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Modeling translocation of particles on one-dimensional polymer lattices
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We introduce a general random walk model that is an extension of the random walk model proposed by
Berg. The model can be used to describe a particle’s translocation along a polymeric lattice with a nonuniform
distribution of obstacles. These obstacles are representative of DNA-bound proteins, of drugs, and of a DNA
packing environment. Using this model in the bacteriophage replication process, we show the effects of
random obstacles on an ATP-driven particle’s translocation along single-stranded DNA. The principal finding
is that the average statistical time of the translocation process decreases with the increase of an obstacle’s
strength. We also find an interesting relation between the average statistical time and the DNA chain length.
Our results can be used to explain some physiological phenomena. They show the usefulness of our model in
an analysis of the effect of random obstacles on particles’ translocation along one-dimensional polymer lat-
tices.
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[. INTRODUCTION these nonuniform obstacles into consideration, it is necessary
to develop a generalized model with a nonuniform biased
Many physiological processes require the transport ofvalk. In this paper we present a model, and apply it to a
macromolecules or macromolecular complexes from one pesystem that mimics the DNA of bacteriophge. We will cal-
sition to another within cells. If these movements are direc.CU'&te different average statistical times in different biO'Ogi-
tional or vectorial in nature they are also called translocation¢al environments, and analyze the effects of random ob-
and they must1) involve movement along a polymer, fila- stacles on the ATP-driven helicase translocation along
ment, or surface to permit the maintenance of directionalitySingle-stranded DNA. The behavior of translocation under
and (2) be Coupled to a source of free energy, which gener.different obstacle Strengthes and along different strand
ally involves a chemical energy to mechanical energy tranlengths is discussed.
sition by the enzymatic hydrolysis of ATP. Examples of such

directional ATPase-driven translocation in living systems in- Il. MODEL
clude the movement of organelles along microtubylels ) ) ]
the movement of myosin along fibrous acf3], and the Let us consider a particle translocating along a one-

unwinding of double-stranded DNA by helicagé5]. The dimgnsional polymer lattice with length We begin by pre-
translocation of ATPase-bearing molecular motors is characienting the random walk model proposed by Béid].
terized by four central featuré6]: the characteristic proces- When a particle is released at positiorra, as indicated in
sivity, the directionalvectoria) movement, the role of ATP  Fig. 1(a), how long does it take to blunder into an absorber at

hydrolysis in producing directional movement, and the char-

acteristic thermodynamic efficiency. Although the processiv- P=3 ® P= -;

ity and directionality of such translocation processes can be

measured in certain systerfis-9), the translocation process 0 T—6 X 2496 T x
itself cannot generally be monitored by chemical means as

there is no definite product associated with translocation. (a)

Therefore, theoretical models need to be developed so that

the translocation process can be described, and so that the 1-P(z)_ P(z)

observed ATP consumption rates can be interpreted. Porter — e —

et al. [10] proposed a microtubule model for explaining the
movement of organelles in cells. In an attempt to drive the
rate constant of ATP-driven translocation process along a ®)
DNA chain, a biased random walk model was developed in

Ref. [6]. This model was based on Berg's random walk of £, 1. Models for the translocation of a particle on a one-
the diffusion process of a repressor along a strand of DNAjimensional polymer latticea) A particle can move to either side
chain[11]. A bias is introduced to statistically describe the ajong a one-dimensional polymer lattice, and the probabilities of
translocation along a chain with uniformly distributed ob- motion to the right or left were both equal fo (b) A particle can
stacles. However, in most situations the distribution of ob-move to either side along a one-dimensional polymer lattice. The
stacles along a DNA chain is nonuniform. For example, hi-probabilities of translocation in both directions along the one-
stone protein complexes, drugs, and metabolites can all agimensional polymer lattice are not equalioThe particle walk to

as obstacles distributed on the DNA chain. These obstaclaie right has a probabiliti?(x), and that to the left + P(x), where
affect translocation in a nonuniform manner. In order to takeP(x) is position dependent.

