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Electrohydrodynamic instability of a charged membrane
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The stability of shape fluctuations of a flat charged membrane immersed in a fluid is analyzed using a linear
stability analysis. A displacement of the membrane surface causes a fluctuation in the conterion density at the
surface. This in turn causes an additional contribution to the force density in the momentum equation for the
fluid, which results in a normal stress at the surface which is opposite in direction to the stress caused by
surface tension. This electrohydrodynamic effect destabilizes fluctuations when the surface potential exceeds a

critical value.
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[. INTRODUCTION the active transport of ions by ion pumps such as proteins in

order to generate an ion current. The transport of ions across

Two of the salient features of surfaces encountered ithe cell membrane also exerts a force on the fluid, the results
biological systems, such as cell membranes and organellesf which could destabilize fluctuations if the ion pumps are
are that they are soft and they can undergo shape changg®rmitted to diffuse on the surfag¢g]. A redistribution of
and they have adsorbed charges. It is well knd@hthat  charges occurs on charged vesicles under externally applied
significant variations in the charge distribution and the transfields [11], and this surface redistribution has a significant
membrane potential of membranes coincide with shapeffect on the mobility of the vesicles, and could even cause it
changes. There has also been experimental evidence to indé change sign. In addition, a spatial variation of charges on
cate that the variation in charge densities could be importard surface could result in a net force in the presence of an
in influencing the shapes of vesicles made of lipid bilayerselectric field[12]. There has also been recent work on the
Vesicles are usually made under nonequilibrium conditionsinteraction between macroscopically neutral surfaces due to
because the bending energy for the formation of a vesicle atharge fluctuationgl3], though these do not incorporate the
micron size is large compared to the thermal energy. How#fluid velocity field or the deformability of the membrane.
ever, some interesting experimental res[@khave revealed The interfacial instability between two immiscible fluids due
that stable vesicles could be made at equilibrium if a mixtureo an electric field has also been studjéd].
of lipids with surface charges of opposite signs are used. The effect of charges on the elasticity of membranes has

Previous studies have examined the shape changes of bibeen studied by many authors. The early studies of Winter-
logical membranes due to forces exerted by ion transport ialter and HelfricH15] and Lekkerkerkef16], as well as the
proteins, due to the asymmetry of inclusions in the memsubsequent studi¢47,18, found that there is an increase in
brane and their phase separation on the surface, and duette elasticity due to adsorbed charges. These studies show
other nonequilibrium processg3]. Though most of the stud- that there is a change in the modulus for the mean curvature
ies on biological membranes have examined fluctuations and the Gaussian curvature due to adsorbed charges, and the
thermal equilibriun{4], it has recently been realized that the change in the Gaussian curvature could favor the spontane-
forces generated on membranes by inclusions could play eus formation of vesicles. In these studies the change in the
crucial role in the structure and dynamics of membraneselectrostatic energy due to the curvature of the membrane is
These could be in the form of proteins with head-tail asym-determined, and the corrections to the elasticity moduli are
metry, which induce a spontaneous growth of fluctuations ircalculated from the free energy change. The corrections to
the membrang5]. In addition, phase separation of the com- the elastic moduli are manifested as additional contributions
ponents of a membrane could also alter the shi@@. to the curvature energy when a net curvature is imposed on
However, it is expected that effects like head-tail asymmetrthe membrane. In the present analysis, we are interested in
would lead to structures with characteristic lengths of thethe dynamical stability of the flat state of the membrane, and
same magnitude as the domains on the surface, whereas tyfglie perturbations are in the form of Fourier modes. The ef-
cal sizes of vesicles could be two to three orders of magnifect of the electrostatic stress on the perturbations in the
tude larger than the membrane thickness. Since shapwembrane surface is determined. The connection between
changes in biological membranes are accompanied bthe two approaches was demonstrated in Winterhalter and
changes in the transmembrane potential, it is useful to exanHelfrich [15], where the Gaussian curvature was related to
ine whether shape changes of flexible charged surfaces coullde second moment of the stress profile in a flat membrane. It
be caused by changes in the surface potential. As a first stepias shown that within the Debye-Huckel approximation, the
the present study examines the stability of fluctuations on @&wo approaches provide the same result for the Gaussian cur-
charged surface as a function of the surface potential. vature. In the present analysis also, we verify that the same

