit This is
consistent with the vertical slice through this coordinade
beled “a” in Fig. 4(h)] cutting theh, trajectory once only,
implying that for A =0.25 only a single equilibrium state is
possible. The potential function is a minimum here, so this
state is stable.

In Fig. 4(b) for A=0.50, three well-defined extrema have
developedtwo unequal valleys separated by small)hidior-
responding to three distinct steady-state solutions and there-
fore three intersections on theslice of Fig. 4h). Only the
two valley-point equilibria(upper branch ah,=—40 mV
and lower branch di,= — 85 mV) are stable, while the mid-
branch equilibrium point, defined by the potential-function
peak (at h,=—73 mV) that separates the two valleys, is
unstable. In principle, the macrocolumn could sit delicately
balanced at the top of this hill, but given the slightest nudge
would “slide” off the hill to nestle into one of the adjacent
valleys.

The relative depth of the two valleys changes\agries,
indicating that the probability of occupation also changes
with N. For A<1, the upper(high-firing) branch is more
likely; while for A\>1 the lower(low-firing) branch is fa-

merically. The stationary probability distribution function for vored. For A\~1, both stable-branch values fdr, are
the total system of excitatory and inhibitory neurons in theequally likely; and if there are perturbations of sufficient

macrocolumn is given by the product

Ps(he,hi \\)=PcP;, (2.20

magnitude to overcome the potential hill, then there is the
possibility that the macrocolumn could repeatedly switch be-
tween the upper- and lower-branch stable states.
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-150 e ';" 5 dashed curveU;. (h) Copy of
g -30 N o Fig. 1 showing the seven vertical
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= 2 2 while the hill belongs to the un-
2 stable midbranch. Each of the la-
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6 E 20 b )2 - IXC.'?OW upper-branch  valley as the
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2 e | | A1l :
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-100
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We note that thesH; curves are indistinguishable from tional probability that a mesocolumiessentially equivalent
those forU;, (not shown herg i.e., the locations of the to our macrocolumnwill fire, given its interaction with
valleys and hills are practically unchanged by the folding ofother mesocolumns and its previous history of firings. Ing-
the D, diffusion divisors into the exponentials of Egs. ber's model successfully describes the formation of short-
(2.16b and(2.17Db. term memory, and is consistent with EEG data generated

In statistical thermodynamics, it is the Helmholtz free en-during selective attention tasks.
ergy that is minimized when the system is in equilibrium.  Our model has a more “top-down”philosophy in that the
The fact that outJ ; potential functions have minima which mean-field equations and associated stationary probability
correctly locate the stable equilibria leads us to suggest thatistribution P¢(h,,h; ,\) are amacrcstate description of the
these potential functions behave like Helmholtz free energyortex. By this we mean that the computeg, values are to
functions for the macrocolumn. We expand on this idea inbe regarded as representing soma-voltage averages over the

the following section. ~85000 excitatory and-15000 inhibitory neurons com-
prising the macrocolumn. Thus it is not possible for a mean-
1. A STATISTICAL MECHANICS TREATMENT field model to identify the detailed microscopic statesror
OF THE CORTEX crostates of the macrocolumiiBy ‘“microstate” we mean

_ the particular electrostatic configuration of soma voltages
A. Philosophy which, when summed, give the whole-macrocolumn voltage
In a series of papersee[12,13 and references thergin hg;.) However, if the underlying microstate description of
Ingber develops a statistical mechanics formalism of neocorthe cortex were known, then the macrostate picture could be
tical interactions. He adopts a “bottom-up” approach whichderived from it, in the same way that tf®&/=nRT macro-
starts at the microscopic level of synaptic interaction. Hisdescription of an ideal gas is derivable from the Boltzmann
theoretical distribution function for the cortex is the condi- distribution of its microstates.
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TABLE Il. Proposed mapping between thermodynamics theory and the macrocolumn model of the cortex.

