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Influence of shear flow on vesicles near a wall: A numerical study
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We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall.
This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-
incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic
lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is
placed in the vicinity of a wall that acts only as a geometrical constraint. We find that the lift velocity is
linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall.
Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of
the viscous lift force that seems to agree with recent experiments of étoak [Europhys. Lett.51, 468
(2000]. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transi-
tion that occurs at an adhesion strength linearly proportional to the shear rate.
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[. INTRODUCTION stituting the proteins into phospholipid vesicles, which are
then subjected to physiological levels of fluid shear stress in
We would like to understand how hydrodynamic flow af- a viscometel{6]. Quantitative predictions require informa-
fects vesicles and, in particular, shear flow because it occuttson regarding hydrodynamic stresses and tensions that de-
whenever a fluid flows near a surface. This is of relevance itvelop in response to flow and the model discussed in this
modeling artificial or natural cells in motion from the level paper is suited for these purposes.
of the dynamics of a single cell to the rheology of a suspen- We are also motivated by recent experiments on weakly
sion such as the blood. It will also enable us to understanddhering vesicles in shear flow]. These investigations re-
the interplay between vesicles in shear flow and specific andeal the lipid flow within the vesicle membrane and the flow
nonspecific adhesive properties of a membrane. This is a kefjeld within the vesicle and near its outer surface. The influ-
feature in phenomena such as leukocyte locomofiba]. ence of weak flow fields on the state of adhesion and the
Computational methods are now increasingly used to undetranslational motion of vesicles are studied using bright field
stand and analyze experiments studying the relationship bend reflection interference contrast microscopy. Moreover,
tween receptor-ligand functional properties and the dynamicthe hydrodynamic lift forces exerted on adhering vesicles are
of adhesion. An efficient numerical method simulating ad-estimated and the lift forces are found significantly larger
hering spherical cells in flow has been used recently to inthan estimates based on an earlier theoretical stRfyAn
vestigate the physical kinetics of adhesion moleciy@s  explanation for this discrepancy based on arguments using a
There are compelling reasons to go beyond spherical cellfubrication analysis of flow between a spherical cap and a
viz. (a) to understand how deformation couples with the dy-wall has been proposed recenfB].
namics of adhesion centers afig) to study the interplay Here, we show the results of a numerical simulation. With
between the physical kinetics of adhesion molecules, orienthe above experiment in mind, we simulate an incompress-
tation of a cell and viscous lift forces that act on nonsphericalble vesicle in shear flow, which is influenced by gravita-
cells and do not act on spherical cells. It should, however, bé&onal forces or nonspecific adhesion forces to be near a wall
noted that leukocyte locomotion is further complicated byand by viscous lift forces to be away from the wall. The main
the role of actin polymerization, ion channels, and pseudoebjectives of this paper af@) to understand the very nature
pod formation that together play an important role in leuko-of viscous lift force; (b) to describe how the steady state
cyte response to shear str¢d§ Another practical use of this shape is influenced by shear flow and forces due to gravity or
study concerns mechanosensory transduction, which is then adhesion potential; ar{d) to study the influence of shear
process by which certain cells convert fluid stresses to bioin taking the system away from equilibrium. The numerical
chemical and/or electrical signdlS]. The identification and method simulates a realistic model of a vesicle. The tensions
activation of mechanoreceptors and intracellular signalinghat develop in response to flow are determined self-
pathways are currently active areas of research. For an exonsistently.
ample of a case where our study is relevant, consider an Before describing the study, we take stock of what is
experiment that investigates the influence of mechanicaknown about the dynamics of vesicles, and about techniques
stress on the activation of specific proteins present on thehat are relevant. The dynamics of vesicles belong to a broad
membrane of endothelial cells. One method involves reconelass of problems called free-interface problems that describe
the dynamics of a particle consisting of a membrane that
encloses a drop of an incompressible Newtonian fluid often
*Electronic address: sreesuku@hotmail.com called a capsule in the literatuf®]. The first problem dis-
TElectronic address: useifert@mpikg-golm.mpg.de cussed in this class was the behavior of a fluid drop in shear
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FIG. 1. Schematic representation of the geometry showing a vesicle, the wall in thepgl@nand applied linear shear flow. On extreme
right, the mean centeixg,0,z¢) is shown asC. The height of the centdr and the vesicle-wall distandg, are also shown.

