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Single homopolymers in the relative density representation
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A single symmetric homopolymer is studied in the grand ensemble of its monomeric units. For an arbitrary
external field but next neighbor interactions alone, such a system is represented as a functional of the local
density to local fugacity ratio, conjugate to the fugacity, with the excess grand potential as thermodynamic
generating function. A sample case in a spherical enclosure is solved, where a complementary exclusion from
a spherical volume requires an extension to a grand ensemble of polymers. A preliminary extension is also
made in mean field form to non-neighbor interactions, as well as to nonsymmetric interactions.
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I. INTRODUCTION but also by an external potentialwhich enters the thermo-
dynamics asu(u)=pu—u(i), the argumeni denoting all
In this paper, we present an exact full analysis of an aldegrees of freedom of theh monomer. Let us adopt the
ternative density functional theory of a single freely jointednotation (i|w|j)=e #%0:) for the Boltzmann factor re-
polymer chain. In particular, we discuss a chain located in garded as a symmetric matrix, and|z|j)=2z(i)4(,j),
spherical pore, or on the outside of a spherical surface owherez(i)=ef*() is the externally imposed local fugacity.
plane surface. We will treat further related interactions by aFor idealized point monomers, the argumeinis. .. will rep-
perturbative mean field technique. Previous density funcresent continuous physical space locations, often designated
tional treatments of polymers in cavities or at walls eitherby r when the argument is to be highlighted.
were approximations, e.g., based on a Curtin-Ashcroft type The situation described here was previously tre&83dn
weighted density approximatiofl], a combined Monte considerable generality in the context of nonbinding interac-
Carlo simulation with a self-consistent density fi¢&i3], or  tion, as in a fluid, but we will learn a good deal more by
earlier Cahn-like treatmenfg—6). restricting the scope of the system to be studied. The parti-
There is also a very old discussion by Lifschjiz] of  tion function, with the fugacity attached, of aelement
conditions under which a polymeric chain with mean fieldchain is given by
interactions could collapse to form a globular structure. The

technique used has much in common with the presentation -

that we will adopt, but several differences are apparent. :N_f 2(1)(1|w[2)2(2)...2(N~- 1)

Thus, although we work in a grand ensemble framework,

which both simplifies the necessary algebraic manipulations X(N-1|w|N)z(N)d1...dN, 2.1

and raises the possibility of collapse even in the absence of . . .
long-range interactions, the format that we introduce in therendered compact by introducing the constant ved()
next two sections has relative densig] as its control vari- L+ SO that
able. This produces a particularly compact representation,
some aspects of which are then exemplified, and as is typical

of indirect forms—such as standard density functionalfor N=1. Appending=,=1, and observing that an ordered

theory—permits quite painless introduction of further inter- .21 does not have equivalent configurations under the per-

actions, non-nearest neighbor in this case, at any level gf,ation of monomers, the full grand partition functigh
approximation. It also leads naturally to the possibility of_1+2w =, becomes
- N=1~

nonsymmetric next neighbor interaction, e.g., a definite par-
ity associated with the chain. In the Appendix we present a =E=1+|z(1—w2) "3, 2.3
toy model in which this viewpoint plays a pivotal role.

En=_J]z(w2z)N"1J) (2.2

wherel denotes the identity matrix; the corresponding grand
Il. BASIC FORMALISM potential is then

We consider the behavior in thermal equilibrium of a Q——llnﬁ 2.4
single homopolymer with symmetric next neighbor interac- B :
tions. The interactionp is of binding type, so that the Boltz-
mann factore #?—0 at infinite separation. The statistical Now let us attend to the spatial structure of the thermal
ensemble employed here (slassical grand canonical for ensemble. The basic construct is monomer demgity, ob-
the monomeric units, controlled in this initial manifestation tained by anchoring one monomerrand dividing by= for
by the reciprocal temperatur@ and chemical potentiaj, normalization,
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n(r)=(LE)z(r)s=2/5z(r) (2.5

