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Optimal colored perceptrons
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Ashkin-Teller type perceptron models are introduced. Their maximal capacity per number of couplings is
calculated within a first-step replica-symmetry-breaking Gardner approach. The results are compared with
extensive numerical simulations using several algorithms.
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[. INTRODUCTION reached. First-step replica-symmetry-breaking effects are
evaluated and the analytic results are compared with exten-
The perceptron that was first analyzed with statistical mesive numerical simulations using various learning algo-
chanics techniques in the seminal paper of Garflitipis by ~ rithms.
now a well-known and standard model in theoretical studies The rest of this paper is organized as follows. In Sec. II
and practical applications in connection with learning andVe introduce two Ashkin-Teller type perceptron models.
generalizatiorf2—5]. A number of extensions of the percep- Section Il contains the replica theory and determines the
tron model have been formulated, including many-state anf@ximal capacity by calculating the available volume in the
graded-response perceptrdesy.,[6—11]). Here we present SPace of (_:oupllngs bot_h in the rephca-sym_me(ﬁec. III_A) _
some new extensions allowing for so-called colored oNd the first-step replica-symmetry-breaking approximation
Ashkin-Teller type neurons, i.e., different types of binary (_Sec. II_I B). S_ect|0n Iy descnbgs the results o.f.numer_lcal
neurons at each site possibly having different functions. S|mullat|ons Wlth. algorithms obtained by generalizing various
The idea of looking at such a model is based upon ou@!gorithms for simple perceptrons. In Sec. V we present our
recent work on Ashkin-Teller recurrent neural networksconclusions. Finally, two appendices contain some technical
[12,13. There we showed that for this model with two types details of the derivations.
of binary neurons interacting through a four-neuron term and
equipped with a Hebb learning rule, both the thermodynamic Il. THE MODEL
;notiedg?fﬁ:rigr?t %g?}eglzﬁn?u(ﬂgsié :‘g;f%lfghm% drgf)sfle[lo(:ragx_k)e Le_t us fi.rst formulate the colored perceptrpn models. We
: : . gon&derp input patternsg*={¢t={¢&"*, 5!}, i=1,... N
ample, the quality of pattern retrieval is enhanced through . . i
larger overlap at higher temperatures and the maximal capa€onsisting of two different types of pattergs ={f'; and
ity is increased. For more details and an underlying neuro?‘={7{}, and a corresponding set of outputs

biological motivation for the introduction of different types ={£6.76} #=1,... p that are determined by
of neurons we refer tf13]. e P

In the light of these results an interesting question is o =sgrhi+ 75h3), )
whether such a colored perceptron can still be more efficient
than the standard perceptron. In other words, can it have a 76 =sgnhs +£6h%), 2
larger maximal capacity than the one of a standard percep-
tron, which is known[1] to be a.=2 (for random uncorre- &6 16 =sgr(7ohy' + &5h%), 3

lated patterns It has been suggested that this number iSyhereh, (r=1,2,3) are the local fields acting on the patterns
characteristic for all binary networks independent of the mul-, 7, and their produckz, respectively

tiplicity of the neuron interactions. Thereby, the capacity is

defined as the thermodynamic limit of the ratio of the total w1 (1) st w1 2) n

number of bits pefinput) neuron to be stored and the total hl_nl EI e hz= ) Z W@

number of couplings peioutpud neuron[8]. We remark that

“input” and “output” refer specifically to the perceptron 1

case. h’3‘=n—2i I¢ g, nf:Z (I3, r=1,23.
In the sequel the maximal capacity of colored perceptron 3 (5)

models is studied using the Gardner approftii4]. The

main advantage of this approach is that in order to determinBoth types of input patterns and their corresponding outputs
this maximal capacity, there is no need to specify explicitlyare supposed to be independent identically distributed ran-
the optimal set of couplings for which, this maximum is dom variables taking the valuesl or —1 with probability