Thermodynamic space Cortical space
TemperatureT Excitability, ©®
Internal energyE Internal energy of macrocolumi, ;
Helmholtz free energgy =E—-TS Cortical free energyV,i=E¢i—0S,;
Entropy, S= — (aV/dT) Cortical entropy,Sej=— (Vi /90)
Heat capacityC=T(dS/dT) Cortical “heat” capacity,Cq ;=0 (JS,,;/90)
Latent heatTAS Cortical latent “heat,”®AS,

We will use this macroscopic picture to construct a statisformal equivalence between the probability density functions
tical mechanics description of the anesthetic-induced corticaPDF9 of Egs.(3.1) and(3.2) and the cortical PDF of Egs.
phase transition. We proceed by derivingpaenomenologi- (2.160 and(2.179, and we assume that the cortical phase
cal) free energy functiorV. The “free energy” concept is transition can be described in a space which is dual to that of
very useful in statistical mechanics as its negative ratétatistical thermodynamics. The proposed dual-space map-
change with temperature gives entrofse= —JV/gT. But ~ Ping is set outin Table IlI; the various elements of this table
this step will require us to identify carefully exactly what is Will be discussed as the paper proceeds.

meant by the “temperature” of the cortex; by cortical “tem- _ EQuating the cortical potential functio) from Egs.
perature” we donot mean the physical temperature mea-(2-160 or (2.179 first with exponential argument of Eq.

: : .2) (Haken form, then with the exponential argument of
sured with a thermometer. In the next section we presenté3 ; e X
line of argument, based on the idea of a canonical ensembl 9. (3.1 [Lugiato and BonifacidLB) form], we obtain two

. N : . alternative thermodynamie» cortical mappings for the free
g)naelggble identification of a plausible cortical temperatureenergy of the cortex,

Ux)=V(x)/kgT

B. Identifying a free energy function for the cortex —V(he;)=ks®U(h,;) (Haken, (3.3a

The construction of our statistical mechanics theory is
motivated by the obvious similarities between the form of U(X)=V(x)/kq

the U,; potential functions of Fig. 4 and the potential-well N . ; o
description of phase transitions common in quantum optics =Vis(he)=koU(he,) (Lugiato and Bonifacip
[14]. For a quantum optics system described in terms of a (3.3b

parameterx, Lugiato and Bonifacid 7] write the stationary From Table Il and Eqs(3.33 and (3.3b), it will be ap-

probability distribution Py(x) (usually the solution of &  arent that for the cortical system we have introduced the
Fokker-Planck or Master equatipm the form symbol ®, which we define to beortical excitability and
_ B : . which, as we show using plausibility arguments developed
Ps(x)=Nex—V(x)/ko] ~(Lugiato and Bon|facm(),3 1 later in the paper, plays a role in the cortex analogous to that
' of temperaturel in thermodynamic systems. We will show
where A is a normalization constant, arig is a constant that excitability® is inversely related to anesthetic effect
introduced to ensure dimensional consistency. The quantityniS (\,©®) mapping provides the crucial link between the
V(x) plays the role of a “generalized free energy7,15]. cortical general-anesthetic phase transition and the world of

Haken[8] follows a similar approach in his Fokker-Planck thermodynamic phase transitions, and allows us to apply the

treatment of an analogous phase transition, but in his expo(concepts and tools of thermodynamic critical phenomena

nential term the denominator is the product of Boltzmann’s €.g., entropy, hgat capacity, and, in pr_lnmple, critical expo-
. o . ents, universalityto the cortical transition.
constantkg and a parameter he identifies as an equwalenE1

temperaturel, C. Neurological canonical ensemble

P(x)=Nexd —V(x)/kgT] (Haken, (3.2 In the absence of stimulus, a neuron will relax torést-
ing potential In our model, this voltage is set to 70 mV
which is very suggestive of the Boltzmann distribution. The(j.e., the interior of the neuron is 70 mV more negative than
assertion in Eqe3.1) and(3.2) thatV(x) is a free energy is the outside medium A neuron is said to bayperpolarized
justified phenomenologically on the grounds that the extremif its soma voltage is belowmore negative tharthe resting
of V locate the equilibrium states. potential, anddepolarizedif the voltage is above this value.
In both of these quantum-optics models, the diffusion-The neuron cannot fire until its soma potential is raised to a
noise term is constant. In our cortical model, the diffusionthreshold value which in our model is set at60 mV. A
has a weak,; dependence, but this dependence seems nafoltage impulse arriving at the neuron is classifiedrdsbi-
to challenge our posited, ;< free energy analogy, since tory if it tends to make the soma voltage more negative and
the extrema ol ; coincide with the stationary values o ; therefore less likely to reach threshold, aextitatoryif it
for a given\. Therefore we postulate that there exists araises the soma voltage towar@s above threshold. These
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inhibitory and excitatory events occur at the synapse, efthe classical canonical picture, there are two constraMts:
fected via the release of neurotransmitters which selectivelfhe number of neurons in the macrocolumn is fixgais
open channels to allow the passage of certain ions. assumption is implicit in the model: refer to the foh
Most commonly used general anesthetic agents act by eonstants in Table)] and the internal energk is fixed by
hancing the effect of the GABA-aminobutyric acid, the the anesthetic concentration. If the cortical PDF were known,
predominant inhibitory neurotransmitter in the cerebral corthen, in principle, the most likely distribution of polarization
tex) neurotransmitter. This chemical increases the chloridenjcrostates could be found by minimizing the PDF with re-
ion currents at the postsynaptic GABAa receptor complex byspect to these two constraints.
allowing the CI' channels to remain open for longer, causing = Thus the heat reservoir, which sets the temperafuoé

