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Single homopolymers in the relative density representation
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A single symmetric homopolymer is studied in the grand ensemble of its monomeric units. For an arbitrary
external field but next neighbor interactions alone, such a system is represented as a functional of the local
density to local fugacity ratio, conjugate to the fugacity, with the excess grand potential as thermodynamic
generating function. A sample case in a spherical enclosure is solved, where a complementary exclusion from
a spherical volume requires an extension to a grand ensemble of polymers. A preliminary extension is also
made in mean field form to non-neighbor interactions, as well as to nonsymmetric interactions.
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I. INTRODUCTION

In this paper, we present an exact full analysis of an
ternative density functional theory of a single freely joint
polymer chain. In particular, we discuss a chain located i
spherical pore, or on the outside of a spherical surface
plane surface. We will treat further related interactions b
perturbative mean field technique. Previous density fu
tional treatments of polymers in cavities or at walls eith
were approximations, e.g., based on a Curtin-Ashcroft t
weighted density approximation@1#, a combined Monte
Carlo simulation with a self-consistent density field@2,3#, or
earlier Cahn-like treatments@4–6#.

There is also a very old discussion by Lifschitz@7# of
conditions under which a polymeric chain with mean fie
interactions could collapse to form a globular structure. T
technique used has much in common with the presenta
that we will adopt, but several differences are appare
Thus, although we work in a grand ensemble framewo
which both simplifies the necessary algebraic manipulati
and raises the possibility of collapse even in the absenc
long-range interactions, the format that we introduce in
next two sections has relative density@8# as its control vari-
able. This produces a particularly compact representat
some aspects of which are then exemplified, and as is typ
of indirect forms—such as standard density functio
theory—permits quite painless introduction of further inte
actions, non-nearest neighbor in this case, at any leve
approximation. It also leads naturally to the possibility
nonsymmetric next neighbor interaction, e.g., a definite p
ity associated with the chain. In the Appendix we presen
toy model in which this viewpoint plays a pivotal role.

II. BASIC FORMALISM

We consider the behavior in thermal equilibrium of
single homopolymer with symmetric next neighbor intera
tions. The interactionf is of binding type, so that the Boltz
mann factore2bf→0 at infinite separation. The statistic
ensemble employed here is~classical! grand canonical for
the monomeric units, controlled in this initial manifestatio
by the reciprocal temperatureb and chemical potentialm,
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but also by an external potentialu which enters the thermo
dynamics asm(u)5m2u( i ), the argumenti denoting all
degrees of freedom of thei th monomer. Let us adopt th
notation ^ i uvu j &5e2bf( i , j ) for the Boltzmann factor re-
garded as a symmetric matrix, and̂i uzu j &5z( i )d( i , j ),
wherez( i )5ebm( i ) is the externally imposed local fugacity
For idealized point monomers, the argumentsi , j ,... will rep-
resent continuous physical space locations, often design
by r when the argument is to be highlighted.

The situation described here was previously treated@8# in
considerable generality in the context of nonbinding inter
tion, as in a fluid, but we will learn a good deal more b
restricting the scope of the system to be studied. The pa
tion function, with the fugacity attached, of anN-element
chain is given by

JN5E z~1!^1uwu2&z~2!...z~N21!

3^N21uwuN&z~N!d1 . . .dN, ~2.1!

rendered compact by introducing the constant vectorJ( i )
51, so that

JN5^Juz~wz!N21uJ& ~2.2!

for N>1. AppendingJ051, and observing that an ordere
chain does not have equivalent configurations under the
mutation of monomers, the full grand partition functionJ
511(N51

` JN becomes

J511^Juz~ I 2wz!21uJ&, ~2.3!

whereI denotes the identity matrix; the corresponding gra
potential is then

V52
1

b
ln J. ~2.4!

Now let us attend to the spatial structure of the therm
ensemble. The basic construct is monomer densityn(r ), ob-
tained by anchoring one monomer atr and dividing byJ for
normalization,
©2001 The American Physical Society05-1
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n~r !5~1/J!z~r !dJ/dz~r ! ~2.5!

@equivalent, of course, ton(r )52dV/dm(r )#. Using the
general relationdA2152A21dAA21, Eqs. ~2.3! and ~2.5!
yield, at once,

n~r !5
1

J
^Ju~ I 2zw!21ur &z~r !^r u~ I 2wz!21uJ&, ~2.6!

which by the symmetry ofw can be written as

n~r !/z~r !5c~r !2/J,

where c~r !5^r u~ I 2wz!21uJ& ~2.7!

We also note, from Eq.~2.3!, that

J511^Juzc&. ~2.8!