flow, when the effects of fluid viscosity and interfacial ten- mathematical formulation of the hydrodynamics of vesicles
sion are taken into accouhtO]. In fact, much of the later including the implementation of the boundary element
work on elastic capsules or vesicles employed techniquesethod will be briefly discussed. Then, we proceed to three
and analysis used to understand the dynamics of liquidections concerning the dynamics of vesicles in shear flow in
drops. The first two lines of attack involved analytical meth-the proximity of a wall. In Sec. Ill, we study the nature of
ods based on perturbation schemes for shapes close tovescous hydrodynamic lift force and we assume that the
sphere, and theories using slender-body dynamics. Consideresicle does not experience gravitational force, i.e., the
able effort has been made in fluid drop dynamics rangingesicle is neutrally buoyant, and the vesicle is not influenced
from drop breakup to physical influences such as surfactantsy forces due to an adhesion potential. In Sec. IV, gravita-
and complex flows, for reviews s¢é1,12. An important tional forces are introduced and we compare our results with
step in understanding this nonlinear problem of threethe experiment. In Sec. V, the influence of a nonspecific
dimensional deformation in external flows without making adhesion potential is considered. And in Sec. VI, our conclu-
drastic approximations involves numerical methods usingions regarding the dynamics of vesicles near a wall are sum
boundary element methodl$3]. The use of an unstructured marized.

grid of triangular elements to represent the interface has been

shown to be efficient and numerically stable in simulating Il. MODEL

the dynamics of three-dimensional liquid droplets in shear

flow in an unbounded fluid and in the proximity of a bound- ~ Consider the vesicle to be a two-dimensional surface em-
ing plane wall[14]. This has been also used in simulating bedded in three-dimensional space. The instantaneous mem-
capsules with elastic membrands$). We now compare this brane configuratiolR(s; ,s,) is parametrized by internal co-
scene of activity with that regarding the dynamics ofordinates §;,s,). The energyE of the vesicle—with an area
vesicles. elementd S—

In the last three decades, experimental and theoretical
studies of the behavior of free and bound fluid vesicles in
equilibrium have met with great succesks]. But, the hy-
drodynamics of vesicles still poses unsolved problems. For
example, consider a vesicle in unbounded shear flow. Aas three contributions. The first due to the squared mean
minimal model of a vesicle involves bending elasticity andcurvatureH? describes the bending enerd6] with bending
the constraints of fixed area and volume. Using this modelsigidity «. The second term is due to a locally varying iso-
the dynamics of free vesicles in shear flow have been studieglopic tension?, that is needed to ensure local incompress-
using boundary element methoffs8,19. Apart from fea- ibility of the membrane. The third term is the adhesion en-
tures similar to liquid drops such as steady revolution of theergy due to the proximity of a homogeneous substrate that
surface, called tank treading in the case of capsules, andexerts a nonspecific interaction. The geometry is schemati-
steady tilt, the numerical work suggested that shear is a sireally represented in Fig. 1. The adhesion potential, with the
gular perturbation even though one would naively expectvall in the planez=0, is chosen to be
that at very small shear rates the equilibrium shape is recov-
ered. Numerical limitation prevented a conclusive examina- W(2)=W(do/2)%[(dg/2)%—2]. (2
tion of this regime.

In two dimensionsthe dynamics of adhering vesicles has Here,W is the adhesion strength. The potential is repulsive
been investigated in models for chemotd#6] and in shear as 1£* for z<d, and attractive as-1/z? at long distance.
flow [21] using a boundary element method. Practical con-The potential has a minimum ef W atz=d,. Theoretically,
siderations and a need to compare theoretical models witany model with a strongly repulsive short range interaction
experiments call for an investigation of how hydrodynamicand a weakly attractive long range interaction would be suit-
flows affectthree-dimensionabesicles. able. Numerically, the model chosen is most suitable because

In the next section, the physical model of a vesicle and thé minimizes numerical problems associated with sharply di-