the neuron to become hyperpolarized and therefore inhibitegh ¢|assical thermodynamic system, has been replaced in the
[16,17. At the level of individual postsynaptic GABA@/CI o\ qical system by a blood-circulation reservoir of fixed

.channels,. the increase in .the G.ABA—stinquated. Clrrent 5 hesthetic concentration which perfuses the cortex, setting its
is proportional to the fractional increase in the time that theIPSP prolongation factox. However, it is obvious thal
channel is in the open state. We model this enhancement %1f ‘ ’

h | duct rolongation of the inhibitor nd\ arenot analogs: an increase i (via an increase in
channel conductance as a prolongation o Yanesthetic concentratipnauses the macrocolumn to become
postsynaptic potentidlPSP (or more precisely, as a reduc-

o . more hyperpolarized and therefore more ordered, whereas
tion in the IPSP rate'constam;) assumed proportional to increasing the temperature of a thermodynamic system has a
anesthetic concentration.

naber[12] d i lint . int f randomizing, disordering effect. This is made clearer by con-
ngber[12] describes neuronal interactions in terms o asidering a true thermodynamic system which has persuasive

given neuron receiving quanta of chemical postsynapti imilarities to the cortical phase transition: the ferroelectric
stimulation from other neurons. Each quantum consists o hase transition

thousands of molecules of neurotransmitter which drive th
chemically gated postsynaptic potential. Ingber goes on to
suggest that one may define a cortical P(Fobability dis-
tribution function which will **. . . describe the distribution Consider the temperature-driven first-order phase change
of electrical polarization caused by chemical quanta impingwhich occurs in ferroelectric materials such as barium titan-
ing on the postsynaptic membrane.” ate (BaTiQ) and Rochelle salt (KNagt,0Og-6H,0) [18—

This distribution of electrical polarizations determines the20]. At temperatures below transition temperatuiig
internal energyE of the macrocolumn system. Since the ef- =112 °C, the BaTiQ crystal exhibits a net spontaneous
fect of anesthetic is to alter the gate opening times, therebglectric polarization. This dipole moment exists indepen-
changing the net polarization of the macrocolumn, it is cleadently of any external electric field. When the crystal is
that the anesthetic sets the macrocolumn internal energyeated to a second transition temperatiife= 122 °C, its
Thus we paraphrase Ingber’s statement to read as followstructure suddenly changes from tetragonal to cubic and the
“For a given prolongation of the inhibitory post-synaptic spontaneous dipole moment disappears, the crystal remain-
potential, there exists a cortical PDF defining the micro-ing nonpolar at all higher temperatures. At intermediate tem-
scopic distribution of soma voltages corresponding to a fixegheraturesl,< T<T,, the crystal exhibitshermal hysteresjs
value of internal energy.” i.e., the crystal can exist in either polar or nonpolar form,

Such a picture has strong parallels with classical statisticajlepending on its thermal history. If the crystal was heated
mechanics distribution function derived from tbanonical  from belowT,, it will retain its polar state until temperature
ensembleA canonical ensemble describes a sysggnof N T, is reached, whereupon the polarization will suddenly and
particles in contact with an infinitely large heat reservRir discontinuously collapse to zero. If the crystal was cooled
maintained at constant temperatdieThe internal energfE  from aboveT,, it will remain unpolarized until the lower
of the systens, depends on the distribution of particles over transition temperaturg, is reached, at which point its lattice
their allowed energy states; . The most likely distribution  structure will spontaneously change and a dipole moment
is found by maximizing the PDF subject to the two con-will suddenly appear.
straints:N is fixed; E is fixed. The second constraint is his-  The precise definition of the Curie poifit (=120 °C for
torically associated with the undetermined Lagrange multiBaTiOs) for a ferroelectric is that temperature at which the
plier g, and for thermodynamic systems is found to befree energy wells for the polar and nonpolar states have equal
precisely related to temperatur@=1/kgT. depth, indicating that at that temperature both the polar and

