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Influence of shear flow on vesicles near a wall: A numerical study

Sreejith Sukumaran* and Udo Seifert†

Max-Planck-Institut fu¨r Kolloid- und Grenzfla¨chenforschung, Am Mu¨hlenberg 2, 14476 Golm, Germany
~Received 6 February 2001; published 26 June 2001!

We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall.
This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-
incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic
lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is
placed in the vicinity of a wall that acts only as a geometrical constraint. We find that the lift velocity is
linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall.
Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of
the viscous lift force that seems to agree with recent experiments of Lorzet al. @Europhys. Lett.51, 468
~2000!#. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transi-
tion that occurs at an adhesion strength linearly proportional to the shear rate.

DOI: 10.1103/PhysRevE.64.011916 PACS number~s!: 87.16.Dg, 87.15.He, 87.16.Ac, 47.15.Gf
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I. INTRODUCTION

We would like to understand how hydrodynamic flow a
fects vesicles and, in particular, shear flow because it oc
whenever a fluid flows near a surface. This is of relevanc
modeling artificial or natural cells in motion from the lev
of the dynamics of a single cell to the rheology of a susp
sion such as the blood. It will also enable us to underst
the interplay between vesicles in shear flow and specific
nonspecific adhesive properties of a membrane. This is a
feature in phenomena such as leukocyte locomotion@1,2#.
Computational methods are now increasingly used to un
stand and analyze experiments studying the relationship
tween receptor-ligand functional properties and the dynam
of adhesion. An efficient numerical method simulating a
hering spherical cells in flow has been used recently to
vestigate the physical kinetics of adhesion molecules@3#.
There are compelling reasons to go beyond spherical c
viz. ~a! to understand how deformation couples with the d
namics of adhesion centers and~b! to study the interplay
between the physical kinetics of adhesion molecules, or
tation of a cell and viscous lift forces that act on nonspher
cells and do not act on spherical cells. It should, however
noted that leukocyte locomotion is further complicated
the role of actin polymerization, ion channels, and pseu
pod formation that together play an important role in leuk
cyte response to shear stress@4#. Another practical use of this
study concerns mechanosensory transduction, which is
process by which certain cells convert fluid stresses to
chemical and/or electrical signals@5#. The identification and
activation of mechanoreceptors and intracellular signa
pathways are currently active areas of research. For an
ample of a case where our study is relevant, consider
experiment that investigates the influence of mechan
stress on the activation of specific proteins present on
membrane of endothelial cells. One method involves rec
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stituting the proteins into phospholipid vesicles, which a
then subjected to physiological levels of fluid shear stres
a viscometer@6#. Quantitative predictions require informa
tion regarding hydrodynamic stresses and tensions that
velop in response to flow and the model discussed in
paper is suited for these purposes.

We are also motivated by recent experiments on wea
adhering vesicles in shear flow@7#. These investigations re
veal the lipid flow within the vesicle membrane and the flo
field within the vesicle and near its outer surface. The infl
ence of weak flow fields on the state of adhesion and
translational motion of vesicles are studied using bright fi
and reflection interference contrast microscopy. Moreov
the hydrodynamic lift forces exerted on adhering vesicles
estimated and the lift forces are found significantly larg
than estimates based on an earlier theoretical study@2#. An
explanation for this discrepancy based on arguments usi
lubrication analysis of flow between a spherical cap an
wall has been proposed recently@8#.

Here, we show the results of a numerical simulation. W
the above experiment in mind, we simulate an incompre
ible vesicle in shear flow, which is influenced by gravit
tional forces or nonspecific adhesion forces to be near a
and by viscous lift forces to be away from the wall. The ma
objectives of this paper are~a! to understand the very natur
of viscous lift force; ~b! to describe how the steady sta
shape is influenced by shear flow and forces due to gravit
an adhesion potential; and~c! to study the influence of shea
in taking the system away from equilibrium. The numeric
method simulates a realistic model of a vesicle. The tensi
that develop in response to flow are determined s
consistently.