lon transport processes in cells are fairly complicated, butesult for the Gaussian curvature is obtained in the Debye-
simple models of these procesd@s-10] have shown that Huckel approximation to show consistency with previous
there is an electro-osmotic instability. However, this requiregesults.
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It has been showh19] that a difference in the charge less than the surface tension of an air-water interface, and
densities in the two lipid layers forming a bilayer could sta-therefore the present analysis is likely to be applicable only
bilize a vesicle, because there is a reduction in electrostatitor membranes with very low tension.
energy when the higher charge density is on the outside of Inthe analysis, we assume that the charge densities on the
the vesicle. This could compensate for the increase in th&vo sides of the membrane are decoupled. This is valid when
curvature energy. The effect of charge density-curvature couhe dielectric constant of the hydrophobic tails in the lipid
pling on the dynamics of fluctuations on a charged surfacéayer is small compared to the dielectric constant of the sur-
were analyzed20]. The analysis showed that when the founding water. In practical situations, the ratio is about
Charges are permitted to move on the membrane Surfacé:]./40), so the apprOXimation is valid for distances about 40
there is an instability of the flat state of the membrane due téimes the bilayer thicknessl5]. Though this is not strictly
a correlated variation in the charge density and the curvaturdfue in cases where the dielectric constants are comparable,
However, this analysis assumed that the thickness of th&e use this as a first approximation to make the problem
counterion layer at the surface is small compared to th@nalytically tractable.
wavelength of the perturbations, and variations in the coun-
terion density parallel to the surface were neglected. Il. BASE STATE CHARGE DISTRIBUTION

It is important to note that the wavelength of perturbations ] ) ) ) )
in this case is of the same magnitude as the thickness of the In the following analysis, dimensional variables are de-
counterion layer near the surface. The counterion layer thick?oted with a superscript *, while dimensionless variables are
ness under physiological conditions is about 1 fibd], written without the superscript m_orcjer to S|mpllfy the nota-
which is small compared to the length scale of structuredion- The p_otentlal and_charge d|str|but|qn in the base state
such as vesicles. The present analysis predicts that the md¥ determined by solving the conservation equation for the
unstable mode for a flat membrane has zero wave numbeWo charged species with number densitisandn* ,
indicating that the most unstable mode for a system of finite t
size is likely to be the size of the system itself. However, the ze
selection o?the most unstable moge is likely to depend very ~ din% TV -V*¥ni=V*.DV*nl+ ——V* ‘p*}' @
sensitively on the surface potential when the size of the
structure is large compared to the thickness of the couterion
layer. There are other situations where the thickness of the  d,n* +v*.V*n* =V*.D
counterion layer could increase to Am when the salt con-
centration is decreased, and the results of the present analysis ] o
would be directly applicable in those cases. where the potential* is given by

In the present analysis, the variation in the counterion

zert zert)

* A * Zert * *
VIt - VR (2)

density parallel to the surface is incorporated by solving the V* 2% — _(

diffusion equation for the counterions. A linear stability = € €
analysis is used, where the parameter values for the transition

from stable to unstable modes is determined. The linear stavhere V* is the dimensional gradient operatae,is the
bility analysis only provides the transition from damped tocharge on an electron, andis the dielectric constant. The

growing modes, and does not provide information about thequations are simplified by defining the nondimensional vari-
nonlinear stabilization of the growing modes. First, the limitgplesn = (n*/N*), n_=(n*/N%), y=(zey*/T), andx

of zero Peclet number and zero Reynolds number is consid= , .y Here,N* is the concentration of the electrolyte at a
ered, where the diffusion of counterions is fast compared 1@, 46 gistance from the surface, and the inverse of the Debye
convective transport, and the inertial terms in the mome”t”n%creening length is (2N 22€?/€T)¥2. With these scalings
conservation equation are neglected. However, it is subs%e equations reduce tow ’
qguently shown that the analysis is valid even at finite Rey-
nolds and Peclet numbers, because the inertial and convec-
tive terms in the equations for the charge density and fluid
momentum are zero for the unstable modes. The limit of low
Reynolds number is appropriate for micron scale structures
in biological systems. The validity of the zero Peclet number o
limit can be estimated as follows. The diffusion of a small@nd the potentialy is given by

molecule in a liquid iS0(10"° m?/s), and the Peclet num-

ber (UL/D) is small for structures of micron scalds Vzl/,:_(m—n) ®)
~10 % m if the velocity scale is smaller than 18 m/s. 2 '