For the anesthetic-dampled cortex, the infinite reservoir isonpolar states are equally like[21]. The Curie point is
the milieu of general anesthetic in the blood stream whichanalogous to th&@ =1 point on the cortical free energy dia-
sustains the neurons of the macrocolumn. The concentratiaqgtams of Fig. 4d). In common usage, the Curie point is
of the anesthetic can be taken as an externally set constaméken to mean the polarized unpolarized transition tem-
since the time scale on which it variés tens of millisec-  perature(i.e., T,.=T, for the BaTiQ, ferroelectrig. In Table
onds is very much longer than the relaxation time scales ofii| we list some parallels between the ferroelectric and mac-
the macrocolumn +{ tens of milliseconds The anesthetic rocolumn systems.
concentration, via the IPSP prolongation fackgr sets the In the ferroelectric, temperature is a measure of the ther-
polarization statéequilibrium soma voltageh@,h?) on the  mal motion which tends to destroy the polarization order.
reverse-S of Fig. lland therefore the internal energy. As in For the cortex, we definexcitability, ®, as the analog of

D. Ferroelectric analogy
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TABLE lll. Parallels between ferroelectric and cortical macro-
column systems.

Ferroelectric crystal Cortical macrocolumn
Polar (ferroelectrig state Hyperpolarize@quiescent state
Nonpolar state Depolarize@ctive state
Increased temperature Increased excitability—

loss of polarization order loss of hyperpolarization order

Excitability, @

thermodynamic temperature which provides the randomizing
disturbance tending to destroy the hyperpolarization order of
the quiescent macrocolumn. For our model, excitability is, in
some sense, oppositely proportional to cortical inhibition as
quantified by the IPSP prolongation factor We investigate % 05 1 15 5 25 3
several plausible®,\) mappings in the next section. Anesthetic Effect, A

E. Relating anesthetic effect to cortical excitability FIG. 5. Plausible excitability9 versus anesthetic effekt map-

., pings. Curves 1 and 2 have unbounded excitahifitgmperature”)
In our model, forh =1.53, the macrocolumn must reside ash—0: curves 3 and 4 have finite excitability at=0.

on the low-firing quiescent branch. As the anesthetic concen-
tration is increased, the duration of the inhibitory postsynap g
tic potential (IPSP is prolonged, producing greater inhibi-
tion and reduced neuronal firing. Increased anesthetic depth O 5= 0 X — CoNCY), (3.4
\ corresponds to reduced cortical excitabily sox and®
are inversely related. In the— limiting case of extreme wherec, andc, are positive constants. Both functions decay
anesthesia, there can be no activity in the presence of amoothly to zero as —; for the \—0 seizure extreme,
infinitely prolonged IPSP, s® =0 in this extreme frozen @, while ®,— 0,4, a finite maximum value. For defi-
limit. This point is our absolute-zero “temperature” at niteness and simplicity, we will seto=1, O =1, and
which all neurons are fully hyperpolarized. only thec, exponent will be altered. Figure 5 shows sample
For the emergence trajector§), will increase as the hy-  @-vs-\ mappings forc;=0.2 (curves 1 and B c; =3 (curve
perpolarization ordering diminishes with reductionsNn  2) and c;=1.0 (curve 4. Curves 1 and 2 correspond to
and more neurons become depolariZatile to firg. With infinite activity atA=0 (i.e., ®, mapping, while curves 3
sufficient reduction in\, the macrocolumn will eventually and 4 have finite activity) =0, at A\=0 (i.e., @, map-
reach the seizure extremuftop-left corner of Fig. 1 at  ping).
which point all neurons are fully depolarized and firing
maximally, sincex =0 means that the IPSP has zero dura-
tion so there is no inhibitory restraint on the macrocolumn
firing activity. At this seizure extremum, cortical excitability ~ Applying the Eq.(3.4) “temperature” mappings first to
will have its maximum valuéd .. From a biological en- the Haken potential form, E¢3.33, then to the Lugiato and
ergy resources perspective, it is reasonable to argue th&onifacio form, Eq.(3.3b), we obtain four candidate expres-
0. Will have a large but finite value, while from a math- sions for cortical entropy,
ematical modeling perspective one might argue Baf,,