Before describing the study, we take stock of what
known about the dynamics of vesicles, and about techniq
that are relevant. The dynamics of vesicles belong to a br
class of problems called free-interface problems that desc
the dynamics of a particle consisting of a membrane t
encloses a drop of an incompressible Newtonian fluid of
called a capsule in the literature@9#. The first problem dis-
cussed in this class was the behavior of a fluid drop in sh
©2001 The American Physical Society16-1
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FIG. 1. Schematic representation of the geometry showing a vesicle, the wall in the planez50, and applied linear shear flow. On extrem
right, the mean center (xC,0,zC) is shown asC. The height of the centerh and the vesicle-wall distanceh0 are also shown.
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flow, when the effects of fluid viscosity and interfacial te
sion are taken into account@10#. In fact, much of the later
work on elastic capsules or vesicles employed techniq
and analysis used to understand the dynamics of liq
drops. The first two lines of attack involved analytical me
ods based on perturbation schemes for shapes close
sphere, and theories using slender-body dynamics. Cons
able effort has been made in fluid drop dynamics rang
from drop breakup to physical influences such as surfact
and complex flows, for reviews see@11,12#. An important
step in understanding this nonlinear problem of thr
dimensional deformation in external flows without maki
drastic approximations involves numerical methods us
boundary element methods@13#. The use of an unstructure
grid of triangular elements to represent the interface has b
shown to be efficient and numerically stable in simulati
the dynamics of three-dimensional liquid droplets in sh
flow in an unbounded fluid and in the proximity of a boun
ing plane wall@14#. This has been also used in simulatin
capsules with elastic membranes@15#. We now compare this
scene of activity with that regarding the dynamics
vesicles.

In the last three decades, experimental and theore
studies of the behavior of free and bound fluid vesicles
equilibrium have met with great success@16#. But, the hy-
drodynamics of vesicles still poses unsolved problems.
example, consider a vesicle in unbounded shear flow
minimal model of a vesicle involves bending elasticity a
the constraints of fixed area and volume. Using this mo
the dynamics of free vesicles in shear flow have been stu
using boundary element methods@18,19#. Apart from fea-
tures similar to liquid drops such as steady revolution of
surface, called tank treading in the case of capsules, a
steady tilt, the numerical work suggested that shear is a
gular perturbation even though one would naively exp
that at very small shear rates the equilibrium shape is rec
ered. Numerical limitation prevented a conclusive exami
tion of this regime.

In two dimensions, the dynamics of adhering vesicles h
been investigated in models for chemotaxis@20# and in shear
flow @21# using a boundary element method. Practical c
siderations and a need to compare theoretical models
experiments call for an investigation of how hydrodynam
flows affectthree-dimensionalvesicles.

In the next section, the physical model of a vesicle and
01191
es
id
-

a
er-
g
ts

-

g

en

r

f

al
n

or
A

l,
ed

e
a

n-
t
v-
-

-
ith

e

mathematical formulation of the hydrodynamics of vesic
including the implementation of the boundary eleme
method will be briefly discussed. Then, we proceed to th
sections concerning the dynamics of vesicles in shear flow
the proximity of a wall. In Sec. III, we study the nature o
viscous hydrodynamic lift force and we assume that
vesicle does not experience gravitational force, i.e.,
vesicle is neutrally buoyant, and the vesicle is not influenc
by forces due to an adhesion potential. In Sec. IV, grav
tional forces are introduced and we compare our results w
the experiment. In Sec. V, the influence of a nonspec
adhesion potential is considered. And in Sec. VI, our conc
sions regarding the dynamics of vesicles near a wall are s
marized.

II. MODEL

Consider the vesicle to be a two-dimensional surface e
bedded in three-dimensional space. The instantaneous m
brane configurationR(s1 ,s2) is parametrized by internal co
ordinates (s1 ,s2). The energyE of the vesicle—with an area
elementdS—

E[ R dSFk2 ~2H !21S1WG , ~1!

has three contributions. The first due to the squared m
curvatureH2 describes the bending energy@16# with bending
rigidity k. The second term is due to a locally varying is
tropic tensionS that is needed to ensure local incompre
ibility of the membrane. The third term is the adhesion e
ergy due to the proximity of a homogeneous substrate
exerts a nonspecific interaction. The geometry is schem
cally represented in Fig. 1. The adhesion potential, with
wall in the planez50, is chosen to be

W~z![W~d0 /z!2@~d0 /z!222#. ~2!