For membranes with surface tension and in the absence of

fluid inertia, a characteristic velocity scale can be estimatedn the above equations, the velocity has been scaled by a
as ('/w), wherel is the surface tension and is the vis-  characteristic velocity scale= (v*/V), and the Peclet num-
cosity. The viscosity of water i€O(10 3 kg/m/s), and ber is given byPe=(V/«D). In the present analysis, we
therefore the velocity is small compared to 0m/s for  consider the limitPe<1, and neglect the terms on the left-
I'<10 ® kg/m/€. This is about three orders of magnitude hand side of Eqgs(4) and (5). The extension to the finite

()

Pe(din,+Vv-Vn )=V [Vn,+n, V], 4

Pe(din_+v-Vn_)=V.[Vn_—n_Vy] 5)
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Peclet number case is briefly discussed at the end. With this Qi=—i%V,. (16)
assumption, the dimensionless equations for the charge con-
centrations become It can easily be verified that all coefficien@; for even val-
ues ofi are zero, sinc&;=0 for even values of. The total
V-[Vn,+n,Vy]=0, (7)  charge is determined from the relation
V- [Vn_—n_Vy]=0, (8) d,R+Qd,¥=0. (17)
n,—n_ Using Eq.(13) for ¥ and Eq.(16) for Q, the equation for the
V2y= —( 5 ) (9)  total charge is

In the base state, there are concentration and potential R=R.+ >, R exp —iy), (18
variations only in they direction perpendicular to the surface [

of the membrane. The equations for the charge concentration . : .
and potential in the base staté, , N_, and¥, are whereR,., the scaled ion concentration at a large distance

from the surface, is IR;=R;=0, and

dyN,+N,d,¥=0, (10 P

y'N+ +Hy R.:—EI (I—j)Qj‘Pi_]‘ (19)
d,N_—N_d,¥=0, (11) e i

) N,—N_ for i=2. In the Debye-Huckel approximation, where the
dy‘1’=—(T> (12 right side of Eq.(13) is linearized in the potentia¥’, the

solutions for the scaled charge densities and potential are
The above equations can be easily simplified to provide the

Poisson-Boltzmann equation for the potential Y="sexp-y),
exp(— V) —exp( ¥ Q=—-Vsexp—y), (20
dow=— oY) —ew®) (13)
2 R=1

It is difficult to obtain an analytical solution for this equation, where W, is the potential at the surface of the membrane.
but a series solution of the following form can be easily At this point, it is useful to compare the present results

obtained: with those of Winterhalter and HelfricHL.5] for the Debye-
o Huckel approximation. Expression@0) are identical to

_ , . those obtained by Winterhalter and Helfrich for the Debye

v z’o Tiexp—ly), (149 approximation. The normal pressure due to electrical effects

can be determined from the static momentum balance equa-
where the coefficienta; are determined by inserting the tion for the liquid
above expansion into the Poisson-Boltzmann equatidn
and evaluating the coefficients for each valué.dfhe coef- —d,P—Qd, V=0, (21
ficientW, can be set equal to zero without loss of generality, ) L .
since the charge dynamics is affected only by the gradient@’herep is the mean pressure. The above equation is easily
of the potential. With this, it is easily verified thit, =0 for ~ S°lved to get
all even values of. In the Debye-Huckel approximation, p=ly?2 (22)
only the first term(corresponding to=1) is retained in the 2

above expansioiil4). In the present analysis, higher-order for the Debye-Huckel approximation, which is the scaled
terms are also retained in the expansion, typically up to form of Eq.(18) of Winterhalter and Helfrich for the osmotic
=5. There is a difference of about 2% whers increased pressure at the surface. This can be used to recover the

from 1 to 5 for¥s=1, and a difference of about 15% at Gaussian curvature obtained by Winterhalter and Helfrich.
V=2, whereW, is the scaled surface potential.