, @
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verging forces at short length scales. In any specific physica,k,hereVW(X,y,z):('7,2,0,0) is the incident shear flowefer
situation, the exact form of the potential depends nonuniverpig_ 1) and Gij(R“,Rﬁ) is the appropriate Green’s function
sally on the concrete experimental conditioisee review, for the velocity. In the case of free vesicles in unbounded
[17]). As long as this potential is repulsive on short lengthspace, the free-space Green's function is the Stokeslet; and,
scales and attractive on long length scales, with a singléy the case of bound vesicles, we choose the semi-infinite
minimum in between, the results derived in the present studgpace Green's function for the velocii®2,23. We empha-
will hold, at least qualitatively. In the case of free vesicles,sjze that the internal and external fluid flow can also be com-
the adhesion term is absent. The membrane force dehsitypyted self-consistently using this formalism. This formalism
reads includes, of course, the modification of the external flow due
to the presence of the dynamically evolving vesicle. To make
1 6E computations tractable, we assume that the viscosity of the
N \/_gﬁ ' @  fluid inside the vesicle is equal to that of the suspending
fluid, (7°Y'= %"= 7). If the viscosities are different, equa-
whereg is the determinant of the metric tensor. tion (6) is modified to include an additional term that turns it

To describe the hydrodynamics of vesicles, we assum#M0 an integral equation iw. Then, the equation has to be
that the Reynolds number of the flow inside and around thé0lved iteratively o must be determined by matrix inver-
vesicle based upon the vesicle si@ay the radius of the Sion at any instant of time. We also note in passing that by
spherical vesicle of equal volumés sufficiently small so  ¢hoosing the same viscosity, we do not allow for tumbling
that the velocityv of the fluid and the pressure fiejis ~ Motion in shear flow that occurs when the dynamics is vor-
governed by the equations of Stokes flow or creeping flowlicity dominated. For liquid drops, tumbling is shown to oc-

f(R)

equations. Thus cur for \= 2"/ 7°U'=4 [14].
We characterize vesicles by a dimensionless number, the
7°"9;;00 "= g,p°", gwP"'=0, reduced volume
R (4 _ ,
7'"dj0"=a;p", div;"=0, v=V/(4mwRy/3), 7)

where pOUt and pin are the pressures, aﬂﬂmt and 77m are whereV is the enclosed volume and the surface ahede-

the viscosities associated with the outer and inner fluids, retermines the length scalR,= yA/(4m). For a spherey

spectively, andy; denotes differentiation with respect to the =1. The bending rigidity of the membranesets the energy

coordinatex;=x,y,z for i=1,2,3, respectively. The summa- scale. We do not incorporate thermal fluctuations. Through-

tion convention is used over doubly occurring indices. out this paper, unless otherwise mentioned, lengths are ex-
If the vesicle is not neutrally buoyant, then we account forpressed in units dRy, the adhesion strength in units ofR3,

the body force acting on the vesicle due to gravity. This isand the shear rate in units af/(877R3). When gravita-

done by modifying the membrane force density. The moditional forces are considered, the dimensionless gravity pa-

fied force densityf ™9 is given by[13] rameter
fM4R)=f(R)+(p""~p°")(g- R)N(R). (5) g'=(p""— p°UYgoRY/ x ®)
Here, p'" and p°'" are the densities of the outer and inner y0a5 res this effect. In simulations involving the adhesion

fluids, rgspectivelyn is the unit vector normal to the vesicle, potential equation(2), we taked,=0.01R,. This restriction
g=—0go€, is the acceleration due to gravity wheg is used to minimize numerical problems associated with
~9.81 ms2 ande, is the unit vector in the direction. sharply diverging forces at short length scales. For am
To express the no-slip condition on bounding surfaces anslesicle, this would place the minimum at a reasonable value
also the impermeability of the membrane, we require that the@f 10 nm. For larger vesicles, the choidg=0.01R, puts the
velocity be continuous across the vesicle. This also providegiinimum somewhat too far from the wall. However, numeri-
the kinematic condition by which the vesicle shape changesal restrictions prevented us from using an even smaller
with time. The hydrodynamic surface force is allowed todgy: Ry ratio.
undergo a discontinuity that is balanced by the membrane The implementation of the boundary element method is
forces,f "°YR). now well establishefl14,15,18,19 Here, we briefly mention
Rather than solve for the fluid velocity at all points in the essential steps.
space, it is advantageous to use a boundary-integral method (8) The surface is approximated by a grid of triangular
by which the Stokes equations inside and outside are casiements. We take 512 triangles with 258 nodes.
into an integral form that involves only quantities evaluated (b) The force density is calculated at the nodes.
on the vesicle surfacl 3]. This formalism provides us with (c) Along with the condition dictated by two-dimensional
an integral equation for the membrane velocity in term§, of incompressibility,