F. Cortical entropy

— asA—0 and then avoid the finite resources problem by S — K » E—U 3.59
. . . . . |, Haken B ' ( .
asserting thah =0 is a model abstraction which will never Cy dA
occur in practice. In either case, we seek a mapping whose .
model predictions for entropy change are not unduly sensi- S —k AT ﬂ (3.5b
tive to the finiteness or otherwise @ ,y. Il Haken™ BB\ "0 ¢ any ) :
The mathematical equation relatify to \ is unknown,
but based on the foregoing discussion a plausible mapping At pu
would have the following properties: S.e=Ko oo~ ox (3.50
(i) ®—0 asn—o (deep comp o1
(ii) ® is a monotonic decreasing function »f 1-¢
: ANTa U
(iii) ®—0mn, as\—0 (extreme seizuje where 6 Sis= ko—@.exp(co)\cl) > (3.50
may be finite or infinite. CoC1® max d
Two of the simplest inverse relationships that satisfy these . )
criteria are where, for example, Eq3.59 was derived by applying the
Maxwell relationS= — dV/J0 to the Lugiato and Bonifacio
0,=cy/\% (3.4a potential formV=kyU and using the chain rule
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Anesthetic Effect, A
E\Y; Ju U o\ ou 90, Inspection of Eqs(3.53—(3.5¢9 shows that the Haken and
S, B=— 0. k@ == kﬁ 20, kﬁ N LB forms will give entropy curves which become more alike
! ! ! (3.6) for smallc,. This is because the potential gradief/J\,

which is scaled by 4, will tend to dominate the
: ; o ; -~ U-potential term. For large,, the entropy curves become
with the &, mapping giving the partial-derivative result dispsimilar. However, the %relsence of thz subtractiveerm
in the Haken form places an upper bound on the maximum
permissible value forc,: we found that forc;=0.4 the
Haken entropy becomes negative on the upper branch when
A=1.4. Since we require entropy to be always positive
Graphs showing th& dependence of the Haken and LB (reaching zero only in the limit of perfect ordethen the
entropies appear in Fig. 6. All three graphs assume the typerhinge of permissible power-law exponents for thevs-\
temperature mappin@ = 1/A°t (the type-ll mappings give mapping is limited to 8<c,=<0.4 for Haken entropy.
qualitatively similar results, so they are not shown here  The absence of the subtraction in the LB form means
with c,=0.2 for graphga) and(b), andc,=3 for graph(c).  that in principle there is no upper bound for theexponent
Note that for the smaller value af;, the Haken and LB in the LB entropy expression. We have seleatger3 as a
entropy graphs are very similar, showing a maximum entepresentative “large” exponent value since this produces a
tropy in the top-left cornefseizurg, and minimum entropy LB entropy curve[Fig. 6(c)] which has strong qualitative
in the bottom-right cornefcoma. The upper(active and  similarity to the theoretical spectral entropy curves presented
lower (quiescentbranches are separated by step discontinuiin our companion papef9]. Compared with the smati;
ties atAz (induction poin}, and atQ, (emergence poit entropy graphs of Figs.(8 and &b), the largee, graph &c)

90,
W = C0C1/)\l+cl.
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shows a significantly different profile: the position of maxi-  Our model of the cortex predicts that as anesthetic effect
mum entropy has shifted from the top-left seizure corner to as increased, the soma voltagg and associated free energy
position on the upper branch in the vicinity af=1. This Vv will change abruptly at a critical value for anesthetic effect
feature suggests that the normal conscious state is associatged |f the unconscious state is the more ordered, then the
with maximum entropy, and that both the coma and seizur@ntropy change for the transition from the disordered, con-
extremes have reduced entrofiycreased orderWhile this  scious state to the well-ordered, unconscious state will be
is an intuitively attractive result, the supporting evidence ISnegative, and latent energy should leteasedat the instant
sparse at present. The work of Vier@a and colleagues ot yransition. However, because of the uncertainty introduced
[22] shows that spectral entropy does diminish during anespy the presence of subcortical noise, we would not expect all

thetic induction (see [9] for_ further detaily, but, to our 105 macrocolumns of the cortex to jump simultaneoushe
knowledge, the corresponding spectral entropy changes QL e the noise input into a given macrocolumn, the larger

the traversal into epileptic seizure have not yet been reportfeﬂi‘e probability that it will jump “early”). Instead, the down-

in the literature. Our own preliminary measurements for epis, g jumps into unconsciousness will occur over the noise-

leptic EEG suggest that spectral entropy is lowered in the,. . qened range; <A<\ jump<a.. Wherex,;>1.0 andi,
. S - ) s s
seizure state. These early findings indicate that the leyge —~1.53 (see Fig. 1 For small subcortical Noisek; jumy