0 x—'Az >I< z+lAz L x
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x=0 or x=L? If this experiment is repeated many times, biased toward the right of the chaifand therefore}
what is the mean time to captuf€a)? To find the answer, <P(x)<1], then the mean time3(x), T(x+Ax), and
Berg returned to the formalism of a random walk. He con-T(x— Ax) for the particle to walk from positiox, x+ AXx,
sidered that particles could move to either side along a oneandx— Ax to L satisfy the following equation:
dimensional polymer lattice, and that the probabilities to the

right and to the left were both equal fo Release a particle T(X)=At+PX)T(X+AX)+[1-P(X)]T(x—Ax). (5
at positionx at timet=0, and allow it to step to the right or

to left a distances everyt seconds. At a timé, the particle The above equation can be rewritten as follows:

will be at a positionx+ & with a probability of; or at posi-  p(x)[T(x+Ax)—T(x)]+[1— PO T(X=AX)—T(x)]
tion x— & with a probability of3; the mean times to capture
from the positions ard@(x+ &) and T(x— &), respectively. +At=0. (6)

Thus, the expectation value &{x) is i )
By adding and subtractingl—P(x) ][ T(x+AX)—T(x)],

T(X)=t+3[T(x+ ) +T(x—8)]. ) and multiplying through by 14x)?, we obtain
By adding and subtracting(x)/2, and multiplying through [1-P(x)] T(X+AX)—2T(x)+T(X—AX)]
by 2/5, one can obtain (Ax)?
1 1 ot [2P()—1] T(x+AXx)—T(x) At
ST+ =T0]= 5[TO=T(x= )]+ 5=0. (2) R Ax a2z~ @

For one-dimensional polymer lattices the step is very
small, and no less than the distance between neighboring
base pairg3.4 A), so we may think thatx— 0. Appealing

When § is very small, by the definition of a derivative, Eq.
(2) can become

dTl dT 2t to the definition of a derivative, we substitutéT (x)/dx?
o T30 3  and dT(x)/dx for [T(x+Ax)—2T(x)+T(x—Ax)]/(Ax)2
x X=o and[T(x+Ax)—T(x)]/Ax, respectively; therefore, Eq7)

. . the followi iff tial tion:
Dividing once more bhys, again appealing to the definition of becomes the following differential equation

a derivative, and noting thatt2s’=1/D, Eq. (3) becomes d®T(x) [2P(x)—1]dT(x) 1

the following differential equation: [1-P(x)] 02 + Ax ax +5=0. (8)
T 1 @  Here ID=At/(Ax)?
dx* D This differential equation is our general random walk

model equation, and it can be solved given a specific set of

Given suitable boundary conditions, this differential equa-houndary conditions. Different physiological processes have
tion can be solved fof. At an absorbing boundary, the mean different boundary conditions. If there are two absorbing
time to capture is 0, s0=0. At a reflecting boundary the points at both boundaries, the corresponding boundary con-
mean time to capture does not vary withso dT/dx=0.  ditions areT(0)=T(L)=0. If there is a reflecting boundary
Equation(4) describes a random walk such that there are nait x=0, the mean time to capture a particle does not vary
obstacles on the polymer lattice. In many real translocatiofyith x [11], so the boundary condition 8T(0)/dx=0; on
processes, partlcles are involved in unidirectional ATP+he other boundarya{ L, there exists an absorbmg pomt
driven translocation with bidirectional “slipage[6]. Next  andT(L) is 0. In this work, we chose the latter set of bound-
we introduce our general random walk. It describes biasedry conditions, since they correspond with the real physi-
random walks in translocation processes. ological environment.

We treat a particle’s translocation as a biased random Gjven the solution of Eq(7) or (8). One can determine

Walllk on a one- dlmens(,jlonalf polymerblz?ttme Vr‘]"th Iengilh the average statistical im€ and the rate constamg, of a
Following Berg[11] an Ref.[6], we be leve that particles particle along a polymer lattice of lengthby the following
can move to both sides along a one-dimensional pOIVmeformuIas:

lattice, but we maintain that right ad left translocation prob-

abilities are not equal t¢ because of nonuniform obstacles _

on the lattice. We define a one-dimensional coordinate sys- =T f T(x)dx, 9
tem along the lattice with its origin at the left end; if a par-
ticle is released from positior att=0, as indicated in Fig.
1(b), we assume that it walks to the right with a probability ke=—= _ (10)
of P(x), and to the left with a probability of + P(x). P(x) T ftT(x)dx

is position dependent because of the nonuniform distribution

of obstacles along the lattice. Given that and Ax are the If several special constants are chosenR¢k), Eq. (8)
time and distance of each step, we assume them to be posias analytical solutions. For instance, whHefx)=1, and a
tion independent. If the translocation is further assumed to bparticle moves unidirectionally, E48) becomes.