[equivalent, of course, tmo(r)=—6Q/Su(r)]. Using the

general relationsA~1=—-A"15AA™, Egs.(2.3 and (2.5
yield, at once,

1
n(r) == l(1—zw) ~Ynz(r)(r|(1-w2)~Y3), (2.6

which by the symmetry olv can be written as
n(r)/z(ry=u(r)? =,

where ¢ (r)={r|(1-wz)~1J) (2.7
We also note, from Eq2.3), that

= =1+(J|zy). 2.9

Ill. v REPRESENTATION

Although Egs.(2.7) and (2.8) complete our required de-

scription, their use of fugacitg(r) as control field is unsuit-

able for many extensions and applications. A thoroughl
studied alternative is that of expressing the system charact
istics in terms of density functionals, but we will opt for an
intermediary strategy, involving a less common Legendre

transform, that corresponding to the relative dengijative
to an ideal gas

v(r)=n(r)/z(r) (3.9
as independent control variallg]. Since
o0 =—Jn(r)ou(r)dr=(=1/8)fn(r)oz(r)/z(r)dr=
(=) fn(r)[on(r)In(r)—bv(r)lv(r)]dr,
we have
8(BOA+N)=6B0%= [z(r)Sv(r)dr,
or
2(r)y=6BO0% sv(r). (3.2

B serves as thermodynamic potential in aepresenta-

Z@nd we conclude that, in obvious notation,
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(I-w2)y=J, v=y?E, (3.9
and thenzyy=w~1(—J) implies that
z=v Y - E7Y). (3.5
From the first of Eqs(3.3), it follows that
B0 [ M0 -2 )
X(0Y¥(r")—E"Y3drdr'+1(E), (3.6

wheref(Z) is to be determined by the second of E(&3),
which reads

O=f"(B)+E = (riw*r")
X (1) —E"P)drdr’

=t(B)+EXrlwy-J)

=f"(E)+E 3E-1).

Thus, f(2)=—-1/Z—InE to within an additive constant,

1
B v,BE]l=—InE - E+(Ul/2_E_1/2)

wal(vl/Z_ E 71/2).

(3.7

IV. CONFINED SYSTEMS

For the dual purposes of understanding E@7) and
being aware of potential dangers, the direct formulations
(2.7 and (2.8 in the form preceding Eq(3.5), are quite
sufficient. Suppose, in particular, that the polymer is inside a
cavity denoted byA; then, fromzy=w"1(¢—1), we can
write

wli(y—1)=0 forreA,
(W l=zo)(yp—1)=2z5 forreA, 4.2

wherez, is the imposed fugacity, and of courge—1 as-
ymptotically. A simple interaction for whictw ™! is very

tion, with z(r) as a conjugate field. An overwhelming advan- accessible is the Yukawa or shielded Coulomb form
tage of this formalism is, as we will see in a moment, that we

can set up an explicit form for the functiongQ®{v] in
which, as opposed to Eq.3), only inverses of fixed matri-
ces appear.

Actually, it will be convenient to writg8Q)** redundantly
in terms of £ as well, so that we will want to have

SO v, 2]/ dv(r)=2z(r),
B v,E]I9E =0, (3.3
which both determineE and guarantee thatsgQ®*

=[z(r)dv(r)dr. Enforcing Egs.(3.3) is no problem. We
rewrite Eq.(2.7) as

(rlw|r"y=Ae XI=r'lj|r —r’| 4.2

(corresponding to the trapping potentiaBo(r,r’)
=K]|r—r’|+In[r—r'|=In A, which makes sense if mean next
neighbor separations are large enoudiquation(4.2) is the
Green'’s function for the Helmholtz operator, and so

1
w*lzm(Kz—vz), 4.3

meaning of course that

(riw=Yr"y=(1/47A)(K2=V?)S(r—r").
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Thus we can write
(K2=V2)(4—1)=0 for reA,
(4.4

(K'2=V?)(y—1)=K?—K'2 for reA,

where K'2=K?—4xAz,, and, with connection conditions

obtained by integrating across the boundan, ¢#—1 and
f-V(y—1) are continuous acrogs\.