III. v REPRESENTATION

Although Eqs.~2.7! and ~2.8! complete our required de
scription, their use of fugacityz(r ) as control field is unsuit-
able for many extensions and applications. A thoroug
studied alternative is that of expressing the system chara
istics in terms of density functionals, but we will opt for a
intermediary strategy, involving a less common Legen
transform, that corresponding to the relative density~relative
to an ideal gas!,

v~r !5n~r !/z~r ! ~3.1!

as independent control variable@8#. Since

dV52*n~r !dm~r !dr5~21/b!*n~r !dz~r !/z~r !dr5

~21/b!*n~r !@dn~r !/n~r !2dv~r !/v~r !#dr,

we have

d~bV1N!5dbVex5*z~r !dv~r !dr,

or

z~r !5dbVex/dv~r !. ~3.2!

bVex serves as thermodynamic potential in av representa-
tion, with z(r ) as a conjugate field. An overwhelming adva
tage of this formalism is, as we will see in a moment, that
can set up an explicit form for the functionalbVex@v# in
which, as opposed to Eq.~2.3!, only inverses of fixed matri-
ces appear.

Actually, it will be convenient to writebVex redundantly
in terms ofJ as well, so that we will want to have

dbVex@v,J#/dv~r !5z~r !,

]bVex@v,J#/]J50, ~3.3!

which both determineJ and guarantee thatdbVex

5*z(r )dv(r )dr. Enforcing Eqs.~3.3! is no problem. We
rewrite Eq.~2.7! as
01180
y
er-

e

e

~ I 2wz!c5J, v5c2/J, ~3.4!

and thenzc5w21(c2J) implies that

z5v21/2w21~v1/22J21/2J!. ~3.5!

From the first of Eqs.~3.3!, it follows that

bVex5E „v1/2~r !2J21/2
…^r uw21ur 8&

3~v1/2~r 8!2J21/2!dr dr81 f ~J!, ~3.6!

where f (J) is to be determined by the second of Eqs.~3.3!,
which reads

05 f 8~J!1J23/2*^r uw21ur 8&

3~v1/2~r 8!2J21/2!dr dr8

5 f 8~J!1J22^r uw21uc2J&

5 f 8~J!1J22~J21!.

Thus, f (J)521/J2 ln J to within an additive constant
and we conclude that, in obvious notation,

bVex@v,J#52 ln J2
1

J
1~v1/22J21/2!

3w21~v1/22J21/2!. ~3.7!

IV. CONFINED SYSTEMS

For the dual purposes of understanding Eqs.~3.7! and
being aware of potential dangers, the direct formulatio
~2.7! and ~2.8! in the form preceding Eq.~3.5!, are quite
sufficient. Suppose, in particular, that the polymer is insid
cavity denoted byL; then, fromzc5w21(c21), we can
write

w21~c21!50 for r PL̄,

~w212z0!~c21!5z0 for r PL, ~4.1!

wherez0 is the imposed fugacity, and of coursec→1 as-
ymptotically. A simple interaction for whichw21 is very
accessible is the Yukawa or shielded Coulomb form

^r uwur 8&5Ae2Kur 2r 8u/ur 2r 8u ~4.2!

~corresponding to the trapping potentialbf(r ,r 8)
5Kur 2r 8u1 lnur2r8u2ln A, which makes sense if mean ne
neighbor separations are large enough!. Equation~4.2! is the
Green’s function for the Helmholtz operator, and so

w215
1

4pA
~K22“

2!, ~4.3!

meaning of course that

^r uw21ur 8&5~1/4pA!~K22¹2!d~r 2r 8!.
5-2
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Thus we can write

~K22“

2!~c21!50 for r PL̄,
~4.4!

~K822“

2!~c21!5K22K82 for r PL,

where K825K224pAz0 , and, with connection condition
obtained by integrating across the boundary,]L:c21 and
n̂•“(c21) are continuous across]L.

Consider the special case of a spherical cavity of radiua.
Setting

f~r !5r @c~r !21#, ~4.5!

we have

K2f~r !2f9~r !50, r>a

K82f~r !2f9~r !5~K22K82!r , r<a ~4.6!

f~r !,f8~r ! continuous acrossr 5a,

solvable routinely to yield, inside the cavity,

f~r !5
K22K82

K82 S r 2
11Ka

K sinhK8a1K8 coshK8a
sinhK8r D

for r<a. ~4.7!

Consequently,

n~r !5~z0 /J!c~r !2,

where

c~r !5
K2

K822
K22K82

K82

11Ka

K sinhK8a1K8 coshK8a

3
sinhK8r

r
for r<a ~4.8!

and

J511z0E
0

a

c~r !d3r .