Here,W is the adhesion strength. The potential is repuls
as 1/z4 for z!d0 and attractive as21/z2 at long distance.
The potential has a minimum of2W at z5d0. Theoretically,
any model with a strongly repulsive short range interact
and a weakly attractive long range interaction would be s
able. Numerically, the model chosen is most suitable beca
it minimizes numerical problems associated with sharply
6-2
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INFLUENCE OF SHEAR FLOW ON VESICLES NEAR A . . . PHYSICAL REVIEW E64 011916
verging forces at short length scales. In any specific phys
situation, the exact form of the potential depends nonuniv
sally on the concrete experimental conditions~see review,
@17#!. As long as this potential is repulsive on short leng
scales and attractive on long length scales, with a sin
minimum in between, the results derived in the present st
will hold, at least qualitatively. In the case of free vesicle
the adhesion term is absent. The membrane force densf
reads

f~R![2S 1

Ag

dE

dRD , ~3!

whereg is the determinant of the metric tensor.
To describe the hydrodynamics of vesicles, we assu

that the Reynolds number of the flow inside and around
vesicle based upon the vesicle size~say the radius of the
spherical vesicle of equal volume! is sufficiently small so
that the velocityv of the fluid and the pressure fieldp is
governed by the equations of Stokes flow or creeping fl
equations. Thus

hout] j j v i
out5] i p

out, ] iv i
out50,

~4!
h in] j j v i

in5] i p
in, ] iv i

in50,

wherepout and pin are the pressures, andhout and h in are
the viscosities associated with the outer and inner fluids,
spectively, and] i denotes differentiation with respect to th
coordinatexi5x,y,z for i 51,2,3, respectively. The summa
tion convention is used over doubly occurring indices.

If the vesicle is not neutrally buoyant, then we account
the body force acting on the vesicle due to gravity. This
done by modifying the membrane force density. The mo
fied force densityf mod is given by@13#

f mod~R!5f~R!1~r in2rout!~g•R!n~R!. ~5!

Here, r in and rout are the densities of the outer and inn
fluids, respectively;n is the unit vector normal to the vesicle
g[2g0êz is the acceleration due to gravity whereg0

.9.81 m s22 and êz is the unit vector in thez direction.
To express the no-slip condition on bounding surfaces

also the impermeability of the membrane, we require that
velocity be continuous across the vesicle. This also provi
the kinematic condition by which the vesicle shape chan
with time. The hydrodynamic surface force is allowed
undergo a discontinuity that is balanced by the membr
forces,f mod(R).

Rather than solve for the fluid velocity at all points
space, it is advantageous to use a boundary-integral me
by which the Stokes equations inside and outside are
into an integral form that involves only quantities evaluat
on the vesicle surface@13#. This formalism provides us with
an integral equation for the membrane velocity in terms of,

v i~Ra!5v i
`~Ra!1

1

8ph R Gi j ~Ra,Rb! f j~Rb!dS, ~6!
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wherev`(x,y,z)5(ġz,0,0) is the incident shear flow~refer
Fig. 1! andGi j (R

a,Rb) is the appropriate Green’s functio
for the velocity. In the case of free vesicles in unbound
space, the free-space Green’s function is the Stokeslet;
in the case of bound vesicles, we choose the semi-infi
space Green’s function for the velocity@22,23#. We empha-
size that the internal and external fluid flow can also be co
puted self-consistently using this formalism. This formalis
includes, of course, the modification of the external flow d
to the presence of the dynamically evolving vesicle. To ma
computations tractable, we assume that the viscosity of
fluid inside the vesicle is equal to that of the suspend
fluid, (hout5h in5h). If the viscosities are different, equa
tion ~6! is modified to include an additional term that turns
into an integral equation inv. Then, the equation has to b
solved iteratively orv must be determined by matrix inver
sion at any instant of time. We also note in passing that
choosing the same viscosity, we do not allow for tumbli
motion in shear flow that occurs when the dynamics is v
ticity dominated. For liquid drops, tumbling is shown to o
cur for l[h in/hout>4 @14#.