1 L
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dT(x) At The constan3 defines the degree of bias of the waltk.and
“ax a9 (1) K, represent the rate constants for movement in the forward
step and reverse direction, respectively. In this cask;,
which has the solution andk, can be determined by the constéhtand our model

can be used to describe the translocation of particles along
At uniformly distributed obstacle lattices.
T =15 (L=%). (12 If P(x) is a complicated function of, it is difficult to find
analytical solution for Eq(8). The mean timeT(x) of a
particle’s movement fronx to L can be derived by solving
Eq. (7) or (8) numerically.
To study the effects of obstacles on particles’ transloca-

The average statistical tinie and the rate constai of a
particle translocation along a chain of lengtltan be shown

to be
tion, we apply our general random walk model to the bacte-
LAt riophage T4 DNA replication process, and carry out a calcu-
T= 2AX’ (13 Jation to determine the average statistical tifieusing a
distribution of obstacles that mimics a single-standard DNA
2AX of bacteriophge. For purposes of comparison, a calculation

(14) on an obstacle free DNA chain is also carried out.
In real instances of the bacteriophage T4 DNA replication
In this case oUifocess, a DI\!A .polymerase complex translocates, and
gushes the replication fork along a double DNA chig].

LAt

Both are dependent on the chain length.
model can be used to describe the unidirectional moveme
of myosin along fibrous actin, and of some organelles alon
microtubules.

If P(x) =3, the particle walk to both sides is equally pro
able. Equation(8) then become

class of DNA unwinding enzymes, DNA helicases, is in-
olved in base pair separation at the fik3]. This unwind-
b- ing process is driven by the hydrolysis of ATP4]. Accord-
ing to this physiological process we regard the replication
complex[15] as a particle biased toward the replication fork
d2T 2 along the single-stranded DNA on the laggifid] strand.
W-ﬁ- Bzo. (15  The parameters for our model are chosen as follows: a Oka-
zaki[12] fragment consists of several hundred base pairs, so
in this work we first choose 500 base pairs, which typically
describe the replication of the laggif@5]. Such a single-
stranded DNA has a length of 1700 A. The step of walk
1 Ax is the distance between neighboring DNA base pairs
T(x)= B(Lz—xz)- (160  Ax=3.4A. The observed replication rate for bacteria is used
to determineAt tentatively. In real bacteria replication pro-
From this, one can derive the average statistical translocatioffSSes, the observed speed of the replication fggk is 50000
time T and rate constark - base pairs per.mlnute. This givesAd of 1.2X10 °s, SO
t 1/D=At/(Ax)? is 1.0x 10'®s/m?. We can solve Eq(8) with

This is the equation derived by Bef#y1]. Under our bound-
ary conditions, it has the following solution:

_ D the above parameters.
= Eln 2, (17) If a particle moves uinidirectionaly along an obstacle free
DNA chain, the probabilityP is 1, and the calculated average
Lln2 statistical timeT and rate constark; of finishing the trans-

(18) locating process are 30 s and 0.033, respectively. If a particle
moves on an obstacle free DNA chain, such movement can

Both are dependent on the lattice length. In this case, ou?e considered as a completely random walk, and the prob-

) . . -ability that P is 3. The calculated result is shown in Fig. 2.
model can be used to describe the translocation of particl . . .
. : e can see that the particle being set free at the left end will
along a polymer lattice with free obstacles.

In another case, in whicR(x)=const and yeP(x)# : need the longest time to move to the absorber—the right end

D

and P(x) # 1, Eq.(8) was expressed in Reff6] as of the DNA strand. The average statistical tinieof the
particle’s translocation is 3350 s, the rate constlntis

d?T(x) dT(x) 2 0.0003 s, In another case there are many obstacles on a
Z  ax T KTk, =0, (19 single-stranded DNA, we chose to follow Chenal. [16],

and maintain that a sine periodic functions describe the ef-
fects of obstacles on the translocation process. The distribu-

where . " ;
tion probability of a particle’s movement can be shown as

 k—k  2P-1
P= ok k)~ (1-P)Ax’

(20) P(x)=3%+1¢ sirf ax, (22)

wherea=3.8<10 2 A~1, ande describes the level of ob-
k,+ki=D(1—-P). (21 stacle resistance and must be §<1. For different values
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FIG. 2. The calculated mean tinT§x) of a particle translocat-

ing from positionx to positionL on a single-stranded DNA with a

free obstacleP=3. The length of the single-stranded DNA lis
=1700A.