There are now two regimes to study. If 4pAz0,K2, K8
is real, andc(r ) decreases asr increases toa, but c(r ).1
throughout. At the crossover given byK850,

c~r !511

1

2
2

1

6
Ka

11Ka
~Ka!22

1

6
~Kr !2>1.

But then, for 4pAz0.K2, we can setK85 iK 9 to obtain

c~r !52
K2

K92 1
K21K92

K92

11Ka

K sinK9a1K9 cosK9a

sinK9r

r
,

~4.9!

again a decreasing function ofr as long asK sinK9a
1K9 cosK9a.0. However, this decays from
01180
c~0!.
K21K82

K92

~12cosK9a!1KaS 12
sinK9a

K9a D
K sinK9a1K9 cosK9a

,

~4.10!

which becomes arbitrarily large asK9 is varied, so that
K sinK9a1K9 cosK9a→0. Beyond this condensation, th
grand ensemble ceases to be meaningful: as one readily
fies, the eigenvalues ofzw are given here by

tan@K9~l!a#/@K9~l!a#521/Ka, ~4.11!

whereK9(l)254pAz0 /l2K2, or

l54pAz0 /„K9~l!22K2
…, ~4.12!

and the threshold forl51 is precisely at the first vanishin
of K sinK9a1K9 cosK9a ~occurring forp/2,K9a,p!.

V. UNCONFINED SYSTEMS

An opposite situation is that of indefinite confinemen
Suppose that the polymer is constrained to be outside
spherer<a, but that the spherical surface has a ‘‘glue
layer, so that

z~r !5z0u~r 2a!1gd~r 2a!. ~5.1!

This setup is a bit different. We cannot have a single po
mer ensemble because, with the infinite space availabl
will always evaporate away. But we can for example imag
a fluid of noninteracting polymers, with asymptotic mon
mer concentration controlled by the same fugacity we h
already included. For such a system, the grand potential
be JToT511J11/2!J211/3!J31¯ , or

JToT5expJ, ~5.2!

and so the only change will be that nown(r )
5z(r )„d/dz(r )…ln JToT5z(r )dJ/dz(r ). Hence, with the
same notation as before forz, v, c, Eq. ~2.7! must be re-
placed by

n~r !5z~r !c~r !2, ~5.3!

but nothing else will change.
Now we can proceed. Fromzc5w21(c21), or

(1/4pA)(K22¹2)(c21)5„z0u(r 2a)1gd(r 2a)…c, we
have, in the previous notation,

K2f~r !2f9~r !50, r ,a

K82f~r !2f9~r !5~K22K82!r , r .a ~5.4!

f~a1!5f~a2! but f8~a1!2f8~a2!524pAga.

Again, the solution is routine, and we find that
5-3
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r .a: f~r !5K2/K82

1
4pAga2~K2/K8221!~Ka cothKa21!

K cothKa1K8

3
e2K~r 2a!

r
. ~5.5!

Interestingly, there is a transition from depletion to accum
lation next to the surface at a characteristic value ofg ~or of
z0 at fixedg!. This is seen more clearly if we take the lim
c1(z) of c(a1z) asa→`, thereby converting the sphere
a planar surface withz its outward direction. Doing so, the

c1~z!5
K2

K82 1
4pA

K1K8 S g2
Kz0

K92De2K8z; ~5.6!

thus the switch occurs atg5Kz0 /K1K8, and the
asymptotic monomer density isn(`)5z0(K/K8)c. Note
that here, the system collapses asK8→0.

VI. EFFECT OF LONG-RANGE FORCES

It is the one-dimensional ordering of monomers, and c
responding spatial separation of next neighbor monomer
teractions, that leads to the simplicity of the above analy
But the physical interactions are of two kinds: the ne
neighbor binding that we have accounted for, and the~at
least! pair forces due to physical proximity which need n
be ordinal proximity. This situation is of course inheren
much more complex, but we can make inroads in mean fi
fashion. Suppose that we append to the interaction

Df5 1
2 (

iÞ j
f̄~ i , j !5 1

2 E n̂2~1,2!f̄~1,2!d1 d2,

where ~6.1!

n̂2~r ,r 8!5(
iÞ j

d~r i2r !d~r j2r 8!

is the microscopic pair distribution. Since the grand poten
serves as a universal generating functional we have for
expectationn25^n̂2&,

dbV

dbV̄~1,2!
5

1

2
n2~1,2!, ~6.2!

so, for weakf̄, we can write

bV5bV01 1
2 E n20~1,2!bf̄~1,2!d1 d2. ~6.3!