The charge densities are easily determined from [—:m; IIl. CHARGE FLUCTUATIONS
and (11) once the potential is known. It is convenient to
represent the charge densities in termsfRef (N, +N_)/2 In the linear analysis, small perturbations are placed on

and Q=(N_—N_)/2, where Q is determined from the the concentration and potential fields

Poisson-Boltzmann equation _
n. =N, +n_,(y)exp1kx+st),

QZZO Qi exp(—1y), (15 n_=N_+n_(y)exp1kx+st), (23)
where b=+ Y(y)exp(1kx+ st),
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wheres is the growth rate and is the wave number of the

perturbations. These are inserted into E@$, (8), and(9), qi=— 2{
and linearized in order to obtain the following equations for (i+k)>=I
the perturbations to the concentration and potential fields:

> M +aMRi_ = (j+k)(i—j)

TOw.  + DR
(df —K*)T —20Q+(d,Q)(dy ) + (dy ) (dy¥) =0, Ui R“’”}’

(24)
(d§—k2)a—?Q—aR+(dyR)(dy?b)+(dy?)(dyqf)=o(,25) @“Eﬁ{E [F2Qij+aPR ;= (j+1(i-])
(dj—k?)g=—T1, (26) X (1P + PR, ,)]}
wherer=(n,+n_)/2 andq=(n, —n_)/2. Equations24), (29)
(25), and (~26)~are th~e governing equations for the perturba-
O tions %raggs"’@, (25), and (26) are difficult to ob- Fi(l)_(|+k)2 kZ[E [2075Q =+l =D@ ¥

tain analytically, but it is possible to obtain series solutions
similar to Eqgs.(14), (15), and(18), ~
gs.( (15 ) +¢J(1)Qi_j)]}’

=2, PPexp(— (kti)yl+ 2 YPexid — (1+i)y],

- 1
A= 2{2[24%, (G+DGi-@Pw;_;
B ="b, (Hh=k

TD= G, +ij(2)Qij)]}

T=Tr - T — i - ~ ~ ~
F=roexn ky)+§1 rexd - (k] (27 cientst®, 7@, g, andq{? as linear functions of the

coefficientsy,, 0o, andr,. These coefficients are fixed by
the boundary conditions as discussed below.

The recurrence relations can be solved to obtain the coeffi-

+21 @ exd —(1+i)y], The boundary conditions at the membrane surface for the
. ion concentration fields are the zero flux conditions for the

w0 two ionic species at the perturbed interfaceu, , whereu,
T=dext — V) + S T Wexd — (k-+i is the vertical displacement of the membrane
a=Coexp(~1y)+ 2, afYex — (k+i)y]

[dyn++n+dy'//]|y:uy:0a

. _ (30)
+2 ai~exd — (1 +i)y], [dyn_—n_dyi]y-u =0

where | = (k?+1)"2. The coefficientsyip, To, and o are  In the linear approximation, the boundary conditions at the
determined using the boundary conditions, while the otheperturbed interface are expanded in a Taylor series about

coefficients are determined using E@24), (25), and(26).  their values at the unperturbed interface 0. The base state

The coefficients in the equations fgr andq are easily re- concentration and potential fields satisfy the zero flux condi-

lated from Eq.(26), tion at the unperturbed interfage=0. The correction to the
boundary conditions due to fluctuations are determined by
~ 1) ai(l) retaining terms correct to linear order in the perturbation
b= (K+1)2— K2’ quantitiesn, , n_, andu,,
(28 ~ -~ ~
o ai(z) uy[dy(dyN; +N,dy¥)]|,—o+[dyn, +n,.d,¥
= -
' (1+i)2— K2 +N,dy#lly=0=0,
B N (31
The relations for the coefficients in the relations épandr ﬁy[dy(dyN,— Nidyql)]|y:0+[dy‘ﬁ7—ﬁidylli
are obtained by inserting the expansions into Eg4) and _
(29), —N_dy#]ly_0=0,
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whereu, is defined by the relation, =u, exp(kx+s). The 0,d, ¥ —(c/2) k20, + ¥|,—o=0, (37)
first term on the left sides of the boundary conditi¢d$) are

proportional to the variations in thedirection of the flux in  where the curvature (R) is given by d)z(uy up to linear
the base state. Since the base state concentration and potender in the displacement, .