LB entro raph of Fig. @) is at least plausible. . . .
We ngti q[hart) for bogt]h6|2|)aken and LFI; forms there is an—>l.53 and the transition range will be quite narrow; for

abrupt and discontinuous negative change in the macrocojd'9€ Subcortical noise, the transition range will be compara-
umn entropy at the point of induction. A step change in 1vely broad.

entropy,AS, is characteristic of a first-order thermodynamic What are t_he rtequmla.mdetntstr:‘or the t(rj]el?_mt(ljve thedrmodty- 5
phase transition, and implies the existence of an analogo amics expenment applied o the anesthelic-damped cortex:

“latent heat,” ®AS, for the cortex. The detection of this ssentially we need to know how the energy uptake of the

latent effect should provide a direct clinical means by WhiChcortex varies as a function of anesthetic concentration. Ide-

we can determine the amount of energy which must be rez_illy there would be simultaneous recordings of the EEG

moved from each macrocolumn in order to transform theVave forms in order to correlate cortical electrical activity

cortex from a depolarized, disordered, conscious state to ‘Q{'th cortical energy consumption as the brain moves into

: ; comatose unconsciousness.
hyperpolariz rdered, hypnoti . o .
yperpolarized, ordered, hypnotic state We were very gratified to discover recently that the ex-

G. Cortical “heat capacity” and “latent heat” periment we seek was performed over 20 years ago by
] o Stullken et al. [23] (albeit for purposes quite different to
For a thermodynamic system consisting of a sample angyrg. Stullken and colleagues were investigating the re-

its environment, théeat capacityf the sample is the energy sponse of the cerebral metabolic rate for oxygen (%'W‘

%ogs to increasing concentrations of four different anesthetic

required to raise the temperature of the sample by 1 K. Thi
is a “heating” experiment in which energy flows inwards, agents: halothane, enflurane, isoflurane, and thiopental. Ce-

from the environment to the sample. Equivalently, heat ca- : . .
: . . » - . . “rebral oxygen consumption was determined by measuring
pacity can be determined in a “cooling” experiment which

. the change in blood oxygen concentration for blood entering
measures the energy required to lower the temperature of the . X T .
AP . and leaving the cerebral hemispheres, then multiplying this

sample by 1 K; in this case the energy flow is outwards, from,.
. : difference by the cerebral blood flow rate. The shapes of the

the sample to its environment. For the cortex, we seek tQ

. ; . anesthetic dose-response curves for Rere examined
design an experiment which measures the outflow of energ P QM

from the cortex as it is “cooled’(its excitability reduceyl Py multiple measurements made at small, progressive con-
under the influence of a general anesthetic. centration mcreme_nts. _For exz_imple, the six _dogs in the hal-
The heat capacity depends on fiteaseor bonding struc- othane group received increasing concentrations of halothane
ture of the sample. If the sample changes phase during th/ch that the measured end-tidahd-of-breath concentra-
cooling experiment, then we should expect the change dfion increased at a rate of 0.05¢4f atmospheric pressure
phase to show up as an anomalous peak in the heat capacig¥ery 5 min to 1.1%, and thereafter,_ at increments of 0.10%
For a ferromagnetic substance cooled through its Curie ten2ve€ry 5 min. The EEG was continuously recorded and
perature, the transition from the disordered, nonmagneti€h@nges in EEG patterns from “awake” to “anesthetic”
state to the ordered, magnetically aligned state is smooth an4e"e correlated'wnh changes in anesthetic concentration and
continuous, and the transition is classified as second order. fiMRo,- The points of EEG change for awake to transitional
contrast, the freezing of water and the cooling of a ferroelec-'shifting” patterns, and from shifting to anesthetic patterns
tric material through its Curie point are classified as first-were determined by inspection of rhythm, amplitude, and
order transitions, since both exhibit an abrupt and discontinufrequency. High-frequency, low-amplitude activity (5
ous change in order, quantifiable as a negative step chandz, 5040 nV) was classified as an awake pattern, while
ASin entropy as the sample transforms from its liquid waterthe onset of persistent lower-frequency and higher-amplitude
(c.f. nonpolarized ferroelectricdisordered state to its ice- activity (10=8 Hz, 300150 nV) was classified as an an-
crystalline (c.f. polarized ferroelectrjcordered state. This esthetic pattern. Shifting patterns showed alternation be-
discontinuous change in entropy is detectable as a sudddween awake and anesthetic characteristics.
release of latent energy equal 6.AS|, whereT, is the Prior to the Stullkenet al. experiment, it had been as-
temperature at transition. sumed that there was a linear negative-slope relationship be-
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o (@ComealCoolng from the arterial blood to the cortex, and then from the cor-
Awake  Shitng Anesthatic tex to the venous bloo@metabolic waste produdtsAs dis-