1/2.
The set of three equationi4)—(3) defines a mapping of
*Email address: desire.bolle@fys.kuleuven.ac.be the inputsg* onto the corresponding outpugy . We call it
TAlso at Interdisciplinair Centrum voor Neurale Netwerken, K. U. model I. The specific form of these equations is related to the
Leuven, Belgium. transition probabilities for a spin flip in the dynamisee the
*Email address: piotr.kozlowski@fys.kuleuven.ac.be expressions9) in [12]}. Although for the Hebb learning rule
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the spin-flip dynamics defined by all three or only two of terns, i.e., the patterns with stability less thap, «,,, k., .
these transition probabilities lead to the same equilibriunTherefore, the minimal energy gives the minimal number of
properties, this is not necessarily the case for the optimgbatterns that are stored incorrectly. This number is zero be-
couplings. Therefore, a second model, denoted by I, is detow a maximal storage capacity(x;,«,,K¢,).

fined by considering only the two equatiof%) and (2). The basic quantity to start from is the partition function
When|hs|>|h;| and|hs|>|h,| then the relation§l)—(2) are

satisfied by twolout of the four possiblevalues of the out- Z(p)=(exd — BE({I}N ) (10)
put &, otherwise model Il gives the same output as model I.

In other words, due to the presence of te and & in the _ (N2

gain functions, model Il contains more freedom and, strictly (= H dJiH 9 EI (JF)7=Np--- (D

speaking, it is not a mapping. This additional freedom arises

from the weaker constraints imposed on the couplings sucfiith 8 the inverse temperature. As usual it iZlnwhich is

that their available space is SyStematica”y Iarger. SO, Wheassumed to be a Se'f_averaging extensive qua'ﬁmtysl

the available volume of the coupling space for model | al-The related free energy per site

ready shrinks to zero, the one for model Il may still be finite. .

Therefore, we expect that model Il allows for a bigger ca- .

pacity. f=— 'JIILTLWM Z(,B) (12)
At this point we remark that when alll®) are equal to ;¢ equal, in the limitg—, to

zero we find back two independent standard binary percep- ' ’

tron models. In the sequel we take the couplings to satisfy (B _ im (E{Ihexd — BE({IN )y 13

the spherical constraimt, = JN. N _ﬁﬂw NZ(B) '

Ill. REPLICA THEORY FOR THE MAXIMAL CAPACITY which is the minimal fraction of wrong patterfieecall Eq.
9]

The colored perceptron is trained to store correctly

p=3aN patterns witha the loading capacity. The factor 3/2 in ISt 0g?err;cggear‘l;odrr‘?htehioarl;/:sragﬁ d?r:/eroﬁe&g?/\:geerrm the
follows naturally from the definition of capacity given in the put p P 9 P

introduction. A pattern is stored correctly when the so-calleogg)r)é t\;‘/g rzpl)tlrI\%aL n;ﬁﬂg(:é;?ric(;alllggltztillgn:rgrrgﬁecﬁdnlgri (s:toar?]:
aligning field [15] is bigger than a certain constart=0 Y 9

i (r)
whereby the latter indicates the stability. It is a measure foPleX' Introducing ~ the  order  parameters g,

— (Nyq(nr i - -
the size of the basin of attraction of that pattern. Specifically™ (VN)ZiJi” 73”7, with r=123 andy,7=1,...n we

we require that write following [1],
dq‘lde’ de’
© N A > n = T _
NI = &6 (h+ mghs)> k=0, (6) @mpn=] 1 ( T
M3 = b (hg+ E5hg) >k, =0, (7) 3
n 7 )
xexpN[zaGom&’wr > iaflel,
)\'gn({J})=(§6‘h"f+ 7ohy)>K,,=0, (8) RS
with {J}={J{} denoting the configurations in the space of +Gl(¢ry7,6'y)], (14)

interactions. Fork,=«,=«k.,=0 all patterns that satisfy
equations(1)—(3) also satisfy Eqs(6)—(8). We remark that
for model 1l the last inequality is superfluous. Gozlnl H (
The aim is then to determine the maximal value of the Y
loading « for which couplings satisfying Eq€6)—(8) can o oy
still be found. In particular, the question whether this model Xf f H dh f H dx’' Y
can be more efficient than the existing two-state models is Ked K, 2m N
relevant.
Following Refs.[1,14] we formulate the problem as an
energy minimization in the space of couplings with the for- XeXle
mal energy function defined as

d\Y
e*[’f 11
! 27T

+(1-e #)

Kep !