tial fields satisfy the zero flux condition€l0) and (11) It should be noted that the membrane displacement affects
throughout the domain, these derivatives are zero, and thide charge distribution only due to the boundary conditions
boundary conditions reduce to (34) and (37). This is because in the base state, there is an
o _ exponential decay of the potential from the membrane sur-
[dyr+qdy¥ +Qdy]ly—0=0, face. When the membrane is displaced upwards, the mean
(32 potential at the displaced position is lower than that in the
[dya+}'dyqf+ Rdy@]|y:o=0- flat state. However, the boundary condition requires that the

potential (or charge at the membrane surface should be a
This can be used to determine two of the three constantsonstant even when the membrane is displaced. This requires
Yo, Oo, and . It turns out that the coefficient of the con- & fluctuation component which augments the potential at the

stantq in the above equations is zero, and therefore théi'SpIaced pqsmon, and a simultaneous perturbation in the
charge density at the surface.

above equations are satisfied onlyr #=0 andj,=0. The If the series solution&27) are cut off ati =1 (the Debye-
third constantj, is determined from the boundary condition Huckel approximatio) the solutions for the charge density

for the potential at the_ i_nterface. . _ _and potential fluctuations as a function of the constgrere
The boundary condition for the potential at the interface is

determined by the dynamics of the charges on the surface. If a:ao exg —ly),
the potential at the surface is maintained at the same value as

that at the unperturbed surface, then the potential boundary ~ o~ O
condition reduces to g=—doexp(—ly).

(39

~ . The boundary conditiofi34), in the Debye-Huckel approxi-
[W+ ¢ explikx+ S"):||y=uy: (¥)ly-o- (33 mation, provides the following relationship between the con-

: L . stantq, and the surface potential:
Expanding the above equation in a Taylor series about the do P

unperturbed surface, and retaining terms correct to linear or- To=—V 0 (39)
der in the perturbation variables andu,, we get =
while for the boundary conditio37), the relation between

(uydy W +39)|y—o=0. (34 the constants|, and ¥y is

Alte_rna_tively, the charge at the_: perturb_e_d surface Could_ be TQo= —\Psﬁy(l—ckZ/Z). (40)
maintained as a constant. In this case, it is necessary to infer
a relationship between the surface potential and the surface

charge by examining the change in the counterion density IV. VELOCITY FLUCTUATIONS

o=

profile at a curved surface. For a surface with curvature The effect of charge density fluctuations on the dynamics
(1/R), the dimensional surface charge is related to the diof a charged membrane is considered in the present section.
mensional surface potential by The membrane consists of two surfaces, the upper surface
(represented with superscripy and the lower surfacé&ep-
_¢(1_ i” (35) resented with superscrip). First, the calculations for the
2R y=u velocity and stress fields are carried out for the upper surface
Y with a surface potential’g,, and symmetry arguments are
The above expression is correct @ «R) ! in the limit used to determine the velocity and stress fields on the lower
(kR)<1. This limit is consistent with the present analysis Surface. The boundary conditions are then applied to deter-
because it is assumed that the surface is flat in the base staf@ine the growth rate of the perturbations.
and the perturbations are small compared to the inverse of The perturbations to the velocity fields are calculated
the Debye length. If the surface charge densitys main-  from the Stokes equations in the absence of fluid inertia. The

tained as a constant, the interface condition is dimensional equations are
c V*v* =0, (41
W 1—ﬁ) =T|,. (36)
y=u, —V*p*+uV*2v* —(n} —n*)zeV*y* =0, (42

Using an expansion in the perturbations to the surface posiwherey is the fluid viscosity. The lengths in the above prob-
tion and the potential, and retaining terms correct to lineatem are scaled by the screening length! as before, since
order in the perturbation quantities, the above relation rewe are interested in perturbations of the scale of the screen-
duces to ing length. For the velocity field, it is convenient to use the
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velocity scale (N} T/ux), and the pressure is scaled by 2Y=AYexp —ky) +Alky exp( —ky),