We characterize vesicles by a dimensionless number,
reduced volume

v[V/~4pR0
3/3!, ~7!

whereV is the enclosed volume and the surface areaA de-
termines the length scaleR05AA/(4p). For a sphere,v
51. The bending rigidity of the membranek sets the energy
scale. We do not incorporate thermal fluctuations. Throu
out this paper, unless otherwise mentioned, lengths are
pressed in units ofR0, the adhesion strength in units ofk/R0

2,
and the shear rate in units ofk/(8phR0

3). When gravita-
tional forces are considered, the dimensionless gravity
rameter

g8[~r in2rout!g0R0
4/k ~8!

measures this effect. In simulations involving the adhes
potential equation~2!, we taked050.01R0. This restriction
is used to minimize numerical problems associated w
sharply diverging forces at short length scales. For a 1mm
vesicle, this would place the minimum at a reasonable va
of 10 nm. For larger vesicles, the choiced050.01R0 puts the
minimum somewhat too far from the wall. However, nume
cal restrictions prevented us from using an even sma
d0 : R0 ratio.

The implementation of the boundary element method
now well established@14,15,18,19#. Here, we briefly mention
the essential steps.

~a! The surface is approximated by a grid of triangu
elements. We take 512 triangles with 258 nodes.

~b! The force density is calculated at the nodes.
~c! Along with the condition dictated by two-dimension

incompressibility,

]

]t
Ag5] iv i2ninj] jv i50, ~9!
6-3
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SREEJITH SUKUMARAN AND UDO SEIFERT PHYSICAL REVIEW E64 011916
the integral equation Eq.~6! yield equations for the loca
tensionsS. Unlike droplets with constant tension, the te
sions S develop so that the membrane element defor
while maintaining the original area.

~d! After computingS, the integral equation~6! is solved
for v.

~e! The positions of the nodes are advanced, the coo
nates updated, and we return to step~b! unless a steady stat
is reached. If one is interested in computing external or
ternal flow fields at any instant, it can be easily done with
additional step in the algorithm, in which equation~6! is
modified by replacingRa by r , wherer is the coordinate of
an external or an internal point.

Before tackling cases involving externally imposed h
drodynamic flows, we test if the numerical scheme yields
stationary shapes that are known to exist in equilibrium c
ditions, i.e., neutrally buoyant free vesicles@16#. The mini-
mal model we have chosen allows a wide spectrum
shapes. For 0.65&v&1, the stable states are prolatelik
spheroids. Forv&0.75, oblate discocytes are locally stab
So far, there is no indication of the presence of locally sta
nonaxisymmetric shapes in this model. Forv`50, our nu-
merical scheme gives the stable and metastable axisymm
shapes, including dumb-bell shaped prolates and erythroc
like biconcave discocytes. In Fig. 2, we show an example
which the initial oblate spheroid relaxes to the final equil
rium ~stationary! biconcave shape. Within this minima
model, the vesicle relaxes to the next dynamically access

FIG. 2. An example of a test of the numerical method in wh
an initial shape relaxes to a stationary shape known to exist in
absence of externally applied flow.~a! The initial shape is chosen t
be an oblate convex spheroid with reduced volume,v50.6. ~b!
After relaxation, the equilibrium or stationary shape is a stable
late biconcave discocyte with the initial area and volume.
01191
s

i-

-
n

-
e
-

f

.
le

tric
te-
n
-

le

locally stable shape. Depending on the initial condition, t
is a prolate, an oblate, or a stomatocyte.

In contrast to vesicles, the shape ofincompressibleinter-
faces that are not influenced by curvature elasticity is in
nitely degenerate. In such cases, the stationary shape dep
only upon the membrane surface area, and as a consequ
of neglecting elastic behavior, the interface can retain a
shape with the same surface area. At the other end of
spectrum, liquid drops with interfaces influenced by a co
stant surface tension and also compressible interfaces tha
only influenced by curvature elasticity remain spherical.

III. UNBOUND NEUTRALLY BUOYANT VESICLES
NEAR A WALL

We now simulate the influence of steady shear flow
vesicles in the proximity of a wall. To retrieve the bare co
tribution of hydrodynamics to the lift force, adhesion an
gravity are not considered in this section. The vesicle is
tially at a small distance from the wall and then, shear flow
imposed. In Fig. 3, a typical sequence of ‘‘snapshots’’ a
shown. In the far field, the vesicle translates with a speed
the same order of the difference of velocity, due to exter
shear flow, that exists across the vesicle. The vesicle
experiences a lift velocity. From Fig. 3, it can be extract
that the lift velocity is an order of magnitude smaller than t
translational velocity.