1 J
vi(R)=v[ (R +5— 36 Gij(R*RA)f|(RA)dS, () —pVa=dpi—ninjdjv;=0, ©)
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(a) (b) locally stable shape. Depending on the initial condition, this
is a prolate, an oblate, or a stomatocyte.

— . In contrast to vesicles, the shapeinfompressiblenter-
R faces that are not influenced by curvature elasticity is infi-
nitely degenerate. In such cases, the stationary shape depends
’ > only upon the membrane surface area, and as a consequence

of neglecting elastic behavior, the interface can retain any
FIG. 2. An example of a test of the numerical method in which Shape with the same surface area. At the other end of the
an initial shape relaxes to a stationary shape known to exist in thePectrum, liquid drops with interfaces influenced by a con-
absence of externally applied flova) The initial shape is chosen to  Stant surface tension and also compressible interfaces that are
be an oblate convex spheroid with reduced volume;0.6. (b)  only influenced by curvature elasticity remain spherical.
After relaxation, the equilibrium or stationary shape is a stable ob-

late biconcave discocyte with the initial area and volume. 1. UNBOUND NEUTRALLY BUOYANT VESICLES
NEAR A WALL
the integral equation Eq6) yield equations for the local
tensionsX. Unlike droplets with constant tension, the ten-  We now simulate the influence of steady shear flow on
sions > develop so that the membrane element deformsesicles in the proximity of a wall. To retrieve the bare con-

while maintaining the original area. tribution of hydrodynamics to the lift force, adhesion and
(d) After computingX, the integral equatiof6) is solved  gravity are not considered in this section. The vesicle is ini-
for v. tially at a small distance from the wall and then, shear flow is

(e) The positions of the nodes are advanced, the coordimposed. In Fig. 3, a typical sequence of “snapshots” are
nates updated, and we return to stepunless a steady state shown. In the far field, the vesicle translates with a speed of
is reached. If one is interested in computing external or inthe same order of the difference of velocity, due to external
ternal flow fields at any instant, it can be easily done with arshear flow, that exists across the vesicle. The vesicle also
additional step in the algorithm, in which equati¢®) is  experiences a lift velocity. From Fig. 3, it can be extracted
modified by replacind?,, by r, wherer is the coordinate of that the lift velocity is an order of magnitude smaller than the
an external or an internal point. translational velocity.

Before tackling cases involving externally imposed hy-  Analyzing several cases, we find the main characteristics
drodynamic flows, we test if the numerical scheme yields thén this setup to befi) the membrane of the vesicle tank
stationary shapes that are known to exist in equilibrium contreadsii) the vesicle develops a steady tilt, which is roughly
ditions, i.e., neutrally buoyant free vesiclgk6]. The mini-  independent of the shear rate; giit) the shape changes to a
mal model we have chosen allows a wide spectrum oprolatelike ellipsoid. This is similar to the dynamics of a free
shapes. For 0.65v=<1, the stable states are prolatelike vesicle in unbounded shear fld@8]. The first two features
spheroids. For=<0.75, oblate discocytes are locally stable.are understoodi24,2€. The tank-treading motion is due to
So far, there is no indication of the presence of locally stablehe rotational component of linear shear flow. The balance of
nonaxisymmetric shapes in this model. R6r=0, our nu- the moments on the vesicle due to the effect of shear-flow
merical scheme gives the stable and metastable axisymmeti@gcting on a stationary inclined vesicle and that due to the
shapes, including dumb-bell shaped prolates and erythrocytéank-treading motion results in a steady tilt. These two mo-
like biconcave discocytes. In Fig. 2, we show an example irments are linearly proportional to shear rate and hence, the
which the initial oblate spheroid relaxes to the final equilib-tilt is independent of the shear rate in the steady state. In the
rium (stationary biconcave shape. Within this minimal case of liquid droplets, the tilt reduces more drastically with
model, the vesicle relaxes to the next dynamically accessiblshear rate because of the elongation of the droplet, and