(2NXT). With these, the equation for the velocity field be- Y

comes vU=—1AY exp(—ky) +1AY(1—ky)exp —ky), (51)
—Vp+Vay—qVy=0. (43

pU=2A5k exp( —ky)+ >, (p{"" exd (i +k)y]
Since the total charge and the potential are related|by =0

—y2 - ~ :
V<4, the momentum equation can be recast as + P exd — (i +1)y],

—Vp+V+V.0.=0, (44)  where
where the additional strgss_due to the Debye layer, which is ~(1u_ —Ei QU
a second-order tensor, is given by T R
o= (V) (Vi) = (121(V) - (V), (45) ~ L -
) P=—3 Q). (52)

wherel is the second-order isotropic tensor. Taking the di-

vergence of the above equation, it is easily seen that thgimilar relations can be derived for the velocity and stress
pressure field is related to the charge density and potential by s at the lower surface of the membrane

~V2p—V-(qV#)=0. (46) 0y =Uy(y)exp(1kx+st),
The fluid velocity is zero in the base state, but there is a net v'y=5'y(y)exp(|kx+ st), (53
pressure gradient due to the charge density in the Debye
layer given by(21). This equation is easily solved to provide p'=P' exp(ikx+st),

the mean pressuie" above the membrane surface is
vy =A} exp(ky) +ALky exp(ky),

Puzzl Pl exp(—iy), (47 vi=—1A] expky) +1AL(1—ky)exp ky), (54)
h - i -
where p'=2ALk exp(ky)+20 p Ml exd (i +k)y]+p@' exd (i
Pi“:—ilEijjQi_j. (49 +hyl,
=
where

The velocity and pressure fluctuations are expressed in the
form of Fourier modes

i
~ ()i _ ~ (1)
=2 Qi
vU=0Y(y)exp(1kx+st),

i
- pP=-2 Qu?), (55
vy=vy(y)exp(1kx+st), (49 =1
where the coefficient®!, %', andy{® are calculated in
p"'=p" exp(1kx+st). a manner similar t@Q", ", andy®".
) ) ) The dispersion relation is obtained using the boundary
These are inserted into the conservation equatidisand  ,nditions at the membrane surface. When the amplitude of
(42), and simplified to obtain an equation for the velocity fjctyations is large compared to the thickness of the mem-
field brane, it is appropriate to set the tangential velogityequal
to zero at the surface. With this, the boundary conditions for
(di_ kz)(di— k2);;+ kz(ady‘l’ —TﬁdyQ) =0. (50 the linearized problem are

It can easily be verified that the second term on the left side vy=0,

of the above equation is identically zerarif=",=0 in Eq. 3
(27), and with this simplification the velocity and pressure vx=0,
fields reduce to (56)
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where the normal stress'é% at the surface are given by o
7y = — P+ 2dyvy+ dyytdy WU = uydy[ PY— (1/2)(d, WY)?], '
(57)

=—p'+2dyvy +dyg'd, W' u,d [ P'— (1/2)(d, ¥")?],
(58) 10" 5

/T)

2
s

v

|
Tyy

and the scaled surface tensiba= (I'* k/2N.,T), whereI*
is the dimensional surface tension. In E¢s?) and(58), the
last term on the right accounts for the variation in the mean Fe-S---g e -
pressure and electrical stress due to membrane displacement. 1 N
However, it is easily seen that the syiR"+ 1/2(dy‘1'“)2] is 1072 10~ 1 10! 102
identically zero, and so the variation in the mean stress does

not enter into the normal stress balance at the interface. The

e 2 .
above equations are solved to provide an expression for the FIbG.kl.T;rans:_tljo? valuhes fc’:;('a/ I I?? a fUt'EC“g” bOf V;I-Iavek I
growth rate of fluctuations of the form numberk. The solid line shows the resuit from the Debye-Hucke

approximation; the broken line with circles and triangles shows the
results of the series solution with five terms i, =1 and ¥y,

s=—k| -2, (PA+W¥A)F (k) |, (59) =2, respectively.
=1

] ) unstable is plotted as a function of the wave vedidior
where the functions (k) are functions of the scaled wave jfferent values of the potentialr o, in Fig. 1. The solid line