! ! 1
> xS - 5[(x17+x37)2+(x27+x3‘y)2
r/

O] = 2 [ (X))
E({ID) =2 (1-ON({ID — kelON({I) — k)] !
g + (73 (T x3) gD+ (X + x27)
ONE,{IN) — Ky )

We remark that for model Il the thir® factor is absent. The X (xM+ XZT)q(yST]] ) }
guantity above counts the number of weakly embedded pat-
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ith
=In fH (dJ(r”)exr{iE € ((IN7)2-1) wi
r,y Ty Y
(Nyjr)r o
e 4 ] brdreryssea)= [T ols1 a9

where (...) denotes the average over the patterns,
r'=1,2,3 for model | and 1,2 for model Il. Because of the ) )
latter we remark that for model Il the formula fex, can be ~Wherer=1,2, Os(y)]=dsexp(-1/2ys’)/\2my is a modi-
simplified: the integrals with respect }¢” andx3” are not ~ fied Gaussian measure,

present and thus3?, x37, and \3” have to be set to zero.

Because of this simplification we only outline explicitly the

calculations for model Il in the sequel. The corresponding o1
formulas for model | can be found in Appendix B. \/; E(K§+ K,)—S2

= , 1
A. Replica symmetric ansatz ' v1—q 17
We continue by making the replica-symmet(RS) an-
satz q)=q®",¢" =i¢" e, =ie. Moreover, for conve-
nience, we seq(1¥ q(z)—q(3)—q The latter is justified for = V2(K,~S;—51) 3 19
model | because of the symmetry present in this model. Fur- 2 1—q 2N
thermore, since we are going to take gf’—1 in the
Gardner-Derrida analysis anyway, we keep this equality also
for model Il. Taking then the limitg3—o, N—o, andn _ _
—0 we arrive, in the case of model II, at .= V2(= ket spms) J3
3 N +u,v3, (19

o1
v= ,\IIIEL N(In Z>
and g takes those values that minimize the available vol-
3 ume in the space of couplings. For the corresponding expres-
= E“f Dls1(a/2)ID[s>(3a/2)]In sk K, S1,52,Q) sion in the case of model | we refer to Appendix B.
Taking «= «,=« and supposing that the maximal ca-
pacity, a.= ars, is signaled by the Gardner-like criterion

(15 g—1, we obtain

1
+§ In(l—q)+ m+|n2’ﬂ

1
—|n(l—Q)—m—|n2’ﬂ

ard k)=Iim

(20)
=1 f D(s1(0/2))D(S5(30/2))In e &, &,S1,S2,9)

This maximal capacity as a function &fis shown for both ity. Therefore, we want to improve the RS results by apply-
models in Figs. 1 and 2 as a full line. For model | we obtain,ing the first step of Parisi's replica-symmetry-breaking
e.g.,ardk=0)=1.92, a value that is smaller than the Gard- (RSB) schemee.g.,[21]). So, we assume that tluéyrf) in Eq.
ner capacity for the simple perceptron. For model Il how-(14) have the following matrix block structure
ever, we get the interesting result thai(xk=0)=2.74>2.
M ((7’_1)”1) : ((T—l)m
qi’ if int e =Intf ——

n ) (21

r_—
B. First-step replica symmetry breaking q( )=

(r) i
It is straightforward to show geometrically that learning do’ otherwise,

almost antiparallel patterns, i.e., patterns satisfying

(&“&h, ' nh)~— (&€&, m" ng) results in a splitting of the wheren is the size of the matmq(f, m is the number of
space of couplings into disconnected regions. This suggestiagonal blocks, and i) denotes the integer part &f
that RS is broken and, consequently, the results dgk For model Il we takey ) =q{?+q'? reflecting the sym-
found in Sec. Il A are only upperbounds for the true capac-metry of this model. For model I we repeat thataif)’s can
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be taken equal. We then consider the limif—1 andn—0 in such a way tham/(1—q,), with g{"=q{?=q{¥=q,,
remains finite. After a tedious calculation we arrive at the following expression for the RSB1 maximal capacity for model Il