(a) (b) (©

~

z=-15 z=15 z=1 z=45 rz=4 rz="75

FIG. 3. “Snapshots” of the liftoff of an unbound vesicle away from a wall in the presence of shear flow. Thezpi@nshown is the
wall. Thex coordinate at the end points of the wall is shown at each instance ot.tifere,v =0.95, y=30. (a) At t=0, the initial shape
is an oblatelike spheroid. The vesicle is at a distamge 0.1R,. (b) The shape is now a prolatelike ellipsoid and the vesicle is tilted with
respect to the shear plane. Hetre,0.075.(c) The shape and tilt of the vesicle is roughly the same as before, and the liftoff is now clearly
seen at=1.5. All quantities are given in dimensionless units as discussed in the text.
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FIG. 4. The ratio of mean lift velocity ;+; to shear rate times the radius of vesi(;dEo is plotted against the ratio of the mean height
h of the vesicle from the wall to the the radius of vesicle for different shear fdefmitions are given in the textThe lift velocity of the
vesicle is roughly proportional to the shear rate. Here0.95, and in dimensionless unitg=6 (<), 10 (+), 30 (), 50 (X) and the

estimated asymptotic fit given by E@LO) is plotted using the asterigk).

thereby a reduction im. But in the case of vesicles consid- . Rg

ered hereyp is a constant due to incompressibility. As men- viity=0.08y—

tioned in the introduction, for the third feature regarding the h

prplate gllipsoidal 'sha.pe, itis still not understood whether itHere,h is the mean distance of the center of the vesicle to the

will persist for arbltrgnly Sma" §hear rates. . ubstrate. We have simply calculated the mean center and the
From_ the above dlscu35|_on, Itis cl_ear that _the steady tilt 0 ean velocity to be the arithmetical mean of the coordinates

the vesicle plays the leading role in breaking the fore-afty,q \e|ocity of the nodes, respectively. Thepy, is just the

symmetry of the vesicle with respect to shear flow. Since th&erical orz component of the mean velocity. The fit needs to

tilt is independent of shear rate, the excess pressure in thg, taken with caution due to three reasons. First, the exact

space between the vesicle and the wall can be expected {nendence af;;, on h is not easy to access with the lim-

cause a lift force that is proportional to shear ratdn fact,  ited range as shown in Fig. 4. Second, the asymptotiaid

the dynamics of a vesicle near a nonadhering wall is roughlalso, far-field results based on analytical methddsvesicle

similar for any shear rate; and as a functione# yt, the migration assumes that the problem can be treated in a qua-

“snapshots” as shown in Fig. 3 will be similar for vesicles SiStatic way. This implies that it is strictly valid only when
the time scale for deformation and shape changes is much

with the same reduced volume. In Fig. 4, we plot for differ- ) . X ) )
ent shear rates the ratio of lift velocity,s; to shear rate smaller tha’? th? time scale for migration. Since our numeri-
against the mean height. The data collapse indicates thg?l met_hod_ IS ;lmllar toan exper|mental situation and we do
. not arbitrarily fix the position of a vesicle, the fit is probably
Viift < Y- _ . ) ) valid only for large shear rates. This is partially evident from
We now derive an empirical expression for the lift veloc- Fig. 4 where we see that the plots for lower shear rates do not
ity guided by the far-field result obtained for ellipsoidal cells: exactly collapse onto the plots for higher shear rates. Third,
V)it = Uy(Rg/hZ) where U=0.1-0.3 for v=0.9-0.99 there is no reason to expect asymptotic results to hold good

[25]. Assuming the same power law, we get an estimatedor h=0.25-0.5R,. But, there is also no reason to be
asymptotic fit for the lift velocity to be alarmed if it is true in that range. In fact, analogous results