; 1 cussed in the Introduction, this molecular metabolic activity
is occurring at spatial and temporal scales several orders of
magnitude below that of our model, and serves to maintain
the macrocolumn in itglocal) equilibrium state. We picture
the biological system as analogous to a nonideal “lossy”
0 o1 oz 03 04 05 06 07 08 08 1 11 1z 13 14 15 physical system.

A reasonable working definition for “heat capacity” of a
O twentMeatPelea dissipative biological system such as the cortex might be
8or i} “the amount by which the metabolic rate must change in
sok i order to change, by one unit, the state of excitability of the
cortex,” where “excitability” is an inverse measure of the
anesthetic effectsee Sec. Il E This definition implies that
20} . it is the rate of energy delivery which determines the state of
T, the neuron, whereas in fact the causality is the other way
© 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 around: it is the state of the cell, as set by the anesthetic
End-tidal Halothane Concentration concentration, which determines the metabolic requirement
FIG. 7. Effect of general anesthetioalothang on the cerebral and hence the blood flow. With this caveat in mind, we will
metabolic rate(CMR via oxygen consumptiorfor a dog, as re- apply this working definition to the Stullken experiment.
ported by Stullkeret al, 1977(refer to Fig. 3 0f23]). (a) CMR (as The halothane results of the Figay show that the over-
percent of contrl is plotted versus end-of-exhalation halothane @ll trend is for the metabolic rate to diminish as the anes-
concentratior{as percent of atmospheric pressuRegression lines  thetic depth increases. The gradient of this graph is negative,
for changes in metabolic rate are drawn for each EEG-determine@nd its magnitude gives the percentage reduction in meta-
region.(b) We computed the negative slope of the regression linedolic rate per unit increase in halothane concentration, or
of (a) to give the rate of decrease of metabolic rate with increasinggequivalently, per unidecreasen excitability (assuming an
anesthetic. The abrupt change in metabolic sensitivity to an anegaverse relationship between halothane concentration and
thetic during the transition stage is very suggestive of a “latentcortical excitability. Thus the slope magnitude can be inter-
heat” effect signaling a change of phase to the more ordered stat@reted as a cortical heat capacity; see Fig).7
Unlike the awake and anesthetic regions that have similar

tween the cerebral oxygen consumption (CMRand the (gentle)_slopes_ a_md the_refore similar hea_t capacities, the in-
Yo P ( 2 termediate shifting region has a dramatically steeper slope.

anesthetic concentration, but these earlier inferences of line ?

CMR Percent of Control

40+ -

|Gradient| of CMR graph

X &his is the heat capacity anomaly which signals the thermo-
dose response had been based on a,small number of |solla amic phase change from the high-firing, high-metabolic-
measurements. In contrast, Stullken’s careful and dete_ule te upper branch to the low-firing, low-metabolic-rate qui-
study revealed that CMiz dose-response curves are nonlin- ggeent pranch. The area of the anomaly gives the average
ear at anesthetic concentrations less than 1 M®Giimum  decrease in the rate of energy consumptierig%) during
anesthetic concentration at which half the subjects are unreransition. We may also interpret this area as a measure of
sponsive to surgical incision; the MAC is a standard measurene rate of latent energy release from the cortex arising from
of anesthetic potengyFor all four anesthetic agents studied the loss of entropygain in ordey as the cortex transits to its
(three inhalational, one intravengusStullken found that unconscious state. Thus, during transition, the metabolic re-
CMR, decreased precipitously until a stable anesthetic EEQuirements of the cortex are offset by the latent energy which
pattern was observed; thereafter CMZRdecreased only becomes available to the cortex as it “crystallizes” into hy-
slowly. These results demonstrate that the change in the EER$TPolarized order. . .
pattern from awake to anesthetic is accompanied by an In order to compare the Stull_ken experimental results Wl_th
abrupt metabolic depression, and the researchers speculaf®§ model predictions for a single macrocolumn, we will
that these events coincide with the onset of functional defocus on the excitatory neuron populatiGnhibitory results
pression(loss of conscious awarengs3he Stullken graph aré very similay, assuming the Lugiato and BonlfaC|o' form
for the variation of metabolic rate with halothane concentrafor free energy, and taking a “temperature” mappify
tion is shown in Fig. 7a). _=c0/)\°1, with co=c;=1.0. This gives the LB entropy tra-