2 qiPMm 1 1 am
=3I+ M)+ ——= et S In(1+ M)+ o)
. (L+M)(1—qg”) (1+M3)(1—qg”)
agsa(k)= min (22
qgl)’qé?’)’M f DtlDtZIn wRSm(Katl!IZ vq(Ol)iq(Og)aM)
[
with IO I+ gl gt S (e N O (i~ NE)
_\M M
rs=——qy M3=Mrz, M= , (23

1-q The form of the algorithm for model | is a bit different and
given in Appendix B. This algorithm should be carried out
2 ) sequentially over the patterns and sequentially or parallel
and D =dtexd —(1/2)t] ]/}/E a Gaussian measure. The sver the couplings as long as one of the arguments ofthe
explicit form of the function yrsm(,t:,t2,a5”,05”. M) functions is positive. It appears to have the characteristics of
can be found in Appendix A. An analogous form for model | the most efficient, nonlinear algorithm discussedif).
is written down in Appendix B. Using this learning rule we have trained networks of sizes
The results are presented in Figs. 1 and 2 as full lines. Ago<N<1000 sitegdepending on the value @) in order to
gxpected they lie below the RS results confirming the breakstgre perfectly as many randomly chosen patterns as pos-
ing of RS, e.g.arsm(x=0)=1.83 for model | and 2.28 for  gjple. For each value of we have calculated the maximal
model Il. We remark that the breaking for model Il is stron- capacity for differentN and extrapolated the results
ger than for model I, the reason being that model Il allows— o, Results for a given value of andN are averages over
more freedom as explained in the introduction. Finally, oniggg samples. As shown in Figs. 1 and 2 this algorithm
the basis of results in the literature for the simple perceptrorberforms especially well for small values &ffor both the
[15], [16] we expect that the RSB1 results are very close tGygdels | and I1.
the 'exact' ones. This is furthgr exgmined by performing NU- The second algorithm we report on is the Adatron algo-
merical simulations as described in the following section. (ithm [19] that works in a different way. Instead of searching
the maximal capacity for a given stability it tries to find the
maximal stability for a given capacity. The derivation of this
algorithm and a proof of its convergence are based upon the
The idea of these simulations is to train the network withassumption that the problem can be formulated as a quadratic
a certain learning algorithm in order to learn as many ran-optimization with linear constraintsl9,7]. Such a formula-
dom patterns as possible. The main technical difficulties aréion cannot be given for the colored perceptron model, be-
to find an efficient algorithm and prove its convergence. cause the three different types of couplings have to be nor-
We have tried to generalize various algorithms proposednalized independently and because the stability conditions
for simple perceptrongl7—20. The most effective ones ap- (6)—(7) are more complex. Hence, a straightforward gener-
peared to be some particular generalization of the adaptivalization similar to the one for the Potts modé] is not
Gardner algorithn]{18] and the Adatron algorithril9]. In  possible. Below we describe a learning rule that tries to in-
the sequel we only report on the results obtained with theseorporate the ideas of the Adatron approach. We assume that
two algorithms. We remark that we have chosep=«,  the couplings can be written in the fortafr., [19] and ref-
= K¢,= k in all simulations. erences therejn
One of the algorithms that has demonstrated its efficiency
and for which convergence has been shown in the case of the J(l)—i S xhghen 3(2)_£ S xhphigh
standard perceptron is given in R§L8]. It is an adaptive N Xtéodts JT=R m X200
version of the original algorithm proposed by Gardh&}.
Using heuristic arguments presented[ir8] we have con- 1
structed for the coloured perceptron model Il the following Ji(3)=ﬁ > XEEE e gl (27)
analogous learning rule K’

g

IV. NUMERICAL SIMULATIONS

wherex! (r=1,2,3) are the so-called embedding strengths
RICN, [ %Lgiu%(Kg_)\?)@(Kg_)\?), (24)  of patternu. Thep, .in the case of mode_l Il 'Fhe couplings are
updated by modifying with the following increments
IO I+ 5 (k=N O(k,—NE),  (25) oxf=smax —x —x&, y(1-ninf)}, (28
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1.5 |