(v=0.95. (10)
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for liquid drops do indeed match remarkably well for=1 67 7R it , this lower bound for the viscous lift force can
ath=0.25-0.5R, [15]. We can also infer from far-field re- be estimated from Eq10) for v=0.95 to be
sults that the sign of the prefactor is determined by the sign 4

of the tilt 6 of the v<_35|cle. Hence_, whefp— Y and 60— F|m20.45ﬂ'7]7—2. (12)
-0, vin—vif, Which agrees with expectations that the h

direction of migration should be independent of the directionWith this estimate of the lift force, a comparison can be

of shear flow. ; ;
We emphasize that the dominant effect is due to the tilt of 72d€ With the results of the experiment. We shall do so only
at the end of the next section, after investigating the influ-

the vesicle and this leads to a lift forég;s; < y. Additional ence of gravity.
effects due to deformation can be expected to b@@i‘/z).
For h=R,, the asymptotic lift velocity can be taken to be IV. INFLUENCE OF GRAVITY
the lower bound for the lift velocity. The actual velocity
could be expected to be higher due to transient effects or due The effect of gravity on vesicles arises from the fre-
the effect of “touching” the wall. Assuming Stokes’ result quently employed experimental technique to stabilize the

011916-6



INFLUENCE OF SHEAR FLOW ON VESICLES NEAR A. .. PHYSICAL REVIEW B4 011916

©O0 0O

(a) (b) (0) (d)
T T T T T T T
15 -
% SR RS
n] o
+ ox ©
1F o v 8 1
ox 3 to®
. + O ‘ <>+ i
C X 0§
0.5 o i n
% &
osP £
o e -
£ e
X o
o
-0.5 - - 2<+0 i
B i Xt
X o, ©
1 Zg | o ox+°
r + ; @ pxt N
Xﬁ+ o o o o © . o +<> DX+
Xg ™+ 4 + o X
Xg Na| o x
15 -
1 1 1 I 1 1 1
1.5 1 0.5 0 0.5 1 15
L

FIG. 6. The profile of a vesicle in the—z plane and the top viewlooking downz axis) are shown for four different shear ratés
dimensionless uniis(a) y=64 (¢ ), (b) y=96 (+), (c) y=350 (X) and(d) y=400 (). The profile is shown on axes—z, such that
their mean centers coincide. Heres0.95 andg’ =6.4.

vesicle at the bottom of the measurement chamber by a difowed to be nonzero but we check if the steady state dynam-
ference in density between the fluids inside and outside thies is independent oh, and the simulations confirm this
vesicle. In the experimen], this is done by choosing iso- view. We note in passing that the steady state depends on the
osmolar but different buffers for swelling the vesicle andreduced volume of the vesicle but does not depend on the
suspending the vesicle. The threshold velocity at which uninitial shape.
binding of the vesicle from the substrate occurs allows to As expected, gravity counteracts viscous lift force and the
estimate the lift force. After unbinding, the vesicle hovers atvesicle hovers at a distance away from the wall. We now
a distance at which electrostatic forces or van der Waalstudy how this distance depends on the shear rate. It is clear
forces that cause adhesion are negligible. The lift force in thérom Fig. 5a) that the initialhy can be chosen so that we can
hovering state can therefore be assumed to be counteractegtimize the computational time in evolving the vesicle to
by gravitational forces only. the steady state. At large shear rates, the vesicle is suffi-
We simulate the influence of gravitational force on aciently far from the wall and as discussed in the previous
vesicle. As in the previous section, we place the vesicle inisection, the lift is determined by the tilt alone. Meanwhile, at
tially at a distancéng=0.1R,— 0.5R, and then, shear flow is low shear rates, the vesicle is also deformed by the proximity
applied. It would of course be more realistic if we startedto the wall. The dependence of the steady state mean height
with a vesicle that rested on the wall, but at gravitationalon shear rate is shown in Fig(t§ and seems to indicate
strengths, which are of relevance, this initial configurationthose two regimes.
leads to numerical instabilities. Instead, the initigl is al- Let us now consider the three-dimensional shape of the
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vesicle in the steady state. In Fig. 6, we show a comparison
of the profile and also the top view of the vesicle for different -
shear rates. We note the features that are immediately appar-
ent from Fig. 6. @
(i) Vesicles with small excess areas-»1 do not exhibit S
large deformations with increasing shear rate.
(i) At large shear ratefrefer Figs. 6¢) and @d)], the =15
shape of the vesicle is roughly independent of shear rate.