Analyzing several cases, we find the main characteris
in this setup to be:~i! the membrane of the vesicle tan
treads;~ii ! the vesicle develops a steady tilt, which is rough
independent of the shear rate; and~iii ! the shape changes to
prolatelike ellipsoid. This is similar to the dynamics of a fre
vesicle in unbounded shear flow@18#. The first two features
are understood@24,26#. The tank-treading motion is due t
the rotational component of linear shear flow. The balance
the moments on the vesicle due to the effect of shear-fl
acting on a stationary inclined vesicle and that due to
tank-treading motion results in a steady tilt. These two m
ments are linearly proportional to shear rate and hence,
tilt is independent of the shear rate in the steady state. In
case of liquid droplets, the tilt reduces more drastically w
shear rate because of the elongation of the droplet,

e

-

ith
early
FIG. 3. ‘‘Snapshots’’ of the liftoff of an unbound vesicle away from a wall in the presence of shear flow. The planez50 shown is the

wall. Thex coordinate at the end points of the wall is shown at each instance of timet. Here,v50.95, ġ530. ~a! At t50, the initial shape
is an oblatelike spheroid. The vesicle is at a distanceh050.1R0. ~b! The shape is now a prolatelike ellipsoid and the vesicle is tilted w
respect to the shear plane. Here,t50.075.~c! The shape and tilt of the vesicle is roughly the same as before, and the liftoff is now cl
seen att51.5. All quantities are given in dimensionless units as discussed in the text.
6-4
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FIG. 4. The ratio of mean lift velocityv l i f t to shear rate times the radius of vesicleġR0 is plotted against the ratio of the mean heig
h of the vesicle from the wall to the the radius of vesicle for different shear rates~definitions are given in the text!. The lift velocity of the

vesicle is roughly proportional to the shear rate. Here,v50.95, and in dimensionless units,ġ56 (L), 10 (1), 30 (h), 50 (3) and the
estimated asymptotic fit given by Eq.~10! is plotted using the asterisk(*).
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thereby a reduction inv. But in the case of vesicles consid
ered here,v is a constant due to incompressibility. As me
tioned in the introduction, for the third feature regarding t
prolate ellipsoidal shape, it is still not understood whethe
will persist for arbitrarily small shear rates.

From the above discussion, it is clear that the steady til
the vesicle plays the leading role in breaking the fore-
symmetry of the vesicle with respect to shear flow. Since
tilt is independent of shear rate, the excess pressure in
space between the vesicle and the wall can be expecte

cause a lift force that is proportional to shear rateġ. In fact,
the dynamics of a vesicle near a nonadhering wall is roug

similar for any shear rate; and as a function oft[ġt, the
‘‘snapshots’’ as shown in Fig. 3 will be similar for vesicle
with the same reduced volume. In Fig. 4, we plot for diffe
ent shear rates the ratio of lift velocityv l i f t to shear rate
against the mean height. The data collapse indicates

v l i f t }ġ.
We now derive an empirical expression for the lift velo

ity guided by the far-field result obtained for ellipsoidal cel

v l i f t 5Uġ(R0
3/h2) where U.0.120.3 for v.0.920.99

@25#. Assuming the same power law, we get an estima
asymptotic fit for the lift velocity to be
01191
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v l i f t .0.08ġ
R0

3

h2
~v50.95!. ~10!

Here,h is the mean distance of the center of the vesicle to
substrate. We have simply calculated the mean center an
mean velocity to be the arithmetical mean of the coordina
and velocity of the nodes, respectively. Then,v l i f t is just the
vertical orz component of the mean velocity. The fit needs
be taken with caution due to three reasons. First, the e
dependence ofv l i f t on h is not easy to access with the lim
ited range as shown in Fig. 4. Second, the asymptotic fit~and
also, far-field results based on analytical methods! for vesicle
migration assumes that the problem can be treated in a
sistatic way. This implies that it is strictly valid only whe
the time scale for deformation and shape changes is m
smaller than the time scale for migration. Since our nume
cal method is similar to an experimental situation and we
not arbitrarily fix the position of a vesicle, the fit is probab
valid only for large shear rates. This is partially evident fro
Fig. 4 where we see that the plots for lower shear rates do
exactly collapse onto the plots for higher shear rates. Th
there is no reason to expect asymptotic results to hold g
for h.0.2520.5R0. But, there is also no reason to b
alarmed if it is true in that range. In fact, analogous resu
6-5
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FIG. 5. ~a! Mean vertical