05

FIG. 1. The maximal capacity of the colored perceptron model |
as a function ofx. Theoretical results foagg and agsg are indi-
cated by the thick solid lines. The circles are the results of th
simulations for the adaptive Gardner algorithm, the diamonds for

the Adatron algorithm. The error bars are smaller than the size of, o tion mode[8], both of which haver,=2. For model |
) (o} .

the symbols(not in the inset The solid thin lines are polynomial - o 4 yima capacity ak=0 found by simulations is 1.78
fits to these results. The maximal capacity of a simple perceptron is

indicated with a broken line. +0.01.

FIG. 2. The maximal capacity of the colored perceptron model
dlasa function ofx. The meaning of the symbols is as in Fig. 1.

V. CONCLUDING REMARKS

1 In this work we have calculated the maximal capacity
6x’2‘=§ max — x5 — x5, y(1—na\4)}, (299  per number of couplings for two colored perceptron
models. Compared with the standard perceptron these
models have two neuronal variables per site and a local
field that contains higher order neuron terms. The method
used is a generalization of the Gardner approach and both
the RS and RSB1 results have been discussed. We expect
that the latter give very close upperbounds for the exact
max —x5—x5,y(1=nz\)}). (300 values.

Extensive numerical simulations have been performed for
nite systems and extrapolatedNo= . The adaptive Gard-
er algorithm and the Adatron algorithm give the best, but
different results. Hence, the results of the simulations can be
considered only as lower bounds for the exact maximal ca-
pacity. Additional work looking for improved algorithms
}Slould be welcome.

Oxg =z (max—xy—x5,y(1—nghj)}

1
4
_|._

This is done sequentially over the patterns. We remark the{ﬁ
again the algorithm for model | is somewhat differéaee
Appendix B. For each value of the capacity we have con-
sidered system sizes SIN<500 and extrapolated the re-
sults toN=c. The best results were obtained for a learning
rate y e (0,2). Results for each size are averages over 100 Comparing both the RSB1 results and the results from
samples. For small values of the capacity the algorithm giveﬁumerical simulations we conclude that they are in good
better results, both in the case of models | and Il than the firs‘jjl reement. For bigger values af they even completely
algorithm we have discussed, as shown in Figs. 1 and 2. F%Q()Jincide F.or model | we find that at=0 the maximal
larger values of the capacity, however, it performs WorseCapacity. satisfies 1.78a,<1.83. This suggests that it is
The results for the Adatron algorithm are displayed only in qual to the maximél caE)aci'Ly O'f ti@= four-Potts percep-
the region where they are better than the results for the Gar fon, i.e., a,=1.83 (after appropriate rescaling of the latter
ner algorithm. We remark that the numerical simulations[ e

. . . i - 71). This would parallel the situation for Hebb learnifig].
with the different algorithms give different results and thelt{:Or model Il we have foik=0 that 2.26< a,<2.28, which

we have not shown their convergence analytically such tha . . .

. o ; 15 larger than the maximal capacity of the standard binary

in principle, the values fora, obtained here are lower o :
perceptron. Furthermore, as anticipated, the maximal

bounds. : .
Looking at Figs. 1 and 2 in more detail we see that forSZﬁJizt%fzf model Il is larger than that of model | for all

the whole range ofk the values of the maximal capacity
in model Il are larger than those of a standard binary
perceptron. Fork=0, e.g., the simulations give,=2.26
+0.01, which is bigger than the maximal capacity of the The authors would like to thank M. Bouten and J. van
binary perceptron mod¢l] and the binary many-neuron in- Mourik for critical discussions.
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APPENDIX A: TECHNICAL DETAILS FOR MODEL I

The functionyrsg (x.t1,t2,95,95?,M) in formula (22) reads

3 1 cllc(uq+ 83)
Yrsm(K, t11t27q(1) ( ) M)—EeSSJ Ds
1 — o0

XDs

3r
1+erfi \/—| —
2¢?