FIG. 4. The calculated average statistical timeof a particle
translocating on a single-stranded DNA as a function of the obstacle
strengthe. The obstacle distribution and chain length are the same
as in Fig. 3.

of &, the calculated mean tim8Yx) for a particle to travel prominent in the region €¢<0.2. On the other hand, at
from positionx to positionL are shown in Fig. 3. All of the £>0.2, the decrease is relatively insensitivestoThe rela-
T(x) are found to follow an approximately linear relation- tion between the rate constatand obstacle’s strengthis

ship withL —x. We can also see that, for a giventhe mean shown in Fig. 5. From this, we can see that the rate constant
time T(x) to travel fromx to L is very small wherxis near  k; maintains an approximately linear relationship withand

L, and increases asapproaches 0, the increase is more rapicthat the statistical value is about 19s™* which is consistent
than in the case d?= 3. The particle being set free at the left with existing experiments and relevant theoretical consider-
end will also need the longest time to move to the absorber—ations[15].

the right end of the DNA strand. That is to say, a particle that We have also examined the effects of the DNA chain
is set free closer to the left end will require a longer travellength on average s statistical tinfe Figure 6 gives the aver-

time. We concentrate on the relation between the averaggye statistical timd as a function of the chain Iength We

statistical timeT and the obstacle’s strength Our findings .4 see that for a giventhe average statistical timeforms

are shown in Fig. 4. We observe that the average statistic@l,irs as a function of. That is to say, for some lengths

time T decreases with an increase af that this decrease the average statistical time is very sensitive ltp but

becomes more rapid at smaller valueg:oénd that it is most  for other lengths it becomes insensitive lto We find that
the behavior is due to such periodic distribution of obstacles

250 r on DNA chains.
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FIG. 3. The calculated mean tinTg§x) of a particle translocat-
ing from positionx to positionL on a single-stranded DNA with an
obstacle distributionP(x)=%+%s sirf(ax). The length of the FIG. 5. The calculated translocation rate constqras a func-
single-stranded DNA i$ =1700 A. The lines from the bottom to tion of the obstacle strengih The obstacle distribution and chain
the top correspond te=1, 0.8, 0.6, 0.4, and 0.2, respectively. length are the same as in Fig. 3.
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2500 environment than in an obstacle-free biological environment.
[ On the other hand, when comparing general random walks
2000 | with unidirectional movement, we found the average statis-
i tical time of the translocation to be longer in obstacle-laden
1500 [ biological environments than in those that are obstacle free.

That is to say, in real instances of lagging strand replication
processes the obstacles’ biological environments are neces-

@ :
IZ 1000 i sary; therefore, there are some kinds of proteins bound to
500 b DNA strands such agp32. These bound proteins can act as

; obstacles to increase the bidirectional efficient and to reduce

[ the unidirectional efficient. From the relation between the

Of rate constant of a particle’s translocation and the obstacle

i strength, and from the relation between average statistical

500 o times and the length of a DNA chain, we can see different

0 500 1000 1500 2000 2500 3000

NE) obstacle strengths corresponding to different translocation

rate constants. The rate constant governs a patéd@ase
active lattice-bound state. In real physiological processes this
ttice-bound state determines the lifetime of translocases
6]. Thus our results can be used to explain some physiologi-
cal phenomena: for example, the ways in which different
enzymes have different lifetimes. This example illustrates
that show our model has potential application to all translo-
IIl. CONCLUSION cation processes, including the movement of RNA poly-

In summary, a general random walk model has been prer_nerase_along DNA in transcription, and the diffusion process
sented. It can be used to study the effects of random ol2f Protein and drugs along DNA. Our model can also be used
stacles on a particle’s translocation along one-dimensiondpP Predict the rate of ATP hydrolysis. Corresponding work in
polymer lattices. Our results can provide a way to understantlis area is currently underway.
the relationship between the physical nature of one-
dime.nsional translocation. on a single—_stranded DNA and _the ACKNOWLEDGMENTS
physiology of obstacles in such environments. Comparing
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translocation is much shorter in an obstacle-laden biologicaDr. Mi Dong.

FIG. 6. The calculated average statistical timef a particle
translocating on a single-stranded DNA as a function of the numbe,
of base pairdN in the DNA chain.N is in units of base pairgh).
The obstacle distribution B(x) = 3 + 1 & sin(ax), where thes is 1.
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