height of the vesicleh versusġt
for different shear rates. The shea

ratesġ are~a! 64, ~b! 96, ~c! 150,
~d! 200, ~e! 300, ~f! 350, ~g! 400,
and ~h! 500. ~b! Steady state
height of the vesicleh versus the

shear rate,ġ. Here, v50.95, g8

56.4, andġ is given in dimen-
sionless units as described in th
text.
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for liquid drops do indeed match remarkably well forl51
at h.0.2520.5R0 @15#. We can also infer from far-field re
sults that the sign of the prefactor is determined by the s
of the tilt u of the vesicle. Hence, whenġ→2ġ and u→
2u, v l i f t →v l i f t , which agrees with expectations that th
direction of migration should be independent of the direct
of shear flow.

We emphasize that the dominant effect is due to the til
the vesicle and this leads to a lift forceFli f t }ġ. Additional
effects due to deformation can be expected to be ofO(ġ2).

For h.R0, the asymptotic lift velocity can be taken to b
the lower bound for the lift velocity. The actual velocit
could be expected to be higher due to transient effects or
the effect of ‘‘touching’’ the wall. Assuming Stokes’ resu
01191
n
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6phR0v l i f t , this lower bound for the viscous lift force ca
be estimated from Eq.~10! for v50.95 to be

Fli f t .0.45phġ
R0

4

h2
. ~11!

With this estimate of the lift force, a comparison can
made with the results of the experiment. We shall do so o
at the end of the next section, after investigating the infl
ence of gravity.

IV. INFLUENCE OF GRAVITY

The effect of gravity on vesicles arises from the fr
quently employed experimental technique to stabilize
6-6
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FIG. 6. The profile of a vesicle in thex2z plane and the top view~looking downz axis! are shown for four different shear rates~in

dimensionless units!. ~a! ġ564 (L), ~b! ġ596 (1), ~c! ġ5350 (3) and~d! ġ5400 (h). The profile is shown on axesxc2zc such that
their mean centers coincide. Here,v50.95 andg856.4.
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vesicle at the bottom of the measurement chamber by a
ference in density between the fluids inside and outside
vesicle. In the experiment@7#, this is done by choosing iso
osmolar but different buffers for swelling the vesicle a
suspending the vesicle. The threshold velocity at which
binding of the vesicle from the substrate occurs allows
estimate the lift force. After unbinding, the vesicle hovers
a distance at which electrostatic forces or van der Wa
forces that cause adhesion are negligible. The lift force in
hovering state can therefore be assumed to be countera
by gravitational forces only.

We simulate the influence of gravitational force on
vesicle. As in the previous section, we place the vesicle
tially at a distanceh0.0.1R020.5R0 and then, shear flow is
applied. It would of course be more realistic if we start
with a vesicle that rested on the wall, but at gravitation
strengths, which are of relevance, this initial configurat
leads to numerical instabilities. Instead, the initialh0 is al-
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lowed to be nonzero but we check if the steady state dyn
ics is independent ofh0 and the simulations confirm thi
view. We note in passing that the steady state depends o
reduced volume of the vesicle but does not depend on
initial shape.

As expected, gravity counteracts viscous lift force and
vesicle hovers at a distance away from the wall. We n
study how this distance depends on the shear rate. It is c
from Fig. 5~a! that the initialh0 can be chosen so that we ca
optimize the computational time in evolving the vesicle
the steady state. At large shear rates, the vesicle is s
ciently far from the wall and as discussed in the previo
section, the lift is determined by the tilt alone. Meanwhile,
low shear rates, the vesicle is also deformed by the proxim
to the wall. The dependence of the steady state mean he
on shear rate is shown in Fig. 5~b! and seems to indicate
those two regimes.

Let us now consider the three-dimensional shape of
6-7
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vesicle in the steady state. In Fig. 6, we show a compari
of the profile and also the top view of the vesicle for differe
shear rates. We note the features that are immediately ap
ent from Fig. 6.