X N c
X| —=—y,+—s
\3r Cz
[ 1 —uq/c’
b
Cz 2c’ —o

+1JUlD
2)..°3

with Ds a Gaussian measure and

=J1+M, ¢’=yJ1+M,, c;=V1+M(1+3r),

1-q;
c,=yMc?+ci, M;=rM, r=—(i),
— Qo
Xo=3ru;—t, \/ (1), —3ru; —t, \/ (1),
1 Mx5 1 Mx3 q 1 b
Er— , €3— — y ==Uu y
2 2 Ci 3 2 C% 1 2 1M1

br= ZC [sz(c )2+M1U101 2M Ml\/aulxz],
2

1
$3=— F[MX§(C')2+ M uics+2MM;/3rusxs],

Cy

\/—sz V3rMxs, MU,

2 3 bl:_ N2
c1 cl (c")

1
¥2=—[Muc*+M V3rx,],
)

1
7’3:;[M1U102_ M \/ﬁxs],
2

Jar

1 —c2/c(up—y3)
+ Te¢3 Ds

1 ; 3r | X3 s c 1 fcl/c(ul—éz)
+erfi \/—| —=—83+ —s|| |+ 5—e
2c2\\3r ° o 2¢y —o
1 —c2lc(u—v2) 3r
+ 8,4 +—e4’2f Ds| 1+ erf —
cl 2C, —w 2¢c2

1+erf[ \/g( —%—yg
3r( Xs 1 3r X
e”[ \E(Fb_])f{ 7<_E‘bl
3r X3
]+erf{—\/;<\/?+s)}

APPENDIX B: FORMULA FOR MODEL |

For model | the calculations are very similar. Some result-
ing expressions, however, have a somewhat different struc-
ture. For completeness we write down these expressions
here.

For the available space of couplings we get in the RS
approximation compare Eq(15)]

v=%af H DIs (o) ]In[¢re k¢ 1Ky kg 1S1,S2,83,0) ]

—3alnd+3 (B1)

1
In(l_q)‘i‘m'i‘ln 2

with

Urd K¢ Ky Key1S1,52,S3,0)

f dulf du, du3+f duzf dulf dus
Iy s
|3 © 0
+f dusf dulf du,
— g lg
+f dulf duzf dU3)H
I I, I3 r

2
e (12

(B2)

where
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Lits; )
li: y |:1,2,3,
vi-q
| Li+Ly+tsi+s, .4
=————— Uy, lg=lztu;—u,,
4 \/m 1 6 4 1 2
Li+Lzts;+S;3 T
s=—  —— U, Ig=lsgTU;—Usz,
V1-g
Lo,+L3+S,+S3 Lot
7=————F——= — Uy, Ig=Il7T Uy~ U3,
vl-q

1 1
L1=§(K§— Kyt Kg,}), L2=§(— Ket K+ Kgn),

1
L3:§(K§+ K’]_ Kfﬂ)

andq taking those values that minimizes Thus, fork= k.= «,= x;, the maximal capacity in the RS approximation can be
written as

1
_ —In(l—q)—m—anW
ard k)= Iim
a1 f H D(Sr(q))lﬂRS(K,K,K,Sl,Sz,Sg,,q)_|n4

For the RSB1 approximation with the form of the order parameters given by2Egthe maximal capacity reads

goM

~InAEM) = M) 1= a0)

arsg (k)= min
o.M f I DtIn yrsm(r.ty ts,ts,q0,M)
r

with yrsm(x,t1,t2,13,00,M) a linear combination of thirty-four, mostly double, integrals over error functions. An interested
reader can find a complete formula f¢gsg («,t1,t2,t3,00,M) in [22].

Finally, the learning algorithms for model | differ in the way that the couplidigsandJ® are updated. We have for the
adaptive Gardner algorithm

I IM+ S (k=N O (k=N + (g, = NED O (k= M),
IP = I+ 3L (e, = M) O (1, = N)
+(Kep=NE) O(Ke,—NE)]
instead of Eqs(24) and(25) and for the Adatron algorithm we take
oxi=3[max —x§ —x& , y(1—n N} +max{ —xf — x5, y(1—n\g )},
Oxb = (max{ — x5 — x4, y(1— M) b+ max — x5 — x5, y(1—n )b,

instead of Eqs(28) and (29).
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