(iii) At any shear rate, the part of the vesicle away from
the wall shows roughly the same inclination.

(iv) At lower shear ratefrefer Figs. 6a) and Gb)], grav- 24
ity reduces the vesicle-wall distance. To allow for greater
contact area, the shape changes from a prolatelike to an ol
latelike ellipsoid. .

(v) The tilt of the contact area decreases with decreasing e ——1 =275
shear rate. There is no unique definition of this tilt and there-
fore, the tilt of the “base” is difficult to quantify.

Now, we compare our results with the experimént.

There are some problems in making this comparison. The < o~
reduced volume and the gravitational strengty are not \
exactly known. For vesicles with very small excess area, th

experiment does not report any measurable tilt of the conta £ 4

area nor the overall shape. Such a picture fits in with our
description only in the limig’ — . We take the shape of the
vesicle to be close to a sphere witk= 0.95. We assume the
values quoted, viz. the density differencg™— p°Ut FIG. 7. The dynamical evolution of an adhering vesicle is
=5.2 mg/ml, the radius of the vesiclRy=14 um, the  shown. Herep=0.95, y=2, andW=0.1 (all quantities scaled to
vesicle-wall gaphy=100 nm and shear stresses typically be dimensionless as described in the Jtekhe top and side views

ny=1.2 mPa. These experimental values lead to an estR'® shown on the right side and left side, respectiviely An ad-

r=0 =35

mated gravitational force on a vesicle with voluief hering vesicle in equilibrium resembles an oblate spheroid-#t.
(b) In the transient stage the shape changes to a tilted prolatelike
Foran= (pin—pOUt)90V26X 10" 13 N. (12 ellipsoid, t=0.6).(c) In the steady state=1.2, the tank-treading

vesicle is “pinned” to the wall and slips/rolls along the wall. The
As a theoretical estimate, we obtain the lift force based omwall in the planez=0 is in the side view. Th& coordinate at the
Eg. (11) assuming thah=R, as end points of the wall is shown at each instance of time.

F”nzo_457777:ng:3X 10713 N. (13 made to hover at any arbitrary height by tuning the strength

of adhesion. There is a critical shear rate above which the

The agreement should be taken with a grain of salt if one/esicle unbinds from the wall. For smaller shear rates, the
takes into consideration all the assumptions that have gongesicle tank treads along the substrate. In Fig. 8, we show
into these estimates. how the critical shear rate varies with increasing adhesion

strength for a vesicle with reduced volumes0.95. For'y
V. INFLUENCE OF ADHESION <7., the steady state shape of the vesicle resembles the

Now, we consider the dynamics of vesicles adhering to #hape shown in Fig.(€). Two main features of this state are
surface due to nonspecific interactions. Here, the interpla{P Pe noted. One, the tilt of the vesicle is nearly the same as
between forces due to an adhesion potential, @Y. and that of a nonadh_erlng vesicle near a wall, and not very dif-
hydrodynamic forces is considered. The vesicle is assumegrent from the tilt of a free vesicle in shear flow. Two, the
to be neutrally buoyant. surface of adhesion is nearly zero. The vesicle can be said to

Like an experiment, we start with an adhering vesicle P& “pinned.” This state is nearly similar for any adhesion
then apply shear flow and watch how the vesicle respono|§_trength and this explams_ the roughly linear relationship be-
The dynamical evolution in the transient stage is shown irfween the critical shear rate and the adhesion strength. For
Fig. 7. These “snapshots” are qualitatively similar for any lower shear rates or higher adhesion strengths, the area of
adhering vesicle with arbitrary reduced volume at any adhecontact increases and a typical example of a “bound” steady
sion strength or shear rate. The tilting of the vesicle is similaistate is shown in Fig. 9. We find that the process of unbind-
to the scenario in the preceeding section. ing, viz. “bound” — “pinned” — unbound or “free,” is