In the mean field approximation, density fluctuations are
glected, and we have simply

bV5bV01 1
2 E n0~1!n0~2!bf̄~1,2!d1 d2, ~6.4!
01180
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where the subscript 0 refers uniformly to thef̄50 expres-
sions.

We have seen that, for pure chains,

n5vz5v/cw21~c2J!5v1/2/J1/2w21~J21/2v1/221!

5v1/2w21~v1/22J21/2!.

Hence, we can generalize Eq.~3.7! to the approximation

bVex@v,J#52 ln J2
1

J
1~v1/22J1/2!

3S w211
1

2
w21v1/2bf̄v1/2w21D

3~v1/22J21/2!, ~6.5!

where v1/2 is diagonal when used as an operator. Sin
(w1D)215w212w21Dw211¯ , we have in effect made
the replacement

w→w2 1
2 v1/2bf̄v1/2 ~6.6!

of the next neighbor Boltzmann factor, subject to the wa
ing that Eq.~6.6! is v dependent so that this will not be th
only change in the profile equation forz(v). Part of the
change of Eq.~6.6! is obvious: since the added interactio
also appears between next neighbors, there is a direct ch

w5e2bf→e2b(f1f̄)5w2bf̄w..., but this is only one of
several components of the modification.

For computational purposes, the relative density fo
@Eq. ~6.5!# is most suitable. It is only necessary to rewrite t
profile equation~3.3! at fixed imposed fugacity in the strictly
stationary form

dFbVex@v,J#2E v~r !z~r !dr G50, ~6.7!

parametrizev, and vary the parameters. Of course, an ob
ous strategy is to use af̄50 reference solution such as E
~4.8!, and ~with its r .a extension as well! convert its pa-
rameters to effective ones to be determined by stationa
Sample results will be reported in a future communicatio
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APPENDIX: NONSYMMETRIC INTERACTION

A polymer of identical monomers need not have ev
parity, e.g., site A on one monomer interacts with site B
5-4
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its neighbor. Then the Boltzmann factorw(r ,r 8) will not be
symmetric, and the general strategy must be modified. Le
see how this works from the profile point of view@9#, rel-
egating energetic considerations@8# to the future. Equation
~2.3! is still valid,

J511^Juz~ I 2wz!21uJ&, ~A1!

but Eqs.~2.6!–~2.8! now become

n~r !/z~r !5ĉ~r !c~r !/J,

where

~ I 2wz!c~r !5J, ~ I 2wTz!ĉ~r !5J, ~A2!

and

J511^Juzc&511^Juzĉ&.

Then, definingf5c/J andf̂5ĉ/J, z can be eliminated to
give, in brief notation
ys
,

J

01180
us f2w
n

11wTn/f
51, f̂2wT

n

11wn/f̂
51, ~A3!

and the major task is to solve forf andf̂. Several solvable
cases of discrete systems were examined long ago@9#. Pro-
totypical is that in which

w~x,x8!5Ad~x82x21!, ~A4!

representing a one-dimensional lattice gas on an integer
tice. Here we have

f~x!5
An~x11!

11an~x!/f~x!
11, ~A5!

and, similarly for f̂, two instantly solvable quadratic rela
tionships, equivalent to previous solutions@10# of this model.
@1# A. Yethiraj, J. Chem. Phys.109, 3289~1998!.
@2# A. Yethiraj and C. E. Woodward, J. Chem. Phys.102, 5499

~1994!.
@3# J. B. Hooper, J. D. McCoy, and J. G. Curro, J. Chem. Ph

112, 3090 ~2000!; J. B. Hooper, M. T. Pioggi, J. D. McCoy
and F. Weinhold,ibid. 112, 3094 ~2000!, and papers cited
therein.

@4# I. Schmidt and K. Binder, J. Phys. II46, 1631~1985!.
@5# S. K. Nath, J. D. McCoy, J. D. Curro, and A. Saunders,
.

.

Polym. Sci., Part B: Polym. Phys.33, 2307~1985!.
@6# K. F. Freed, J. Chem. Phys.105, 10572~1996!.
@7# I. M. Lifschitz, Sov. Phys. JETP55, 2408~1968!; also see L.

A. Blumenfeld, Problems of Biological Physics~Springer-
Verlag, Berlin, 1981!.

@8# J. K. Percus, J. Stat. Phys.89, 249 ~1997!.
@9# J. K. Percus, J. Math. Phys.23, 1142~1982!.

@10# J. K. Percus, J. Stat. Phys.16, 299 ~1977!.
5-5