It is pertinent to emphasize an important distinction be-€ctory for induction shown in Fig. (& which lies between
tween a “standard” thermodynamics cooling experiment de-those shown in Fig. @) (c=0.2) and Fig. &) (c=3). N
signed to determine the heat capacity of a closed, thermally APPlying the assumed temperature mapping to the defini-
insulated physical sample and the biological experiment pefion for the cortical heat capacity listed in Table II, we obtain
formed by Stullken and co-workers. In the latter case, the JS JS
“sample” is the living and metabolizing cortex of a dog C=0 —=—)\—. (3.7
which is necessarily an energy-dissipative, open system. In 90 I\
order to maintain an equilibrium state of the cortex, there
must be a continuous flux of energgxygen plus nutrienjs  The resulting single-macrocolumn heat capacity is shown in
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. ‘ . (a) Entr?pyforSingleMacroc[olum“ ‘ umn modeling. Nevertheless, this apparent Similarity be-
tween our preliminary theory and the clinical experiment is
very encouraging.

In the following paper[9] we describe another test of
model prediction versus clinical results. This second test will
use spectral entropy to compare the spectral flathess of the
T ] theoretical fluctuation spectrum against that measured from
0= : . . : ‘ : . EEG records for patients undergoing general anesthesia.

(L&B Entropy) /10°
w
;
.

(b) Heat Capacity for Single Macrocolumn IV. SUMMARY AND CONCLUSIONS

st 1 In this paper we have linked the general-anesthetic phase
transition of the cerebral cortex with thermodynamic phase
transitions by drawing an analogy with the canonical en-
semble of statistical mechanics. We view the applied anes-
thetic as an infinite bath which determines the internal en-
of ‘ . ‘ ‘ ' ergy and polarization of the cortex in much the same way as
1 11 12 1.3 14 1.6 16 17 18 thermodynamic temperature determines the state of sponta-
Anesthetic effect, A neous polarization of a ferroelectric crystal.

This lead us to identify a parameter we nangeditation
(®), oppositely proportional to the anesthetic effex) (to
Serve as a temperature analog. By positing a set of simple but
pﬁausible ©,)\) inverse mappings, we were able to compute
the analogous entropy and “heat”-capacity changes for in-
duction into unconsciousness, and for reemergence into con-
sciousness. The theory predicts that the macrocolumn en-
The negative step discontinuity in entropy dat 1.53 produces a tropy S will decrease discontinuously at the active-to-

positive 6 function in the heat capacity which we approximate as aqwes_c_ent transition, consistent with a flrst-or_de_r phase
. ; . transition to a more ordered state. A second prediction is that
triangular spike of area 1.88S| and half-width equal to the sam-

; ) the analogous heat capacity will diverge by an amount
pling resolution of. |®AS| at transition, signaling the release of latent energy at

) ) the change of phase.
Fig. 8(b). As expected, the step decrease in entropy produces petajled clinical measurements by Stullkehal. [23] of

a heat-capacity anomaly corresponding to the release of Iahe changing metabolic requirements of the cortex during
tent heat as the model “freezes” into its hyperpolarizedjnduction of anesthesia seem to be consistent with our theo-
state. Only a single latent-heat spike is shown. This narrowetical picture of a phase change with latent energy release.
peak would be expected to broaden if the contributions of allrhis is a very encouraging finding.

10° macrocolumns participating in the CMRblood flow Part of the motivation for invoking a canonical ensemble
experiment could be summed, taking into account the exformalism is that once one has identified a temperature ana-
pected variability for the various biological parameterslog for the cortex, in principle, one could begin the task of
(threshold voltage, input spike rates, noise amplitudes), etc.enumerating cortical microstates and constructing a PDF for
but we note that we have not yet attempted multimacrocolthese microstates.

(Heat Capacity) /10%

FIG. 8. Predicted variation ife) entropy andb) heat capacity
for the excitatory neurons of a single macrocolumn during induc
tion of anesthesia. The entropy curve assumes a simple inver
mapping between excitability‘temperature”) and the anesthetic
effect: @ =1/\, and follows the Lugiato and Bonifacio scheme for
free energysee Eqgs(3.1) and (3.59]. The heat capacity is com-
puted from the derivative of the entropy cun@= —\(JS/IN).
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