~i! Vesicles with small excess areasv→1 do not exhibit
large deformations with increasing shear rate.

~ii ! At large shear rates@refer Figs. 6~c! and 6~d!#, the
shape of the vesicle is roughly independent of shear rate

~iii ! At any shear rate, the part of the vesicle away fro
the wall shows roughly the same inclination.

~iv! At lower shear rates@refer Figs. 6~a! and 6~b!#, grav-
ity reduces the vesicle-wall distance. To allow for grea
contact area, the shape changes from a prolatelike to an
latelike ellipsoid.

~v! The tilt of the contact area decreases with decreas
shear rate. There is no unique definition of this tilt and the
fore, the tilt of the ‘‘base’’ is difficult to quantify.

Now, we compare our results with the experiment@7#.
There are some problems in making this comparison.
reduced volumev and the gravitational strengthg8 are not
exactly known. For vesicles with very small excess area,
experiment does not report any measurable tilt of the con
area nor the overall shape. Such a picture fits in with
description only in the limitg8→`. We take the shape of th
vesicle to be close to a sphere withv50.95. We assume th
values quoted, viz. the density difference,r in2rout

.5.2 mg/ml, the radius of the vesicleR0.14 mm, the
vesicle-wall gaph0.100 nm and shear stresses typica
hġ.1.2 mPa. These experimental values lead to an e
mated gravitational force on a vesicle with volumeV of

Fgrav5~r in2rout!g0V.6310213 N. ~12!

As a theoretical estimate, we obtain the lift force based
Eq. ~11! assuming thath.R0 as

Fli f t .0.45phġR0
2.3310213 N. ~13!

The agreement should be taken with a grain of salt if o
takes into consideration all the assumptions that have g
into these estimates.

V. INFLUENCE OF ADHESION

Now, we consider the dynamics of vesicles adhering t
surface due to nonspecific interactions. Here, the interp
between forces due to an adhesion potential, Eq.~2!, and
hydrodynamic forces is considered. The vesicle is assu
to be neutrally buoyant.

Like an experiment, we start with an adhering vesic
then apply shear flow and watch how the vesicle respon
The dynamical evolution in the transient stage is shown
Fig. 7. These ‘‘snapshots’’ are qualitatively similar for an
adhering vesicle with arbitrary reduced volume at any ad
sion strength or shear rate. The tilting of the vesicle is sim
to the scenario in the preceeding section.

The steady state of the adhering vesicle, of course,
pends on the reduced volume, adhesion strength and s
rate. Unlike the case involving gravity, vesicles adhering t
substrate by the influence of a short range potential canno
01191
n
t
ar-

r
b-

g
-

e

e
ct
r

ti-

n

e
ne

a
y

ed

,
s.
n

-
r

e-
ear
a
be

made to hover at any arbitrary height by tuning the stren
of adhesion. There is a critical shear rate above which
vesicle unbinds from the wall. For smaller shear rates,
vesicle tank treads along the substrate. In Fig. 8, we sh
how the critical shear rate varies with increasing adhes
strength for a vesicle with reduced volume,v50.95. Forġ
&ġc , the steady state shape of the vesicle resembles
shape shown in Fig. 7~c!. Two main features of this state ar
to be noted. One, the tilt of the vesicle is nearly the same
that of a nonadhering vesicle near a wall, and not very d
ferent from the tilt of a free vesicle in shear flow. Two, th
surface of adhesion is nearly zero. The vesicle can be sa
be ‘‘pinned.’’ This state is nearly similar for any adhesio
strength and this explains the roughly linear relationship
tween the critical shear rateġc and the adhesion strength. Fo
lower shear rates or higher adhesion strengths, the are
contact increases and a typical example of a ‘‘bound’’ stea
state is shown in Fig. 9. We find that the process of unbi
ing, viz. ‘‘bound’’ → ‘‘pinned’’ → unbound or ‘‘free,’’ is
similar to that described with simulations of the tw
dimensional model@21#.