vectqr. _ - o shows the result for the Debye-Huckel approximation where
It is useful to first study the stability characteristics of the only one term in the series is retained. It is observed that the
system using the Debye-Huckel approximation, which correyera stability curve tends to a finite value on the liit
sponds to retaining just the first term in the series on the right , 5 314 increases proportional kan the limit k>1. The
S'dg (1)/f2 Eq.(S%). The first function in the serieB,(k)=[(1  proken lines show the results obtained by retaining five terms
+k%)7“=1]/k* for a surface with constant surface potential, , the serieg59) for ¥,=1 andW¥,=2. It is observed that
and the expression for the growth rate reduces to the Debye-Huckel approximation overestimates the surface
o w2 2\, L 2 potential for neutrally stable modes.
§=—kI'= (V5 + ¥ (N1+k" = 1)/K7]. (60) Finally, it can be shown that even though the above ex-
%essions were derived for zero Peclet and Reynolds number,

charge distribution at the surface tends to destabilize the pe hey are valid for nonzero Reynolds and Peclet numbers as

turbations, and long-wavelength perturbations are unstabl%’e”' .AS can be seen from the above EXpressions, the real and

for (W2, +W2)>2I, and long-wavelength perturbations imaginary parts of the growth rate are simultaneously equal

with kiuk asrle unsiable wheré,— (1 2a)/a?, and a to zero for the neutral modes. Since the velocity is the time
C ] c— - y

. .. derivative of the normal displacement at the surface, the nor-
= (\If§u+ \I’§|)/F. For a system with constant charge density P

: o A mal velocity is also zero for the neutral modes. Conse-
on ”;e surface,2 tlr)ze first 1‘2unct|on in the Se”ed_:'ﬁk)_(l quently, the inertial and convective terms in the ion conser-
—ck/2)[(1+k9)*“=1]/k* and the expression for the

h , vation and momentum equations are zero, and the above
growth rate Is neutral stability curves are valid even for nonzero Reynolds
and Peclet numbers.

From the above, it is clear that the stresses exerted by t

s=—K[T—(VZ,+¥2)(1—ck?2)(J1+k>—1)/K?].

(61)
V. CONCLUSIONS

From the above, it is clear that the fixed charge boundary
condition does not affect the stability of the long-wavelength  The stability of surface fluctuations of a charged mem-
perturbation, but increases the potential required for destabbrane immersed in a fluid were considered using a linear
lizing finite wavelength perturbations. stability analysis. The wavelength of the perturbations is
The above result can be systematically corrected to ineonsidered to be of the same order of magnitude as the De-
clude higher-order terms in E¢59). Attention is restricted bye screening length. In previous calculations where the
to the case wher& =0, so that only one surface of the variation to the counterion density parallel to the surface is
membrane is charged, and the surface potential is fixecheglected, the surface fluctuations were found to be stable if
though the results could be easily extended to other casethe charge or potential at the surface is fixed. The present
The parameter\(';/l“) at which the perturbations become analysis differs from previous studies because the variation
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in the counterion density due to surface perturbations is exposition is lower than that at the original position. However,
plicitly taken into consideration by solving the diffusion to maintain the constant potential condition at the interface,
equation for the counterions. The results of the presenthe perturbation to the potential has to be positive. This re-
analysis are qualitatively different, and indicate that a cou-quires a depletion of the charges. There are two contributions
pling between the shape fluctuations and the concentratioiw the normal stress at the surface, one due to the additional
fluctuations of the counterion density is necessary for thgressure in Eqg52) and(55), and the other due to the elec-
instability. This mechanism could be of importance in gen-trical stress in Eqs(57) and(58). The pressure contribution
erating shape changes in biological systems, such as cea#nds to exert a downward force on a membrane curved up-
membranes and organelles, since it has been observed theards, while the electrical contribution to the normal stress
there are significant changes in the surface potentials afxerts a larger upward force. When tangential variations in
membranes when a shape change occurs. the charge density are neglected, the two are equal in mag-

The physical reason for the instability is as follows. Therenitude and opposite in direction and provide no net force.
is an exponential decay of the potential as a function of disWhen the tangential variations are included, there is a net
tance from the surface in the base state. When the membrangward force which tends to destabilize fluctuations when
is displaced upwards, the mean potential at the displacethe potential is increased beyond a critical value.
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