Consider the special case of a spherical cavity of radius

Setting
¢(r)=rle(r)—1], (4.9
we have
K24(r)—¢"(r)=0, r=a
K'2¢(r)—¢"(r)=(K*-K'?)r, r<a (4.6
¢(r),¢'(r) continuous across=a,
solvable routinely to yield, inside the cavity,
K2—K'2 1+Ka _
A=z | " KsinhK'at K’ coshk’a "K'
for r<a. (4.7)
Consequently,
n(r)=(zo/E)(r)?,
where
K? K2-K'? 1+Ka
Y= 2" TKZ KsinhK’at K’ coshk'a
sinhK'r for r=a (4.8

and
a
E=1+ZOJ (r)dsr.
0

There are now two regimes to study. lfrAzy<K?, K’
is real, andys(r) decreases asincreases t@, but ¢(r)>1
throughout. At the crossover given I/ =0,

5 gKa

P(r)=1+ (Ka)z—%(Kr)2>1.

1+Ka
But then, for 4rAz,>K?2, we can seK’=iK" to obtain

K2 K2+ K//Z
¢(r):_ W—‘r Kr/2

1+Ka sinK”r

KsinK"a+K"cosK"a r '’
(4.9

again a decreasing function af as long asK sinK’a
+K"” cosK”a>0. However, this decays from
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sinK”a
K"a
K sinK”a+K” cosK”a ’

(4.10

1—

K24 K2 (1—cosK”a) +Ka
¢/(0)> K//Z

which becomes arbitrarily large a§” is varied, so that

K sinK"a+K"” cosK"a—0. Beyond this condensation, the
grand ensemble ceases to be meaningful: as one readily veri-
fies, the eigenvalues @iw are given here by

tafK”(M)a]/[K"(M)a]=—1/Ka, (4.1)
whereK”(\)?=47Azy/\—K?2, or
N=4mAz/(K"(\)2—K?), (4.12

and the threshold fox =1 is precisely at the first vanishing
of K sinK”a+K" cosK"a (occurring forzr/2<K"a<r).

V. UNCONFINED SYSTEMS

An opposite situation is that of indefinite confinement.
Suppose that the polymer is constrained to be outside the
spherer<a, but that the spherical surface has a “glue”
layer, so that

zZ(r)=zy6(r—a)+ yd(r—a). (5.0
This setup is a bit different. We cannot have a single poly-
mer ensemble because, with the infinite space available, it
will always evaporate away. But we can for example imagine
a fluid of noninteracting polymers, with asymptotic mono-
mer concentration controlled by the same fugacity we have
already included. For such a system, the grand potential will
be Eror=1+E+1/2152+ 1/3153+---, or
E1or=EXpE, (5.2

and so the only change will be that nown(r)
=2(r)(8/5z(r))In Eror=2(r) 52/5z(r). Hence, with the
same notation as before far v, ¢, Eq. (2.7) must be re-
placed by

n(r)=2z(r)y(r)?, (5.3
but nothing else will change.

Now we can proceed. Fromzyg=w (¢—1), or
(L/4mA) (K*=V?) (y—1)=(zo0(r —a) + yS(r —a)) ¢y, we
have, in the previous notation,
r<a

K?¢(r)—¢"(r)=0,

K" 2¢(r)—¢"(r)=(K2—K'?r, r>a (5.9

d(@a")=¢(a’) but ¢'(a*)—¢'(a”)=—4mAya.