Finally, we summarize the results of the simulations w
a dynamical phase diagram. First, we recall the behavio

FIG. 7. The dynamical evolution of an adhering vesicle

shown. Here,v50.95, ġ52, andW50.1 ~all quantities scaled to
be dimensionless as described in the text!. The top and side views
are shown on the right side and left side, respectively.~a! An ad-
hering vesicle in equilibrium resembles an oblate spheroid att50.
~b! In the transient stage the shape changes to a tilted prolate
ellipsoid, (t50.6). ~c! In the steady state,t51.2, the tank-treading
vesicle is ‘‘pinned’’ to the wall and slips/rolls along the wall. Th
wall in the planez50 is in the side view. Thex coordinate at the
end points of the wall is shown at each instance of time.
6-8
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FIG. 8. The critical shear for unbindingġc is plotted against the adhesion strengthW for v50.95, andġc is linearly proportional to the
adhesion strengthW. Here, d050.006. With k510219 J, h51023 J s/m3, R055 mm, and withW roughly 102102331029 J/m2, the
critical shear rate is roughly in the range 0.124 s21.
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adhering vesicles under equilibrium conditions. In the a
sence of shear, it is known that there are two states@16#. For
weak adhesion, the shape of the vesicle resembles the
shape and the surface of adhesion is zero. This state is c
the pinned state. It should, however, be noted that there i
unique definition of the pinned state in the dynamical p
ture. When adhesion is strong, there is the bound state
nonzero adhesion area. The adhesion area also depen
the excess area, which is a measure of the reduced vol
For 0.5,v,1, the transition from the bound axisymmetr
shape to the pinned state is discontinuous. Keeping in m
the similarity between the equilibrium and dynamical situ
tions, we can construct a schematic dynamical phase diag
~refer Fig. 10!. Apart from the two-stage dynamical unbind
ing, we expect in the limit of weak adhesion, a regime
which the unbinding goes through only one stage. In the c

FIG. 9. An example of a ‘‘bound’’ state. Here,v50.87, ġ
52, W50.2 ~in dimensionless units as described in the text!. The
side and top view are shown on the left side and right side, res
tively.
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of an adhesion potential with finite range, there will be
finite critical shear rate for unbinding a vesicle that is pinn
under equilibrium conditions. If the vesicle is pinned by
contact potential, the vesicle will unbind for any shear ra
This regime is difficult to realize either numerically or e

c-
FIG. 10. Schematic phase diagram in the shear rateġ, adhesion

strengthW plane with free, pinned, and bound shapes for vesic
with arbitrary area and volume.
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perimentally. In principle, there could be a direct transiti
between bound and free vesicles but we have not found
evidence for it based on the numerical simulations ove
wide range of parameters.

VI. CONCLUSION

We conclude this study of the dynamics of vesicles nea
wall with observations regarding the computation, summ
of main results, and certain remarks about current limitati
and ongoing research. Using the boundary element me
with a grid of triangular elements, we are able to simul
incompressible vesicles in bounded and unbounded s
flow. With moderate shear rates, adhesion, and gravita
strengths, the numerical method is stable and effective
studying the steady state of adhering, hovering or f
vesicles. The algorithm, which is used to ensure area inc
pressibility, is the main hurdle in improving the speed
computation and also in using finer discretization.

We are able to find the following features regarding t
nature of viscous lift force on incompressible vesicles w
bending elasticity.

~i! The lift force due to the tilt of the vesicle is linearl
lf
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proportional to the shear rate. It is the dominant part in o
simulations also for small shear rates.

~ii ! Our numerical results agree well with a recent expe
ment.

~iii ! The general features of dynamical unbinding is sim
lar to that in simulations of the two-dimensional model ev
though the additional possibility of a prolate-oblate sha
change complicates the issue.

We also remark about interesting issues that need to
resolved, both experimentally and theoretically. We ha
only considered a situation where the viscosities of the ins
and outside fluid are equal. This is definitely an oversimp
fication of experiments with cells though it is not a limitatio
for experiments with phospholipid vesicles. We still have
understand whether the model considered is singular in
limit of very small shear rates. We have not done simulatio
with the ratio of vesicle-wall gap to radius,h0 /R0,0.001. In
this limit of vanishing gap, features such as the roughnes
the wall and also, the no-slip boundary condition will have
be reassessed. Finally, we note that the numerical me
discussed here is amenable to an extension that includes
cific receptor-ligand type of adhesion.
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