The steady state of the adhering vesicle, of course, desimilar to that described with simulations of the two-
pends on the reduced volume, adhesion strength and shegimensional modef21].
rate. Unlike the case involving gravity, vesicles adhering to a Finally, we summarize the results of the simulations with
substrate by the influence of a short range potential cannot ke dynamical phase diagram. First, we recall the behavior of
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FIG. 8. The critical shear for unbindin'gC is plotted against the adhesion strengitior v =0.95, and'yC is linearly proportional to the
adhesion strengthV. Here, dq=0.006. With k=10"1°J, =103 Js/n?, Ry=5 um, and withW roughly 10 1°—3x 10 ° J/n?, the

critical shear rate is roughly in the range 6.4 s~ 1.

adhering vesicles under equilibrium conditions. In the ab-of an adhesion potential with finite range, there will be a
sence of shear, it is known that there are two stetéf For  finite critical shear rate for unbinding a vesicle that is pinned
weak adhesion, the shape of the vesicle resembles the fremder equilibrium conditions. If the vesicle is pinned by a
shape and the surface of adhesion is zero. This state is calledntact potential, the vesicle will unbind for any shear rate.
the pinned state. It should, however, be noted that there is nbhis regime is difficult to realize either numerically or ex-

unique definition of the pinned state in the dynamical pic-

ture. When adhesion is strong, there is the bound state with
nonzero adhesion area. The adhesion area also depends on ,
the excess area, which is a measure of the reduced volume. L
For 0.5<v <1, the transition from the bound axisymmetric 7
shape to the pinned state is discontinuous. Keeping in mind .
the similarity between the equilibrium and dynamical situa- 5 K
tions, we can construct a schematic dynamical phase diagram Free J
(refer Fig. 10. Apart from the two-stage dynamical unbind- ,

ing, we expect in the limit of weak adhesion, a regime in ’
which the unbinding goes through only one stage. In the case ,

/ Bound
Pinned *
sl - '
. w
FIG. 9. An example of a “bound” state. Here,=0.87, y _

=2, W=0.2 (in dimensionless units as described in the }tekhe FIG. 10. Schematic phase diagram in the shearyatlhesion
side and top view are shown on the left side and right side, respecstrengthW plane with free, pinned, and bound shapes for vesicles
tively. with arbitrary area and volume.
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perimentally. In principle, there could be a direct transitionproportional to the shear rate. It is the dominant part in our
between bound and free vesicles but we have not found angimulations also for small shear rates.
evidence for it based on the numerical simulations over a (jii) Our numerical results agree well with a recent experi-
wide range of parameters. ment.

(iii) The general features of dynamical unbinding is simi-
lar to that in simulations of the two-dimensional model even
éhough the additional possibility of a prolate-oblate shape

VI. CONCLUSION

We conclude this study of the dynamics of vesicles near . .
wall with observations regarding the computation, summarfhange complicates the Issue.
of main results, and certain remarks about current limitations Ve @lso remark about interesting issues that need to be
and ongoing research. Using the boundary element methd§S0Ived, both experimentally and theoretically. We have
with a grid of triangular elements, we are able to simulate®nly con§|dereq a situation whe.re.the VI.S(.:OSItIeS of the_msuje
incompressible vesicles in bounded and unbounded shedpd outside fluid are equal. This is definitely an oversimpli-
flow. With moderate shear rateS, adhesion’ and gravitatioﬁcation of experiments with cells though it is not a limitation
strengths, the numerical method is stable and effective ifior experiments with phospholipid vesicles. We still have to
studying the steady state of adhering, hovering or freainderstand whether the model considered is singular in the
vesicles. The algorithm, which is used to ensure area inconlimit of very small shear rates. We have not done simulations
pressibility, is the main hurdle in improving the speed ofwith the ratio of vesicle-wall gap to radiulsy/Ry<<0.001. In
computation and also in using finer discretization. this limit of vanishing gap, features such as the roughness of

We are able to find the following features regarding thethe wall and also, the no-slip boundary condition will have to
nature of viscous lift force on incompressible vesicles withbe reassessed. Finally, we note that the numerical method
bending elasticity. discussed here is amenable to an extension that includes spe-

(i) The lift force due to the tilt of the vesicle is linearly cific receptor-ligand type of adhesion.
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