Again, the solution is routine, and we find that
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r>a: ¢(r)=K?K'? where the subscript 0 refers uniformly to tld_nezo expres-
22 _ sions.
+ AmAya— (KT/K™"~1)(Kacothka—1) We have seen that, for pure chains,
K cothKa+K’
“K(r—a) n=vz=v/yw Y(y—J)=vVIEVAW Y E V22-1)
Xe—. (5.5 :UlIZ\Nfl(UUZ_Efl/Z)_

r
Interestingly, there is a transition from depletion to accumu—Hence’ we can generalize H&.7) to the approximation
lation next to the surface at a characteristic value ¢br of 1
Z, at fixed y). This is seen more clearly if we take the limit B v, El=~INE~ = +(v*-E"?
¥1(2) of y(a+2z) asa— oo, thereby converting the sphere to -
a planar surface with its outward direction. Doing so, then 1 _

X Wfl_}_ walvll218¢vl/2vvfl
K2  4zmA

Kz,
D=z e

'Y_W

—K'z.
e ) (56) X(Ul/Z—E_llz), (65)

thus the switch occurs aty=Kz,/K+K’, and the Wherev'? is diagonal when used as an operator. Since

asymptotic monomer density i8(=)=z,(K/K'). Note (WH+A) *=w i—w *Aw~*+---, we have in effect made
that here, the system collapseskas— 0. the replacement

_1..1/2 12
VI. EFFECT OF LONG-RANGE FORCES W—W= 30 B v 6.6

It is the one-dimensional ordering of monomers, and Cor_of the next neighbor Boltzmann factor, subject to the warn-

responding spatial separation of next neighbor monomer in"9 that Eq.(6.6) is v dependent so that this will not be the
teractions, that leads to the simplicity of the above analysis?Nly change in the profile equation fa(v). Part of the
But the physical interactions are of two kinds: the nextchange of Eq(6.6) is obvious: since the added interaction

neighbor binding that we have accounted for, and (e also appears between next neighbors, there is a direct change
leas) pair forces due to physical proximity which need notw=e #¢—e A¢*H=w—geow..., butthis is only one of

be ordinal proximity. This situation is of course inherently several components of the modification.

much more complex, but we can make inroads in mean field For computational purposes, the relative density form

fashion. Suppose that we append to the interaction [Eqg. (6.5] is most suitable. It is only necessary to rewrite the
profile equation(3.3) at fixed imposed fugacity in the strictly
—. . N — stationary form
A¢=%§j (i ,J)=%f A2(1,2)¢(1,2)d1d2, Y

where (6.2) 5{39 X[U'”]_J U(r)z(r)df}=0. (6.7)

parametrizev, and vary the parameters. Of course, an obvi-

Aa(r,r)=2, 8(ri—r)a(rj—r’) ous strategy is to use @=0 reference solution such as Eq.
7 (4.8), and (with its r>a extension as wellconvert its pa-
ameters to effective ones to be determined by stationarity.

is the microscopic pair distribution. Since the grand potential . : o
pic p 9 P ample results will be reported in a future communication.

serves as a universal generating functional we have for th
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In the mean field approximation, density fluctuations are ne-

glected, and we have simply APPENDIX: NONSYMMETRIC INTERACTION

B 1 — A polymer of identical monomers need not have even
BQ= o+ ZJ No(1)ne(2)B¢(1,2)d1d2, (6.4 parity, e.g., site A on one monomer interacts with site B of
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its neighbor. Then the Boltzmann facte(r,r’) will not be n A n
symmetric, and the general strategy must be modified. Let us p—w ———=1 p—w'———=1, (A3)
see how this works from the profile point of vie\@], rel- 1+w'n/¢ 1+wn/¢

egating energetic consideratiof to the future. Equation

(2.3 is still valid,
E=1+J]z(1-wz)~ 1),
but Egs.(2.6)—(2.8) now become
n(r)/z(r)=g(r)g(r)/=,
where
(I=w2)y(r)=3, (1=w'2)y(r)=J,
and

E=1+|z)=1+(J|zh).

and the major task is to solve fgf and <Aﬁ Several solvable
(A1) cases of discrete systems were examined long[@fdro-
totypical is that in which

W(x,X")=Ad8(X'—x—1), (A4)

representing a one-dimensional lattice gas on an integer lat-
tice. Here we have

(A2)
An(x+1)

0= T anle) (AS)

Then, definingp= y/= and$= /=, zcan be eliminated to and, similarly for$, two instantly solvable quadratic rela-

give, in brief notation

tionships, equivalent to previous solutiddg)] of this model.
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